
lpwan Working Group A. Minaburo
Internet-Draft Acklio
Intended status: Informational L. Toutain
Expires: December 31, 2018 IMT-Atlantique
 C. Gomez
 Universitat Politecnica de Catalunya
 D. Barthel
 Orange Labs
 June 29, 2018

LPWAN Static Context Header Compression (SCHC) and fragmentation for
IPv6 and UDP

draft-ietf-lpwan-ipv6-static-context-hc-14

Abstract

 This document defines the Static Context Header Compression (SCHC)
 framework, which provides both header compression and fragmentation
 functionalities. SCHC has been tailored for Low Power Wide Area
 Networks (LPWAN).

 SCHC compression is based on a common static context stored in both
 the LPWAN devices and the network side. This document defines a
 header compression mechanism and its application to compress IPv6/UDP
 headers.

 This document also specifies a fragmentation and reassembly mechanism
 that is used to support the IPv6 MTU requirement over the LPWAN
 technologies. Fragmentation is needed for IPv6 datagrams that, after
 SCHC compression or when such compression was not possible, still
 exceed the layer two maximum payload size.

 The SCHC header compression and fragmentation mechanisms are
 independent of the specific LPWAN technology over which they are
 used. Note that this document defines generic functionalities and
 advisedly offers flexibility with regard to parameter settings and
 mechanism choices. Such settings and choices are expected to be made
 in other technology-specific documents.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute

Minaburo, et al. Expires December 31, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Internet-Draft LPWAN SCHC June 2018

 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 31, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. LPWAN Architecture . 5
3. Terminology . 5
4. SCHC overview . 9
5. Rule ID . 12
6. Static Context Header Compression 12
6.1. SCHC C/D Rules . 13
6.2. Rule ID for SCHC C/D 15
6.3. Packet processing . 15
6.4. Matching operators 17
6.5. Compression Decompression Actions (CDA) 17
6.5.1. not-sent CDA . 19
6.5.2. value-sent CDA 19
6.5.3. mapping-sent CDA 19
6.5.4. LSB CDA . 19
6.5.5. DevIID, AppIID CDA 20
6.5.6. Compute-* . 20

7. Fragmentation . 20
7.1. Overview . 20
7.2. Fragmentation Tools 21
7.3. Reliability modes . 24

https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Minaburo, et al. Expires December 31, 2018 [Page 2]

Internet-Draft LPWAN SCHC June 2018

7.4. Fragmentation Formats 26
7.4.1. Fragments that are not the last one 26
7.4.2. All-1 fragment 28
7.4.3. SCHC ACK format 30
7.4.4. Abort formats . 32

7.5. Baseline mechanism 34
7.5.1. No-ACK . 35
7.5.2. ACK-Always . 35
7.5.3. ACK-on-Error . 38

7.6. Supporting multiple window sizes 40
7.7. Downlink SCHC Fragment transmission 40

8. Padding management . 41
9. SCHC Compression for IPv6 and UDP headers 42
9.1. IPv6 version field 42
9.2. IPv6 Traffic class field 42
9.3. Flow label field . 43
9.4. Payload Length field 43
9.5. Next Header field . 43
9.6. Hop Limit field . 44
9.7. IPv6 addresses fields 44
9.7.1. IPv6 source and destination prefixes 44
9.7.2. IPv6 source and destination IID 45

9.8. IPv6 extensions . 45
9.9. UDP source and destination port 45
9.10. UDP length field . 46
9.11. UDP Checksum field 46

10. Security considerations 47
 10.1. Security considerations for SCHC
 Compression/Decompression 47
 10.2. Security considerations for SCHC
 Fragmentation/Reassembly 47

11. Acknowledgements . 48
12. References . 49
12.1. Normative References 49
12.2. Informative References 50

Appendix A. SCHC Compression Examples 50
Appendix B. Fragmentation Examples 52
Appendix C. Fragmentation State Machines 58
Appendix D. SCHC Parameters - Ticket #15 65
Appendix E. Note . 66

 Authors' Addresses . 67

1. Introduction

 This document defines the Static Context Header Compression (SCHC)
 framework, which provides both header compression and fragmentation
 functionalities. SCHC has been tailored for Low Power Wide Area
 Networks (LPWAN).

Minaburo, et al. Expires December 31, 2018 [Page 3]

Internet-Draft LPWAN SCHC June 2018

 Header compression is needed to efficiently bring Internet
 connectivity to the node within an LPWAN network. Some LPWAN
 networks properties can be exploited to get an efficient header
 compression:

 o The network topology is star-oriented, which means that all
 packets follow the same path. For the needs of this document, the
 architecture can simply be described as Devices (Dev) exchanging
 information with LPWAN Application Servers (App) through Network
 Gateways (NGW).

 o Because devices embed built-in applications, the traffic flows to
 be compressed are known in advance. Indeed, new applications
 cannot be easily installed in LPWAN devices, as they would in
 computers or smartphones.

 The Static Context Header Compression (SCHC) is defined for this
 environment. SCHC uses a context, in which information about header
 fieds is stored. This context is static: the values of the header
 fields do not change over time. This avoids complex
 resynchronization mechanisms, that would be incompatible with LPWAN
 characteristics. In most cases, a small context identifier is enough
 to represent the full IPv6/UDP headers. The SCHC header compression
 mechanism is independent of the specific LPWAN technology over which
 it is used.

 LPWAN technologies impose some strict limitations on traffic. For
 instance, devices are sleeping most of the time and MAY receive data
 during short periods of time after transmission to preserve battery.
 LPWAN technologies are also characterized, among others, by a very
 reduced data unit and/or payload size (see [RFC8376]). However, some
 of these technologies do not provide fragmentation functionality,
 therefore the only option for them to support the IPv6 MTU
 requirement of 1280 bytes [RFC2460] is to use a fragmentation
 protocol at the adaptation layer, below IPv6. In response to this
 need, this document also defines a fragmentation/reassembly
 mechanism, which supports the IPv6 MTU requirement over LPWAN
 technologies. Such functionality has been designed under the
 assumption that there is no out-of-sequence delivery of data units
 between the entity performing fragmentation and the entity performing
 reassembly.

 Note that this document defines generic functionality and
 purposefully offers flexibility with regard to parameter settings and
 mechanism choices. Such settings and choices are expected to be made
 in other, technology-specific documents.

https://datatracker.ietf.org/doc/html/rfc8376
https://datatracker.ietf.org/doc/html/rfc2460

Minaburo, et al. Expires December 31, 2018 [Page 4]

Internet-Draft LPWAN SCHC June 2018

2. LPWAN Architecture

 LPWAN technologies have similar network architectures but different
 terminologies. Using the terminology defined in [RFC8376], we can
 identify different types of entities in a typical LPWAN network, see
 Figure 1:

 o Devices (Dev) are the end-devices or hosts (e.g. sensors,
 actuators, etc.). There can be a very high density of devices per
 radio gateway.

 o The Radio Gateway (RGW), which is the end point of the constrained
 link.

 o The Network Gateway (NGW) is the interconnection node between the
 Radio Gateway and the Internet.

 o LPWAN-AAA Server, which controls the user authentication and the
 applications.

 o Application Server (App)

 +------+
 () () () | |LPWAN-|
 () () () () / \ +---------+ | AAA |
 () () () () () () / \======| ^ |===|Server| +-----------+
 () () () | | <--|--> | +------+ |APPLICATION|
 () () () () / \==========| v |=============| (App) |
 () () () / \ +---------+ +-----------+
 Dev Radio Gateways NGW

 Figure 1: LPWAN Architecture

3. Terminology

 This section defines the terminology and acronyms used in this
 document.

 Note that the SCHC acronym is pronounced like "sheek" in English (or
 "chic" in French). Therefore, this document writes "a SCHC Packet"
 instead of "an SCHC Packet".

 o Abort. A SCHC Fragment format to signal the other end-point that
 the on-going fragment transmission is stopped and finished.

https://datatracker.ietf.org/doc/html/rfc8376

Minaburo, et al. Expires December 31, 2018 [Page 5]

Internet-Draft LPWAN SCHC June 2018

 o All-0. The SCHC Fragment format for the last fragment of a window
 that is not the last one of a SCHC Packet (see window in this
 glossary).

 o All-1. The SCHC Fragment format for the last fragment of the SCHC
 Packet.

 o All-0 empty. An All-0 SCHC Fragment without payload. It is used
 to request the SCHC ACK with the encoded Bitmap when the
 Retransmission Timer expires, in a window that is not the last one
 of a packet.

 o All-1 empty. An All-1 SCHC Fragment without payload. It is used
 to request the SCHC ACK with the encoded Bitmap when the
 Retransmission Timer expires in the last window of a packet.

 o App: LPWAN Application. An application sending/receiving IPv6
 packets to/from the Device.

 o AppIID: Application Interface Identifier. The IID that identifies
 the application server interface.

 o Bi: Bidirectional. Characterises a Rule Entry that applies to
 headers of packets travelling in either direction (Up and Dw, see
 this glossary).

 o Bitmap: a bit field in the SCHC ACK message that tells the sender
 which SCHC Fragments in a window of fragments were correctly
 received.

 o C: Checked bit. Used in an acknowledgement (SCHC ACK) header to
 determine if the MIC locally computed by the receiver matches (1)
 the received MIC or not (0).

 o CDA: Compression/Decompression Action. Describes the reciprocal
 pair of actions that are performed at the compressor to compress a
 header field and at the decompressor to recover the original
 header field value.

 o Compression Residue. The bits that need to be sent (beyond the
 Rule ID itself) after applying the SCHC compression over each
 header field.

 o Context: A set of Rules used to compress/decompress headers.

 o Dev: Device. A node connected to an LPWAN. A Dev SHOULD
 implement SCHC.

Minaburo, et al. Expires December 31, 2018 [Page 6]

Internet-Draft LPWAN SCHC June 2018

 o DevIID: Device Interface Identifier. The IID that identifies the
 Dev interface.

 o DI: Direction Indicator. This field tells which direction of
 packet travel (Up, Dw or Bi) a Rule applies to. This allows for
 assymmetric processing.

 o DTag: Datagram Tag. This SCHC F/R header field is set to the same
 value for all SCHC Fragments carrying the same SCHC Packet.

 o Dw: Downlink direction for compression/decompression in both
 sides, from SCHC C/D in the network to SCHC C/D in the Dev.

 o FCN: Fragment Compressed Number. This SCHC F/R header field
 carries an efficient representation of a larger-sized fragment
 number.

 o Field Description. A line in the Rule table.

 o FID: Field Identifier. This is an index to describe the header
 fields in a Rule.

 o FL: Field Length is the length of the packet header field. It is
 expressed in bits for header fields of fixed lengths or as a type
 (e.g. variable, token length, ...) for field lengths that are
 unknown at the time of Rule creation. The length of a header
 field is defined in the corresponding protocol specification.

 o FP: Field Position is a value that is used to identify the
 position where each instance of a field appears in the header.

 o IID: Interface Identifier. See the IPv6 addressing architecture
 [RFC7136]

 o Inactivity Timer. A timer used after receiving a SCHC Fragment to
 detect when, due to a communication error, there is no possibility
 to continue an on-going fragmented SCHC Packet transmission.

 o L2: Layer two. The immediate lower layer SCHC interfaces with.
 It is provided by an underlying LPWAN technology.

 o L2 Word: this is the minimum subdivision of payload data that the
 L2 will carry. In most L2 technologies, the L2 Word is an octet.
 In bit-oriented radio technologies, the L2 Word might be a single
 bit. The L2 Word size is assumed to be constant over time for
 each device.

https://datatracker.ietf.org/doc/html/rfc7136

Minaburo, et al. Expires December 31, 2018 [Page 7]

Internet-Draft LPWAN SCHC June 2018

 o MIC: Message Integrity Check. A SCHC F/R header field computed
 over the fragmented SCHC Packet and potential fragment padding,
 used for error detection after SCHC Packet reassembly.

 o MO: Matching Operator. An operator used to match a value
 contained in a header field with a value contained in a Rule.

 o Padding (P). Extra bits that may be appended by SCHC to a data
 unit that it passes to the underlying Layer 2 for transmission.
 SCHC itself operates on bits, not bytes, and does not have any
 alignment prerequisite. See Section 8.

 o Retransmission Timer. A timer used by the SCHC Fragment sender
 during an on-going fragmented SCHC Packet transmission to detect
 possible link errors when waiting for a possible incoming SCHC
 ACK.

 o Rule: A set of header field values.

 o Rule entry: A column in a Rule that describes a parameter of the
 header field.

 o Rule ID: An identifier for a Rule. SCHC C/D on both sides share
 the same Rule ID for a given packet. A set of Rule IDs are used
 to support SCHC F/R functionality.

 o SCHC ACK: A SCHC acknowledgement for fragmentation. This message
 is used to report on the success of reception of a set of SCHC
 Fragments. See Section 7 for more details.

 o SCHC C/D: Static Context Header Compression Compressor/
 Decompressor. A mechanism used on both sides, at the Dev and at
 the network, to achieve Compression/Decompression of headers.
 SCHC C/D uses Rules to perform compression and decompression.

 o SCHC F/R: Static Context Header Compression Fragmentation/
 Reassembly. A protocol used on both sides, at the Dev and at the
 network, to achieve Fragmentation/Reassembly of SCHC Packets.
 SCHC F/R has three reliability modes.

 o SCHC Fragment: A data unit that carries a subset of a SCHC Packet.
 SCHC F/R is needed when the size of a SCHC packet exceeds the
 available payload size of the underlying L2 technology data unit.
 See Section 7.

 o SCHC Packet: A packet (e.g. an IPv6 packet) whose header has been
 compressed as per the header compression mechanism defined in this
 document. If the header compression process is unable to actually

Minaburo, et al. Expires December 31, 2018 [Page 8]

Internet-Draft LPWAN SCHC June 2018

 compress the packet header, the packet with the uncompressed
 header is still called a SCHC Packet (in this case, a Rule ID is
 used to indicate that the packet header has not been compressed).
 See Section 6 for more details.

 o TV: Target value. A value contained in a Rule that will be
 matched with the value of a header field.

 o Up: Uplink direction for compression/decompression in both sides,
 from the Dev SCHC C/D to the network SCHC C/D.

 o W: Window bit. A SCHC Fragment header field used in ACK-on-Error
 or ACK-Always mode Section 7, which carries the same value for all
 SCHC Fragments of a window.

 o Window: A subset of the SCHC Fragments needed to carry a SCHC
 Packet (see Section 7).

4. SCHC overview

 SCHC can be abstracted as an adaptation layer between IPv6 and the
 underlying LPWAN technology. SCHC comprises two sublayers (i.e. the
 Compression sublayer and the Fragmentation sublayer), as shown in
 Figure 2.

 +----------------+
 | IPv6 |
 +- +----------------+
 | | Compression |
 SCHC < +----------------+
 | | Fragmentation |
 +- +----------------+
 |LPWAN technology|
 +----------------+

 Figure 2: Protocol stack comprising IPv6, SCHC and an LPWAN
 technology

 As per this document, when a packet (e.g. an IPv6 packet) needs to be
 transmitted, header compression is first applied to the packet. The
 resulting packet after header compression (whose header may or may
 not actually be smaller than that of the original packet) is called a
 SCHC Packet. If the SCHC Packet size exceeds the layer 2 (L2) MTU,
 fragmentation is then applied to the SCHC Packet. The SCHC Packet or
 the SCHC Fragments are then transmitted over the LPWAN. The
 reciprocal operations take place at the receiver. This process is
 illustrated in Figure 3.

Minaburo, et al. Expires December 31, 2018 [Page 9]

Internet-Draft LPWAN SCHC June 2018

A packet (e.g. an IPv6 packet)
 | ^
 v |
+------------------+ +--------------------+
| SCHC Compression | | SCHC Decompression |
+------------------+ +--------------------+
 | ^
 | If no fragmentation (*) |
 +-------------- SCHC Packet -------------->|
 | |
 v |
+--------------------+ +-----------------+
| SCHC Fragmentation | | SCHC Reassembly |
+--------------------+ +-----------------+
 | ^ | ^
 | | | |
 | +-------------- SCHC ACK -------------+ |
 | |
 +-------------- SCHC Fragments -------------------+

 SENDER RECEIVER

*: the decision to use Fragmentation or not is left to each LPWAN technology
 over which SCHC is applied. See LPWAN technology-specific documents.

 Figure 3: SCHC operations taking place at the sender and the receiver

 The SCHC Packet is composed of the Compressed Header followed by the
 payload from the original packet (see Figure 4). The Compressed
 Header itself is composed of a Rule ID and a Compression Residue.
 The Compression Residue may be absent, see Section 6. Both the Rule
 ID and the Compression Residue potentially have a variable size, and
 generally are not a mutiple of bytes in size.

 | Rule ID + Compression Residue |
 +---------------------------------+--------------------+
 | Compressed Header | Payload |
 +---------------------------------+--------------------+

 Figure 4: SCHC Packet

 The Fragment Header size is variable and depends on the Fragmentation
 parameters. The Fragment payload contains a part of the SCHC Packet
 Compressed Header, a part of the SCHC Packet Payload or both. Its

Minaburo, et al. Expires December 31, 2018 [Page 10]

Internet-Draft LPWAN SCHC June 2018

 size depends on the L2 data unit, see Section 7. The SCHC Fragment
 has the following format:

 | Rule ID + DTAG + W + FCN [+ MIC] | Partial SCHC Packet |
 +-----------------------------------+-------------------------+
 | Fragment Header | Fragment Payload |
 +-----------------------------------+-------------------------+

 Figure 5: SCHC Fragment

 The SCHC ACK is only used for Fragmentation. It has the following
 format:

 |Rule ID + DTag + W|
 +------------------+-------- ... ---------+
 | ACK Header | encoded Bitmap |
 +------------------+-------- ... ---------+

 Figure 6: SCHC ACK

 The SCHC ACK Header and the encoded Bitmap both have variable size.

