
lpwan Working Group A. Minaburo
Internet-Draft Acklio
Intended status: Standards Track L. Toutain
Expires: April 25, 2019 IMT-Atlantique
 C. Gomez
 Universitat Politecnica de Catalunya
 D. Barthel
 Orange Labs
 JC. Zuniga
 SIGFOX
 October 22, 2018

LPWAN Static Context Header Compression (SCHC) and fragmentation for
IPv6 and UDP

draft-ietf-lpwan-ipv6-static-context-hc-17

Abstract

 This document defines the Static Context Header Compression (SCHC)
 framework, which provides both header compression and fragmentation
 functionalities. SCHC has been designed for Low Power Wide Area
 Networks (LPWAN).

 SCHC compression is based on a common static context stored in both
 the LPWAN device and the network side. This document defines a
 header compression mechanism and its application to compress IPv6/UDP
 headers.

 This document also specifies a fragmentation and reassembly mechanism
 that is used to support the IPv6 MTU requirement over the LPWAN
 technologies. Fragmentation is needed for IPv6 datagrams that, after
 SCHC compression or when such compression was not possible, still
 exceed the layer-2 maximum payload size.

 The SCHC header compression and fragmentation mechanisms are
 independent of the specific LPWAN technology over which they are
 used. This document defines generic functionalities and offers
 flexibility with regard to parameter settings and mechanism choices.
 Technology-specific and product-specific settings and choices are
 expected to be grouped into Profiles specified in other documents.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

Minaburo, et al. Expires April 25, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Internet-Draft LPWAN SCHC October 2018

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Requirements Notation . 5
3. LPWAN Architecture . 5
4. Terminology . 6
5. SCHC overview . 8
5.1. SCHC Packet format 10
5.2. Functional mapping 11

6. Rule ID . 12
7. Compression/Decompression 12
7.1. SCHC C/D Rules . 12
7.2. Rule ID for SCHC C/D 14
7.3. Packet processing . 15
7.4. Matching operators 16
7.5. Compression Decompression Actions (CDA) 17
7.5.1. processing variable-length fields 17
7.5.2. not-sent CDA . 18
7.5.3. value-sent CDA 18
7.5.4. mapping-sent CDA 18
7.5.5. LSB CDA . 19

https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Minaburo, et al. Expires April 25, 2019 [Page 2]

Internet-Draft LPWAN SCHC October 2018

7.5.6. DevIID, AppIID CDA 19
7.5.7. Compute-* . 19

8. Fragmentation/Reassembly 20
8.1. Overview . 20
8.2. SCHC F/R Tools . 20
8.2.1. Messages . 20
8.2.2. Tiles, Windows, Bitmaps, Timers, Counters 21
8.2.3. Integrity Checking 23
8.2.4. Header Fields . 24

8.3. SCHC F/R Message Formats 26
8.3.1. SCHC Fragment format 26
8.3.2. SCHC ACK format 27
8.3.3. SCHC ACK REQ format 30
8.3.4. SCHC Abort formats 31

8.4. SCHC F/R modes . 33
8.4.1. No-ACK mode . 33
8.4.2. ACK-Always . 36
8.4.3. ACK-on-Error . 42

9. Padding management . 49
10. SCHC Compression for IPv6 and UDP headers 50
10.1. IPv6 version field 50
10.2. IPv6 Traffic class field 51
10.3. Flow label field . 51
10.4. Payload Length field 51
10.5. Next Header field 52
10.6. Hop Limit field . 52
10.7. IPv6 addresses fields 52
10.7.1. IPv6 source and destination prefixes 52
10.7.2. IPv6 source and destination IID 53

10.8. IPv6 extensions . 53
10.9. UDP source and destination port 53
10.10. UDP length field . 54
10.11. UDP Checksum field 54

11. IANA Considerations . 55
12. Security considerations 55

 12.1. Security considerations for SCHC
 Compression/Decompression 55
 12.2. Security considerations for SCHC
 Fragmentation/Reassembly 55

13. Acknowledgements . 56
14. References . 57
14.1. Normative References 57
14.2. Informative References 57

Appendix A. SCHC Compression Examples 58
Appendix B. Fragmentation Examples 61
Appendix C. Fragmentation State Machines 68
Appendix D. SCHC Parameters 75
Appendix E. Supporting multiple window sizes for fragmentation . 77

Minaburo, et al. Expires April 25, 2019 [Page 3]

Internet-Draft LPWAN SCHC October 2018

Appendix F. Downlink SCHC Fragment transmission 77
Appendix G. Note . 78

 Authors' Addresses . 78

1. Introduction

 This document defines the Static Context Header Compression (SCHC)
 framework, which provides both header compression and fragmentation
 functionalities. SCHC has been designed for Low Power Wide Area
 Networks (LPWAN).

 Header compression is needed for efficient Internet connectivity to
 the node within an LPWAN network. Some LPWAN networks properties can
 be exploited to get an efficient header compression:

 o The network topology is star-oriented, which means that all
 packets between the same source-destination pair follow the same
 path. For the needs of this document, the architecture can simply
 be described as Devices (Dev) exchanging information with LPWAN
 Application Servers (App) through a Network Gateway (NGW).

 o Because devices embed built-in applications, the traffic flows to
 be compressed are known in advance. Indeed, new applications are
 less frequently installed in an LPWAN device, as they are in a
 computer or smartphone.

 SCHC compression uses a context in which information about header
 fields is stored. This context is static: the values of the header
 fields do not change over time. This avoids complex
 resynchronization mechanisms. Indeed, downlink is often more
 restricted/expensive, perhaps completely unavailable [RFC8376]. A
 compression protocol that relies on feedback is not compatible with
 the characteristics of such LPWANs.

 In most cases, a small context identifier is enough to represent the
 full IPv6/UDP headers. The SCHC header compression mechanism is
 independent of the specific LPWAN technology over which it is used.

 LPWAN technologies impose some strict limitations on traffic. For
 instance, devices are sleeping most of the time and may receive data
 during short periods of time after transmission to preserve battery.
 LPWAN technologies are also characterized by a greatly reduced data
 unit and/or payload size (see [RFC8376]). However, some LPWAN
 technologies do not provide fragmentation functionality; to support
 the IPv6 MTU requirement of 1280 bytes [RFC8200], they require a
 fragmentation protocol at the adaptation layer below IPv6.
 Accordingly, this document defines an fragmentation/reassembly
 mechanism for LPWAN technologies to supports the IPv6 MTU. Its

https://datatracker.ietf.org/doc/html/rfc8376
https://datatracker.ietf.org/doc/html/rfc8376
https://datatracker.ietf.org/doc/html/rfc8200

Minaburo, et al. Expires April 25, 2019 [Page 4]

Internet-Draft LPWAN SCHC October 2018

 implementation is optional. If not interested, the reader can safely
 skip its description.

 This document defines generic functionality and offers flexibility
 with regard to parameters settings and mechanism choices.
 Technology-specific settings and product-specific and choices are
 expected to be grouped into Profiles specified in other documents.

2. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. LPWAN Architecture

 LPWAN technologies have similar network architectures but different
 terminologies. Using the terminology defined in [RFC8376], we can
 identify different types of entities in a typical LPWAN network, see
 Figure 1:

 o Devices (Dev) are the end-devices or hosts (e.g. sensors,
 actuators, etc.). There can be a very high density of devices per
 radio gateway.

 o The Radio Gateway (RGW), which is the end point of the constrained
 link.

 o The Network Gateway (NGW) is the interconnection node between the
 Radio Gateway and the Internet.

 o LPWAN-AAA Server, which controls the user authentication and the
 applications.

 o Application Server (App)

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc8376

Minaburo, et al. Expires April 25, 2019 [Page 5]

Internet-Draft LPWAN SCHC October 2018

 +------+
 () () () | |LPWAN-|
 () () () () / \ +---------+ | AAA |
 () () () () () () / \======| ^ |===|Server| +-----------+
 () () () | | <--|--> | +------+ |APPLICATION|
 () () () () / \==========| v |=============| (App) |
 () () () / \ +---------+ +-----------+
 Dev Radio Gateways NGW

 Figure 1: LPWAN Architecture

4. Terminology

 This section defines the terminology and acronyms used in this
 document.

 Note that the SCHC acronym is pronounced like "sheek" in English (or
 "chic" in French). Therefore, this document writes "a SCHC Packet"
 instead of "an SCHC Packet".

 o App: LPWAN Application. An application sending/receiving IPv6
 packets to/from the Device.

 o AppIID: Application Interface Identifier. The IID that identifies
 the application server interface.

 o Bi: Bidirectional. Characterises a Field Descriptor that applies
 to headers of packets travelling in either direction (Up and Dw,
 see this glossary).

 o CDA: Compression/Decompression Action. Describes the reciprocal
 pair of actions that are performed at the compressor to compress a
 header field and at the decompressor to recover the original
 header field value.

 o Compression Residue. The bits that need to be sent (beyond the
 Rule ID itself) after applying the SCHC compression over each
 header field.

 o Context: A set of Rules used to compress/decompress headers.

 o Dev: Device. A node connected to an LPWAN. A Dev SHOULD
 implement SCHC.

 o DevIID: Device Interface Identifier. The IID that identifies the
 Dev interface.

Minaburo, et al. Expires April 25, 2019 [Page 6]

Internet-Draft LPWAN SCHC October 2018

 o DI: Direction Indicator. This field tells which direction of
 packet travel (Up, Dw or Bi) a Rule applies to. This allows for
 assymmetric processing.

 o Dw: Downlink direction for compression/decompression in both
 sides, from SCHC C/D in the network to SCHC C/D in the Dev.

 o Field Description. A line in the Rule table.

 o FID: Field Identifier. This is an index to describe the header
 fields in a Rule.

 o FL: Field Length is the length of the packet header field. It is
 expressed in bits for header fields of fixed lengths or as a type
 (e.g. variable, token length, ...) for field lengths that are
 unknown at the time of Rule creation. The length of a header
 field is defined in the corresponding protocol specification (such
 as IPv6 or UDP).

 o FP: Field Position is a value that is used to identify the
 position where each instance of a field appears in the header.

 o IID: Interface Identifier. See the IPv6 addressing architecture
 [RFC7136]

 o L2: Layer two. The immediate lower layer SCHC interfaces with.
 It is provided by an underlying LPWAN technology. It does not
 necessarily correspond to the OSI model definition of Layer 2.

 o L2 Word: this is the minimum subdivision of payload data that the
 L2 will carry. In most L2 technologies, the L2 Word is an octet.
 In bit-oriented radio technologies, the L2 Word might be a single
 bit. The L2 Word size is assumed to be constant over time for
 each device.

 o MO: Matching Operator. An operator used to match a value
 contained in a header field with a value contained in a Rule.

 o Padding (P). Extra bits that may be appended by SCHC to a data
 unit that it passes to the underlying Layer 2 for transmission.
 SCHC itself operates on bits, not bytes, and does not have any
 alignment prerequisite. See Section 9.

 o Profile: SCHC offers variations in the way it is operated, with a
 number of parameters listed in Appendix D. A Profile indicates a
 particular setting of all these parameters. Both ends of a SCHC
 session must be provisioned with the same Profile information and

https://datatracker.ietf.org/doc/html/rfc7136

Minaburo, et al. Expires April 25, 2019 [Page 7]

Internet-Draft LPWAN SCHC October 2018

 with the same set of Rules before the session starts, so that
 there is no ambiguity in how they expect to communicate.

 o Rule: A set of header field values.

 o Rule ID: An identifier for a Rule. SCHC C/D on both sides share
 the same Rule ID for a given packet. A set of Rule IDs are used
 to support SCHC F/R functionality.

 o SCHC C/D: Static Context Header Compression Compressor/
 Decompressor. A mechanism used on both sides, at the Dev and at
 the network, to achieve Compression/Decompression of headers.
 SCHC C/D uses Rules to perform compression and decompression.

 o SCHC Packet: A packet (e.g. an IPv6 packet) whose header has been
 compressed as per the header compression mechanism defined in this
 document. If the header compression process is unable to actually
 compress the packet header, the packet with the uncompressed
 header is still called a SCHC Packet (in this case, a Rule ID is
 used to indicate that the packet header has not been compressed).
 See Section 7 for more details.

 o TV: Target value. A value contained in a Rule that will be
 matched with the value of a header field.

 o Up: Uplink direction for compression/decompression in both sides,
 from the Dev SCHC C/D to the network SCHC C/D.

 Additional terminology for the optional SCHC Fragmentation /
 Reassembly mechanism (SCHC F/R) is found in Section 8.2.

5. SCHC overview

 SCHC can be characterized as an adaptation layer between IPv6 and the
 underlying LPWAN technology. SCHC comprises two sublayers (i.e. the
 Compression sublayer and the Fragmentation sublayer), as shown in
 Figure 2.

Minaburo, et al. Expires April 25, 2019 [Page 8]

Internet-Draft LPWAN SCHC October 2018

 +----------------+
 | IPv6 |
 +- +----------------+
 | | Compression |
 SCHC < +----------------+
 | | Fragmentation |
 +- +----------------+
 |LPWAN technology|
 +----------------+

 Figure 2: Protocol stack comprising IPv6, SCHC and an LPWAN
 technology

 As per this document, when a packet (e.g. an IPv6 packet) needs to be
 transmitted, header compression is first applied to the packet. The
 resulting packet after header compression (whose header may or may
 not actually be smaller than that of the original packet) is called a
 SCHC Packet. If the SCHC Packet needs to be fragmented by the
 optional SCHC Fragmentation, fragmentation is then applied to the
 SCHC Packet. The SCHC Packet or the SCHC Fragments are then
 transmitted over the LPWAN. The reciprocal operations take place at
 the receiver. This process is illustrated in Figure 3.

Minaburo, et al. Expires April 25, 2019 [Page 9]

Internet-Draft LPWAN SCHC October 2018

 A packet (e.g. an IPv6 packet)
 | ^
 v |
 +------------------+ +--------------------+
 | SCHC Compression | | SCHC Decompression |
 +------------------+ +--------------------+
 | ^
 | If no fragmentation (*) |
 +-------------- SCHC Packet -------------->|
 | |
 v |
 +--------------------+ +-----------------+
 | SCHC Fragmentation | | SCHC Reassembly |
 +--------------------+ +-----------------+
 | ^ | ^
 | | | |
 | +-------------- SCHC ACK -------------+ |
 | |
 +-------------- SCHC Fragments -------------------+

 SENDER RECEIVER

 *: the decision to use Fragmentation or not is left to each Profile.

 Figure 3: SCHC operations at the SENDER and the RECEIVER

5.1. SCHC Packet format

 The SCHC Packet is composed of the Compressed Header followed by the
 payload from the original packet (see Figure 4). The Compressed
 Header itself is composed of the Rule ID and a Compression Residue,
 which is the output of the compression actions of the Rule that was
 applied (see Section 7). The Compression Residue may be empty. Both
 the Rule ID and the Compression Residue potentially have a variable
 size, and generally are not a mutiple of bytes in size.

 | Rule ID + Compression Residue |
 +---------------------------------+--------------------+
 | Compressed Header | Payload |
 +---------------------------------+--------------------+

 Figure 4: SCHC Packet

Minaburo, et al. Expires April 25, 2019 [Page 10]

Internet-Draft LPWAN SCHC October 2018

5.2. Functional mapping

 Figure 5 below maps the functional elements of Figure 3 onto the
 LPWAN architecture elements of Figure 1.

 Dev App
 +----------------+ +--------------+
APP1 APP2 APP3		APP1 APP2 APP3
UDP		UDP
IPv6		IPv6
SCHC C/D and F/R		
 +--------+-------+ +-------+------+
 | +--+ +----+ +-----------+ .
 +~~ |RG| === |NGW | === | SCHC |... Internet ..
 +--+ +----+ |F/R and C/D|
 +-----------+

 Figure 5: Architecture

 SCHC C/D and SCHC F/R are located on both sides of the LPWAN
 transmission, i.e. on the Dev side and on the Network side.

 The operation in the Uplink direction is as follows. The Device
 application uses IPv6 or IPv6/UDP protocols. Before sending the
 packets, the Dev compresses their headers using SCHC C/D and, if the
 SCHC Packet resulting from the compression needs to be fragmented by
 SCHC, SCHC F/R is performed (see Section 8). The resulting SCHC
 Fragments are sent to an LPWAN Radio Gateway (RG) which forwards them
 to a Network Gateway (NGW). The NGW sends the data to a SCHC F/R for
 re-assembly (if needed) and then to the SCHC C/D for decompression.
 After decompression, the packet can be sent over the Internet to one
 or several LPWAN Application Servers (App).

 The SCHC F/R and C/D on the Network side can be located in the NGW,
 or somewhere else as long as a tunnel is established between them and
 the NGW. Note that, for some LPWAN technologies, it MAY be suitable
 to locate the SCHC F/R functionality nearer the NGW, in order to
 better deal with time constraints of such technologies.

 The SCHC C/D and F/R on both sides MUST share the same set of Rules.

 The SCHC C/D and F/R process is symmetrical, therefore the
 description of the Downlink direction is symmetrical to the one
 above.

Minaburo, et al. Expires April 25, 2019 [Page 11]

Internet-Draft LPWAN SCHC October 2018

6. Rule ID

 Rule IDs are identifiers used to select the correct context either
 for Compression/Decompression or for Fragmentation/Reassembly.

 The size of the Rule IDs is not specified in this document, as it is
 implementation-specific and can vary according to the LPWAN
 technology and the number of Rules, among others. It is defined in
 Profiles.

 The Rule IDs are used:

 o In the SCHC C/D context, to identify the Rule (i.e., the set of
 Field Descriptions) that is used to compress a packet header.

 o At least one Rule ID MAY be allocated to tagging packets for which
 SCHC compression was not possible (no matching Rule was found).

 o In SCHC F/R, to identify the specific modes and settings of SCHC
 Fragments being transmitted, and to identify the SCHC ACKs,
 including their modes and settings. Note that when F/R is used
 for both communication directions, at least two Rule ID values are
 therefore needed for F/R.

7. Compression/Decompression

 Compression with SCHC is based on using context, i.e. a set of Rules
 to compress or decompress headers. SCHC avoids context
 synchronization, which consumes considerable bandwidth in other
 header compression mechanisms such as RoHC [RFC5795]. Since the
 content of packets is highly predictable in LPWAN networks, static
 contexts MAY be stored beforehand to omit transmitting some
 information over the air. The contexts MUST be stored at both ends,
 and they can be learned by a provisioning protocol or by out of band
 means, or they can be pre-provisioned. The way the contexts are
 provisioned is out of the scope of this document.

7.1. SCHC C/D Rules

 The main idea of the SCHC compression scheme is to transmit the Rule
 ID to the other end instead of sending known field values. This Rule
 ID identifies a Rule that provides the closest match to the original
 packet values. Hence, when a value is known by both ends, it is only
 necessary to send the corresponding Rule ID over the LPWAN network.
 The manner by which Rules are generated is out of the scope of this
 document. The Rules MAY be changed at run-time but the mechanism is
 out of scope of this document.

https://datatracker.ietf.org/doc/html/rfc5795

Minaburo, et al. Expires April 25, 2019 [Page 12]

Internet-Draft LPWAN SCHC October 2018

 The context contains a list of Rules (see Figure 6). Each Rule
 itself contains a list of Field Descriptions composed of a Field
 Identifier (FID), a Field Length (FL), a Field Position (FP), a
 Direction Indicator (DI), a Target Value (TV), a Matching Operator
 (MO) and a Compression/Decompression Action (CDA).

 /---\
 | Rule N |
 /---\|
 | Rule i ||
 /---\||
(FID) Rule 1										
+-------+--+--+--+------------+-----------------+---------------+										
	Field 1	FL	FP	DI	Target Value	Matching Operator	Comp/Decomp Act			
+-------+--+--+--+------------+-----------------+---------------+										
	Field 2	FL	FP	DI	Target Value	Matching Operator	Comp/Decomp Act			
+-------+--+--+--+------------+-----------------+---------------+										
			
+-------+--+--+--+------------+-----------------+---------------+		/								
	Field N	FL	FP	DI	Target Value	Matching Operator	Comp/Decomp Act			
+-------+--+--+--+------------+-----------------+---------------+	/									
 \---/

 Figure 6: A Compression/Decompression Context

 A Rule does not describe how to parse a packet header to find each
 field. This MUST be known from the compressor/decompressor. Rules
 only describe the compression/decompression behavior for each header
 field. In a Rule, the Field Descriptions are listed in the order in
 which the fields appear in the packet header.

 A Rule also describes what is sent in the Compression Residue. The
 Compression Residue is assembled by concatenating the residues for
 each field, in the order the Field Descriptions appear in the Rule.

 The Context describes the header fields and its values with the
 following entries:

 o Field ID (FID) is a unique value to define the header field.

 o Field Length (FL) represents the length of the field. It can be
 either a fixed value (in bits) if the length is known when the
 Rule is created or a type if the length is variable. The length
 of a header field is defined in the corresponding protocol
 specification. The type defines the process to compute the

Minaburo, et al. Expires April 25, 2019 [Page 13]

Internet-Draft LPWAN SCHC October 2018

 length, its unit (bits, bytes,...) and the value to be sent before
 the Compression Residue.

 o Field Position (FP): most often, a field only occurs once in a
 packet header. Some fields may occur multiple times in a header.
 FP indicates which occurrence this Field Description applies to.
 The default value is 1 (first occurence).

 o A Direction Indicator (DI) indicates the packet direction(s) this
 Field Description applies to. Three values are possible:

 * UPLINK (Up): this Field Description is only applicable to
 packets sent by the Dev to the App,

 * DOWNLINK (Dw): this Field Description is only applicable to
 packets sent from the App to the Dev,

 * BIDIRECTIONAL (Bi): this Field Description is applicable to
 packets travelling both Up and Dw.

 o Target Value (TV) is the value used to match against the packet
 header field. The Target Value can be of any type (integer,
 strings, etc.). It can be a single value or a more complex
 structure (array, list, etc.), such as a JSON or a CBOR structure.

 o Matching Operator (MO) is the operator used to match the Field
 Value and the Target Value. The Matching Operator may require
 some parameters. MO is only used during the compression phase.
 The set of MOs defined in this document can be found in

Section 7.4.

 o Compression Decompression Action (CDA) describes the compression
 and decompression processes to be performed after the MO is
 applied. Some CDAs MAY require parameter values for their
 operation. CDAs are used in both the compression and the
 decompression functions. The set of CDAs defined in this document
 can be found in Section 7.5.

7.2. Rule ID for SCHC C/D

 Rule IDs are sent by the compression function in one side and are
 received for the decompression function in the other side. In SCHC
 C/D, the Rule IDs are specific to a Dev. Hence, multiple Dev
 instances MAY use the same Rule ID to define different header
 compression contexts. To identify the correct Rule ID, the SCHC C/D
 needs to associate the Rule ID with the Dev identifier to find the
 appropriate Rule to be applied.

Minaburo, et al. Expires April 25, 2019 [Page 14]

Internet-Draft LPWAN SCHC October 2018

7.3. Packet processing

 The compression/decompression process follows several steps:

 o Compression Rule selection: The goal is to identify which Rule(s)
 will be used to compress the packet's headers. When performing
 decompression, on the network side the SCHC C/D needs to find the
 correct Rule based on the L2 address; in this way, it can use the
 DevIID and the Rule ID. On the Dev side, only the Rule ID is
 needed to identify the correct Rule since the Dev typically only
 holds Rules that apply to itself. The Rule will be selected by
 matching the Fields Descriptions to the packet header as described
 below. When the selection of a Rule is done, this Rule is used to
 compress the header. The detailed steps for compression Rule
 selection are the following:

 * The first step is to choose the Field Descriptions by their
 direction, using the Direction Indicator (DI). A Field
 Description that does not correspond to the appropriate DI will
 be ignored. If all the fields of the packet do not have a
 Field Description with the correct DI, the Rule is discarded
 and SCHC C/D proceeds to consider the next Rule.