 Figure 7 below maps the functional elements of Figure 3 onto the
 LPWAN architecture elements of Figure 1.

 Dev App
 +----------------+ +--------------+
APP1 APP2 APP3		APP1 APP2 APP3
UDP		UDP
IPv6		IPv6
SCHC C/D and F/R		
 +--------+-------+ +-------+------+
 | +--+ +----+ +-----------+ .
 +~~ |RG| === |NGW | === | SCHC |... Internet ..
 +--+ +----+ |F/R and C/D|
 +-----------+

 Figure 7: Architecture

 SCHC C/D and SCHC F/R are located on both sides of the LPWAN
 transmission, i.e. on the Dev side and on the Network side.

 Let's describe the operation in the Uplink direction. The Device
 application packets use IPv6 or IPv6/UDP protocols. Before sending

Minaburo, et al. Expires December 31, 2018 [Page 11]

Internet-Draft LPWAN SCHC June 2018

 these packets, the Dev compresses their headers using SCHC C/D and,
 if the SCHC Packet resulting from the compression exceeds the maximum
 payload size of the underlying LPWAN technology, SCHC F/R is
 performed (see Section 7). The resulting SCHC Fragments are sent as
 one or more L2 frames to an LPWAN Radio Gateway (RG) which forwards
 them to a Network Gateway (NGW). The NGW sends the data to a SCHC F/
 R and then to the SCHC C/D for decompression. The SCHC F/R and C/D
 on the Network side can be located in the NGW or somewhere else as
 long as a tunnel is established between them and the NGW. Note that,
 for some LPWAN technologies, it MAY be suitable to locate the SCHC F/
 R functionality nearer the NGW, in order to better deal with time
 constraints of such technologies. The SCHC C/D and F/R on both sides
 MUST share the same set of Rules. After decompression, the packet
 can be sent over the Internet to one or several LPWAN Application
 Servers (App).

 The SCHC C/D and F/R process is symmetrical, therefore the
 description of the Downlink direction trivially derives from the one
 above.

5. Rule ID

 Rule IDs are identifiers used to select the correct context either
 for Compression/Decompression or for Fragmentation/Reassembly.

 The size of the Rule IDs is not specified in this document, as it is
 implementation-specific and can vary according to the LPWAN
 technology and the number of Rules, among others.

 The Rule IDs are used:

 o In the SCHC C/D context, to identify the Rule (i.e., the set of
 Field Descriptions) that is used to compress a packet header.

 o At least one Rule ID MAY be allocated to tagging packets for which
 SCHC compression was not possible (no matching Rule was found).

 o In SCHC F/R, to identify the specific modes and settings of SCHC
 Fragments being transmitted, and to identify the SCK ACKs,
 including their modes and settings. Note that in the case of
 bidirectional communication, at least two Rule ID values are
 therefore needed for F/R.

6. Static Context Header Compression

 In order to perform header compression, this document defines a
 mechanism called Static Context Header Compression (SCHC), which is
 based on using context, i.e. a set of Rules to compress or decompress

Minaburo, et al. Expires December 31, 2018 [Page 12]

Internet-Draft LPWAN SCHC June 2018

 headers. SCHC avoids context synchronization, which is the most
 bandwidth-consuming operation in other header compression mechanisms
 such as RoHC [RFC5795]. Since the nature of packets is highly
 predictable in LPWAN networks, static contexts MAY be stored
 beforehand to omit transmitting some information over the air. The
 contexts MUST be stored at both ends, and they can be learned by a
 provisioning protocol or by out of band means, or they can be pre-
 provisioned. The way the contexts are provisioned on both ends is
 out of the scope of this document.

6.1. SCHC C/D Rules

 The main idea of the SCHC compression scheme is to transmit the Rule
 ID to the other end instead of sending known field values. This Rule
 ID identifies a Rule that provides the closest match to the original
 packet values. Hence, when a value is known by both ends, it is only
 necessary to send the corresponding Rule ID over the LPWAN network.
 How Rules are generated is out of the scope of this document. The
 Rules MAY be changed at run-time but the way to do this will be
 specified in another document.

 The context contains a list of Rules (cf. Figure 8). Each Rule
 itself contains a list of Field Descriptions composed of a Field
 Identifier (FID), a Field Length (FL), a Field Position (FP), a
 Direction Indicator (DI), a Target Value (TV), a Matching Operator
 (MO) and a Compression/Decompression Action (CDA).

 /---\
 | Rule N |
 /---\|
 | Rule i ||
 /---\||
(FID) Rule 1										
+-------+--+--+--+------------+-----------------+---------------+										
	Field 1	FL	FP	DI	Target Value	Matching Operator	Comp/Decomp Act			
+-------+--+--+--+------------+-----------------+---------------+										
	Field 2	FL	FP	DI	Target Value	Matching Operator	Comp/Decomp Act			
+-------+--+--+--+------------+-----------------+---------------+										
			
+-------+--+--+--+------------+-----------------+---------------+		/								
	Field N	FL	FP	DI	Target Value	Matching Operator	Comp/Decomp Act			
+-------+--+--+--+------------+-----------------+---------------+	/									
 \---/

 Figure 8: Compression/Decompression Context

https://datatracker.ietf.org/doc/html/rfc5795

Minaburo, et al. Expires December 31, 2018 [Page 13]

Internet-Draft LPWAN SCHC June 2018

 A Rule does not describe how to parse a packet header to find each
 field. This MUST be known from the compressor/decompressor. Rules
 only describe the compression/decompression behavior for each header
 field. In a Rule, the Field Descriptions are listed in the order in
 which the fields appear in the packet header.

 A Rule also describes what Compression Residue is sent. The
 Compression Residue is assembled by concatenating the residues for
 each field, in the order the Field Descriptions appear in the Rule.

 The Context describes the header fields and its values with the
 following entries:

 o Field ID (FID) is a unique value to define the header field.

 o Field Length (FL) represents the length of the field. It can be
 either a fixed value (in bits) if the length is known when the
 Rule is created or a type if the length is variable. The length
 of a header field is defined in the corresponding protocol
 specification. The type defines the process to compute the
 length, its unit (bits, bytes,...) and the value to be sent before
 the Compression Residue.

 o Field Position (FP): most often, a field only occurs once in a
 packet header. Some fields may occur multiple times in a header.
 FP indicates which occurrence this Field Description applies to.
 The default value is 1 (first occurence).

 o A Direction Indicator (DI) indicates the packet direction(s) this
 Field Description applies to. Three values are possible:

 * UPLINK (Up): this Field Description is only applicable to
 packets sent by the Dev to the App,

 * DOWNLINK (Dw): this Field Description is only applicable to
 packets sent from the App to the Dev,

 * BIDIRECTIONAL (Bi): this Field Description is applicable to
 packets travelling both Up and Dw.

 o Target Value (TV) is the value used to make the match with the
 packet header field. The Target Value can be of any type
 (integer, strings, etc.). For instance, it can be a single value
 or a more complex structure (array, list, etc.), such as a JSON or
 a CBOR structure.

 o Matching Operator (MO) is the operator used to match the Field
 Value and the Target Value. The Matching Operator may require

Minaburo, et al. Expires December 31, 2018 [Page 14]

Internet-Draft LPWAN SCHC June 2018

 some parameters. MO is only used during the compression phase.
 The set of MOs defined in this document can be found in

Section 6.4.

 o Compression Decompression Action (CDA) describes the compression
 and decompression processes to be performed after the MO is
 applied. Some CDAs MAY require parameter values for their
 operation. CDAs are used in both the compression and the
 decompression functions. The set of CDAs defined in this document
 can be found in Section 6.5.

6.2. Rule ID for SCHC C/D

 Rule IDs are sent by the compression function in one side and are
 received for the decompression function in the other side. In SCHC
 C/D, the Rule IDs are specific to a Dev. Hence, multiple Dev
 instances MAY use the same Rule ID to define different header
 compression contexts. To identify the correct Rule ID, the SCHC C/D
 needs to correlate the Rule ID with the Dev identifier to find the
 appropriate Rule to be applied.

6.3. Packet processing

 The compression/decompression process follows several steps:

 o Compression Rule selection: The goal is to identify which Rule(s)
 will be used to compress the packet's headers. When doing
 decompression, on the network side the SCHC C/D needs to find the
 correct Rule based on the L2 address and in this way, it can use
 the DevIID and the Rule ID. On the Dev side, only the Rule ID is
 needed to identify the correct Rule since the Dev only holds Rules
 that apply to itself. The Rule will be selected by matching the
 Fields Descriptions to the packet header as described below. When
 the selection of a Rule is done, this Rule is used to compress the
 header. The detailed steps for compression Rule selection are the
 following:

 * The first step is to choose the Field Descriptions by their
 direction, using the Direction Indicator (DI). A Field
 Description that does not correspond to the appropriate DI will
 be ignored. If all the fields of the packet do not have a
 Field Description with the correct DI, the Rule is discarded
 and SCHC C/D proceeds to explore the next Rule.

 * When the DI has matched, then the next step is to identify the
 fields according to Field Position (FP). If FP does not
 correspond, the Rule is not used and the SCHC C/D proceeds to
 consider the next Rule.

Minaburo, et al. Expires December 31, 2018 [Page 15]

Internet-Draft LPWAN SCHC June 2018

 * Once the DI and the FP correspond to the header information,
 each packet field's value is then compared to the corresponding
 Target Value (TV) stored in the Rule for that specific field
 using the matching operator (MO).

 If all the fields in the packet's header satisfy all the
 matching operators (MO) of a Rule (i.e. all MO results are
 True), the fields of the header are then compressed according
 to the Compression/Decompression Actions (CDAs) and a
 compressed header (with possibly a Compression Residue) SHOULD
 be obtained. Otherwise, the next Rule is tested.

 * If no eligible Rule is found, then the header MUST be sent
 without compression. This MAY require the use of the SCHC F/R
 process.

 o Sending: If an eligible Rule is found, the Rule ID is sent to the
 other end followed by the Compression Residue (which could be
 empty) and directly followed by the payload. The Compression
 Residue is the concatenation of the Compression Residues for each
 field according to the CDAs for that Rule. The way the Rule ID is
 sent depends on the specific underlying LPWAN technology. For
 example, it can be either included in an L2 header or sent in the
 first byte of the L2 payload. (Cf. Figure 9). This process will
 be specified in the LPWAN technology-specific document and is out
 of the scope of the present document. On LPWAN technologies that
 are byte-oriented, the compressed header concatenated with the
 original packet payload is padded to a multiple of 8 bits, if
 needed. See Section 8 for details.

 o Decompression: When doing decompression, on the network side the
 SCHC C/D needs to find the correct Rule based on the L2 address
 and in this way, it can use the DevIID and the Rule ID. On the
 Dev side, only the Rule ID is needed to identify the correct Rule
 since the Dev only holds Rules that apply to itself.

 The receiver identifies the sender through its device-id (e.g.
 MAC address, if exists) and selects the appropriate Rule from the
 Rule ID. If a source identifier is present in the L2 technology,
 it is used to select the Rule ID. This Rule describes the
 compressed header format and associates the values to the header
 fields. The receiver applies the CDA action to reconstruct the
 original header fields. The CDA application order can be
 different from the order given by the Rule. For instance,
 Compute-* SHOULD be applied at the end, after all the other CDAs.

Minaburo, et al. Expires December 31, 2018 [Page 16]

Internet-Draft LPWAN SCHC June 2018

 +--- ... --+------- ... -------+------------------+
 | Rule ID |Compression Residue| packet payload |
 +--- ... --+------- ... -------+------------------+

 |----- compressed header ------|

 Figure 9: SCHC C/D Packet Format

6.4. Matching operators

 Matching Operators (MOs) are functions used by both SCHC C/D
 endpoints involved in the header compression/decompression. They are
 not typed and can be indifferently applied to integer, string or any
 other data type. The result of the operation can either be True or
 False. MOs are defined as follows:

 o equal: The match result is True if a field value in a packet and
 the value in the TV are equal.

 o ignore: No check is done between a field value in a packet and a
 TV in the Rule. The result of the matching is always true.

 o MSB(x): A match is obtained if the most significant x bits of the
 packet header field value are equal to the TV in the Rule. The x
 parameter of the MSB MO indicates how many bits are involved in
 the comparison. If the FL is described as variable, the length
 must be a multiple of the unit. For example, x must be multiple
 of 8 if the unit of the variable length is in bytes.

 o match-mapping: With match-mapping, the Target Value is a list of
 values. Each value of the list is identified by a short ID (or
 index). Compression is achieved by sending the index instead of
 the original header field value. This operator matches if the
 header field value is equal to one of the values in the target
 list.

6.5. Compression Decompression Actions (CDA)

 The Compression Decompression Action (CDA) describes the actions
 taken during the compression of headers fields, and inversely, the
 action taken by the decompressor to restore the original value.

Minaburo, et al. Expires December 31, 2018 [Page 17]

Internet-Draft LPWAN SCHC June 2018

 /--------------------+-------------+----------------------------\
 | Action | Compression | Decompression |
 | | | |
 +--------------------+-------------+----------------------------+
not-sent	elided	use value stored in context
value-sent	send	build from received value
mapping-sent	send index	value from index on a table
LSB	send LSB	TV, received value
compute-length	elided	compute length
compute-checksum	elided	compute UDP checksum
DevIID	elided	build IID from L2 Dev addr
AppIID	elided	build IID from L2 App addr
 \--------------------+-------------+----------------------------/

 Figure 10: Compression and Decompression Actions

 Figure 10 summarizes the basic functions that can be used to compress
 and decompress a field. The first column lists the actions name.
 The second and third columns outline the reciprocal compression/
 decompression behavior for each action.

 Compression is done in order that Fields Descriptions appear in a
 Rule. The result of each Compression/Decompression Action is
 appended to the working Compression Residue in that same order. The
 receiver knows the size of each compressed field which can be given
 by the Rule or MAY be sent with the compressed header.

 If the field is identified as being variable in the Field
 Description, then the size of the Compression Residue value (using
 the unit defined in the FL) MUST be sent first using the following
 coding:

 o If the size is between 0 and 14, it is sent as a 4-bits integer.

 o For values between 15 and 254, the first 4 bits sent are set to 1
 and the size is sent using 8 bits integer.

 o For higher values of size, the first 12 bits are set to 1 and the
 next two bytes contain the size value as a 16 bits integer.

 If a field is not present in the packet but exists in the Rule and
 its FL is specified as being variable, size 0 MUST be sent to denote
 its absence.

Minaburo, et al. Expires December 31, 2018 [Page 18]

Internet-Draft LPWAN SCHC June 2018

6.5.1. not-sent CDA

 The not-sent function is generally used when the field value is
 specified in a Rule and therefore known by both the Compressor and
 the Decompressor. This action is generally used with the "equal" MO.
 If MO is "ignore", there is a risk to have a decompressed field value
 different from the original field that was compressed.

 The compressor does not send any Compression Residue for a field on
 which not-sent compression is applied.

 The decompressor restores the field value with the Target Value
 stored in the matched Rule identified by the received Rule ID.

6.5.2. value-sent CDA

 The value-sent action is generally used when the field value is not
 known by both the Compressor and the Decompressor. The value is sent
 as a residue in the compressed message header. Both Compressor and
 Decompressor MUST know the size of the field, either implicitly (the
 size is known by both sides) or by explicitly indicating the length
 in the Compression Residue, as defined in Section 6.5. This function
 is generally used with the "ignore" MO.

6.5.3. mapping-sent CDA

 The mapping-sent is used to send a smaller index (the index into the
 Target Value list of values) instead of the original value. This
 function is used together with the "match-mapping" MO.

 On the compressor side, the match-mapping Matching Operator searches
 the TV for a match with the header field value and the mapping-sent
 CDA appends the corresponding index to the Compression Residue to be
 sent. On the decompressor side, the CDA uses the received index to
 restore the field value by looking up the list in the TV.

 The number of bits sent is the minimal size for coding all the
 possible indices.

6.5.4. LSB CDA

 The LSB action is used together with the "MSB(x)" MO to avoid sending
 the most significant part of the packet field if that part is already
 known by the receiving end. The number of bits sent is the original
 header field length minus the length specified in the MSB(x) MO.

Minaburo, et al. Expires December 31, 2018 [Page 19]

Internet-Draft LPWAN SCHC June 2018

 The compressor sends the Least Significant Bits (e.g. LSB of the
 length field). The decompressor concatenates the x most significant
 bits of Target Value and the received residue.

 If this action needs to be done on a variable length field, the size
 of the Compression Residue in bytes MUST be sent as described in

Section 6.5.

6.5.5. DevIID, AppIID CDA

 These functions are used to process respectively the Dev and the App
 Interface Identifiers (DevIID and AppIID) of the IPv6 addresses.
 AppIID CDA is less common since current LPWAN technologies frames
 contain a single address, which is the Dev's address.

 The IID value MAY be computed from the Device ID present in the L2
 header, or from some other stable identifier. The computation is
 specific to each LPWAN technology and MAY depend on the Device ID
 size.

 In the downlink direction (Dw), at the compressor, this DevIID CDA
 may be used to generate the L2 addresses on the LPWAN, based on the
 packet destination address.

6.5.6. Compute-*

 Some fields are elided during compression and reconstructed during
 decompression. This is the case for length and checksum, so:

 o compute-length: computes the length assigned to this field. This
 CDA MAY be used to compute IPv6 length or UDP length.

 o compute-checksum: computes a checksum from the information already
 received by the SCHC C/D. This field MAY be used to compute UDP
 checksum.

7. Fragmentation

7.1. Overview

 In LPWAN technologies, the L2 data unit size typically varies from
 tens to hundreds of bytes. The SCHC F/R (Fragmentation /Reassembly)
 MAY be used either because after applying SCHC C/D or when SCHC C/D
 is not possible the entire SCHC Packet still exceeds the L2 data
 unit.

 The SCHC F/R functionality defined in this document has been designed
 under the assumption that data unit out-of-sequence delivery will not

Minaburo, et al. Expires December 31, 2018 [Page 20]

Internet-Draft LPWAN SCHC June 2018

 happen between the entity performing fragmentation and the entity
 performing reassembly. This assumption allows reducing the
 complexity and overhead of the SCHC F/R mechanism.

 This document also assumes that the L2 data unit size does not vary
 while a fragmented SCHC Packet is being transmitted.

 To adapt the SCHC F/R to the capabilities of LPWAN technologies, it
 is required to enable optional SCHC Fragment retransmission and to
 allow for a range of reliability options for sending the SCHC
 Fragments. This document does not make any decision with regard to
 which SCHC Fragment delivery reliability mode will be used over a
 specific LPWAN technology. These details will be defined in other
 technology-specific documents.

 SCHC F/R uses the knowledge of the L2 Word size (see Section 3) to
 encode some messages. Therefore, SCHC MUST know the L2 Word size.
 SCHC F/R generates SCHC Fragments and SCHC ACKs that are, for most of
 them, multiples of L2 Words. The padding overhead is kept to the
 absolute minimum. See Section 8.

7.2. Fragmentation Tools

 This subsection describes the different tools that are used to enable
 the SCHC F/R functionality defined in this document, such as fields
 in the SCHC F/R header frames (see the related formats in

Section 7.4), windows and timers.

 o Rule ID. The Rule ID is present in the SCHC Fragment header and
 in the SCHC ACK header formats. The Rule ID in a SCHC Fragment
 header is used to identify that a SCHC Fragment is being carried,
 which SCHC F/R reliability mode is used and which window size is
 used. The Rule ID in the SCHC Fragment header also allows
 interleaving non-fragmented SCHC Packets and SCHC Fragments that
 carry other SCHC Packets. The Rule ID in a SCHC ACK identifies
 the message as a SCHC ACK.

 o Fragment Compressed Number (FCN). The FCN is included in all SCHC
 Fragments. This field can be understood as a truncated, efficient
 representation of a larger-sized fragment number, and does not
 carry an absolute SCHC Fragment number. There are two FCN
 reserved values that are used for controlling the SCHC F/R
 process, as described next:

 * The FCN value with all the bits equal to 1 (All-1) denotes the
 last SCHC Fragment of a packet. The last window of a packet is
 called an All-1 window.

Minaburo, et al. Expires December 31, 2018 [Page 21]

Internet-Draft LPWAN SCHC June 2018

 * The FCN value with all the bits equal to 0 (All-0) denotes the
 last SCHC Fragment of a window that is not the last one of the
 packet. Such a window is called an All-0 window.

 The rest of the FCN values are assigned in a sequentially
 decreasing order, which has the purpose to avoid possible
 ambiguity for the receiver that might arise under certain
 conditions. In the SCHC Fragments, this field is an unsigned
 integer, with a size of N bits. In the No-ACK mode, the size is
 set to 1 bit (N=1), All-0 is used in all SCHC Fragments and All-1
 for the last one. For the other reliability modes, it is
 recommended to use a number of bits (N) equal to or greater than
 3. Nevertheless, the appropriate value of N MUST be defined in
 the corresponding technology-specific profile documents. For
 windows that are not the last one of a fragmented SCHC Packet, the
 FCN for the last SCHC Fragment in such windows is an All-0. This
 indicates that the window is finished and communication proceeds
 according to the reliability mode in use. The FCN for the last
 SCHC Fragment in the last window is an All-1, indicating the last
 SCHC Fragment of the SCHC Packet. It is also important to note
 that, in the No-ACK mode or when N=1, the last SCHC Fragment of
 the packet will carry a FCN equal to 1, while all previous SCHC
 Fragments will carry a FCN to 0. For further details see

Section 7.5. The highest FCN in the window, denoted MAX_WIND_FCN,
 MUST be a value equal to or smaller than 2^N-2. (Example for N=5,
 MAX_WIND_FCN MAY be set to 23, then subsequent FCNs are set
 sequentially and in decreasing order, and the FCN will wrap from 0
 back to 23).

 o Datagram Tag (DTag). The DTag field, if present, is set to the
 same value for all SCHC Fragments carrying the same SCHC
 packet, and to different values for different SCHC Packets. Using
 this field, the sender can interleave fragments from different
 SCHC Packets, while the receiver can still tell them apart. In
 the SCHC Fragment formats, the size of the DTag field is T bits,
 which MAY be set to a value greater than or equal to 0 bits. For
 each new SCHC Packet processed by the sender, DTag MUST be
 sequentially increased, from 0 to 2^T - 1 wrapping back from 2^T -
 1 to 0. In the SCHC ACK format, DTag carries the same value as
 the DTag field in the SCHC Fragments for which this SCHC ACK is
 intended. When there is no Dtag, there can be only one SCHC
 Packet in transit. Only after all its fragments have been
 transmitted can another SCHC Packet be sent. The length of DTag,
 denoted T, is not specified in this document because it is
 technology dependant. It will be defined in the corresponding
 technology-specific documents, based on the number of simultaneous
 packets that are to be supported.

Minaburo, et al. Expires December 31, 2018 [Page 22]

Internet-Draft LPWAN SCHC June 2018

 o W (window): W is a 1-bit field. This field carries the same value
 for all SCHC Fragments of a window, and it is complemented for the
 next window. The initial value for this field is 0. In the SCHC
 ACK format, this field also has a size of 1 bit. In all SCHC
 ACKs, the W bit carries the same value as the W bit carried by the
 SCHC Fragments whose reception is being positively or negatively
 acknowledged by the SCHC ACK.

 o Message Integrity Check (MIC). This field is computed by the
 sender over the complete SCHC Packet and before SCHC
 fragmentation. The MIC allows the receiver to check errors in the
 reassembled packet, while it also enables compressing the UDP
 checksum by use of SCHC compression. The CRC32 as 0xEDB88320
 (i.e. the reverse representation of the polynomial used e.g. in
 the Ethernet standard [RFC3385]) is recommended as the default
 algorithm for computing the MIC. Nevertheless, other algorithms
 MAY be required and are defined in the technology-specific
 documents as well as the length in bits of the MIC used.

 o C (MIC checked): C is a 1-bit field. This field is used in the
 SCHC ACK packets to report the outcome of the MIC check, i.e.
 whether the reassembled packet was correctly received or not. A
 value of 1 represents a positive MIC check at the receiver side
 (i.e. the MIC computed by the receiver matches the received MIC).

 o Retransmission Timer. A SCHC Fragment sender uses it after the
 transmission of a window to detect a transmission error of the
 SCHC ACK corresponding to this window. Depending on the
 reliability mode, it will lead to a request a SCHC ACK
 retransmission (in ACK-Always mode) or it will trigger the
 transmission of the next window (in ACK-on-Error mode). The
 duration of this timer is not defined in this document and MUST be
 defined in the corresponding technology-specific documents.

 o Inactivity Timer. A SCHC Fragment receiver uses it to take action
 when there is a problem in the transmission of SCHC fragments.
 Such a problem could be detected by the receiver not getting a
 single SCHC Fragment during a given period of time. When this
 happens, an Abort message will be sent (see related text later in
 this section). Initially, and each time a SCHC Fragment is
 received, the timer is reinitialized. The duration of this timer
 is not defined in this document and MUST be defined in the
 corresponding technology-specific document.

 o Attempts. This counter counts the requests for a missing SCHC
 ACK. When it reaches the value MAX_ACK_REQUESTS, the sender
 assumes there are recurrent SCHC Fragment transmission errors and
 determines that an Abort is needed. The default value

https://datatracker.ietf.org/doc/html/rfc3385

Minaburo, et al. Expires December 31, 2018 [Page 23]

Internet-Draft LPWAN SCHC June 2018

 MAX_ACK_REQUESTS is not stated in this document, and it is
 expected to be defined in the corresponding technology-specific
 document. The Attempts counter is defined per window. It is
 initialized each time a new window is used.

 o Bitmap. The Bitmap is a sequence of bits carried in a SCHC ACK.
 Each bit in the Bitmap corresponds to a SCHC fragment of the
 current window, and provides feedback on whether the SCHC Fragment
 has been received or not. The right-most position on the Bitmap
 reports if the All-0 or All-1 fragment has been received or not.
 Feedback on the SCHC fragment with the highest FCN value is
 provided by the bit in the left-most position of the Bitmap. In
 the Bitmap, a bit set to 1 indicates that the SCHC Fragment of FCN
 corresponding to that bit position has been correctly sent and
 received. The text above describes the internal representation of
 the Bitmap. When inserted in the SCHC ACK for transmission from
 the receiver to the sender, the Bitmap is shortened for energy/
 bandwidth optimisation, see more details in Section 7.4.3.1.

 o Abort. On expiration of the Inactivity timer, or when Attempts
 reaches MAX_ACK_REQUESTS or upon occurrence of some other error,
 the sender or the receiver may use the Abort. When the receiver
 needs to abort the on-going fragmented SCHC Packet transmission,
 it sends the Receiver-Abort format. When the sender needs to
 abort the transmission, it sends the Sender-Abort format. None of
 the Aborts are acknowledged.

7.3. Reliability modes

 This specification defines three reliability modes: No-ACK, ACK-
 Always, and ACK-on-Error. ACK-Always and ACK-on-Error operate on
 windows of SCHC Fragments. A window of SCHC Fragments is a subset of
 the full set of SCHC Fragments needed to carry a SCHC Packet.

 o No-ACK. No-ACK is the simplest SCHC Fragment reliability mode.
 The receiver does not generate overhead in the form of
 acknowledgements (ACKs). However, this mode does not enhance
 reliability beyond that offered by the underlying LPWAN
 technology. In the No-ACK mode, the receiver MUST NOT issue SCHC
 ACKs. See further details in Section 7.5.1.

 o ACK-Always. The ACK-Always mode provides flow control using a
 windowing scheme. This mode is also able to handle long bursts of
 lost SCHC Fragments since detection of such events can be done
 before the end of the SCHC Packet transmission as long as the
 window size is short enough. However, such benefit comes at the
 expense of SCHC ACK use. In ACK-Always, the receiver sends a SCHC
 ACK after a window of SCHC Fragments has been received. The SCHC

Minaburo, et al. Expires December 31, 2018 [Page 24]

Internet-Draft LPWAN SCHC June 2018

 ACK is used to inform the sender which SCHC Fragments in the
 current window have been well received. Upon a SCHC ACK
 reception, the sender retransmits the lost SCHC Fragments. When a
 SCHC ACK is lost and the sender has not received it by the
 expiration of the Retransmission Timer, the sender uses a SCHC ACK
 request by sending the All-0 empty SCHC Fragment when it is not
 the last window and the All-1 empty Fragment when it is the last
 window. The maximum number of SCHC ACK requests is
 MAX_ACK_REQUESTS. If MAX_ACK_REQUESTS is reached, the
 transmission needs to be aborted. See further details in

Section 7.5.2.

 o ACK-on-Error. The ACK-on-Error mode is suitable for links
 offering relatively low L2 data unit loss probability. In this
 mode, the SCHC Fragment receiver reduces the number of SCHC ACKs
 transmitted, which MAY be especially beneficial in asymmetric
 scenarios. The receiver transmits a SCHC ACK only after the
 complete window transmission and if at least one SCHC Fragment of
 this window has been lost. An exception to this behavior is in
 the last window, where the receiver MUST transmit a SCHC ACK,
 including the C bit set based on the MIC checked result, even if
 all the SCHC Fragments of the last window have been correctly
 received. The SCHC ACK gives the state of all the SCHC Fragments
 of the current window (received or lost). Upon a SCHC ACK
 reception, the sender retransmits any lost SCHC Fragments based on
 the SCHC ACK. If a SCHC ACK is not transmitted back by the
 receiver at the end of a window, the sender assumes that all SCHC
 Fragments have been correctly received. When a SCHC ACK is lost,
 the sender assumes that all SCHC Fragments covered by the lost
 SCHC ACK have been successfully delivered, so the sender continues
 transmitting the next window of SCHC Fragments. If the next SCHC
 Fragments received belong to the next window and it is still
 expecting fragments from the previous window, the receiver will
 abort the on-going fragmented packet transmission. See further
 details in Section 7.5.3.

 The same reliability mode MUST be used for all SCHC Fragments of a
 SCHC Packet. The decision on which reliability mode will be used and
 whether the same reliability mode applies to all SCHC Packets is an
 implementation problem and is out of the scope of this document.

 Note that the reliability mode choice is not necessarily tied to a
 particular characteristic of the underlying L2 LPWAN technology, e.g.
 the No-ACK mode MAY be used on top of an L2 LPWAN technology with
 symmetric characteristics for uplink and downlink. This document
 does not make any decision as to which SCHC Fragment reliability
 modes are relevant for a specific LPWAN technology.

Minaburo, et al. Expires December 31, 2018 [Page 25]

Internet-Draft LPWAN SCHC June 2018

 Examples of the different reliability modes described are provided in
Appendix B.

7.4. Fragmentation Formats

 This section defines the SCHC Fragment format, including the All-0
 and All-1 formats and their "empty" variations, the SCHC ACK format
 and the Abort formats.

 A SCHC Fragment conforms to the general format shown in Figure 11.
 It comprises a SCHC Fragment Header and a SCHC Fragment Payload. In
 addition, the last SCHC Fragment carries as many padding bits as
 needed to fill up an L2 Word. The SCHC Fragment Payload carries a
 subset of the SCHC Packet. The SCHC Fragment is the data unit passed
 on to the L2 for transmission.

 +-----------------+-----------------------+~~~~~~~~~~~~~~~~~~~~~
 | Fragment Header | Fragment payload | padding (as needed)
 +-----------------+-----------------------+~~~~~~~~~~~~~~~~~~~~~

 Figure 11: SCHC Fragment general format. Presence of a padding field
 is optional

7.4.1. Fragments that are not the last one

 In ACK-Always or ACK-on-Error, SCHC Fragments except the last one
 SHALL conform to the detailed format defined in Figure 12.

 |----- Fragment Header -----|
 |-- T --|1|-- N --|
 +-- ... --+- ... -+-+- ... -+--------...-------+
 | Rule ID | DTag |W| FCN | Fragment payload |
 +-- ... --+- ... -+-+- ... -+--------...-------+

 Figure 12: Fragment Detailed Format for Fragments except the Last
 One, ACK-Always and ACK-on-Error

 In the No-ACK mode, SCHC Fragments except the last one SHALL conform
 to the detailed format defined in Figure 13.

Minaburo, et al. Expires December 31, 2018 [Page 26]

Internet-Draft LPWAN SCHC June 2018

 |---- Fragment Header ----|
 |-- T --|-- N --|
 +-- ... --+- ... -+- ... -+--------...-------+
 | Rule ID | DTag | FCN | Fragment payload |
 +-- ... --+- ... -+- ... -+--------...-------+

 Figure 13: Fragment Detailed Format for Fragments except the Last
 One, No-ACK mode

 The total size of the fragment header is not necessarily a multiple
 of the L2 Word size. To build the fragment payload, SCHC F/R MUST
 take from the SCHC Packet a number of bits that makes the SCHC
 Fragment an exact multiple of L2 Words. As a consequence, no padding
 bit is used for these fragments.

7.4.1.1. All-0 fragment

 The All-0 format is used for sending the last SCHC Fragment of a
 window that is not the last window of the SCHC Packet.

 |----- Fragment Header -----|
 |-- T --|1|-- N --|
 +-- ... --+- ... -+-+- ... -+--------...-------+
 | Rule ID | DTag |W| 0..0 | Fragment payload |
 +-- ... --+- ... -+-+- ... -+--------...-------+

 Figure 14: All-0 fragment detailed format

 This is simply an instance of the format described in Figure 12. An
 All-0 fragment payload MUST be at least the size of an L2 Word. The
 rationale is that the All-0 empty fragment (see Section 7.4.1.2)
 needs to be distinguishable from the All-0 regular fragment, even in
 the presence of padding.