 * When the DI has matched, then the next step is to identify the
 fields according to Field Position (FP). If FP does not
 correspond, the Rule is not used and the SCHC C/D proceeds to
 consider the next Rule.

 * Once the DI and the FP correspond to the header information,
 each packet field's value is then compared to the corresponding
 Target Value (TV) stored in the Rule for that specific field
 using the matching operator (MO).

 If all the fields in the packet's header satisfy all the
 matching operators (MO) of a Rule (i.e. all MO results are
 True), the fields of the header are then compressed according
 to the Compression/Decompression Actions (CDAs) and a
 compressed header (with possibly a Compression Residue) SHOULD
 be obtained. Otherwise, the next Rule is tested.

 * If no eligible compression Rule is found, then the header MUST
 be sent without compression, using a Rule ID dedicated to this
 purpose. Sending the header uncompressed but may require the
 use of the SCHC F/R process.

 o Sending: The Rule ID is sent to the other end followed by the
 Compression Residue (which could be empty) or the uncompressed
 header, and directly followed by the payload. The Compression

Minaburo, et al. Expires April 25, 2019 [Page 15]

Internet-Draft LPWAN SCHC October 2018

 Residue is the concatenation of the Compression Residues for each
 field according to the CDAs for that Rule. The way the Rule ID is
 sent depends on the Profile. For example, it can be either
 included in an L2 header or sent in the first byte of the L2
 payload. (see Figure 4). This process will be specified in the
 Profile and is out of the scope of the present document. On LPWAN
 technologies that are byte-oriented, the compressed header
 concatenated with the original packet payload is padded to a
 multiple of 8 bits, if needed. See Section 9 for details.

 o Decompression: When doing decompression, on the network side the
 SCHC C/D needs to find the correct Rule based on the L2 address
 and in this way, it can use the DevIID and the Rule ID. On the
 Dev side, only the Rule ID is needed to identify the correct Rule
 since the Dev only holds Rules that apply to itself.

 The receiver identifies the sender through its device-id or source
 identifier (e.g. MAC address, if it exists) and selects the Rule
 using the Rule ID. This Rule describes the compressed header
 format and associates the received Compression Residue to each of
 the header fields. For each field in the header, the receiver
 applies the CDA action associated to that field in order to
 reconstruct the original header field value. The CDA application
 order can be different from the order in which the fields are
 listed in the Rule. In particular, Compute-* MUST be applied
 after the application of the CDAs of all the fields it computes
 on.

7.4. Matching operators

 Matching Operators (MOs) are functions used by both SCHC C/D
 endpoints involved in the header compression/decompression. They are
 not typed and can be applied to integer, string or any other data
 type. The result of the operation can either be True or False. MOs
 are defined as follows:

 o equal: The match result is True if the field value in the packet
 matches the TV.

 o ignore: No check is done between the field value in the packet and
 the TV in the Rule. The result of the matching is always true.

 o MSB(x): A match is obtained if the most significant x bits of the
 packet header field value are equal to the TV in the Rule. The x
 parameter of the MSB MO indicates how many bits are involved in
 the comparison. If the FL is described as variable, the length
 must be a multiple of the unit. For example, x must be multiple
 of 8 if the unit of the variable length is in bytes.

Minaburo, et al. Expires April 25, 2019 [Page 16]

Internet-Draft LPWAN SCHC October 2018

 o match-mapping: With match-mapping, the Target Value is a list of
 values. Each value of the list is identified by a short ID (or
 index). Compression is achieved by sending the index instead of
 the original header field value. This operator matches if the
 header field value is equal to one of the values in the target
 list.

7.5. Compression Decompression Actions (CDA)

 The Compression Decompression Action (CDA) describes the actions
 taken during the compression of headers fields, and inversely, the
 action taken by the decompressor to restore the original value.

 /--------------------+-------------+----------------------------\
 | Action | Compression | Decompression |
 | | | |
 +--------------------+-------------+----------------------------+
not-sent	elided	use value stored in context
value-sent	send	build from received value
mapping-sent	send index	value from index on a table
LSB	send LSB	TV, received value
compute-length	elided	compute length
compute-checksum	elided	compute UDP checksum
DevIID	elided	build IID from L2 Dev addr
AppIID	elided	build IID from L2 App addr
 \--------------------+-------------+----------------------------/

 Figure 7: Compression and Decompression Actions

 Figure 7 summarizes the basic actions that can be used to compress
 and decompress a field. The first column shows the action's name.
 The second and third columns show the reciprocal compression/
 decompression behavior for each action.

 Compression is done in the order that the Field Descriptions appear
 in a Rule. The result of each Compression/Decompression Action is
 appended to the accumulated Compression Residue in that same order.
 The receiver knows the size of each compressed field, which can be
 given by the Rule or MAY be sent with the compressed header.

7.5.1. processing variable-length fields

 If the field is identified in the Field Description as being of
 variable size, then the size of the Compression Residue value (using
 the unit defined in the FL) MUST first be sent as follows:

Minaburo, et al. Expires April 25, 2019 [Page 17]

Internet-Draft LPWAN SCHC October 2018

 o If the size is between 0 and 14, it is sent as a 4-bits unsigned
 integer.

 o For values between 15 and 254, 0b1111 is transmitted and then the
 size is sent as an 8 bits unsigned integer.

 o For larger values of the size, 0xfff is transmitted and then the
 next two bytes contain the size value as a 16 bits unsigned
 integer.

 If a field is not present in the packet but exists in the Rule and
 its FL is specified as being variable, size 0 MUST be sent to denote
 its absence.

7.5.2. not-sent CDA

 The not-sent action is generally used when the field value is
 specified in a Rule and therefore known by both the Compressor and
 the Decompressor. This action SHOULD be used with the "equal" MO.
 If MO is "ignore", there is a risk to have a decompressed field value
 different from the original field that was compressed.

 The compressor does not send any Compression Residue for a field on
 which not-sent compression is applied.

 The decompressor restores the field value with the Target Value
 stored in the matched Rule identified by the received Rule ID.

7.5.3. value-sent CDA

 The value-sent action is generally used when the field value is not
 known by both the Compressor and the Decompressor. The value is sent
 as a residue in the compressed message header. Both Compressor and
 Decompressor MUST know the size of the field, either implicitly (the
 size is known by both sides) or by explicitly indicating the length
 in the Compression Residue, as defined in Section 7.5.1. This action
 is generally used with the "ignore" MO.

7.5.4. mapping-sent CDA

 The mapping-sent action is used to send an index (the index into the
 Target Value list of values) instead of the original value. This
 action is used together with the "match-mapping" MO.

 On the compressor side, the match-mapping Matching Operator searches
 the TV for a match with the header field value and the mapping-sent
 CDA appends the corresponding index to the Compression Residue to be

Minaburo, et al. Expires April 25, 2019 [Page 18]

Internet-Draft LPWAN SCHC October 2018

 sent. On the decompressor side, the CDA uses the received index to
 restore the field value by looking up the list in the TV.

 The number of bits sent is the minimal size for coding all the
 possible indices.

7.5.5. LSB CDA

 The LSB action is used together with the "MSB(x)" MO to avoid sending
 the most significant part of the packet field if that part is already
 known by the receiving end. The number of bits sent is the original
 header field length minus the length specified in the MSB(x) MO.

 The compressor sends the Least Significant Bits (e.g. LSB of the
 length field). The decompressor concatenates the x most significant
 bits of Target Value and the received residue.

 If this action needs to be done on a variable length field, the size
 of the Compression Residue in bytes MUST be sent as described in

Section 7.5.1.

7.5.6. DevIID, AppIID CDA

 These actions are used to process respectively the Dev and the App
 Interface Identifiers (DevIID and AppIID) of the IPv6 addresses.
 AppIID CDA is less common since most current LPWAN technologies
 frames contain a single L2 address, which is the Dev's address.

 The IID value MAY be computed from the Device ID present in the L2
 header, or from some other stable identifier. The computation is
 specific to each Profile and MAY depend on the Device ID size.

 In the downlink direction (Dw), at the compressor, the DevIID CDA may
 be used to generate the L2 addresses on the LPWAN, based on the
 packet's Destination Address.

7.5.7. Compute-*

 Some fields may be elided during compression and reconstructed during
 decompression. This is the case for length and checksum, so:

 o compute-length: computes the length assigned to this field. This
 CDA MAY be used to compute IPv6 length or UDP length.

 o compute-checksum: computes a checksum from the information already
 received by the SCHC C/D. This field MAY be used to compute UDP
 checksum.

Minaburo, et al. Expires April 25, 2019 [Page 19]

Internet-Draft LPWAN SCHC October 2018

8. Fragmentation/Reassembly

8.1. Overview

 In LPWAN technologies, the L2 MTU typically ranges from tens to
 hundreds of bytes. Some of these technologies do not have an
 internal fragmentation/reassembly mechanism.

 The SCHC Fragmentation/Reassembly (SCHC F/R) functionality is offered
 as an option for such LPWAN technologies to cope with the IPv6 MTU
 requirement of 1280 bytes [RFC8200]. It is optional to implement.
 If it is not needed, its description can be safely ignored.

 This specification includes several SCHC F/R modes, which allow for a
 range of reliability options such as optional SCHC Fragment
 retransmission. More modes may be defined in the future.

 The same SCHC F/R mode MUST be used for all SCHC Fragments of the
 same fragmented SCHC Packet. This document does not make any
 decision with regard to which mode(s) will be used over a specific
 LPWAN technology. This will be defined in Profiles.

 SCHC F/R uses the knowledge of the L2 Word size (see Section 4) to
 encode some messages. Therefore, SCHC MUST know the L2 Word size.
 SCHC F/R usually generates SCHC Fragments and SCHC ACKs that are
 multiples of L2 Words. The padding overhead is kept to the absolute
 minimum (see Section 9).

8.2. SCHC F/R Tools

 This subsection describes the different tools that are used to enable
 the SCHC F/R functionality defined in this document. These tools
 include the SCHC F/R messages, tiles, windows, counters, timers and
 header fields.

 The tools are described here in a generic manner. Their application
 to each SCHC F/R mode is found in Section 8.4.

8.2.1. Messages

 The messages that can be used by SCHC F/R are the following:

 o SCHC Fragment: A data unit that carries a piece of a SCHC Packet
 from the sender to the receiver.

 o SCHC ACK: An acknowledgement for fragmentation, by the receiver to
 the sender. This message is used to report on the successful

https://datatracker.ietf.org/doc/html/rfc8200

Minaburo, et al. Expires April 25, 2019 [Page 20]

Internet-Draft LPWAN SCHC October 2018

 reception of pieces of, or the whole of the fragmented SCHC
 Packet.

 o SCHC ACK REQ: An explicit request for a SCHC ACK. By the sender
 to the receiver.

 o SCHC Sender-Abort: A message by the sender telling the receiver
 that it has aborted the transmission of a fragmented SCHC Packet.

 o SCHC Receiver-Abort: A message by the receiver to tell the sender
 to abort the transmission of a fragmented SCHC Packet.

8.2.2. Tiles, Windows, Bitmaps, Timers, Counters

8.2.2.1. Tiles

 The SCHC Packet is fragmented into pieces, hereafter called tiles.
 The tiles MUST be contiguous.

 See Figure 8 for an example.

 SCHC Packet
 +----+--+-----+---+----+-+---+---+-----+...-----+----+---+------+
Tiles | | | | | | | | | | | | | |
 +----+--+-----+---+----+-+---+---+-----+...-----+----+---+------+

 Figure 8: a SCHC Packet fragmented in tiles

 Each SCHC Fragment message carries at least one tile in its Payload,
 if the Payload field is present.

8.2.2.2. Windows

 Some SCHC F/R modes may handle successive tiles in groups, called
 windows.

 If windows are used

 o all the windows of a SCHC Packet, except the last one, MUST
 contain the same number of tiles. This number is WINDOW_SIZE.

 o WINDOW_SIZE MUST be specified in a Profile.

 o the windows are numbered.

 o their numbers MUST increase from 0 upward, from the start of the
 SCHC Packet to its end.