7.4.1.2. All-0 empty fragment

 The All-0 empty fragment is an exception to the All-0 fragment
 described above. It is used by a sender to request the
 retransmission of a SCHC ACK by the receiver. It is only used in
 ACK-Always mode.

Minaburo, et al. Expires December 31, 2018 [Page 27]

Internet-Draft LPWAN SCHC June 2018

 |----- Fragment Header -----|
 |-- T --|1|-- N --|
 +-- ... --+- ... -+-+- ... -+~~~~~~~~~~~~~~~~~~~~~
 | Rule ID | DTag |W| 0..0 | padding (as needed) (no payload)
 +-- ... --+- ... -+-+- ... -+~~~~~~~~~~~~~~~~~~~~~

 Figure 15: All-0 empty fragment detailed format

 The size of the All-0 fragment header is generally not a multiple of
 the L2 Word size. Therefore, an All-0 empty fragment generally needs
 padding bits. The padding bits are always less than an L2 Word.

 Since an All-0 payload MUST be at least the size of an L2 Word, a
 receiver can distinguish an All-0 empty fragment from a regular All-0
 fragment, even in the presence of padding.

7.4.2. All-1 fragment

 In the No-ACK mode, the last SCHC Fragment of a SCHC Packet SHALL
 contain a SCHC Fragment header that conforms to the detailed format
 shown in Figure 16.

 |---------- Fragment Header ----------|
 |-- T --|-N=1-|
 +---- ... ---+- ... -+-----+-- ... --+---...---+~~~~~~~~~~~~~~~~~~~~~
 | Rule ID | DTag | 1 | MIC | payload | padding (as needed)
 +---- ... ---+- ... -+-----+-- ... --+---...---+~~~~~~~~~~~~~~~~~~~~~

 Figure 16: All-1 Fragment Detailed Format for the Last Fragment, No-
 ACK mode

 In ACK-Always or ACK-on-Error mode, the last fragment of a SCHC
 Packet SHALL contain a SCHC Fragment header that conforms to the
 detailed format shown in Figure 17.

 |---------- Fragment Header ----------|
 |-- T --|1|-- N --|
 +-- ... --+- ... -+-+- ... -+-- ... --+---...---+~~~~~~~~~~~~~~~~~~~~~
 | Rule ID | DTag |W| 11..1 | MIC | payload | padding (as needed)
 +-- ... --+- ... -+-+- ... -+-- ... --+---...---+~~~~~~~~~~~~~~~~~~~~~
 (FCN)

 Figure 17: All-1 Fragment Detailed Format for the Last Fragment, ACK-
 Always or ACK-on-Error

Minaburo, et al. Expires December 31, 2018 [Page 28]

Internet-Draft LPWAN SCHC June 2018

 The total size of the All-1 SCHC Fragment header is generally not a
 multiple of the L2 Word size. The All-1 fragment being the last one
 of the SCHC Packet, SCHC F/R cannot freely choose the payload size to
 align the fragment to an L2 Word. Therefore, padding bits are
 generally appended to the All-1 fragment to make it a multiple of L2
 Words in size.

 The MIC MUST be computed on the payload and the padding bits. The
 rationale is that the SCHC Reassembler needs to check the correctness
 of the reassembled SCHC packet but has no way of knowing where the
 payload ends. Indeed, the latter requires decompressing the SCHC
 Packet.

 An All-1 fragment payload MUST be at least the size of an L2 Word.
 The rationale is that the All-1 empty fragment (see Section 7.4.2.1)
 needs to be distinguishable from the All-1 fragment, even in the
 presence of padding. This may entail saving an L2 Word from the
 previous fragment payload to make the payload of this All-1 fragment
 big enough.

 The values for N, T and the length of MIC are not specified in this
 document, and SHOULD be determined in other documents (e.g.
 technology-specific profile documents).

 The length of the MIC MUST be at least an L2 Word size. The
 rationale is to be able to distinguish a Sender-Abort (see

Section 7.4.4) from an All-1 Fragment, even in the presence of
 padding.

7.4.2.1. All-1 empty fragment

 The All-1 empty fragment format is an All-1 fragment format without a
 payload (see Figure 18). It is used by a fragment sender, in either
 ACK-Always or ACK-on-Error, to request a retransmission of the SCHC
 ACK for the All-1 window.

 The size of the All-1 empty fragment header is generally not a
 multiple of the L2 Word size. Therefore, an All-1 empty fragment
 generally needs padding bits. The padding bits are always less than
 an L2 Word.

 Since an All-1 payload MUST be at least the size of an L2 Word, a
 receiver can distinguish an All-1 empty fragment from a regular All-1
 fragment, even in the presence of padding.

Minaburo, et al. Expires December 31, 2018 [Page 29]

Internet-Draft LPWAN SCHC June 2018

 |---------- Fragment Header --------|
 |-- T --|1|-- N --|
 +-- ... --+- ... -+-+- ... -+- ... -+~~~~~~~~~~~~~~~~~~~
 | Rule ID | DTag |W| 1..1 | MIC | padding as needed (no payload)
 +-- ... --+- ... -+-+- ... -+- ... -+~~~~~~~~~~~~~~~~~~~

 Figure 18: All-1 for Retries format, also called All-1 empty

7.4.3. SCHC ACK format

 The format of a SCHC ACK that acknowledges a window that is not the
 last one (denoted as All-0 window) is shown in Figure 19.

 |-- T --|1|
 +---- ... --+- ... -+-+---- ... -----+
 | Rule ID | DTag |W|encoded Bitmap| (no payload)
 +---- ... --+- ... -+-+---- ... -----+

 Figure 19: ACK format for All-0 windows

 To acknowledge the last window of a packet (denoted as All-1 window),
 a C bit (i.e. MIC checked) following the W bit is set to 1 to
 indicate that the MIC check computed by the receiver matches the MIC
 present in the All-1 fragment. If the MIC check fails, the C bit is
 set to 0 and the Bitmap for the All-1 window follows.

 |-- T --|1|1|
 +---- ... --+- ... -+-+-+
 | Rule ID | DTag |W|1| (MIC correct)
 +---- ... --+- ... -+-+-+

 +---- ... --+- ... -+-+-+----- ... -----+
 | Rule ID | DTag |W|0|encoded Bitmap |(MIC Incorrect)
 +---- ... --+- ... -+-+-+----- ... -----+
 C

 Figure 20: Format of a SCHC ACK for All-1 windows

 The Rule ID and Dtag values in the SCHC ACK messages MUST be
 identical to the ones used in the SCHC Fragments that are being
 acknowledged. This allows matching the SCHC ACK and the
 corresponding SCHC Fragments.

 The Bitmap carries information on the reception of each fragment of
 the window as described in Section 7.2.

Minaburo, et al. Expires December 31, 2018 [Page 30]

Internet-Draft LPWAN SCHC June 2018

 See Appendix D for a discussion on the size of the Bitmaps.

 In order to reduce the SCK ACK size, the Bitmap that is actually
 transmitted is shortened ("encoded") as explained in Section 7.4.3.1.

7.4.3.1. Bitmap Encoding

 The SCHC ACK that is transmitted is truncated by applying the
 following algorithm: the longest contiguous sequence of bits that
 starts at an L2 Word boundary of the SCHC ACK, where the bits of that
 sequence are all set to 1, are all part of the Bitmap and finish
 exactly at the end of the Bitmap, if one such sequence exists, MUST
 NOT be transmitted. Because the SCHC Fragment sender knows the
 actual Bitmap size, it can reconstruct the original Bitmap from the
 shortened bitmap.

 When shortening effectively takes place, the SCHC ACK is a multiple
 of L2 Words, and padding MUST NOT be appended. When shortening does
 not happen, padding bits MUST be appended as needed to fill up the
 last L2 Word.

 Figure 21 shows an example where L2 Words are actually bytes and
 where the original Bitmap contains 17 bits, the last 15 of which are
 all set to 1.

 |-- SCHC ACK Header --|-------- Bitmap --------|
 | Rule ID | DTag |W|1|0|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|
 next L2 Word boundary ->| next L2 Word | next L2 Word |

 Figure 21: A non-encoded Bitmap

 Figure 22 shows that the last 14 bits are not sent.

 |-- T --|1|
 +---- ... --+- ... -+-+-+-+-+
 | Rule ID | DTag |W|1|0|1|
 +---- ... --+- ... -+-+-+-+-+
 next L2 Word boundary ->|

 Figure 22: Optimized Bitmap format

 Figure 23 shows an example of a SCHC ACK with FCN ranging from 6 down
 to 0, where the Bitmap indicates that the second and the fifth SCHC
 Fragments have not been correctly received.

Minaburo, et al. Expires December 31, 2018 [Page 31]

Internet-Draft LPWAN SCHC June 2018

 6 5 4 3 2 1 0 (*)
 |-- T --|1|
 +-----------+-------+-+-+-+-+-+-+-+-+
 | Rule ID | DTag |W|1|0|1|1|0|1|1| Bitmap before tx
 +-----------+-------+-+-+-+-+-+-+-+-+
 next L2 Word boundary ->|<-- L2 Word -->|
 (*)=(FCN values)

 +-----------+-------+-+-+-+-+-+-+-+-+~~~+
 | Rule ID | DTag |W|1|0|1|1|0|1|1|Pad| Encoded Bitmap
 +-----------+-------+-+-+-+-+-+-+-+-+~~~+
 next L2 Word boundary ->|<-- L2 Word -->|

 Figure 23: Example of a Bitmap before transmission, and the
 transmitted one, for a window that is not the last one

 Figure 24 shows an example of a SCHC ACK with FCN ranging from 6 down
 to 0, where MIC check has failed but the Bitmap indicates that there
 is no missing SCHC Fragment.

 |- Fragmentation Header-|6 5 4 3 2 1 7 (*)
 |-- T --|1|
 | Rule ID | DTag |W|0|1|1|1|1|1|1|1| Bitmap before tx
 next L2 Word boundary ->|<-- L2 Word -->|
 C
 +---- ... --+- ... -+-+-+-+
 | Rule ID | DTag |W|0|1| Encoded Bitmap
 +---- ... --+- ... -+-+-+-+
 next L2 Word boundary ->|
 (*) = (FCN values indicating the order)

 Figure 24: Example of the Bitmap in ACK-Always or ACK-on-Error for
 the last window

7.4.4. Abort formats

 When a SCHC Fragment sender needs to abort the on-going fragmented
 SCHC Packet transmission, it sends a Sender-Abort. The Sender-Abort
 format (see Figure 25) is a variation of the All-1 fragment, with
 neither a MIC nor a payload. All-1 fragments contain at least a MIC.
 The absence of the MIC indicates a Sender-Abort.

Minaburo, et al. Expires December 31, 2018 [Page 32]

Internet-Draft LPWAN SCHC June 2018

 |--- Sender-Abort Header ---|
 +--- ... ---+- ... -+-+-...-+~~~~~~~~~~~~~~~~~~~~~
 | Rule ID | DTag |W| FCN | padding (as needed)
 +--- ... ---+- ... -+-+-...-+~~~~~~~~~~~~~~~~~~~~~

 Figure 25: Sender-Abort format. All FCN field bits in this format
 are set to 1

 The size of the Sender-Abort header is generally not a multiple of
 the L2 Word size. Therefore, a Sender-Abort generally needs padding
 bits.

 Since an All-1 fragment MIC MUST be at least the size of an L2 Word,
 a receiver can distinguish a Sender-Abort from an All-1 fragment,
 even in the presence of padding.

 When a SCHC Fragment receiver needs to abort the on-going fragmented
 SCHC Packet transmission, it transmits a Receiver-Abort. The
 Receiver-Abort format is a variation on the SCHC ACK format, creating
 an exception in the encoded Bitmap algorithm. As shown in Figure 26,
 a Receiver-Abort is coded as a SCHC ACK message with a shortened
 Bitmap set to 1 up to the first L2 Word boundary, followed by an
 extra L2 Word full of 1's. Such a message never occurs in a regular
 acknowledgement and is detected as a Receiver-Abort.

 The Rule ID and Dtag values in the Receive-Abort message MUST be
 identical to the ones used in the fragments of the SCHC Packet the
 transmission of which is being aborted.

 A Receiver-Abort is aligned to L2 Words, by design. Therefore,
 padding MUST not be appended.

 |- Receiver-Abort Header -|

 +---- ... ----+-- ... --+-+-+-+-+-+-+-+-+-+-+-+-+
 | Rule ID | DTag |W| 1..1| 1..1 |
 +---- ... ----+-- ... --+-+-+-+-+-+-+-+-+-+-+-+-+
 next L2 Word boundary ->|<-- L2 Word -->|

 Figure 26: Receiver-Abort format

 Neither the Sender-Abort nor the Receiver-Abort messages are ever
 acknowledged or retransmitted.

 Use cases for the Sender-Abort and Receiver-Abort messages are
 explained in Section 7.5 or Appendix C.

Minaburo, et al. Expires December 31, 2018 [Page 33]

Internet-Draft LPWAN SCHC June 2018

7.5. Baseline mechanism

 If after applying SCHC header compression (or when SCHC header
 compression is not possible) the SCHC Packet does not fit within the
 payload of a single L2 data unit, the SCHC Packet SHALL be broken
 into SCHC Fragments and the fragments SHALL be sent to the fragment
 receiver. The fragment receiver needs to identify all the SCHC
 Fragments that belong to a given SCHC Packet. To this end, the
 receiver SHALL use:

 o The sender's L2 source address (if present),

 o The destination's L2 address (if present),

 o Rule ID,

 o DTag (if present).

 Then, the fragment receiver MAY determine the SCHC Fragment
 reliability mode that is used for this SCHC Fragment based on the
 Rule ID in that fragment.

 After a SCHC Fragment reception, the receiver starts constructing the
 SCHC Packet. It uses the FCN and the arrival order of each SCHC
 Fragment to determine the location of the individual fragments within
 the SCHC Packet. For example, the receiver MAY place the fragment
 payload within a payload reassembly buffer at the location determined
 from the FCN, the arrival order of the SCHC Fragments, and the
 fragment payload sizes. In ACK-on-Error or ACK-Always, the fragment
 receiver also uses the W bit in the received SCHC Fragments. Note
 that the size of the original, unfragmented packet cannot be
 determined from fragmentation headers.

 Fragmentation functionality uses the FCN value to transmit the SCHC
 Fragments. It has a length of N bits where the All-1 and All-0 FCN
 values are used to control the fragmentation transmission. The rest
 of the FCN numbers MUST be assigned sequentially in a decreasing
 order, the first FCN of a window is RECOMMENDED to be MAX_WIND_FCN,
 i.e. the highest possible FCN value depending on the FCN number of
 bits.

 In all modes, the last SCHC Fragment of a packet MUST contain a MIC
 which is used to check if there are errors or missing SCHC Fragments
 and MUST use the corresponding All-1 fragment format. Note that a
 SCHC Fragment with an All-0 format is considered the last SCHC
 Fragment of the current window.

Minaburo, et al. Expires December 31, 2018 [Page 34]

Internet-Draft LPWAN SCHC June 2018

 If the receiver receives the last fragment of a SCHC Packet (All-1),
 it checks for the integrity of the reassembled SCHC Packet, based on
 the MIC received. In No-ACK, if the integrity check indicates that
 the reassembled SCHC Packet does not match the original SCHC Packet
 (prior to fragmentation), the reassembled SCHC Packet MUST be
 discarded. In ACK-on-Error or ACK-Always, a MIC check is also
 performed by the fragment receiver after reception of each subsequent
 SCHC Fragment retransmitted after the first MIC check.

 Notice that the SCHC ACK for the All-1 window carries one more bit
 (the C bit) compared to the SCHC ACKs for the previous windows. See

Appendix D for a discussion on various options to deal with this
 "bump" in the SCHC ACK.

 There are three reliability modes: No-ACK, ACK-Always and ACK-on-
 Error. In ACK-Always and ACK-on-Error, a jumping window protocol
 uses two windows alternatively, identified as 0 and 1. A SCHC
 Fragment with all FCN bits set to 0 (i.e. an All-0 fragment)
 indicates that the window is over (i.e. the SCHC Fragment is the last
 one of the window) and allows to switch from one window to the next
 one. The All-1 FCN in a SCHC Fragment indicates that it is the last
 fragment of the packet being transmitted and therefore there will not
 be another window for this packet.

7.5.1. No-ACK

 In the No-ACK mode, there is no feedback communication from the
 fragment receiver. The sender will send all the SCHC fragments of a
 packet without any possibility of knowing if errors or losses have
 occurred. As, in this mode, there is no need to identify specific
 SCHC Fragments, a one-bit FCN MAY be used. Consequently, the FCN
 All-0 value is used in all SCHC fragments except the last one, which
 carries an All-1 FCN and the MIC. The receiver will wait for SCHC
 Fragments and will set the Inactivity timer. The receiver will use
 the MIC contained in the last SCHC Fragment to check for errors.
 When the Inactivity Timer expires or if the MIC check indicates that
 the reassembled packet does not match the original one, the receiver
 will release all resources allocated to reassembling this packet.
 The initial value of the Inactivity Timer will be determined based on
 the characteristics of the underlying LPWAN technology and will be
 defined in other documents (e.g. technology-specific profile
 documents).