Minaburo, et al. Expires April 25, 2019 [Page 21]

Internet-Draft LPWAN SCHC October 2018

 o the last window MUST contain WINDOW_SIZE tiles or less.

 o tiles are numbered within each window.

 o the tile numbers MUST decrement from WINDOW_SIZE - 1 downward,
 looking from the start of the SCHC Packet toward its end.

 o each tile of a SCHC Packet is therefore uniquely identified by a
 window number and a tile number within this window.

 See Figure 9 for an example.

 +---...-------------+
 | SCHC Packet |
 +---...-------------+

Tile # | 4 | 3 | 2 | 1 | 0 | 4 | 3 | 2 | 1 | 0 | 4 | | 0 | 4 | 3 |
Window # |-------- 0 --------|-------- 1 --------|- 2 ... 27 -|-- 28 -|

 Figure 9: a SCHC Packet fragmented in tiles grouped in 28 windows,
 with WINDOW_SIZE = 5

 When windows are used

 o information on the correct reception of the tiles belonging to the
 same window MUST be grouped together.

 o it is RECOMMENDED that this information is kept in Bitmaps.

 o Bitmaps MAY be sent back to the sender in a SCHC ACK message.

 o Each window has a Bitmap.

8.2.2.3. Bitmaps

 Each bit in the Bitmap for a window corresponds to a tile in the
 window. Each Bitmap has therefore WINDOW_SIZE bits. The bit at the
 left-most position corresponds to the tile numbered WINDOW_SIZE - 1.
 Consecutive bits, going right, correspond to sequentially decreasing
 tile numbers. In Bitmaps for windows that are not the last one of a
 SCHC Packet, the bit at the right-most position corresponds to the
 tile numbered 0. In the Bitmap for the last window, the bit at the
 right-most position corresponds either to the tile numbered 0 or to a
 tile that is sent/received as "the last one of the SCHC Packet"
 without explicitely stating its number (see Section 8.3.1.2).

 At the receiver

Minaburo, et al. Expires April 25, 2019 [Page 22]

Internet-Draft LPWAN SCHC October 2018

 o a bit set to 1 in the Bitmap indicates that a tile associated with
 that bit position has been correctly received for that window.

 o a bit set to 0 in the Bitmap indicates that no tile associated
 with that bit position has been correctly received for that
 window.

 WINDOW_SIZE finely controls the size of the Bitmap sent in the SCHC
 ACK message, which may be critical to some LPWAN technologies.

8.2.2.4. Timers and counters

 Some SCHC F/R modes can use the following timers and counters

 o Inactivity Timer: this timer can be used to unlock a SCHC Fragment
 receiver that is not receiving a SCHC F/R message while it is
 expecting one.

 o Retransmission Timer: this timer can be used by a SCHC Fragment
 sender to set a timeout on expecting a SCHC ACK.

 o Attempts: this counter counts the requests for SCHC ACKs.
 MAX_ACK_REQUESTS is the threshold at which an exception is raised.

8.2.3. Integrity Checking

 The reassembled SCHC Packet is checked for integrity at the receive
 end. Integrity checking is performed by computing a MIC at the
 sender side and transmitting it to the receiver for comparison with
 the locally computed MIC.

 The MIC supports UDP checksum elision by SCHC C/D (see
Section 10.11).

 The CRC32 polynomial 0xEDB88320 (i.e. the reverse representation of
 the polynomial used e.g. in the Ethernet standard [RFC3385]) is
 RECOMMENDED as the default algorithm for computing the MIC.
 Nevertheless, other MIC lengths or other algorithms MAY be required
 by the Profile.

 Note that the concatenation of the complete SCHC Packet and the
 potential padding bits of the last SCHC Fragment does not generally
 constitute an integer number of bytes. For implementers to be able
 to use byte-oriented CRC libraries, it is RECOMMENDED that the
 concatenation of the complete SCHC Packet and the last fragment
 potential padding bits be zero-extended to the next byte boundary and
 that the MIC be computed on that byte array. A Profile MAY specify
 another behaviour.

https://datatracker.ietf.org/doc/html/rfc3385

Minaburo, et al. Expires April 25, 2019 [Page 23]

Internet-Draft LPWAN SCHC October 2018

8.2.4. Header Fields

 The SCHC F/R messages use the following fields (see the related
 formats in Section 8.3):

 o Rule ID: this field is present in all the SCHC F/R messages. It
 is used to identify

 * that a SCHC F/R message is being carried, as opposed to an
 unfragmented SCHC Packet,

 * which SCHC F/R mode is used

 * and among this mode

 + if windows are used and what the value of WINDOW_SIZE is,

 + what other optional fields are present and what the field
 sizes are.

 Therefore, the Rule ID allows SCHC F/R interleaving non-fragmented
 SCHC Packets and SCHC Fragments that carry other SCHC Packets, or
 interleaving SCHC Fragments that use different SCHC F/R modes or
 different parameters.

 o Datagram Tag (DTag). The DTag field is optional. Its presence
 and size (called T, in bits) is defined by each Profile for each
 Rule ID.

 When there is no DTag, there can be only one fragmented SCHC
 Packet in transit for a given Rule ID.

 If present, DTag

 * MUST be set to the same value for all the SCHC F/R messages
 related to the same fragmented SCHC Packet,

 * MUST be set to different values for SCHC F/R messages related
 to different SCHC Packets that are being fragmented under the
 same Rule ID and that may overlap during the fragmented
 transmission.

 A sequence counter that is incremented for each new fragmented
 SCHC Packet, counting from 0 to up to (2^T)-1 and wrapping back to
 0 is RECOMMENDED for maximum traceability and replay avoidance.

Minaburo, et al. Expires April 25, 2019 [Page 24]

Internet-Draft LPWAN SCHC October 2018

 o W: The W field is optional. It is only present if windows are
 used. Its presence and size (called M, in bits) is defined by
 each SCHC F/R mode and each Profile for each Rule ID.

 This field carries information pertaining to the window a SCHC F/R
 message relates to. If present, W MUST carry the same value for
 all the SCHC F/R messages related to the same window. Depending
 on the mode and Profile, W may carry the full window number, or
 just the least significant bit or any other partial representation
 of the window number.

 o Fragment Compressed Number (FCN). The FCN field is present in the
 SCHC Fragment Header. Its size (called N, in bits) is defined by
 each Profile for each Rule ID.

 This field conveys information about the progress in the sequence
 of tiles being transmitted by SCHC Fragment messages. For
 example, it can contain a partial, efficient representation of a
 larger-sized tile number. The description of the exact use of the
 FCN field is left to each SCHC F/R mode. However, two values are
 reserved for special purposes. They help control the SCHC F/R
 process:

 * The FCN value with all the bits equal to 1 (called All-1)
 signals the very last tile of a SCHC Packet. By extension, if
 windows are used, the last window of a packet is called the
 All-1 window.

 * If windows are used, the FCN value with all the bits equal to 0
 (called All-0) signals the last tile of a window that is not
 the last one of the SCHC packet. By extension, such a window
 is called an All-0 window.

 The highest value of FCN (an unsigned integer) is called
 MAX_WIND_FCN. Since All-1 is reserved, MAX_WIND_FCN MUST be
 stricly less that (2^N)-1.

 o Message Integrity Check (MIC). This field only appears in the
 All-1 SCHC Fragments. Its size (called T, in bits) is defined by
 each Profile for each Rule ID.

 See Section 8.2.3 for the MIC default size, default polynomials
 and details on its computation.

 o C (integrity Check): C is a 1-bit field. This field is used in
 the SCHC ACK message to report on the reassembled SCHC Packet
 integrity check (see Section 8.2.3).

Minaburo, et al. Expires April 25, 2019 [Page 25]

Internet-Draft LPWAN SCHC October 2018

 A value of 1 tells that the integrity check was performed and is
 successful. A value of 0 tells that the integrity check was not
 performed, or that is was a failure.

 o Compressed Bitmap. The Compressed Bitmap is used together with
 windows and Bitmaps (see Section 8.2.2.3). Its presence and size
 is defined for each F/R mode for each Rule ID.

 This field appears in the SCHC ACK message to report on the
 receiver Bitmap (see Section 8.3.2.1).

8.3. SCHC F/R Message Formats

 This section defines the SCHC Fragment formats, the SCHC ACK format,
 the SCHC ACK REQ format and the SCHC Abort formats.

8.3.1. SCHC Fragment format

 A SCHC Fragment conforms to the general format shown in Figure 10.
 It comprises a SCHC Fragment Header and a SCHC Fragment Payload. The
 SCHC Fragment Payload carries one or several tile(s).

 +-----------------+-----------------------+~~~~~~~~~~~~~~~~~~~~~
 | Fragment Header | Fragment Payload | padding (as needed)
 +-----------------+-----------------------+~~~~~~~~~~~~~~~~~~~~~

 Figure 10: SCHC Fragment general format. Presence of a padding field
 is optional

8.3.1.1. Regular SCHC Fragment

 The Regular SCHC Fragment format is shown in Figure 11. Regular SCHC
 Fragments are generally used to carry tiles that are not the last one
 of a SCHC Packet. The DTag field and the W field are optional.

 |--- SCHC Fragment Header ----|
 |-- T --|-M-|-- N --|
 +-- ... --+- ... -+---+- ... -+--------...-------+~~~~~~~~~~~~~~~~~~~~~
 | Rule ID | DTag | W | FCN | Fragment Payload | padding (as needed)
 +-- ... --+- ... -+---+- ... -+--------...-------+~~~~~~~~~~~~~~~~~~~~~

 Figure 11: Detailed Header Format for Regular SCHC Fragments

 The FCN field MUST NOT contain all bits set to 1.

 If the size of the SCHC Fragment Payload does not nicely complement
 the SCHC Header size in a way that would make the SCHC Fragment a
 multiple of the L2 Word, then padding bits MUST be added.

Minaburo, et al. Expires April 25, 2019 [Page 26]

Internet-Draft LPWAN SCHC October 2018

 The Fragment Payload of a SCHC Fragment with FCN == 0 (called an
 All-0 SCHC Fragment) MUST be at least the size of an L2 Word. The
 rationale is that, even in the presence of padding, an All-0 SCHC
 Fragment needs to be distinguishable from the SCHC ACK REQ message,
 which has the same header but has no payload (see Section 8.3.3).

8.3.1.2. All-1 SCHC Fragment

 The All-1 SCHC Fragment format is shown in Figure 12. The All-1 SCHC
 Fragment is generally used to carry the very last tile of a SCHC
 Packet and a MIC, or a MIC only. The DTag field, the W field and the
 Payload are optional.

|-------- SCHC Fragment Header -------|
 |-- T --|-M-|-- N --|
+-- ... --+- ... -+---+- ... -+- ... -+------...-----+~~~~~~~~~~~~~~~~~~
| Rule ID | DTag | W | 11..1 | MIC | Frag Payload | pad. (as needed)
+-- ... --+- ... -+---+- ... -+- ... -+------...-----+~~~~~~~~~~~~~~~~~~
 (FCN)

 Figure 12: Detailed format for the All-1 SCHC Fragment

 If the size of the SCHC Fragment Payload does not nicely complement
 the SCHC Header size in a way that would make the SCHC Fragment a
 multiple of the L2 Word, then padding bits MUST be added.

 The All-1 SCHC Fragment message MUST be distinguishable by size from
 a SCHC Sender-Abort message (see Section 8.3.4.1) that has the same
 T, M and N values. This is trivially achieved by having the MIC
 larger than an L2 Word, or by having the Payload larger than an L2
 Word. This is also naturally achieved if the SCHC Sender-Abort
 Header is a multiple of L2 Words.

8.3.2. SCHC ACK format

 The SCHC ACK message MUST obey the format shown in Figure 13. The
 DTag field, the W field and the Compressed Bitmap field are optional.
 The Compressed Bitmap field can only be present in SCHC F/R modes
 that use windows.