7.5.2. ACK-Always

 In ACK-Always, the sender transmits SCHC Fragments by using the two-
 jumping-windows procedure. A delay between each SCHC fragment can be
 added to respect local regulations or other constraints imposed by

Minaburo, et al. Expires December 31, 2018 [Page 35]

Internet-Draft LPWAN SCHC June 2018

 the applications. Each time a SCHC fragment is sent, the FCN is
 decreased by one. When the FCN reaches value 0, if there are more
 SCHC Fragments remaining to be sent, the sender transmits the last
 SCHC Fragment of this window using the All-0 fragment format. It
 then starts the Retransmission Timer and waits for a SCHC ACK.
 Otherwise, if FCN reaches 0 and the sender transmits the last SCHC
 Fragment of the SCHC Packet, the sender uses the All-1 fragment
 format, which includes a MIC. The sender sets the Retransmission
 Timer and waits for the SCHC ACK to know if transmission errors have
 occurred.

 The Retransmission Timer is dimensioned based on the LPWAN technology
 in use. When the Retransmission Timer expires, the sender sends an
 All-0 empty (resp. All-1 empty) fragment to request again the SCHC
 ACK for the window that ended with the All-0 (resp. All-1) fragment
 just sent. The window number is not changed.

 After receiving an All-0 or All-1 fragment, the receiver sends a SCHC
 ACK with an encoded Bitmap reporting whether any SCHC fragments have
 been lost or not. When the sender receives a SCHC ACK, it checks the
 W bit carried by the SCHC ACK. Any SCHC ACK carrying an unexpected W
 bit value is discarded. If the W bit value of the received SCHC ACK
 is correct, the sender analyzes the rest of the SCHC ACK message,
 such as the encoded Bitmap and the MIC. If all the SCHC Fragments
 sent for this window have been well received, and if at least one
 more SCHC Fragment needs to be sent, the sender advances its sending
 window to the next window value and sends the next SCHC Fragments.
 If no more SCHC Fragments have to be sent, then the fragmented SCHC
 Packet transmission is finished.

 However, if one or more SCHC Fragments have not been received as per
 the SCHC ACK (i.e. the corresponding bits are not set in the encoded
 Bitmap) then the sender resends the missing SCHC Fragments. When all
 missing SCHC Fragments have been retransmitted, the sender starts the
 Retransmission Timer, even if an All-0 or an All-1 has not been sent
 as part of this retransmission and waits for a SCHC ACK. Upon
 receipt of the SCHC ACK, if one or more SCHC Fragments have not yet
 been received, the counter Attempts is increased and the sender
 resends the missing SCHC Fragments again. When Attempts reaches
 MAX_ACK_REQUESTS, the sender aborts the on-going fragmented SCHC
 Packet transmission by sending a Sender-Abort message and releases
 any resources for transmission of the packet. The sender also aborts
 an on-going fragmented SCHC Packet transmission when a failed MIC
 check is reported by the receiver or when a SCHC Fragment that has
 not been sent is reported in the encoded Bitmap.

 On the other hand, at the beginning, the receiver side expects to
 receive window 0. Any SCHC Fragment received but not belonging to

Minaburo, et al. Expires December 31, 2018 [Page 36]

Internet-Draft LPWAN SCHC June 2018

 the current window is discarded. All SCHC Fragments belonging to the
 correct window are accepted, and the actual SCHC Fragment number
 managed by the receiver is computed based on the FCN value. The
 receiver prepares the encoded Bitmap to report the correctly received
 and the missing SCHC Fragments for the current window. After each
 SCHC Fragment is received, the receiver initializes the Inactivity
 Timer. When the Inactivity Timer expires, the transmission is
 aborted by the receiver sending a Receiver-Abort message.

 When an All-0 fragment is received, it indicates that all the SCHC
 Fragments have been sent in the current window. Since the sender is
 not obliged to always send a full window, some SCHC Fragment number
 not set in the receiver memory SHOULD not correspond to losses. The
 receiver sends the corresponding SCHC ACK, the Inactivity Timer is
 set and the transmission of the next window by the sender can start.

 If an All-0 fragment has been received and all SCHC Fragments of the
 current window have also been received, the receiver then expects a
 new Window and waits for the next SCHC Fragment. Upon receipt of a
 SCHC Fragment, if the window value has not changed, the received SCHC
 Fragments are part of a retransmission. A receiver that has already
 received a SCHC Fragment SHOULD discard it, otherwise, it updates the
 encoded Bitmap. If all the bits of the encoded Bitmap are set to
 one, the receiver MUST send a SCHC ACK without waiting for an All-0
 fragment and the Inactivity Timer is initialized.

 On the other hand, if the window value of the next received SCHC
 Fragment is set to the next expected window value, this means that
 the sender has received a correct encoded Bitmap reporting that all
 SCHC Fragments have been received. The receiver then updates the
 value of the next expected window.

 When an All-1 fragment is received, it indicates that the last SCHC
 Fragment of the packet has been sent. Since the last window is not
 always full, the MIC will be used by the receiver to detect if all
 SCHC Fragments of the packet have been received. A correct MIC
 indicates the end of the transmission but the receiver MUST stay
 alive for an Inactivity Timer period to answer to any empty All-1
 fragments the sender MAY send if SCHC ACKs sent by the receiver are
 lost. If the MIC is incorrect, some SCHC Fragments have been lost.
 The receiver sends the SCHC ACK regardless of successful fragmented
 SCHC Packet reception or not, the Inactitivity Timer is set. In case
 of an incorrect MIC, the receiver waits for SCHC Fragments belonging
 to the same window. After MAX_ACK_REQUESTS, the receiver will abort
 the on-going fragmented SCHC Packet transmission by transmitting a
 the Receiver-Abort format. The receiver also aborts upon Inactivity
 Timer expiration by sending a Receiver-Abort message.

Minaburo, et al. Expires December 31, 2018 [Page 37]

Internet-Draft LPWAN SCHC June 2018

 If the sender receives a SCK ACK with a Bitmap containing a bit set
 for a SCHC Fragment that it has not sent during the transmission
 phase of this window, it MUST abort the whole fragmentation and
 transmission of this SCHC Packet.

7.5.3. ACK-on-Error

 The senders behavior for ACK-on-Error and ACK-Always are similar.
 The main difference is that in ACK-on-Error the SCHC ACK with the
 encoded Bitmap is not sent at the end of each window but only when at
 least one SCHC Fragment of the current window has been lost. Except
 for the last window where a SCHC ACK MUST be sent to finish the
 transmission.

 In ACK-on-Error, the Retransmission Timer expiration is considered as
 a positive acknowledgement for all windows but the last one. This
 timer is set after sending an All-0 or an All-1 fragment. For an
 All-0 fragment, on timer expiration, the sender resumes operation and
 sends the SCHC Fragments of the next window.

 If the sender receives a SCHC ACK, it checks the window value. SCHC
 ACKs with an unexpected window number are discarded. If the window
 number on the received encoded Bitmap is correct, the sender verifies
 if the receiver has received all SCHC fragments of the current
 window. When at least one SCHC Fragment has been lost, the counter
 Attempts is increased by one and the sender resends the missing SCHC
 Fragments again. When Attempts reaches MAX_ACK_REQUESTS, the sender
 sends a Sender-Abort message and releases all resources for the on-
 going fragmented SCHC Packet transmission. When the retransmission
 of the missing SCHC Fragments is finished, the sender starts
 listening for a SCHC ACK (even if an All-0 or an All-1 has not been
 sent during the retransmission) and initializes the Retransmission
 Timer.

 After sending an All-1 fragment, the sender listens for a SCHC ACK,
 initializes Attempts, and starts the Retransmission Timer. If the
 Retransmission Timer expires, Attempts is increased by one and an
 empty All-1 fragment is sent to request the SCHC ACK for the last
 window. If Attempts reaches MAX_ACK_REQUESTS, the sender aborts the
 on-going fragmented SCHC Packet transmission by transmitting the
 Sender-Abort fragment.

 At the end of any window, if the sender receives a SCK ACK with a
 Bitmap containing a bit set for a SCHC Fragment that it has not sent
 during the transmission phase of that window, it MUST abort the whole
 fragmentation and transmission of this SCHC Packet.

Minaburo, et al. Expires December 31, 2018 [Page 38]

Internet-Draft LPWAN SCHC June 2018

 Unlike the sender, the receiver for ACK-on-Error has a larger amount
 of differences compared with ACK-Always. First, a SCHC ACK is not
 sent unless there is a lost SCHC Fragment or an unexpected behavior.
 With the exception of the last window, where a SCHC ACK is always
 sent regardless of SCHC Fragment losses or not. The receiver starts
 by expecting SCHC Fragments from window 0 and maintains the
 information regarding which SCHC Fragments it receives. After
 receiving a SCHC Fragment, the Inactivity Timer is set. If no
 further SCHC Fragment are received and the Inactivity Timer expires,
 the SCHC Fragment receiver aborts the on-going fragmented SCHC Packet
 transmission by transmitting the Receiver-Abort data unit.

 Any SCHC Fragment not belonging to the current window is discarded.
 The actual SCHC Fragment number is computed based on the FCN value.
 When an All-0 fragment is received and all SCHC Fragments have been
 received, the receiver updates the expected window value and expects
 a new window and waits for the next SCHC Fragment.
 If the window value of the next SCHC Fragment has not changed, the
 received SCHC Fragment is a retransmission. A receiver that has
 already received a Fragment discard it. If all SCHC Fragments of a
 window (that is not the last one) have been received, the receiver
 does not send a SCHC ACK. While the receiver waits for the next
 window and if the window value is set to the next value, and if an
 All-1 fragment with the next value window arrived the receiver knows
 that the last SCHC Fragment of the packet has been sent. Since the
 last window is not always full, the MIC will be used to detect if all
 SCHC Fragments of the window have been received. A correct MIC check
 indicates the end of the fragmented SCHC Packet transmission. An ACK
 is sent by the SCHC Fragment receiver. In case of an incorrect MIC,
 the receiver waits for SCHC Fragments belonging to the same window or
 the expiration of the Inactivity Timer. The latter will lead the
 receiver to abort the on-going SCHC fragmented packet transmission by
 transmitting the Receiver-Abort message.

 If, after receiving an All-0 fragment the receiver missed some SCHC
 Fragments, the receiver uses a SCHC ACK with the encoded Bitmap to
 ask the retransmission of the missing fragments and expect to receive
 SCHC Fragments with the actual window. While waiting the
 retransmission an All-0 empty fragment is received, the receiver
 sends again the SCHC ACK with the encoded Bitmap, if the SCHC
 Fragments received belongs to another window or an All-1 fragment is
 received, the transmission is aborted by sending a Receiver-Abort
 fragment. Once it has received all the missing fragments it waits
 for the next window fragments.

Minaburo, et al. Expires December 31, 2018 [Page 39]

Internet-Draft LPWAN SCHC June 2018

7.6. Supporting multiple window sizes

 For ACK-Always or ACK-on-Error, implementers MAY opt to support a
 single window size or multiple window sizes. The latter, when
 feasible, may provide performance optimizations. For example, a
 large window size SHOULD be used for packets that need to be carried
 by a large number of SCHC Fragments. However, when the number of
 SCHC Fragments required to carry a packet is low, a smaller window
 size, and thus a shorter Bitmap, MAY be sufficient to provide
 feedback on all SCHC Fragments. If multiple window sizes are
 supported, the Rule ID MAY be used to signal the window size in use
 for a specific packet transmission.

 Note that the same window size MUST be used for the transmission of
 all SCHC Fragments that belong to the same SCHC Packet.

7.7. Downlink SCHC Fragment transmission

 In some LPWAN technologies, as part of energy-saving techniques,
 downlink transmission is only possible immediately after an uplink
 transmission. In order to avoid potentially high delay in the
 downlink transmission of a fragmented SCHC Packet, the SCHC Fragment
 receiver MAY perform an uplink transmission as soon as possible after
 reception of a SCHC Fragment that is not the last one. Such uplink
 transmission MAY be triggered by the L2 (e.g. an L2 ACK sent in
 response to a SCHC Fragment encapsulated in a L2 frame that requires
 an L2 ACK) or it MAY be triggered from an upper layer.

 For downlink transmission of a fragmented SCHC Packet in ACK-Always
 mode, the SCHC Fragment receiver MAY support timer-based SCHC ACK
 retransmission. In this mechanism, the SCHC Fragment receiver
 initializes and starts a timer (the Inactivity Timer is used) after
 the transmission of a SCHC ACK, except when the SCHC ACK is sent in
 response to the last SCHC Fragment of a packet (All-1 fragment). In
 the latter case, the SCHC Fragment receiver does not start a timer
 after transmission of the SCHC ACK.

 If, after transmission of a SCHC ACK that is not an All-1 fragment,
 and before expiration of the corresponding Inactivity timer, the SCHC
 Fragment receiver receives a SCHC Fragment that belongs to the
 current window (e.g. a missing SCHC Fragment from the current window)
 or to the next window, the Inactivity timer for the SCHC ACK is
 stopped. However, if the Inactivity timer expires, the SCHC ACK is
 resent and the Inactivity timer is reinitialized and restarted.

 The default initial value for the Inactivity timer, as well as the
 maximum number of retries for a specific SCHC ACK, denoted
 MAX_ACK_RETRIES, are not defined in this document, and need to be

Minaburo, et al. Expires December 31, 2018 [Page 40]

Internet-Draft LPWAN SCHC June 2018

 defined in other documents (e.g. technology-specific profiles). The
 initial value of the Inactivity timer is expected to be greater than
 that of the Retransmission timer, in order to make sure that a
 (buffered) SCHC Fragment to be retransmitted can find an opportunity
 for that transmission.

 When the SCHC Fragment sender transmits the All-1 fragment, it starts
 its Retransmission Timer with a large timeout value (e.g. several
 times that of the initial Inactivity timer). If a SCHC ACK is
 received before expiration of this timer, the SCHC Fragment sender
 retransmits any lost SCHC Fragments reported by the SCHC ACK, or if
 the SCHC ACK confirms successful reception of all SCHC Fragments of
 the last window, the transmission of the fragmented SCHC Packet is
 considered complete. If the timer expires, and no SCHC ACK has been
 received since the start of the timer, the SCHC Fragment sender
 assumes that the All-1 fragment has been successfully received (and
 possibly, the last SCHC ACK has been lost: this mechanism assumes
 that the retransmission timer for the All-1 fragment is long enough
 to allow several SCHC ACK retries if the All-1 fragment has not;been
 received by the SCHC Fragment receiver, and it also assumes that it
 is unlikely that several ACKs become all lost).

8. Padding management

 SCHC C/D and SCHC F/R operate on bits, not bytes. SCHC itself does
 not have any alignment prerequisite. If the Layer 2 below SCHC
 constrains the L2 Data Unit to align to some boundary, called L2
 Words (for example, bytes), SCHC will meet that constraint and
 produce messages with the correct alignement. This may entail adding
 extra bits (called padding bits).

 When padding occurs, the number of appended bits is strictly less
 than the L2 Word size.

 Padding happens at most once for each Packet going through the full
 SCHC chain, i.e. Compression and (optionally) SCHC Fragmentation (see
 Figure 2). If a SCHC Packet is sent unfragmented (see Figure 27), it
 is padded as needed. If a SCHC Packet is fragmented, only the last
 fragment is padded as needed.

Minaburo, et al. Expires December 31, 2018 [Page 41]

Internet-Draft LPWAN SCHC June 2018

 A packet (e.g. an IPv6 packet)
 | ^ (padding bits
 v | dropped)
 +------------------+ +--------------------+
 | SCHC Compression | | SCHC Decompression |
 +------------------+ +--------------------+
 | ^
 | If no fragmentation |
 +---- SCHC Packet + padding as needed ----->|
 | | (MIC checked
 v | and removed)
 +--------------------+ +-----------------+
 | SCHC Fragmentation | | SCHC Reassembly |
 +--------------------+ +-----------------+
 | ^ | ^
 | | | |
 | +------------- SCHC ACK ------------+ |
 | |
 +--------------- SCHC Fragments --------------------+
 +--- last SCHC Frag with MIC + padding as needed ---+

 SENDER RECEIVER

 Figure 27: SCHC operations, including padding as needed

 Each technology-specific document MUST specify the size of the L2
 Word. The L2 Word might actually be a single bit, in which case at
 most zero bits of padding will be appended to any message, i.e. no
 padding will take place at all.

9. SCHC Compression for IPv6 and UDP headers

 This section lists the different IPv6 and UDP header fields and how
 they can be compressed.

9.1. IPv6 version field

 This field always holds the same value. Therefore, in the Rule, TV
 is set to 6, MO to "equal" and CDA to "not-sent".

9.2. IPv6 Traffic class field

 If the DiffServ field does not vary and is known by both sides, the
 Field Descriptor in the Rule SHOULD contain a TV with this well-known
 value, an "equal" MO and a "not-sent" CDA.

Minaburo, et al. Expires December 31, 2018 [Page 42]

Internet-Draft LPWAN SCHC June 2018

 Otherwise, two possibilities can be considered depending on the
 variability of the value:

 o One possibility is to not compress the field and send the original
 value. In the Rule, TV is not set to any particular value, MO is
 set to "ignore" and CDA is set to "value-sent".

 o If some upper bits in the field are constant and known, a better
 option is to only send the LSBs. In the Rule, TV is set to a
 value with the stable known upper part, MO is set to MSB(x) and
 CDA to LSB(y).

9.3. Flow label field

 If the Flow Label field does not vary and is known by both sides, the
 Field Descriptor in the Rule SHOULD contain a TV with this well-known
 value, an "equal" MO and a "not-sent" CDA.

 Otherwise, two possibilities can be considered:

 o One possibility is to not compress the field and send the original
 value. In the Rule, TV is not set to any particular value, MO is
 set to "ignore" and CDA is set to "value-sent".

 o If some upper bits in the field are constant and known, a better
 option is to only send the LSBs. In the Rule, TV is set to a
 value with the stable known upper part, MO is set to MSB(x) and
 CDA to LSB(y).

9.4. Payload Length field

 This field can be elided for the transmission on the LPWAN network.
 The SCHC C/D recomputes the original payload length value. In the
 Field Descriptor, TV is not set, MO is set to "ignore" and CDA is
 "compute-IPv6-length".

 If the payload length needs to be sent and does not need to be coded
 in 16 bits, the TV can be set to 0x0000, the MO set to MSB(16-s)
 where 's' is the number of bits to code the maximum length, and CDA
 is set to LSB(s).

9.5. Next Header field

 If the Next Header field does not vary and is known by both sides,
 the Field Descriptor in the Rule SHOULD contain a TV with this Next
 Header value, the MO SHOULD be "equal" and the CDA SHOULD be "not-
 sent".

Minaburo, et al. Expires December 31, 2018 [Page 43]

Internet-Draft LPWAN SCHC June 2018

 Otherwise, TV is not set in the Field Descriptor, MO is set to
 "ignore" and CDA is set to "value-sent". Alternatively, a matching-
 list MAY also be used.

9.6. Hop Limit field

 The field behavior for this field is different for Uplink and
 Downlink. In Uplink, since there is no IP forwarding between the Dev
 and the SCHC C/D, the value is relatively constant. On the other
 hand, the Downlink value depends of Internet routing and MAY change
 more frequently. One neat way of processing this field is to use the
 Direction Indicator (DI) to distinguish both directions:

 o in the Uplink, elide the field: the TV in the Field Descriptor is
 set to the known constant value, the MO is set to "equal" and the
 CDA is set to "not-sent".

 o in the Downlink, send the value: TV is not set, MO is set to
 "ignore" and CDA is set to "value-sent".

9.7. IPv6 addresses fields

 As in 6LoWPAN [RFC4944], IPv6 addresses are split into two 64-bit
 long fields; one for the prefix and one for the Interface Identifier
 (IID). These fields SHOULD be compressed. To allow for a single
 Rule being used for both directions, these values are identified by
 their role (DEV or APP) and not by their position in the frame
 (source or destination).

9.7.1. IPv6 source and destination prefixes

 Both ends MUST be synchronized with the appropriate prefixes. For a
 specific flow, the source and destination prefixes can be unique and
 stored in the context. It can be either a link-local prefix or a
 global prefix. In that case, the TV for the source and destination
 prefixes contain the values, the MO is set to "equal" and the CDA is
 set to "not-sent".

 If the Rule is intended to compress packets with different prefix
 values, match-mapping SHOULD be used. The different prefixes are
 listed in the TV, the MO is set to "match-mapping" and the CDA is set
 to "mapping-sent". See Figure 29

 Otherwise, the TV contains the prefix, the MO is set to "equal" and
 the CDA is set to "value-sent".

https://datatracker.ietf.org/doc/html/rfc4944

Minaburo, et al. Expires December 31, 2018 [Page 44]

Internet-Draft LPWAN SCHC June 2018

9.7.2. IPv6 source and destination IID

 If the DEV or APP IID are based on an LPWAN address, then the IID can
 be reconstructed with information coming from the LPWAN header. In
 that case, the TV is not set, the MO is set to "ignore" and the CDA
 is set to "DevIID" or "AppIID". Note that the LPWAN technology
 generally carries a single identifier corresponding to the DEV.
 Therefore AppIID cannot be used.

 For privacy reasons or if the DEV address is changing over time, a
 static value that is not equal to the DEV address SHOULD be used. In
 that case, the TV contains the static value, the MO operator is set
 to "equal" and the CDF is set to "not-sent". [RFC7217] provides some
 methods that MAY be used to derive this static identifier.

 If several IIDs are possible, then the TV contains the list of
 possible IIDs, the MO is set to "match-mapping" and the CDA is set to
 "mapping-sent".

 It MAY also happen that the IID variability only expresses itself on
 a few bytes. In that case, the TV is set to the stable part of the
 IID, the MO is set to "MSB" and the CDA is set to "LSB".

 Finally, the IID can be sent in extenso on the LPWAN. In that case,
 the TV is not set, the MO is set to "ignore" and the CDA is set to
 "value-sent".

9.8. IPv6 extensions

 No Rule is currently defined that processes IPv6 extensions. If such
 extensions are needed, their compression/decompression Rules can be
 based on the MOs and CDAs described above.

9.9. UDP source and destination port

 To allow for a single Rule being used for both directions, the UDP
 port values are identified by their role (DEV or APP) and not by
 their position in the frame (source or destination). The SCHC C/D
 MUST be aware of the traffic direction (Uplink, Downlink) to select
 the appropriate field. The following Rules apply for DEV and APP
 port numbers.

 If both ends know the port number, it can be elided. The TV contains
 the port number, the MO is set to "equal" and the CDA is set to "not-
 sent".

https://datatracker.ietf.org/doc/html/rfc7217

Minaburo, et al. Expires December 31, 2018 [Page 45]

Internet-Draft LPWAN SCHC June 2018

 If the port variation is on few bits, the TV contains the stable part
 of the port number, the MO is set to "MSB" and the CDA is set to
 "LSB".

 If some well-known values are used, the TV can contain the list of
 these values, the MO is set to "match-mapping" and the CDA is set to
 "mapping-sent".

 Otherwise the port numbers are sent over the LPWAN. The TV is not
 set, the MO is set to "ignore" and the CDA is set to "value-sent".

9.10. UDP length field

 The UDP length can be computed from the received data. In that case,
 the TV is not set, the MO is set to "ignore" and the CDA is set to
 "compute-length".

 If the payload is small, the TV can be set to 0x0000, the MO set to
 "MSB" and the CDA to "LSB".

 In other cases, the length SHOULD be sent and the CDA is replaced by
 "value-sent".

9.11. UDP Checksum field

 The UDP checksum operation is mandatory with IPv6 [RFC8200] for most
 packets but recognizes that there are exceptions to that default
 behavior.

 For instance, protocols that use UDP as a tunnel encapsulation may
 enable zero-checksum mode for a specific port (or set of ports) for
 sending and/or receiving. [RFC8200] also stipulates that any node
 implementing zero-checksum mode must follow the requirements
 specified in "Applicability Statement for the Use of IPv6 UDP
 Datagrams with Zero Checksums" [RFC6936].

 6LoWPAN Header Compression [RFC6282] also authorizes to send UDP
 datagram that are deprived of the checksum protection when an upper
 layer guarantees the integrity of the UDP payload and pseudo-header
 all the way between the compressor that elides the UDP checksum and
 the decompressor that computes again it. A specific example of this
 is when a Message Integrity Check (MIC) protects the compressed
 message all along that path with a strength that is identical or
 better to the UDP checksum.

 In a similar fashion, this specification allows a SCHC compressor to
 elide the UDP checks when another layer guarantees an identical or
 better integrity protection for the UDP payload and the pseudo-

https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc6936
https://datatracker.ietf.org/doc/html/rfc6282

Minaburo, et al. Expires December 31, 2018 [Page 46]

Internet-Draft LPWAN SCHC June 2018

 header. In this case, the TV is not set, the MO is set to "ignore"
 and the CDA is set to "compute-checksum".

 In particular, when SCHC fragmentation is used, a fragmentation MIC
 of 2 bytes or more provides equal or better protection than the UDP
 checksum; in that case, if the compressor is collocated with the
 fragmentation point and the decompressor is collocated with the
 packet reassembly point, then compressor MAY elide the UDP checksum.
 Whether and when the UDP Checksum is elided is to be specified in the
 technology-specific documents.

 Since the compression happens before the fragmentation, implementors
 should understand the risks when dealing with unprotected data below
 the transport layer and take special care when manipulating that
 data.

 In other cases, the checksum SHOULD be explicitly sent. The TV is
 not set, the MO is set to "ignore" and the CDA is set to "value-
 sent".

10. Security considerations

10.1. Security considerations for SCHC Compression/Decompression

 A malicious header compression could cause the reconstruction of a
 wrong packet that does not match with the original one. Such a
 corruption MAY be detected with end-to-end authentication and
 integrity mechanisms. Header Compression does not add more security
 problem than what is already needed in a transmission. For instance,
 to avoid an attack, never re-construct a packet bigger than some
 configured size (with 1500 bytes as generic default).

10.2. Security considerations for SCHC Fragmentation/Reassembly

 This subsection describes potential attacks to LPWAN SCHC F/R and
 suggests possible countermeasures.

 A node can perform a buffer reservation attack by sending a first
 SCHC Fragment to a target. Then, the receiver will reserve buffer
 space for the IPv6 packet. Other incoming fragmented SCHC Packets
 will be dropped while the reassembly buffer is occupied during the
 reassembly timeout. Once that timeout expires, the attacker can
 repeat the same procedure, and iterate, thus creating a denial of
 service attack. The (low) cost to mount this attack is linear with
 the number of buffers at the target node. However, the cost for an
 attacker can be increased if individual SCHC Fragments of multiple
 packets can be stored in the reassembly buffer. To further increase
 the attack cost, the reassembly buffer can be split into SCHC

Minaburo, et al. Expires December 31, 2018 [Page 47]

Internet-Draft LPWAN SCHC June 2018

 Fragment-sized buffer slots. Once a packet is complete, it is
 processed normally. If buffer overload occurs, a receiver can
 discard packets based on the sender behavior, which MAY help identify
 which SCHC Fragments have been sent by an attacker.

 In another type of attack, the malicious node is required to have
 overhearing capabilities. If an attacker can overhear a SCHC
 Fragment, it can send a spoofed duplicate (e.g. with random payload)
 to the destination. If the LPWAN technology does not support
 suitable protection (e.g. source authentication and frame counters to
 prevent replay attacks), a receiver cannot distinguish legitimate
 from spoofed SCHC Fragments. Therefore, the original IPv6 packet
 will be considered corrupt and will be dropped. To protect resource-
 constrained nodes from this attack, it has been proposed to establish
 a binding among the SCHC Fragments to be transmitted by a node, by
 applying content-chaining to the different SCHC Fragments, based on
 cryptographic hash functionality. The aim of this technique is to
 allow a receiver to identify illegitimate SCHC Fragments.

 Further attacks MAY involve sending overlapped fragments (i.e.
 comprising some overlapping parts of the original IPv6 datagram).
 Implementers SHOULD make sure that the correct operation is not
 affected by such event.

 In ACK-on-Error, a malicious node MAY force a SCHC Fragment sender to
 resend a SCHC Fragment a number of times, with the aim to increase
 consumption of the SCHC Fragment sender's resources. To this end,
 the malicious node MAY repeatedly send a fake ACK to the SCHC
 Fragment sender, with a Bitmap that reports that one or more SCHC
 Fragments have been lost. In order to mitigate this possible attack,
 MAX_ACK_RETRIES MAY be set to a safe value which allows to limit the
 maximum damage of the attack to an acceptable extent. However, note
 that a high setting for MAX_ACK_RETRIES benefits SCHC Fragment
 reliability modes, therefore the trade-off needs to be carefully
 considered.

11. Acknowledgements

 Thanks to Carsten Bormann, Philippe Clavier, Eduardo Ingles Sanchez,
 Arunprabhu Kandasamy, Rahul Jadhav, Sergio Lopez Bernal, Antony
 Markovski, Alexander Pelov, Pascal Thubert, Juan Carlos Zuniga, Diego
 Dujovne, Edgar Ramos, and Shoichi Sakane for useful design
 consideration and comments.

Minaburo, et al. Expires December 31, 2018 [Page 48]

Internet-Draft LPWAN SCHC June 2018

12. References

12.1. Normative References

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
 December 1998, <https://www.rfc-editor.org/info/rfc2460>.

 [RFC3385] Sheinwald, D., Satran, J., Thaler, P., and V. Cavanna,
 "Internet Protocol Small Computer System Interface (iSCSI)
 Cyclic Redundancy Check (CRC)/Checksum Considerations",

RFC 3385, DOI 10.17487/RFC3385, September 2002,
 <https://www.rfc-editor.org/info/rfc3385>.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
 <https://www.rfc-editor.org/info/rfc4944>.

 [RFC5795] Sandlund, K., Pelletier, G., and L-E. Jonsson, "The RObust
 Header Compression (ROHC) Framework", RFC 5795,
 DOI 10.17487/RFC5795, March 2010,
 <https://www.rfc-editor.org/info/rfc5795>.

 [RFC6936] Fairhurst, G. and M. Westerlund, "Applicability Statement
 for the Use of IPv6 UDP Datagrams with Zero Checksums",

RFC 6936, DOI 10.17487/RFC6936, April 2013,
 <https://www.rfc-editor.org/info/rfc6936>.

 [RFC7136] Carpenter, B. and S. Jiang, "Significance of IPv6
 Interface Identifiers", RFC 7136, DOI 10.17487/RFC7136,
 February 2014, <https://www.rfc-editor.org/info/rfc7136>.

 [RFC7217] Gont, F., "A Method for Generating Semantically Opaque
 Interface Identifiers with IPv6 Stateless Address
 Autoconfiguration (SLAAC)", RFC 7217,
 DOI 10.17487/RFC7217, April 2014,
 <https://www.rfc-editor.org/info/rfc7217>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

https://datatracker.ietf.org/doc/html/rfc2460
https://www.rfc-editor.org/info/rfc2460
https://datatracker.ietf.org/doc/html/rfc3385
https://www.rfc-editor.org/info/rfc3385
https://datatracker.ietf.org/doc/html/rfc4944
https://www.rfc-editor.org/info/rfc4944
https://datatracker.ietf.org/doc/html/rfc5795
https://www.rfc-editor.org/info/rfc5795
https://datatracker.ietf.org/doc/html/rfc6936
https://www.rfc-editor.org/info/rfc6936
https://datatracker.ietf.org/doc/html/rfc7136
https://www.rfc-editor.org/info/rfc7136
https://datatracker.ietf.org/doc/html/rfc7217
https://www.rfc-editor.org/info/rfc7217
https://datatracker.ietf.org/doc/html/rfc8200
https://www.rfc-editor.org/info/rfc8200

Minaburo, et al. Expires December 31, 2018 [Page 49]

Internet-Draft LPWAN SCHC June 2018

12.2. Informative References

 [RFC6282] Hui, J., Ed. and P. Thubert, "Compression Format for IPv6
 Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
 DOI 10.17487/RFC6282, September 2011,
 <https://www.rfc-editor.org/info/rfc6282>.

 [RFC8376] Farrell, S., Ed., "Low-Power Wide Area Network (LPWAN)
 Overview", RFC 8376, DOI 10.17487/RFC8376, May 2018,
 <https://www.rfc-editor.org/info/rfc8376>.

Appendix A. SCHC Compression Examples

 This section gives some scenarios of the compression mechanism for
 IPv6/UDP. The goal is to illustrate the behavior of SCHC.

 The most common case using the mechanisms defined in this document
 will be a LPWAN Dev that embeds some applications running over CoAP.
 In this example, three flows are considered. The first flow is for
 the device management based on CoAP using Link Local IPv6 addresses
 and UDP ports 123 and 124 for Dev and App, respectively. The second
 flow will be a CoAP server for measurements done by the Device (using
 ports 5683) and Global IPv6 Address prefixes alpha::IID/64 to
 beta::1/64. The last flow is for legacy applications using different
 ports numbers, the destination IPv6 address prefix is gamma::1/64.

 Figure 28 presents the protocol stack for this Device. IPv6 and UDP
 are represented with dotted lines since these protocols are
 compressed on the radio link.

 Management Data
 +----------+---------+---------+
 | CoAP | CoAP | legacy |
 +----||----+---||----+---||----+
 . UDP . UDP | UDP |

 . IPv6 . IPv6 . IPv6 .
 +------------------------------+
 | SCHC Header compression |
 | and fragmentation |
 +------------------------------+
 | LPWAN L2 technologies |
 +------------------------------+
 DEV or NGW

 Figure 28: Simplified Protocol Stack for LP-WAN

https://datatracker.ietf.org/doc/html/rfc6282
https://www.rfc-editor.org/info/rfc6282
https://datatracker.ietf.org/doc/html/rfc8376
https://www.rfc-editor.org/info/rfc8376

Minaburo, et al. Expires December 31, 2018 [Page 50]

Internet-Draft LPWAN SCHC June 2018

 Note that in some LPWAN technologies, only the Devs have a device ID.
 Therefore, when such technologies are used, it is necessary to
 statically define an IID for the Link Local address for the SCHC C/D.