Minaburo, et al. Expires April 25, 2019 [Page 27]

Internet-Draft LPWAN SCHC October 2018

 |---- SCHC ACK Header ----|
 |-- T --|-M-|1|
 +---- ... --+- ... -+---+-+~~~~~~~~~~~~~~~~~~
 | Rule ID | DTag | W |1| padding as needed (success)
 +---- ... --+- ... -+---+-+~~~~~~~~~~~~~~~~~~

 +---- ... --+- ... -+---+-+------ ... ------+~~~~~~~~~~~~~~~
 | Rule ID | DTag | W |0|Compressed Bitmap| pad. as needed (failure)
 +---- ... --+- ... -+---+-+------ ... ------+~~~~~~~~~~~~~~~
 C

 Figure 13: Format of the SCHC ACK message

 The SCHC ACK Header contains a C bit (see Section 8.2.4).

 If the C bit is set to 1 (integrity check successful), no Bitmap is
 carried and padding bits MUST be appended as needed to fill up the
 last L2 Word.

 If the C bit is set to 0 (integrity check not performed or failed)
 and if windows are used,

 o a representation of the Bitmap for the window referred to by the W
 field MUST follow the C bit

 o padding bits MUST be appended as needed to fill up the last L2
 Word

 If the C bit is 1 or windows are not used, the C bit MUST be followed
 by padding bits as needed to fill up the last L2 Word.

 See Section 8.2.2.3 for a description of the Bitmap.

 The representation of the Bitmap that is transmitted MUST be the
 compressed version specified in Section 8.3.2.1, in order to reduce
 the SCHC ACK message size.

8.3.2.1. Bitmap Compression

 For transmission, the Compressed Bitmap in the SCHC ACK message is
 defined by the following algorithm (see Figure 14 for a follow-along
 example):

 o Build a temporary SCHC ACK message that contains the Header
 followed by the original Bitmap.

 o Positioning scissors at the end of the Bitmap, after its last bit.

Minaburo, et al. Expires April 25, 2019 [Page 28]

Internet-Draft LPWAN SCHC October 2018

 o While the bit on the left of the scissors is 1 and belongs to the
 Bitmap, keep moving left, then stop. When this is done,

 o While the scissors are not on an L2 Word boundary of the SCHC ACK
 message and there is a Bitmap bit on the right of the scissors,
 keep moving right, then stop.

 o At this point, cut and drop off any bits to the right of the
 scissors

 When one or more bits have effectively been dropped off as a result
 of the above algorithm, the SCHC ACK message is a multiple of L2
 Words, no padding bits will be appended.

 Because the SCHC Fragment sender knows the size of the original
 Bitmap, it can reconstruct the original Bitmap from the Compressed
 Bitmap received in the SCH ACK message.

 Figure 14 shows an example where L2 Words are actually bytes and
 where the original Bitmap contains 17 bits, the last 15 of which are
 all set to 1.

 |---- SCHC ACK Header ----|-------- Bitmap --------|
 |-- T --|-M-|1|
 +---- ... --+- ... -+---+-+---------------------------------+
 | Rule ID | DTag | W |0|1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1|
 +---- ... --+- ... -+---+-+---------------------------------+
 C |
 next L2 Word boundary ->|

 Figure 14: Tentative SCHC ACK message with Bitmap before compression

 Figure 15 shows that the last 14 bits are not sent.

 |---- SCHC ACK Header ----|CpBmp|
 |-- T --|-M-|1|
 +---- ... --+- ... -+---+-+-----+
 | Rule ID | DTag | W |0|1 0 1|
 +---- ... --+- ... -+---+-+-----+
 C |
 next L2 Word boundary ->|

 Figure 15: Actual SCHC ACK message with Compressed Bitmap, no padding

 Figure 16 shows an example of a SCHC ACK with tile numbers ranging
 from 6 down to 0, where the Bitmap indicates that the second and the
 fourth tile of the window have not been correctly received.

Minaburo, et al. Expires April 25, 2019 [Page 29]

Internet-Draft LPWAN SCHC October 2018

 |---- SCHC ACK Header ----|--- Bitmap --|
 |-- T --|-M-|1|6 5 4 3 2 1 0| (tile #)
 +-----------+-------+---+-+-------------+
 | Rule ID | DTag | W |0|1 0 1 0 1 1 1| with Original Bitmap
 +-----------+-------+---+-+-------------+
 C
 next L2 Word boundary ->|<-- L2 Word -->|

 +-----------+-------+---+-+-------------+~~~+
 | Rule ID | DTag | W |0|1 0 1 0 1 1 1|Pad| transmitted SCHC ACK
 +-----------+-------+---+-+-------------+~~~+
 C
 next L2 Word boundary ->|<-- L2 Word -->|

 Figure 16: Example of a SCHC ACK message, missing tiles, with padding

 Figure 17 shows an example of a SCHC ACK with FCN ranging from 6 down
 to 0, where integrity check has not been performed or has failed and
 the Bitmap indicates that there is no missing tile in that window.

 |---- SCHC ACK Header ----|--- Bitmap --|
 |-- T --|-M-|1|6 5 4 3 2 1 0| (tile #)
 +-----------+-------+---+-+-------------+
 | Rule ID | DTag | W |0|1 1 1 1 1 1 1| with Original Bitmap
 +-----------+-------+---+-+-------------+
 C
 next L2 Word boundary ->|

 +---- ... --+- ... -+---+-+-+
 | Rule ID | DTag | W |0|1| transmitted SCHC ACK
 +---- ... --+- ... -+---+-+-+
 C
 next L2 Word boundary ->|

 Figure 17: Example of a SCHC ACK message, no missing tile, no padding

8.3.3. SCHC ACK REQ format

 The SCHC ACK REQ is used by a sender to explicitely request a SCHC
 ACK from the receiver. Its format is described in Figure 18. The
 DTag field and the W field are optional.

Minaburo, et al. Expires April 25, 2019 [Page 30]

Internet-Draft LPWAN SCHC October 2018

 |---- SCHC ACK REQ Header ----|
 |-- T --|-M-|-- N --|
 +-- ... --+- ... -+---+- ... -+~~~~~~~~~~~~~~~~~~~~~
 | Rule ID | DTag | W | 0..0 | padding (as needed) (no payload)
 +-- ... --+- ... -+---+- ... -+~~~~~~~~~~~~~~~~~~~~~

 Figure 18: SCHC ACK REQ detailed format

 The size of the SCHC ACK REQ header is generally not a multiple of
 the L2 Word size. Therefore, a SCHC ACK REQ generally needs padding
 bits.

 Note that the SCHC ACK REQ has the same header as an All-0 SCHC
 Fragment (see Section 8.3.1.1) but it doesn't have a payload. A
 receiver can distinguish the former form the latter by the message
 length, even in the presence of padding. This is possible because

 o the padding bits are always stricly less than an L2 Word.

 o the size of an All-0 SCHC Fragment Payload is at least the size of
 an L2 Word,

8.3.4. SCHC Abort formats

8.3.4.1. SCHC Sender-Abort

 When a SCHC Fragment sender needs to abort an on-going fragmented
 SCHC Packet transmission, it sends a SCHC Sender-Abort message to the
 SCHC Fragment receiver.

 The SCHC Sender-Abort format is described in Figure 19. The DTag
 field and the W field are optional.

 |---- Sender-Abort Header ----|
 |-- T --|-M-|-- N --|
 +-- ... --+- ... -+---+- ... -+~~~~~~~~~~~~~~~~~~~~~
 | Rule ID | DTag | W | 11..1 | padding (as needed)
 +-- ... --+- ... -+---+- ... -+~~~~~~~~~~~~~~~~~~~~~

 Figure 19: SCHC Sender-Abort format

 If the W field is present,

 o the fragment sender MUST set it to all 1's. Other values are
 RESERVED.

 o the fragment receiver MUST check its value. If the value is
 different from all 1's, the message MUST be ignored.

Minaburo, et al. Expires April 25, 2019 [Page 31]

Internet-Draft LPWAN SCHC October 2018

 The size of the SCHC Sender-Abort header is generally not a multiple
 of the L2 Word size. Therefore, a SCHC Sender-Abort generally needs
 padding bits.

 Note that the SCHC Sender-Abort has the same header as an All-1 SCHC
 Fragment (see Section 8.3.1.2), but that it does not include a MIC
 nor a payload. The receiver distinguishes the former from the latter
 by the message length, even in the presence of padding. This is
 possible through different combinations

 o the size of the Sender-Abort Header may be made such that it is
 not padded

 o or the total size of the MIC and the Payload of an All-1 SCHC
 Fragment is at least the size of an L2 Word

 o or through other alignment and size combinations

 The SCHC Sender-Abort MUST NOT be acknowledged.

8.3.4.2. SCHC Receiver-Abort

 When a SCHC Fragment receiver needs to abort an on-going fragmented
 SCHC Packet transmission, it transmits a SCHC Receiver-Abort message
 to the SCHC Fragment sender.

 The SCHC Receiver-Abort format is described in Figure 20. The DTag
 field and the W field are optional.

 |--- Receiver-Abort Header ---|
 |--- T ---|-M-|1|
 +---- ... ----+-- ... --+---+-+-+-+-+-+-+-+-+-+-+-+-+
 | Rule ID | DTag | W |1| 1..1| 1..1 |
 +---- ... ----+-- ... --+---+-+-+-+-+-+-+-+-+-+-+-+-+
 C
 next L2 Word boundary ->|<-- L2 Word -->|

 Figure 20: SCHC Receiver-Abort format

 If the W field is present,

 o the fragment receiver MUST set it to all 1's. Other values are
 RESERVED.

 o the fragment sender MUST check its value. If the value is
 different from all 1's, the message MUST be ignored.

Minaburo, et al. Expires April 25, 2019 [Page 32]

Internet-Draft LPWAN SCHC October 2018

 Note that the SCHC Receiver-Abort has the same header as a SCHC ACK
 message. The bits that follow the SCHC Receiver-Abort Header MUST be
 as follows

 o if the Header does not end at an L2 Word boundary, append bits set
 to 1 as needed to reach the next L2 Word boundary

 o append exactly one more L2 Word with bits all set to 1's

 Such a bit pattern never occurs in a regular SCHC ACK. This is how
 the fragment sender recognizes a SCHC Receiver-Abort.

 A SCHC Receiver-Abort is aligned to L2 Words, by design. Therefore,
 padding MUST NOT be appended.

 The SCHC Receiver-Abort MUST NOT be acknowledged.

8.4. SCHC F/R modes

 This specification includes several SCHC F/R modes, which allow for

 o a range of reliability options, such as optional SCHC Fragment
 retransmission

 o support of different LPWAN characteristics, such as variable MTU.

 More modes may be defined in the future.

8.4.1. No-ACK mode

 The No-ACK mode has been designed under the assumption that data unit
 out-of-sequence delivery does not occur between the entity performing
 fragmentation and the entity performing reassembly. This mode
 supports LPWAN technologies that have a variable MTU.

 In No-ACK mode, there is no feedback communication from the fragment
 receiver to the fragment sender. The sender just transmits all the
 SCHC Fragments blindly.

 Padding is kept to a minimum: only the last SCHC Fragment is padded
 as needed.

 The tile sizes are not required to be uniform. Windows are not used.
 The Retransmission Timer is not used. The Attempts counter is not
 used.

Minaburo, et al. Expires April 25, 2019 [Page 33]

Internet-Draft LPWAN SCHC October 2018

 Each Profile MUST specify which Rule ID value(s) is (are) allocated
 to this mode. For brevity, the rest of Section 8.4.1 only refers to
 Rule ID values that are allocated to this mode.

 The W field MUST NOT be present in the SCHC F/R messages. SCHC ACK
 MUST NOT be sent. SCHC ACK REQ MUST NOT be sent. SCHC Sender-Abort
 MAY be sent. SCHC Receiver-Abort MUST NOT be sent.

 The value of N (size of the FCN field) is RECOMMENDED to be 1.

 Each Profile, for each Rule ID value, MUST define

 o the presence or absence of the DTag field in the SCHC F/R
 messages, as well as its size if it is present,

 o the size and algorithm for the MIC field in the SCHC F/R messages,
 if different from the default,

 o the expiration time of the Inactivity Timer

 Each Profile, for each Rule ID value, MAY define

 o a value of N different from the recommend one,

 o what values will be sent in the FCN field, for values different
 from the All-1 value.