 Rule 0
 +----------------+--+--+--+---------+--------+------------++------+
 | Field |FL|FP|DI| Value | Match | Comp Decomp|| Sent |
 | | | | | | Opera. | Action ||[bits]|
 +----------------+--+--+--+---------+---------------------++------+
 |IPv6 version |4 |1 |Bi|6 | equal | not-sent || |
 |IPv6 DiffServ |8 |1 |Bi|0 | equal | not-sent || |
 |IPv6 Flow Label |20|1 |Bi|0 | equal | not-sent || |
 |IPv6 Length |16|1 |Bi| | ignore | comp-length|| |
 |IPv6 Next Header|8 |1 |Bi|17 | equal | not-sent || |
 |IPv6 Hop Limit |8 |1 |Bi|255 | ignore | not-sent || |
 |IPv6 DEVprefix |64|1 |Bi|FE80::/64| equal | not-sent || |
 |IPv6 DevIID |64|1 |Bi| | ignore | DevIID || |
 |IPv6 APPprefix |64|1 |Bi|FE80::/64| equal | not-sent || |
 |IPv6 AppIID |64|1 |Bi|::1 | equal | not-sent || |
 +================+==+==+==+=========+========+============++======+
 |UDP DEVport |16|1 |Bi|123 | equal | not-sent || |
 |UDP APPport |16|1 |Bi|124 | equal | not-sent || |
 |UDP Length |16|1 |Bi| | ignore | comp-length|| |
 |UDP checksum |16|1 |Bi| | ignore | comp-chk || |
 +================+==+==+==+=========+========+============++======+

 Rule 1
 +----------------+--+--+--+---------+--------+------------++------+
 | Field |FL|FP|DI| Value | Match | Action || Sent |
 | | | | | | Opera. | Action ||[bits]|
 +----------------+--+--+--+---------+--------+------------++------+
 |IPv6 version |4 |1 |Bi|6 | equal | not-sent || |
 |IPv6 DiffServ |8 |1 |Bi|0 | equal | not-sent || |
 |IPv6 Flow Label |20|1 |Bi|0 | equal | not-sent || |
 |IPv6 Length |16|1 |Bi| | ignore | comp-length|| |
 |IPv6 Next Header|8 |1 |Bi|17 | equal | not-sent || |
 |IPv6 Hop Limit |8 |1 |Bi|255 | ignore | not-sent || |
 |IPv6 DEVprefix |64|1 |Bi|[alpha/64, match- |mapping-sent|| [1] |
 | | | | |fe80::/64] mapping| || |
 |IPv6 DevIID |64|1 |Bi| | ignore | DevIID || |
 |IPv6 APPprefix |64|1 |Bi|[beta/64,| match- |mapping-sent|| [2] |
 | | | | |alpha/64,| mapping| || |
 | | | | |fe80::64]| | || |
 |IPv6 AppIID |64|1 |Bi|::1000 | equal | not-sent || |
 +================+==+==+==+=========+========+============++======+
 |UDP DEVport |16|1 |Bi|5683 | equal | not-sent || |
 |UDP APPport |16|1 |Bi|5683 | equal | not-sent || |
 |UDP Length |16|1 |Bi| | ignore | comp-length|| |

Minaburo, et al. Expires December 31, 2018 [Page 51]

Internet-Draft LPWAN SCHC June 2018

 |UDP checksum |16|1 |Bi| | ignore | comp-chk || |
 +================+==+==+==+=========+========+============++======+

 Rule 2
 +----------------+--+--+--+---------+--------+------------++------+
 | Field |FL|FP|DI| Value | Match | Action || Sent |
 | | | | | | Opera. | Action ||[bits]|
 +----------------+--+--+--+---------+--------+------------++------+
 |IPv6 version |4 |1 |Bi|6 | equal | not-sent || |
 |IPv6 DiffServ |8 |1 |Bi|0 | equal | not-sent || |
 |IPv6 Flow Label |20|1 |Bi|0 | equal | not-sent || |
 |IPv6 Length |16|1 |Bi| | ignore | comp-length|| |
 |IPv6 Next Header|8 |1 |Bi|17 | equal | not-sent || |
 |IPv6 Hop Limit |8 |1 |Up|255 | ignore | not-sent || |
 |IPv6 Hop Limit |8 |1 |Dw| | ignore | value-sent || [8] |
 |IPv6 DEVprefix |64|1 |Bi|alpha/64 | equal | not-sent || |
 |IPv6 DevIID |64|1 |Bi| | ignore | DevIID || |
 |IPv6 APPprefix |64|1 |Bi|gamma/64 | equal | not-sent || |
 |IPv6 AppIID |64|1 |Bi|::1000 | equal | not-sent || |
 +================+==+==+==+=========+========+============++======+
 |UDP DEVport |16|1 |Bi|8720 | MSB(12)| LSB || [4] |
 |UDP APPport |16|1 |Bi|8720 | MSB(12)| LSB || [4] |
 |UDP Length |16|1 |Bi| | ignore | comp-length|| |
 |UDP checksum |16|1 |Bi| | ignore | comp-chk || |
 +================+==+==+==+=========+========+============++======+

 Figure 29: Context Rules

 All the fields described in the three Rules depicted on Figure 29 are
 present in the IPv6 and UDP headers. The DevIID-DID value is found
 in the L2 header.

 The second and third Rules use global addresses. The way the Dev
 learns the prefix is not in the scope of the document.

 The third Rule compresses port numbers to 4 bits.

Appendix B. Fragmentation Examples

 This section provides examples for the different fragment reliability
 modes specified in this document.

 Figure 30 illustrates the transmission in No-ACK mode of an IPv6
 packet that needs 11 fragments. FCN is 1 bit wide.

Minaburo, et al. Expires December 31, 2018 [Page 52]

Internet-Draft LPWAN SCHC June 2018

 Sender Receiver
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-----FCN=1 + MIC --->|MIC checked: success =>

 Figure 30: Transmission in No-ACK mode of an IPv6 packet carried by
 11 fragments

 In the following examples, N (i.e. the size if the FCN field) is 3
 bits. Therefore, the All-1 FCN value is 7.

 Figure 31 illustrates the transmission in ACK-on-Error of an IPv6
 packet that needs 11 fragments, with MAX_WIND_FCN=6 and no fragment
 loss.

 Sender Receiver
 |-----W=0, FCN=6----->|
 |-----W=0, FCN=5----->|
 |-----W=0, FCN=4----->|
 |-----W=0, FCN=3----->|
 |-----W=0, FCN=2----->|
 |-----W=0, FCN=1----->|
 |-----W=0, FCN=0----->|
 (no ACK)
 |-----W=1, FCN=6----->|
 |-----W=1, FCN=5----->|
 |-----W=1, FCN=4----->|
 |--W=1, FCN=7 + MIC-->|MIC checked: success =>
 |<---- ACK, W=1 ------|

 Figure 31: Transmission in ACK-on-Error mode of an IPv6 packet
 carried by 11 fragments, with MAX_WIND_FCN=6 and no loss.

 Figure 32 illustrates the transmission in ACK-on-Error mode of an
 IPv6 packet that needs 11 fragments, with MAX_WIND_FCN=6 and three
 lost fragments.

Minaburo, et al. Expires December 31, 2018 [Page 53]

Internet-Draft LPWAN SCHC June 2018

 Sender Receiver
 |-----W=0, FCN=6----->|
 |-----W=0, FCN=5----->|
 |-----W=0, FCN=4--X-->|
 |-----W=0, FCN=3----->|
 |-----W=0, FCN=2--X-->| 7
 |-----W=0, FCN=1----->| /
 |-----W=0, FCN=0----->| 6543210
 |<-----ACK, W=0-------|Bitmap:1101011
 |-----W=0, FCN=4----->|
 |-----W=0, FCN=2----->|
 (no ACK)
 |-----W=1, FCN=6----->|
 |-----W=1, FCN=5----->|
 |-----W=1, FCN=4--X-->|
 |- W=1, FCN=7 + MIC ->|MIC checked: failed
 |<-----ACK, W=1-------|C=0 Bitmap:1100001
 |-----W=1, FCN=4----->|MIC checked: success =>
 |<---- ACK, W=1 ------|C=1, no Bitmap

 Figure 32: Transmission in ACK-on-Error mode of an IPv6 packet
 carried by 11 fragments, with MAX_WIND_FCN=6 and three lost
 fragments.

 Figure 33 illustrates the transmission in ACK-Always mode of an IPv6
 packet that needs 11 fragments, with MAX_WIND_FCN=6 and no loss.

 Sender Receiver
 |-----W=0, FCN=6----->|
 |-----W=0, FCN=5----->|
 |-----W=0, FCN=4----->|
 |-----W=0, FCN=3----->|
 |-----W=0, FCN=2----->|
 |-----W=0, FCN=1----->|
 |-----W=0, FCN=0----->|
 |<-----ACK, W=0-------| Bitmap:1111111
 |-----W=1, FCN=6----->|
 |-----W=1, FCN=5----->|
 |-----W=1, FCN=4----->|
 |--W=1, FCN=7 + MIC-->|MIC checked: success =>
 |<-----ACK, W=1-------| C=1 no Bitmap
 (End)

 Figure 33: Transmission in ACK-Always mode of an IPv6 packet carried
 by 11 fragments, with MAX_WIND_FCN=6 and no lost fragment.

Minaburo, et al. Expires December 31, 2018 [Page 54]

Internet-Draft LPWAN SCHC June 2018

 Figure 34 illustrates the transmission in ACK-Always mode of an IPv6
 packet that needs 11 fragments, with MAX_WIND_FCN=6 and three lost
 fragments.

 Sender Receiver
 |-----W=1, FCN=6----->|
 |-----W=1, FCN=5----->|
 |-----W=1, FCN=4--X-->|
 |-----W=1, FCN=3----->|
 |-----W=1, FCN=2--X-->| 7
 |-----W=1, FCN=1----->| /
 |-----W=1, FCN=0----->| 6543210
 |<-----ACK, W=1-------|Bitmap:1101011
 |-----W=1, FCN=4----->|
 |-----W=1, FCN=2----->|
 |<-----ACK, W=1-------|Bitmap:
 |-----W=0, FCN=6----->|
 |-----W=0, FCN=5----->|
 |-----W=0, FCN=4--X-->|
 |--W=0, FCN=7 + MIC-->|MIC checked: failed
 |<-----ACK, W=0-------| C= 0 Bitmap:11000001
 |-----W=0, FCN=4----->|MIC checked: success =>
 |<-----ACK, W=0-------| C= 1 no Bitmap
 (End)

 Figure 34: Transmission in ACK-Always mode of an IPv6 packet carried
 by 11 fragments, with MAX_WIND_FCN=6 and three lost fragments.

 Figure 35 illustrates the transmission in ACK-Always mode of an IPv6
 packet that needs 6 fragments, with MAX_WIND_FCN=6, three lost
 fragments and only one retry needed to recover each lost fragment.

Minaburo, et al. Expires December 31, 2018 [Page 55]

Internet-Draft LPWAN SCHC June 2018

 Sender Receiver
 |-----W=0, FCN=6----->|
 |-----W=0, FCN=5----->|
 |-----W=0, FCN=4--X-->|
 |-----W=0, FCN=3--X-->|
 |-----W=0, FCN=2--X-->|
 |--W=0, FCN=7 + MIC-->|MIC checked: failed
 |<-----ACK, W=0-------|C= 0 Bitmap:1100001
 |-----W=0, FCN=4----->|MIC checked: failed
 |-----W=0, FCN=3----->|MIC checked: failed
 |-----W=0, FCN=2----->|MIC checked: success
 |<-----ACK, W=0-------|C=1 no Bitmap
 (End)

 Figure 35: Transmission in ACK-Always mode of an IPv6 packet carried
 by 11 fragments, with MAX_WIND_FCN=6, three lost framents and only
 one retry needed for each lost fragment.

 Figure 36 illustrates the transmission in ACK-Always mode of an IPv6
 packet that needs 6 fragments, with MAX_WIND_FCN=6, three lost
 fragments, and the second ACK lost.

 Sender Receiver
 |-----W=0, FCN=6----->|
 |-----W=0, FCN=5----->|
 |-----W=0, FCN=4--X-->|
 |-----W=0, FCN=3--X-->|
 |-----W=0, FCN=2--X-->|
 |--W=0, FCN=7 + MIC-->|MIC checked: failed
 |<-----ACK, W=0-------|C=0 Bitmap:1100001
 |-----W=0, FCN=4----->|MIC checked: failed
 |-----W=0, FCN=3----->|MIC checked: failed
 |-----W=0, FCN=2----->|MIC checked: success
 | X---ACK, W=0-------|C= 1 no Bitmap
 timeout | |
 |--W=0, FCN=7 + MIC-->|
 |<-----ACK, W=0-------|C= 1 no Bitmap

 (End)

 Figure 36: Transmission in ACK-Always mode of an IPv6 packet carried
 by 11 fragments, with MAX_WIND_FCN=6, three lost fragments, and the
 second ACK lost.

 Figure 37 illustrates the transmission in ACK-Always mode of an IPv6
 packet that needs 6 fragments, with MAX_WIND_FCN=6, with three lost
 fragments, and one retransmitted fragment lost again.

Minaburo, et al. Expires December 31, 2018 [Page 56]

Internet-Draft LPWAN SCHC June 2018

 Sender Receiver
 |-----W=0, FCN=6----->|
 |-----W=0, FCN=5----->|
 |-----W=0, FCN=4--X-->|
 |-----W=0, FCN=3--X-->|
 |-----W=0, FCN=2--X-->|
 |--W=0, FCN=7 + MIC-->|MIC checked: failed
 |<-----ACK, W=0-------|C=0 Bitmap:1100001
 |-----W=0, FCN=4----->|MIC checked: failed
 |-----W=0, FCN=3----->|MIC checked: failed
 |-----W=0, FCN=2--X-->|
 timeout| |
 |--W=0, FCN=7 + MIC-->|All-0 empty
 |<-----ACK, W=0-------|C=0 Bitmap: 1111101
 |-----W=0, FCN=2----->|MIC checked: success
 |<-----ACK, W=0-------|C=1 no Bitmap
 (End)

 Figure 37: Transmission in ACK-Always mode of an IPv6 packet carried
 by 11 fragments, with MAX_WIND_FCN=6, with three lost fragments, and
 one retransmitted fragment lost again.

 Figure 38 illustrates the transmission in ACK-Always mode of an IPv6
 packet that needs 28 fragments, with N=5, MAX_WIND_FCN=23 and two
 lost fragments. Note that MAX_WIND_FCN=23 may be useful when the
 maximum possible Bitmap size, considering the maximum lower layer
 technology payload size and the value of R, is 3 bytes. Note also
 that the FCN of the last fragment of the packet is the one with
 FCN=31 (i.e. FCN=2^N-1 for N=5, or equivalently, all FCN bits set to
 1).

Minaburo, et al. Expires December 31, 2018 [Page 57]

Internet-Draft LPWAN SCHC June 2018

 Sender Receiver
 |-----W=0, FCN=23----->|
 |-----W=0, FCN=22----->|
 |-----W=0, FCN=21--X-->|
 |-----W=0, FCN=20----->|
 |-----W=0, FCN=19----->|
 |-----W=0, FCN=18----->|
 |-----W=0, FCN=17----->|
 |-----W=0, FCN=16----->|
 |-----W=0, FCN=15----->|
 |-----W=0, FCN=14----->|
 |-----W=0, FCN=13----->|
 |-----W=0, FCN=12----->|
 |-----W=0, FCN=11----->|
 |-----W=0, FCN=10--X-->|
 |-----W=0, FCN=9 ----->|
 |-----W=0, FCN=8 ----->|
 |-----W=0, FCN=7 ----->|
 |-----W=0, FCN=6 ----->|
 |-----W=0, FCN=5 ----->|
 |-----W=0, FCN=4 ----->|
 |-----W=0, FCN=3 ----->|
 |-----W=0, FCN=2 ----->|
 |-----W=0, FCN=1 ----->|
 |-----W=0, FCN=0 ----->|
 | |lcl-Bitmap:110111111111101111111111
 |<------ACK, W=0-------|encoded Bitmap:1101111111111011
 |-----W=0, FCN=21----->|
 |-----W=0, FCN=10----->|
 |<------ACK, W=0-------|no Bitmap
 |-----W=1, FCN=23----->|
 |-----W=1, FCN=22----->|
 |-----W=1, FCN=21----->|
 |--W=1, FCN=31 + MIC-->|MIC checked: sucess =>
 |<------ACK, W=1-------|no Bitmap
 (End)

 Figure 38: Transmission in ACK-Always mode of an IPv6 packet carried
 by 28 fragments, with N=5, MAX_WIND_FCN=23 and two lost fragments.