 The receiver, for each pair of Rule ID and optional DTag values, MUST
 maintain

 o one Inactivity Timer

8.4.1.1. Sender behaviour

 At the beginning of the fragmentation of a new SCHC Packet, the
 fragment sender MUST select a Rule ID and optional DTag value pair
 for this SCHC Packet. For brevity, the rest of Section 8.4.1 only
 refers to SCHC F/R messages bearing the Rule ID and optional DTag
 values hereby selected.

 Each SCHC Fragment MUST contain exactly one tile in its Payload. The
 tile MUST be at least the size of an L2 Word. The sender MUST
 transmit the SCHC Fragments messages in the order that the tiles
 appear in the SCHC Packet. Except for the last tile of a SCHC
 Packet, each tile MUST be of a size that complements the SCHC
 Fragment Header so that the SCHC Fragment is a multiple of L2 Words
 without the need for padding bits. Except for the last one, the SCHC
 Fragments MUST use the Regular SCHC Fragment format specified in

Minaburo, et al. Expires April 25, 2019 [Page 34]

Internet-Draft LPWAN SCHC October 2018

Section 8.3.1.1. The last SCHC Fragment MUST use the All-1 format
 specified in Section 8.3.1.2.

 The MIC MUST be computed on the reassembled SCHC Packet concatenated
 with the padding bits of the last SCHC Fragment. The rationale is
 that the SCHC Reassembler has no way of knowing where the payload of
 the last SCHC Fragment ends. Indeed, this requires decompressing the
 SCHC Packet, which is out of the scope of the SCHC Reassembler.

 The sender MAY transmit a SCHC Sender-Abort.

 Figure 35 shows an example of a corresponding state machine.

8.4.1.2. Receiver behaviour

 On receiving Regular SCHC Fragments,

 o the receiver MUST reset the Inactivity Timer,

 o the receiver assembles the payloads of the SCHC Fragments

 On receiving an All-1 SCHC Fragment,

 o the receiver MUST append the All-1 SCHC Fragment Payload and the
 padding bits to the previously received SCHC Fragment Payloads for
 this SCHC Packet

 o if an integrity checking is specified in the Profile,

 * the receiver MUST perform the integrity check

 * if integrity checking fails, the receiver MUST drop the
 reassembled SCHC Packet and it MUST release all resources
 associated with this Rule ID and optional DTag values.

 o the reassembly operation concludes.

 On expiration of the Inactivity Timer, the receiver MUST drop the
 SCHC Packet being reassembled and it MUST release all resources
 associated with this Rule ID and optional DTag values.

 On receiving a SCHC Sender-Abort, the receiver MAY release all
 resources associated with this Rule ID and optional DTag values.

 The MIC computed at the receiver MUST be computed over the
 reassembled SCHC Packet and over the padding bits that were received
 in the SCHC Fragment carrying the last tile.

Minaburo, et al. Expires April 25, 2019 [Page 35]

Internet-Draft LPWAN SCHC October 2018

 Figure 36 shows an example of a corresponding state machine.

8.4.2. ACK-Always

 The ACK-Always mode has been designed under the following assumptions

 o Data unit out-of-sequence delivery does not occur between the
 entity performing fragmentation and the entity performing
 reassembly

 o The L2 MTU value does not change while a fragmented SCHC Packet is
 being transmitted.

 In ACK-Always mode, windows are used. An acknowledgement, positive
 or negative, is fed by the fragment receiver back to the fragment
 sender at the end of the transmission of each window of SCHC
 Fragments.

 The tiles are not required to be of uniform size. Padding is kept to
 a minimum: only the last SCHC Fragment is padded as needed.

 In a nutshell, the algorithm is the following: after a first blind
 transmission of all the tiles of a window, the fragment sender
 iterates retransmitting the tiles that are reported missing until the
 fragment receiver reports that all the tiles belonging to the window
 have been correctly received, or until too many attempts were made.
 The fragment sender only advances to the next window of tiles when it
 has ascertained that all the tiles belonging to the current window
 have been fully and correctly received. This results in a lock-step
 behaviour between the sender and the receiver, at the window
 granularity.

 Each Profile MUST specify which Rule ID value(s) is (are) allocated
 to this mode. For brevity, the rest of Section 8.4.1 only refers to
 Rule ID values that are allocated to this mode.

 The W field MUST be present and its size M MUST be 1 bit.
 WINDOW_SIZE MUST be equal to MAX_WIND_FCN + 1.

 Each Profile, for each Rule ID value, MUST define

 o the value of N (size of the FCN field),

 o the value of MAX_WIND_FCN

 o the size and algorithm for the MIC field in the SCHC F/R messages,
 if different from the default,

Minaburo, et al. Expires April 25, 2019 [Page 36]

Internet-Draft LPWAN SCHC October 2018

 o the presence or absence of the DTag field in the SCHC F/R
 messages, as well as its size if it is present,

 o the value of MAX_ACK_REQUESTS,

 o the expiration time of the Retransmission Timer

 o the expiration time of the Inactivity Timer

 The sender, for each active pair of Rule ID and optional DTag values,
 MUST maintain

 o one Attempts counter

 o one Retransmission Timer

 The receiver, for each pair of Rule ID and optional DTag values, MUST
 maintain

 o one Inactivity Timer

8.4.2.1. Sender behaviour

 At the beginning of the fragmentation of a new SCHC Packet, the
 fragment sender MUST select a Rule ID and DTag value pair for this
 SCHC Packet. For brevity, the rest of Section 8.4.2 only refers to
 SCHC F/R messages bearing the Rule ID and optional DTag values hereby
 selected.

 Each SCHC Fragment MUST contain exactly one tile in its Payload. All
 tiles with the number 0 in their window, as well as the last tile,
 MUST be at least the size of an L2 Word.

 In all SCHC Fragment messages, the W field MUST be filled with the
 least significant bit of the window number that the sender is
 currently processing.

 If a SCHC Fragment carries a tile that is not the last one of the
 SCHC Packet,

 o it MUST be of the Regular type specified in Section 8.3.1.1

 o the FCN field MUST contain the tile number

 o each tile MUST be of a size that complements the SCHC Fragment
 Header so that the SCHC Fragment is a multiple of L2 Words without
 the need for padding bits.

Minaburo, et al. Expires April 25, 2019 [Page 37]

Internet-Draft LPWAN SCHC October 2018

 The SCHC Fragment that carries the last tile MUST be an All-1 SCHC
 Fragment, described in Section 8.3.1.2.

 The bits on which the MIC is computed MUST be the SCHC Packet
 concatenated with the potential padding bits that are appended to the
 Payload of the SCHC Fragment that carries the last tile.

 The fragment sender MUST start by processing the window numbered 0.

 In a "blind transmission" phase, it MUST transmit all the tiles
 composing the window, in decreasing tile number.

 Then, it enters an "equalization phase" in which it MUST initialize
 an Attempts counter to 0, it MUST start a Retransmission Timer and it
 MUST expect to receive a SCHC ACK. Then,

 o on receiving a SCHC ACK,

 * if the SCHC ACK indicates that some tiles are missing at the
 receiver, then the sender MUST transmit all the tiles that have
 been reported missing, it MUST increment Attempts, it MUST
 reset the Retransmission Timer and MUST expect to receive a
 SCHC ACK again.

 * if the current window is not the last one and the SCHC ACK
 indicates that all tiles were correctly received, the sender
 MUST stop the Retransmission Timer, it MUST advance to the next
 fragmentation window and it MUST start a blind transmission
 phase as described above.

 * if the current window is the last one and the SCHC ACK
 indicates that more tiles were received than the sender
 actually sent, the fragment sender MUST send a SCHC Sender-
 Abort, it MUST release all resource associated with this SCHC
 Packet and it MAY exit with an error condition.

 * if the current window is the last one and the SCHC ACK
 indicates that all tiles were correctly received yet integrity
 check was a failure, the fragment sender MUST send a SCHC
 Sender-Abort, it MUST release all resource associated with this
 SCHC Packet and it MAY exit with an error condition.

 * if the current window is the last one and the SCHC ACK
 indicates that integrity checking was successful, the sender
 exits successfully.

 o on Retransmission Timer expiration,

Minaburo, et al. Expires April 25, 2019 [Page 38]

Internet-Draft LPWAN SCHC October 2018

 * if Attempts is strictly less that MAX_ACK_REQUESTS, the
 fragment sender MUST send a SCHC ACK REQ and MUST increment the
 Attempts counter.

 * otherwise the fragment sender MUST send a SCHC Sender-Abort, it
 MUST release all resource associated with this SCHC Packet and
 it MAY exit with an error condition.

 At any time,

 o on receiving a SCHC Receiver-Abort, the fragment sender MUST
 release all resource associated with this SCHC Packet and it MAY
 exit with an error condition.

 o on receiving a SCHC ACK that bears a W value different from the W
 value that it currently uses, the fragment sender MUST silently
 discard and ignore that SCHC ACK.

 Figure 37 shows an example of a corresponding state machine.

8.4.2.2. Receiver behaviour

 On receiving a SCHC Fragment with a Rule ID and optional DTag pair
 not being processed at that time

 o the receiver MAY check if the optional DTag value has not recently
 been used for that Rule ID value, thereby ensuring that the
 received SCHC Fragment is not a remnant of a prior fragmented SCHC
 Packet transmission. If the SCHC Fragment is determined to be
 such a remant, the receiver MAY silently ignore it and discard it.

 o the receiver MUST start a process to assemble a new SCHC Packet
 with that Rule ID and DTag value pair. That process MUST only
 examine received SCHC F/R messages with that Rule ID and DTag
 value pair and MUST only transmit SCHC F/R messages with that Rule
 ID and DTag value pair.

 o the receiver MUST start an Inactivity Timer. It MUST initialise
 an Attempts counter to 0. It MUST initialise a window counter to
 0.

 In the rest of this section, "local W bit" means the least
 significant bit of the window counter of the receiver.

 On reception of any SCHC F/R message, the receiver MUST reset the
 Inactivity Timer.

Minaburo, et al. Expires April 25, 2019 [Page 39]

Internet-Draft LPWAN SCHC October 2018

 Entering an "acceptance phase", the receiver MUST first initialise an
 empty Bitmap for this window, then

 o on receiving a SCHC Fragment or SCHC ACK REQ with the W bit
 different from the local W bit, the receiver MUST silently ignore
 and discard that message.

 o on receiving a SCHC Fragment with the W bit equal to the local W
 bit, the receiver MUST assemble the received tile based on the
 window counter and on the FCN field in the SCHC Fragment and it
 MUST update the Bitmap.

 * if the SCHC Fragment received is an All-0 SCHC Fragment, the
 current window is determined to be a not-last window, and the
 receiver MUST send a SCHC ACK for this window. Then,

 + If the Bitmap indicates that all the tiles of the current
 window have been correctly received, the receiver MUST
 increment its window counter and it enters the "acceptance
 phase" for that new window.

 + If the Bitmap indicates that at least one tile is missing in
 the current window, the receiver enters the "equalization
 phase" for this window.

 * if the SCHC Fragment received is an All-1 SCHC Fragment, the
 padding bits of the All-1 SCHC Fragment MUST be assembled after
 the received tile, the current window is determined to be the
 last window, the receiver MUST perform the integrity check and
 it MUST send a SCHC ACK for this window. Then,

 + If the integrity check indicates that the full SCHC Packet
 has been correctly reassembled, the receiver MUST enter the
 "clean-up phase".

 + If the integrity check indicates that the full SCHC Packet
 has not been correctly reassembled, the receiver enters the
 "equalization phase" for this window.

 o on receiving a SCHC ACK REQ with the W bit equal to the local W
 bit, the receiver has not yet determined if the current window is
 a not-last one or the last one, the receiver MUST send a SCHC ACK
 for this window, and it keeps accepting incoming messages.