Appendix C. Fragmentation State Machines

 The fragmentation state machines of the sender and the receiver, one
 for each of the different reliability modes, are described in the
 following figures:

Minaburo, et al. Expires December 31, 2018 [Page 58]

Internet-Draft LPWAN SCHC June 2018

 +===========+
 +------------+ Init |
 | FCN=0 +===========+
 | No Window
 | No Bitmap
 | +-------+
 | +========+==+ | More Fragments
 | | | <--+ ~~~~~~~~~~~~~~~~~~~~
 +--------> | Send | send Fragment (FCN=0)
 +===+=======+
 | last fragment
 | ~~~~~~~~~~~~
 | FCN = 1
 v send fragment+MIC
 +============+
 | END |
 +============+

 Figure 39: Sender State Machine for the No-ACK Mode

 +------+ Not All-1
 +==========+=+ | ~~~~~~~~~~~~~~~~~~~
 | + <--+ set Inactivity Timer
 | RCV Frag +-------+
 +=+===+======+ |All-1 &
 All-1 & | | |MIC correct
 MIC wrong | |Inactivity |
 | |Timer Exp. |
 v | |
 +==========++ | v
 | Error |<-+ +========+==+
 +===========+ | END |
 +===========+

 Figure 40: Receiver State Machine for the No-ACK Mode

Minaburo, et al. Expires December 31, 2018 [Page 59]

Internet-Draft LPWAN SCHC June 2018

 +=======+
 | INIT | FCN!=0 & more frags
 | | ~~~~~~~~~~~~~~~~~~~~~~
 +======++ +--+ send Window + frag(FCN)
 W=0 | | | FCN-
 Clear local Bitmap | | v set local Bitmap
 FCN=max value | ++==+========+
 +> | |
 +---------------------> | SEND |
 | +==+===+=====+
 | FCN==0 & more frags | | last frag
 | ~~~~~~~~~~~~~~~~~~~~~ | | ~~~~~~~~~~~~~~~
 | set local-Bitmap | | set local-Bitmap
 | send wnd + frag(all-0) | | send wnd+frag(all-1)+MIC
 | set Retrans_Timer | | set Retrans_Timer
 | | |
 |Recv_wnd == wnd & | |
 |Lcl_Bitmap==recv_Bitmap& | | +----------------------+
 |more frag | | |lcl-Bitmap!=rcv-Bitmap|
 |~~~~~~~~~~~~~~~~~~~~~~ | | | ~~~~~~~~~ |
 |Stop Retrans_Timer | | | Attemp++ v
 |clear local_Bitmap v v | +=====+=+
 |window=next_window +====+===+==+===+ |Resend |
 +---------------------+ | |Missing|
 +----+ Wait | |Frag |
 not expected wnd | | Bitmap | +=======+
   ~~~~~~~~~~~~~~~~ +--->+               ++Retrans_Timer Exp  |
       discard frag      +==+=+===+=+==+=+| ~~~~~~~~~~~~~~~~~ |
                            | |   | ^  ^  |reSend(empty)All-* | | |
                            | |   | |  |  |Set Retrans_Timer  |
                            | |   | |  +--+Attemp++           |
   MIC_bit==1 &             | |   | +-------------------------+
   Recv_window==window &    | |   |   all missing frags sent
                no more frag| |   |   ~~~~~~~~~~~~~~~~~~~~~~
    ~~~~~~~~~~~~~~~~~~~~~~~~| |   |   Set Retrans_Timer
 Stop Retrans_Timer| | |
 +=============+ | | |
 | END +<--------+ | |
 +=============+ | | Attemp > MAX_ACK_REQUESTS
 All-1 Window & | | ~~~~~~~~~~~~~~~~~~
 MIC_bit ==0 & | v Send Abort
 Lcl_Bitmap==recv_Bitmap | +=+===========+
                 ~~~~~~~~~~~~ +>|    ERROR    |
                   Send Abort   +=============+

          Figure 41: Sender State Machine for the ACK-Always Mode



Minaburo, et al.        Expires December 31, 2018              [Page 60]



Internet-Draft                 LPWAN SCHC                      June 2018

    Not All- & w=expected +---+   +---+w = Not expected
    ~~~~~~~~~~~~~~~~~~~~~ |   |   |   |~~~~~~~~~~~~~~~~
 Set local_Bitmap(FCN) | v v |discard
 ++===+===+===+=+
 +---------------------+ Rcv +--->* ABORT
 | +------------------+ Window |
 | | +=====+==+=====+
 | | All-0 & w=expect | ^ w =next & not-All
 | | ~~~~~~~~~~~~~~~~~~ | |~~~~~~~~~~~~~~~~~~~~~
 | | set lcl_Bitmap(FCN)| |expected = next window
 | | send local_Bitmap | |Clear local_Bitmap
 | | | |
 | | w=expct & not-All | |
 | | ~~~~~~~~~~~~~~~~~~ | |
 | | set lcl_Bitmap(FCN)+-+ | | +--+ w=next & All-0
 | | if lcl_Bitmap full | | | | | | ~~~~~~~~~~~~~~~
 | | send lcl_Bitmap | | | | | | expct = nxt wnd
 | | v | v | | | Clear lcl_Bitmap
 | | w=expct & All-1 +=+=+=+==+=++ | set lcl_Bitmap(FCN)
 | | ~~~~~~~~~~~ +->+ Wait +<+ send lcl_Bitmap
 | | discard +--| Next |
 | | All-0 +---------+ Window +--->* ABORT
 | | ~~~~~ +-------->+========+=++
 | | snd lcl_bm All-1 & w=next| | All-1 & w=nxt
 | | & MIC wrong| | & MIC right
 | | ~~~~~~~~~~~~~~~~~| | ~~~~~~~~~~~~~~~~~~
 | | set local_Bitmap(FCN)| |set lcl_Bitmap(FCN)
 | | send local_Bitmap| |send local_Bitmap
 | | | +----------------------+
 | |All-1 & w=expct | | |
 | |& MIC wrong v +---+ w=expctd & |
 | |~~~~~~~~~~~~~~~~~~~~ +====+=====+ | MIC wrong |
 | |set local_Bitmap(FCN) | +<+ ~~~~~~~~~~~~~~ |
 | |send local_Bitmap | Wait End | set lcl_btmp(FCN)|
 | +--------------------->+ +--->* ABORT |
 | +===+====+=+-+ All-1&MIC wrong|
 | | ^ | ~~~~~~~~~~~~~~~| |
 | w=expected & MIC right | +---+ send lcl_btmp |
 | ~~~~~~~~~~~~~~~~~~~~~~ | |
 | set local_Bitmap(FCN) | +-+ Not All-1 |
 | send local_Bitmap | | | ~~~~~~~~~ |
 | | | | discard |
 |All-1 & w=expctd & MIC right | | | |
 |~~~~~~~~~~~~~~~~~~~~~~~~~~~~ v | v +----+All-1 |
 |set local_Bitmap(FCN) +=+=+=+=+==+ |~~~~~~~~~ |
 |send local_Bitmap | +<+Send lcl_btmp |
 +-------------------------->+ END | |
 +==========+<---------------+

Minaburo, et al. Expires December 31, 2018 [Page 61]

Internet-Draft LPWAN SCHC June 2018

 --->* ABORT
               ~~~~~~~
               Inactivity_Timer = expires
           When DWN_Link
             IF Inactivity_Timer expires
                Send DWL Request
                Attemp++

         Figure 42: Receiver State Machine for the ACK-Always Mode

Minaburo, et al.        Expires December 31, 2018              [Page 62]



Internet-Draft                 LPWAN SCHC                      June 2018

                      +=======+
                      |       |
                      | INIT  |
                      |       |        FCN!=0 & more frags
                      +======++  +--+  ~~~~~~~~~~~~~~~~~~~~~~
                         W=0 |   |  |  send Window + frag(FCN)
          ~~~~~~~~~~~~~~~~~~ |   |  |  FCN-
 Clear local Bitmap | | v set local Bitmap
 FCN=max value | ++=============+
 +> | |
 | SEND |
 +-------------------------> | |
 | ++=====+=======+
 | FCN==0 & more frags| |last frag
 | ~~~~~~~~~~~~~~~~~~~~~~~| |~~~~~~~~~~~~~~~~~
 | set local-Bitmap| |set local-Bitmap
 | send wnd + frag(all-0)| |send wnd+frag(all-1)+MIC
 | set Retrans_Timer| |set Retrans_Timer
 | | |
 |Retrans_Timer expires & | | lcl-Bitmap!=rcv-Bitmap
 |more fragments | | ~~~~~~~~~~~~~~~~~~~~~~
 |~~~~~~~~~~~~~~~~~~~~ | | Attemp++
 |stop Retrans_Timer | | +-----------------+
 |clear local-Bitmap v v | v
 |window = next window +=====+=====+==+==+ +====+====+
 +----------------------+ + | Resend |
 +--------------------->+ Wait Bitmap | | Missing |
 | +-- + | | Frag |
 | not expected wnd | ++=+===+===+===+==+ +======+==+
 | ~~~~~~~~~~~~~~~~ | ^ | | | ^ |
 | discard frag +----+ | | | +-------------------+
 | | | | all missing frag sent
 |Retrans_Timer expires & | | | ~~~~~~~~~~~~~~~~~~~~~
 | No more Frag | | | Set Retrans_Timer
 | ~~~~~~~~~~~~~~~~~~~~~~~ | | |
 | Stop Retrans_Timer | | |
 | Send ALL-1-empty | | |
 +-------------------------+ | |
 | |
 Local_Bitmap==Recv_Bitmap| |
         ~~~~~~~~~~~~~~~~~~~~~~~~~|   |Attemp > MAX_ACK_REQUESTS
    +=========+Stop Retrans_Timer |   |~~~~~~~~~~~~~~~~~~~~~~~
    |   END   +<------------------+   v  Send Abort
    +=========+                     +=+=========+
                                    |   ERROR   |
                                    +===========+

         Figure 43: Sender State Machine for the ACK-on-Error Mode



Minaburo, et al.        Expires December 31, 2018              [Page 63]



Internet-Draft                 LPWAN SCHC                      June 2018

      Not All- & w=expected +---+   +---+w = Not expected
      ~~~~~~~~~~~~~~~~~~~~~ |   |   |   |~~~~~~~~~~~~~~~~
 Set local_Bitmap(FCN) | v v |discard
 ++===+===+===+=+
 +-----------------------+ +--+ All-0 & full
 | ABORT *<---+ Rcv Window | | ~~~~~~~~~~~~
 | +--------------------+ +<-+ w =next
 | | All-0 empty +->+=+=+===+======+ clear lcl_Bitmap
 | | ~~~~~~~~~~~ | | | ^
 | | send bitmap +----+ | |w=expct & not-All & full
 | | | |~~~~~~~~~~~~~~~~~~~~~~~~
 | | | |set lcl_Bitmap; w =nxt
 | | | |
 | | All-0 & w=expect | | w=next
 | | & no_full Bitmap | | ~~~~~~~~ +========+
 | | ~~~~~~~~~~~~~~~~~ | | Send abort| Error/ |
 | | send local_Bitmap | | +---------->+ Abort |
 | | | | | +-------->+========+
 | | v | | | all-1 ^
 | | All-0 empty +====+===+==+=+=+ ~~~~~~~ | | |
 | | ~~~~~~~~~~~~~ +--+ Wait | Send abort |
 | | send lcl_btmp +->| Missing Fragm.| |
 | | +==============++ |
 | | +--------------+
 | | Uplink Only &
 | | Inactivity_Timer = expires
 | | ~~~~~~~~~~~~~~~~~~~~~~~~~~
 | | Send Abort
 | |All-1 & w=expect & MIC wrong
 | |~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +-+ All-1
 | |set local_Bitmap(FCN) | v ~~~~~~~~~~
 | |send local_Bitmap +===========+==+ snd lcl_btmp
 | +--------------------->+ Wait End +-+
 | +=====+=+====+=+ | w=expct &
 | w=expected & MIC right | | ^ | MIC wrong
 | ~~~~~~~~~~~~~~~~~~~~~~ | | +---+ ~~~~~~~~~
 | set & send local_Bitmap(FCN) | | set lcl_Bitmap(FCN)
 | | |
 |All-1 & w=expected & MIC right | +-->* ABORT
 |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ v
 |set & send local_Bitmap(FCN) +=+==========+
 +---------------------------->+ END |
 +============+
 --->* ABORT
 Only Uplink
 Inactivity_Timer = expires
                    ~~~~~~~~~~~~~~~~~~~~~~~~~~
                    Send Abort



Minaburo, et al.        Expires December 31, 2018              [Page 64]



Internet-Draft                 LPWAN SCHC                      June 2018

        Figure 44: Receiver State Machine for the ACK-on-Error Mode

Appendix D.  SCHC Parameters - Ticket #15

   This section gives the list of parameters that need to be defined in
   the technology-specific documents.

   o  Define the most common uses case and how SCHC may be deployed.

   o  LPWAN Architecture.  Explain the SCHC entities (Compression and
      Fragmentation), how/where they are represented in the
      corresponding technology architecture.  If applicable, explain the
      various potential channel conditions for the technology and the
      corresponding recommended use of C/D and F/R.

   o  L2 fragmentation decision

   o  Technology developers must evaluate that L2 has strong enough
      integrity checking to match SCHC's assumption.

   o  Rule ID numbering system, number of Rules

   o  Size of the Rule IDs

   o  The way the Rule ID is sent (L2 or L3) and how (describe)

   o  Fragmentation delivery reliability mode used in which cases (e.g.
      based on link channel condition)

   o  Define the number of bits for FCN (N) and DTag (T)

   o  in particular, is interleaved packet transmission supported and to
      what extent

   o  The MIC algorithm to be used and the size, if different from the
      default CRC32

   o  Retransmission Timer duration

   o  Inactivity Timer duration

   o  Define MAX_ACK_REQUEST (number of attempts)

   o  Padding: size of the L2 Word (for most technologies, a byte; for
      some technologies, a bit).  Value of the padding bits (1 or 0).
      The value of the padding bits needs to be specified because the
      padding bits are included in the MIC calculation.



Minaburo, et al.        Expires December 31, 2018              [Page 65]



Internet-Draft                 LPWAN SCHC                      June 2018

   o  Take into account that the length of Rule ID + N + T + W when
      possible is good to have a multiple of 8 bits to complete a byte
      and avoid padding

   o  In the ACK format to have a length for Rule ID + T + W bit into a
      complete number of byte to do optimization more easily

   o  The technology documents will describe if Rule ID is constrained
      by any alignment

   o  When fragmenting in ACK-on-Error or ACK-Always mode, it is
      expected that the last window (called All-1 window) will not be
      fully utilised, i.e. there won't be fragments with all FCN values
      from MAX_WIND_FCN downto 1 and finally All-1.  It is worth noting
      that this document does not mandate that other windows (called
      All-0 windows) are fully utilised either.  This document purposely
      does not specify that All-1 windows use Bitmaps with the same
      number of bits as All-0 windows do.  By default, Bitmaps for All-0
      and All-1 windows are of the same size MAX_WIND_FCN + 1.  But a
      technology-specific document MAY revert that decision.  The
      rationale for reverting the decision could be the following: Note
      that the SCHC ACK sent as a response to an All-1 fragment includes
      a C bit that SCHC ACK for other windows don't have.  Therefore,
      the SCHC ACK for the All-1 window is one bit bigger.  An L2
      technology with a severely constrained payload size might decide
      that this "bump" in the SCHC ACK for the last fragment is a bad
      resource usage.  It could thus mandate that the All-1 window is
      not allowed to use the FCN value 1 and that the All-1 SCHC ACK
      Bitmap size is reduced by 1 bit.  This provides room for the C bit
      without creating a bump in the SCHC ACK.

   And the following parameters need to be addressed in another document
   but not forcely in the technology-specific one:

   o  The way the contexts are provisioning

   o  The way the Rules as generated

Appendix E.  Note

   Carles Gomez has been funded in part by the Spanish Government
   (Ministerio de Educacion, Cultura y Deporte) through the Jose
   Castillejo grant CAS15/00336, and by the ERDF and the Spanish
   Government through project TEC2016-79988-P.  Part of his contribution
   to this work has been carried out during his stay as a visiting
   scholar at the Computer Laboratory of the University of Cambridge.



Minaburo, et al.        Expires December 31, 2018              [Page 66]



Internet-Draft                 LPWAN SCHC                      June 2018

Authors' Addresses

   Ana Minaburo
   Acklio
   1137A avenue des Champs Blancs
   35510 Cesson-Sevigne Cedex
   France

   Email: ana@ackl.io

   Laurent Toutain
   IMT-Atlantique
   2 rue de la Chataigneraie
   CS 17607
   35576 Cesson-Sevigne Cedex
   France

   Email: Laurent.Toutain@imt-atlantique.fr

   Carles Gomez
   Universitat Politecnica de Catalunya
   C/Esteve Terradas, 7
   08860 Castelldefels
   Spain

   Email: carlesgo@entel.upc.edu

   Dominique Barthel
   Orange Labs
   28 chemin du Vieux Chene
   38243 Meylan
   France

   Email: dominique.barthel@orange.com



Minaburo, et al.        Expires December 31, 2018              [Page 67]