 In the "equalization phase":

 o if the window is a not-last window

Minaburo, et al. Expires April 25, 2019 [Page 40]

Internet-Draft LPWAN SCHC October 2018

 * on receiving a SCHC Fragment or SCHC ACK REQ with a W bit
 different from the local W bit the receiver MUST silently
 ignore and discard that message.

 * on receiving a SCHC ACK REQ with a W bit equal to the local W
 bit, the receiver MUST send a SCHC ACK for this window.

 * on receiving a SCHC Fragment with a W bit equal to the local W
 bit,

 + if the SCHC Fragment received is an All-1 SCHC Fragment, the
 receiver MUST silently ignore it and discard it.

 + otherwise, the receiver MUST update the Bitmap and it MUST
 assemble the tile received.

 * on the Bitmap becoming fully populated with 1's, the receiver
 MUST send a SCHC ACK for this window, it MUST increment its
 window counter and it enters the "acceptance phase" for the new
 window.

 o if the window is the last window

 * on receiving a SCHC Fragment or SCHC ACK REQ with a W bit
 different from the local W bit the receiver MUST silently
 ignore and discard that message.

 * on receiving a SCHC ACK REQ with a W bit equal to the local W
 bit, the receiver MUST send a SCHC ACK for this window.

 * on receiving a SCHC Fragment with a W bit equal to the local W
 bit,

 + if the SCHC Fragment received is an All-0 SCHC Fragment, the
 receiver MUST silently ignore it and discard it.

 + otherwise, the receiver MUST update the Bitmap and it MUST
 assemble the tile received. If the SCHC Fragment received
 is an All-1 SCHC Fragment, the receiver MUST assemble the
 padding bits of the All-1 SCHC Fragment after the received
 tile. It MUST perform the integrity check. Then

 - if the integrity check indicates that the full SCHC
 Packet has been correctly reassembled, the receiver MUST
 send a SCHC ACK and it enters the "clean-up phase".

 - if the integrity check indicates that the full SCHC
 Packet has not been correctly reassembled,

Minaburo, et al. Expires April 25, 2019 [Page 41]

Internet-Draft LPWAN SCHC October 2018

 o if the SCHC Fragment received was an All-1 SCHC
 Fragment, the receiver MUST send a SCHC ACK for this
 window

 o it keeps accepting incoming messages.

 In the "clean-up phase":

 o Any received SCHC F/R message with a W bit different from the
 local W bit MUST be silently ignored and discarded.

 o Any received SCHC F/R message different from an All-1 SCHC
 Fragment or a SCHC ACK REQ MUST be silently ignored and discarded.

 o On receiving an All-1 SCHC Fragment or a SCHC ACK REQ, the
 receiver MUST send a SCHC ACK.

 o On expiration of the Inactivity Timer, the receive process for
 that SCHC Packet MAY exit

 At any time, on expiration of the Inactivity Timer, on receiving a
 SCHC Sender-Abort or when Attempts reaches MAX_ACK_REQUESTS, the
 receiver MUST send a SCHC Receiver-Abort, it MUST release all
 resource associated with this SCHC Packet and it MAY exit the receive
 process for that SCHC Packet.

 The MIC computed at the receiver MUST be computed over the
 reassembled SCHC Packet and over the padding bits that were received
 in the SCHC Fragment carrying the last tile.

 Figure 38 shows an example of a corresponding state machine.

8.4.3. ACK-on-Error

 The ACK-on-Error mode supports LPWAN technologies that have variable
 MTU and out-of-order delivery.

 In ACK-on-Error mode, windows are used. All tiles MUST be of equal
 size, except for the last one, which MUST be of the same size or
 smaller than the preceding ones. WINDOW_SIZE MUST be equal to
 MAX_WIND_FCN + 1.

 A SCHC Fragment message carries one or more tiles, which may span
 multiple windows. A SCHC ACK reports on the reception of exactly one
 window of tiles.

 See Figure 21 for an example.

Minaburo, et al. Expires April 25, 2019 [Page 42]

Internet-Draft LPWAN SCHC October 2018

 +---...-----------+
 | SCHC Packet |
 +---...-----------+

 Tile # | 4 | 3 | 2 | 1 | 0 | 4 | 3 | 2 | 1 | 0 | 4 | | 0 | 4 |3|
 Window # |-------- 0 --------|-------- 1 --------|- 2 ... 27 -|- 28-|

 SCHC Fragment msg |-----------|

 Figure 21: a SCHC Packet fragmented in tiles, Ack-on-Error mode

 The W field is wide enough that it unambiguously represents an
 absolute window number. The fragment receiver feeds SCHC ACKs back
 to the fragment sender about windows that it misses tiles of. No
 SCHC ACK is fed back by the fragment receiver for windows that it
 knows have been fully received.

 The fragment sender retransmits SCHC Fragments for tiles that are
 reported missing. It can advance to next windows even before it has
 ascertained that all tiles belonging to previous windows have been
 correctly received, and can still later retransmit SCHC Fragments
 with tiles belonging to previous windows. Therefore, the sender and
 the receiver may operate in a fully decoupled fashion. The
 fragmented SCHC Packet transmission concludes when

 o integrity checking shows that the fragmented SCHC Packet has been
 correctly reassembled at the receive end, and this information has
 been conveyed back to the sender,

 o or too many retransmission attempts were made,

 o or the receiver determines that the transmission of this
 fragmented SCHC Packet has been inactive for too long.

 Each Profile MUST specify which Rule ID value(s) is (are) allocated
 to this ACK-on-Error mode. For brevity, the rest of Section 8.4.3
 only refers to SCHC F/R messages with Rule ID values that are
 allocated to this mode.

 The W field MUST be present in the SCHC F/R messages.

 Each Profile, for each Rule ID value, MUST define

 o the tile size (a tile does not need to be multiple of an L2 Word,
 but it MUST be at least the size of an L2 Word)

 o the value of M (size of the W field),

Minaburo, et al. Expires April 25, 2019 [Page 43]

Internet-Draft LPWAN SCHC October 2018

 o the value of N (size of the FCN field),

 o the value of MAX_WIND_FCN

 o the size and algorithm for the MIC field in the SCHC F/R messages,
 if different from the default,

 o the presence or absence of the DTag field in the SCHC F/R
 messages, as well as its size if it is present,

 o the value of MAX_ACK_REQUESTS,

 o the expiration time of the Retransmission Timer

 o the expiration time of the Inactivity Timer

 The sender, for each active pair of Rule ID and optional DTag values,
 MUST maintain

 o one Attempts counter

 o one Retransmission Timer

 The receiver, for each pair of Rule ID and optional DTag values, MUST
 maintain

 o one Inactivity Timer

8.4.3.1. Sender behaviour

 At the beginning of the fragmentation of a new SCHC Packet,

 o the fragment sender MUST select a Rule ID and DTag value pair for
 this SCHC Packet. A Rule MUST NOT be selected if the values of M
 and MAX_WIND_FCN for that Rule are such that the SCHC Packet
 cannot be fragmented in (2ˆM) * (MAX_WIND_FCN+1) tiles or
 less.

 o the fragment sender MUST initialize the Attempts counter to 0 for
 that Rule ID and DTag value pair.

 For brevity, the rest of Section 8.4.3 only refers to SCHC F/R
 messages bearing the Rule ID and optional DTag values hereby
 selected.

 A SCHC Fragment message carries in its payload one or more tiles. If
 more than one tile is carried in one SCHC Fragment

Minaburo, et al. Expires April 25, 2019 [Page 44]

Internet-Draft LPWAN SCHC October 2018

 o the selected tiles MUST be consecutive in the original SCHC Packet

 o they MUST be placed in the SCHC Fragment Payload adjacent to one
 another, in the order they appear in the SCHC Packet, from the
 start of the SCHC Packet toward its end.

 In a SCHC Fragment message, the sender MUST fill the W field with the
 window number of the first tile sent in that SCHC Fragment.

 If a SCHC Fragment carries more than one tile, or carries one tile
 that is not the last one of the SCHC Packet,

 o it MUST be of the Regular type specified in Section 8.3.1.1

 o the FCN field MUST contain the tile number of the first tile sent
 in that SCHC Fragment

 o padding bits are appended to the tiles as needed to fit the
 Payload size constraint of Regular SCHC Fragments

 The bits on which the MIC is computed MUST be the SCHC Packet
 concatenated with the padding bits that are appended to the Payload
 of the SCHC Fragment that carries the last tile.

 The fragment sender MAY send the last tile as the Payload of an All-1
 SCHC Fragment.

 The fragment sender MUST send SCHC Fragments such that, all together,
 they contain all the tiles of the fragmented SCHC Packet.

 The fragment sender MUST send at least one All-1 SCHC Fragment.

 Note that the last tile of a SCHC Packet can be sent in different
 ways, depending on Profiles and implementations

 o in a Regular SCHC Fragment, either alone or as part of multiple
 tiles Payload

 o in an All-1 SCHC Fragment

 However, the last tile MUST NOT have ever been sent both in a Regular
 SCHC Fragment and in a All-1 SCHC Fragment.

 The fragment sender MUST listen for SCHC ACK messages after having
 sent

 o an All-1 SCHC Fragment

Minaburo, et al. Expires April 25, 2019 [Page 45]

Internet-Draft LPWAN SCHC October 2018

 o or a SCHC ACK REQ with the W field corresponding to the last
 window.

 A Profile MAY specify other times at which the fragment sender MUST
 listen for SCHC ACK messages.

 Each time a fragment sender sends an All-1 SCHC Fragment or a SCHC
 ACK REQ,

 o it MUST increment the Attempts counter

 o it MUST reset the Retransmission Timer

 On Retransmission Timer expiration

 o if Attempts is strictly less than MAX_ACK_REQUESTS, the fragment
 sender MUST send a SCHC ACK REQ with the W field corresponding to
 the last window and it MUST increment the Attempts counter

 o otherwise the fragment sender MUST send a SCHC Sender-Abort and it
 MUST release all resource associated with this SCHC Packet.

 On receiving a SCHC ACK,

 o if the W field in the SCHC ACK corresponds to the last window of
 the SCHC Packet,

 * if the C bit is set, the sender MAY release all resource
 associated with this SCHC Packet and MAY exit successfully

 * otherwise,

 + if the SCHC ACK shows no missing tile at the receiver, the
 sender

 - MUST send a SCHC Sender-Abort

 - MUST release all resource associated with this SCHC
 Packet

 - MAY exit with an error condition

 + otherwise

 - the fragment sender MUST send SCHC Fragment messages
 containing all the tiles that are reported missing in the
 SCHC ACK.

Minaburo, et al. Expires April 25, 2019 [Page 46]

Internet-Draft LPWAN SCHC October 2018

 - if the last message in this sequence of SCHC Fragment
 messages is not an All-1 SCHC Fragment, then the fragment
 sender MUST send a SCHC ACK REQ with the W field
 corresponding to the last window after the sequence.

 o otherwise, the fragment sender

 * MUST send SCHC Fragment messages containing the tiles that are
 reported missing in the SCHC ACK

 * then it MAY send a SCHC ACK REQ with the W field corresponding
 to the last window

 See Figure 39 for one among several possible examples of a Finite
 State Machine implementing a sender behaviour obeying this
 specification.

8.4.3.2. Receiver behaviour

 On receiving a SCHC Fragment with a Rule ID and optional DTag pair
 not being processed at that time

 o the receiver MAY check if the optional DTag value has not recently
 been used for that Rule ID value, thereby ensuring that the
 received SCHC Fragment is not a remnant of a prior fragmented SCHC
 Packet transmission. If the SCHC Fragment is determined to be
 such a remant, the receiver MAY silently ignore it and discard it.

 o the receiver MUST start a process to assemble a new SCHC Packet
 with that Rule ID and DTag value pair. That process MUST only
 examine received SCHC F/R messages with that Rule ID and DTag
 value pair and MUST only transmit SCHC F/R messages with that Rule
 ID and DTag value pair.

 o the receiver MUST start an Inactivity Timer. It MUST initialise
 an Attempts counter to 0.

 On reception of any SCHC F/R message, the receiver MUST reset the
 Inactivity Timer.

 On reception of a SCHC Fragment message, the receiver MUST assemble
 the received tiles based on the W and FCN fields of the SCHC
 Fragment.

 o if the FCN is All-1, if a Payload is present, the full SCHC
 Fragment Payload MUST be assembled including the padding bits.
 This is because the size of the last tile is not known by the
 receiver, therefore padding bits are indistinguishable from the

Minaburo, et al. Expires April 25, 2019 [Page 47]

Internet-Draft LPWAN SCHC October 2018

 tile data bits, at this stage. They will be removed by the SCHC
 C/D sublayer. If the size of the SCHC Fragment Payload exceeds or
 equals the size of one regular tile plus the size of an L2 Word,
 this SHOULD raise an error flag.

 o otherwise, tiles MUST be assembled based on the a priori known
 size and padding bits MUST be discarded. The latter is possible
 because

 * the size of the tiles is known a priori,

 * tiles are larger than an L2 Word

 * padding bits are always strictly less than an L2 Word

 On reception of a SCHC ACK REQ or of an All-1 SCHC Fragment,

 o if the receiver has at least one window that it knows has tiles
 missing, it MUST return a SCHC ACK for the lowest-numbered such
 window,

 o otherwise,

 * if it has received at least one tile, it MUST return a SCHC ACK
 for the highest-numbered window it currently has tiles for

 * otherwise it MUST return a SCHC ACK for window numbered 0

 A Profile MAY specify other times and circumstances at which a
 receiver sends a SCHC ACK, and which window the SCHC ACK reports
 about in these circumstances.

 On sending a SCHC ACK, the receiver MUST increase the Attempts
 counter.

 From reception of an All-1 SCHC Fragment onward, a receiver MUST
 check the integrity of the reassembled SCHC Packet at least every
 time it prepares for sending a SCHC ACK for the last window.

 On reception of a SCHC Sender-Abort, the receiver MUST release all
 resource associated with this SCHC Packet.

 On expiration of the Inactivity Timer, the receiver MUST send a SCHC
 Receiver-Abort and it MUST release all resource associated with this
 SCHC Packet.

Minaburo, et al. Expires April 25, 2019 [Page 48]

Internet-Draft LPWAN SCHC October 2018

 On the Attempts counter exceeding MAX_ACK_REQUESTS, the receiver MUST
 send a SCHC Receiver-Abort and it MUST release all resource
 associated with this SCHC Packet.

 Reassembly of the SCHC Packet concludes when

 o a Sender-Abort has been received

 o or the Inactivity Timer has expired

 o or the Attempts counter has exceeded MAX_ACK_REQUESTS

 o or when at least an All-1 SCHC Fragment has been received and
 integrity checking of the reassembled SCHC Packet is successful.

 The MIC computed at the receiver MUST be computed over the
 reassembled SCHC Packet and over the padding bits that were received
 in the SCHC Fragment carrying the last tile.

 See Figure 40 for one among several possible examples of a Finite
 State Machine implementing a receiver behaviour obeying this
 specification, and that is meant to match the sender Finite State
 Machine of Figure 39.

9. Padding management

 SCHC C/D and SCHC F/R operate on bits, not bytes. SCHC itself does
 not have any alignment prerequisite. The size of SCHC Packets can be
 any number of bits. If the layer below SCHC constrains the payload
 to align to some boundary, called L2 Words (for example, bytes), SCHC
 will meet that constraint and produce messages with the correct
 alignement. This may entail adding extra bits, called padding bits.

 When padding occurs, the number of appended bits MUST be strictly
 less than the L2 Word size.

 Padding happens at most once for each Packet during SCHC Compression
 and optional SCHC Fragmentation (see Figure 2). If a SCHC Packet is
 sent unfragmented (see Figure 22), it is padded as needed for
 transmission. If a SCHC Packet is fragmented, it is not padded in
 itself, only the SCHC Fragments are padded as needed for
 transmission. Some SCHC F/R modes only pad the very last SCHC
 Fragment.

Minaburo, et al. Expires April 25, 2019 [Page 49]

Internet-Draft LPWAN SCHC October 2018

 A packet (e.g. an IPv6 packet)
 | ^ (padding bits
 v | dropped)
 +------------------+ +--------------------+
 | SCHC Compression | | SCHC Decompression |
 +------------------+ +--------------------+
 | ^
 | If no fragmentation |
 +---- SCHC Packet + padding as needed ----->|
 | | (MIC checked
 v | and removed)
 +--------------------+ +-----------------+
 | SCHC Fragmentation | | SCHC Reassembly |
 +--------------------+ +-----------------+
 | ^ | ^
 | | | |
 | +------------- SCHC ACK ------------+ |
 | |
 +------- SCHC Fragments + padding as needed---------+

 SENDER RECEIVER

 Figure 22: SCHC operations, including padding as needed

 Each Profile MUST specify the size of the L2 Word. The L2 Word might
 actually be a single bit, in which case at most zero bits of padding
 will be appended to any message, i.e. no padding will take place at
 all.

 A Profile MAY define the value of the padding bits. The RECOMMENDED
 value is 0.

10. SCHC Compression for IPv6 and UDP headers

 This section lists the different IPv6 and UDP header fields and how
 they can be compressed.

10.1. IPv6 version field

 This field always holds the same value. Therefore, in the Rule, TV
 is set to 6, MO to "equal" and CDA to "not-sent".

Minaburo, et al. Expires April 25, 2019 [Page 50]

Internet-Draft LPWAN SCHC October 2018

10.2. IPv6 Traffic class field

 If the DiffServ field does not vary and is known by both sides, the
 Field Descriptor in the Rule SHOULD contain a TV with this well-known
 value, an "equal" MO and a "not-sent" CDA.

 Otherwise (e.g. ECN bits are to be transmitted), two possibilities
 can be considered depending on the variability of the value:

 o One possibility is to not compress the field and send the original
 value. In the Rule, TV is not set to any particular value, MO is
 set to "ignore" and CDA is set to "value-sent".

 o If some upper bits in the field are constant and known, a better
 option is to only send the LSBs. In the Rule, TV is set to a
 value with the stable known upper part, MO is set to MSB(x) and
 CDA to LSB.

10.3. Flow label field

 If the Flow Label field does not vary and is known by both sides, the
 Field Descriptor in the Rule SHOULD contain a TV with this well-known
 value, an "equal" MO and a "not-sent" CDA.

 Otherwise, two possibilities can be considered:

 o One possibility is to not compress the field and send the original
 value. In the Rule, TV is not set to any particular value, MO is
 set to "ignore" and CDA is set to "value-sent".

 o If some upper bits in the field are constant and known, a better
 option is to only send the LSBs. In the Rule, TV is set to a
 value with the stable known upper part, MO is set to MSB(x) and
 CDA to LSB.

10.4. Payload Length field

 This field can be elided for the transmission on the LPWAN network.
 The SCHC C/D recomputes the original payload length value. In the
 Field Descriptor, TV is not set, MO is set to "ignore" and CDA is
 "compute-IPv6-length".

 If the payload length needs to be sent and does not need to be coded
 in 16 bits, the TV can be set to 0x0000, the MO set to MSB(16-s)
 where 's' is the number of bits to code the maximum length, and CDA
 is set to LSB.

Minaburo, et al. Expires April 25, 2019 [Page 51]

Internet-Draft LPWAN SCHC October 2018

10.5. Next Header field

 If the Next Header field does not vary and is known by both sides,
 the Field Descriptor in the Rule SHOULD contain a TV with this Next
 Header value, the MO SHOULD be "equal" and the CDA SHOULD be "not-
 sent".

 Otherwise, TV is not set in the Field Descriptor, MO is set to
 "ignore" and CDA is set to "value-sent". Alternatively, a matching-
 list MAY also be used.

10.6. Hop Limit field

 The field behavior for this field is different for Uplink and
 Downlink. In Uplink, since there is no IP forwarding between the Dev
 and the SCHC C/D, the value is relatively constant. On the other
 hand, the Downlink value depends of Internet routing and MAY change
 more frequently. One neat way of processing this field is to use the
 Direction Indicator (DI) to distinguish both directions:

 o in the Uplink, elide the field: the TV in the Field Descriptor is
 set to the known constant value, the MO is set to "equal" and the
 CDA is set to "not-sent".

 o in the Downlink, send the value: TV is not set, MO is set to
 "ignore" and CDA is set to "value-sent".

10.7. IPv6 addresses fields

 As in 6LoWPAN [RFC4944], IPv6 addresses are split into two 64-bit
 long fields; one for the prefix and one for the Interface Identifier
 (IID). These fields SHOULD be compressed. To allow for a single
 Rule being used for both directions, these values are identified by
 their role (DEV or APP) and not by their position in the header
 (source or destination).

10.7.1. IPv6 source and destination prefixes

 Both ends MUST be synchronized with the appropriate prefixes. For a
 specific flow, the source and destination prefixes can be unique and
 stored in the context. It can be either a link-local prefix or a
 global prefix. In that case, the TV for the source and destination
 prefixes contain the values, the MO is set to "equal" and the CDA is
 set to "not-sent".

 If the Rule is intended to compress packets with different prefix
 values, match-mapping SHOULD be used. The different prefixes are

https://datatracker.ietf.org/doc/html/rfc4944

Minaburo, et al. Expires April 25, 2019 [Page 52]

Internet-Draft LPWAN SCHC October 2018

 listed in the TV, the MO is set to "match-mapping" and the CDA is set
 to "mapping-sent". See Figure 24

 Otherwise, the TV contains the prefix, the MO is set to "equal" and
 the CDA is set to "value-sent".

10.7.2. IPv6 source and destination IID

 If the DEV or APP IID are based on an LPWAN address, then the IID can
 be reconstructed with information coming from the LPWAN header. In
 that case, the TV is not set, the MO is set to "ignore" and the CDA
 is set to "DevIID" or "AppIID". Note that the LPWAN technology
 generally carries a single identifier corresponding to the DEV.
 Therefore AppIID cannot be used.

 For privacy reasons or if the DEV address is changing over time, a
 static value that is not equal to the DEV address SHOULD be used. In
 that case, the TV contains the static value, the MO operator is set
 to "equal" and the CDA is set to "not-sent". [RFC7217] provides some
 methods that MAY be used to derive this static identifier.

 If several IIDs are possible, then the TV contains the list of
 possible IIDs, the MO is set to "match-mapping" and the CDA is set to
 "mapping-sent".

 It MAY also happen that the IID variability only expresses itself on
 a few bytes. In that case, the TV is set to the stable part of the
 IID, the MO is set to "MSB" and the CDA is set to "LSB".

 Finally, the IID can be sent in extenso on the LPWAN. In that case,
 the TV is not set, the MO is set to "ignore" and the CDA is set to
 "value-sent".

10.8. IPv6 extensions

 No Rule is currently defined that processes IPv6 extensions. If such
 extensions are needed, their compression/decompression Rules can be
 based on the MOs and CDAs described above.

10.9. UDP source and destination port

 To allow for a single Rule being used for both directions, the UDP
 port values are identified by their role (DEV or APP) and not by
 their position in the header (source or destination). The SCHC C/D
 MUST be aware of the traffic direction (Uplink, Downlink) to select
 the appropriate field. The following Rules apply for DEV and APP
 port numbers.

https://datatracker.ietf.org/doc/html/rfc7217

Minaburo, et al. Expires April 25, 2019 [Page 53]

Internet-Draft LPWAN SCHC October 2018

 If both ends know the port number, it can be elided. The TV contains
 the port number, the MO is set to "equal" and the CDA is set to "not-
 sent".

 If the port variation is on few bits, the TV contains the stable part
 of the port number, the MO is set to "MSB" and the CDA is set to
 "LSB".

 If some well-known values are used, the TV can contain the list of
 these values, the MO is set to "match-mapping" and the CDA is set to
 "mapping-sent".

 Otherwise the port numbers are sent over the LPWAN. The TV is not
 set, the MO is set to "ignore" and the CDA is set to "value-sent".

10.10. UDP length field

 The UDP length can be computed from the received data. In that case,
 the TV is not set, the MO is set to "ignore" and the CDA is set to
 "compute-length".

 If the payload is small, the TV can be set to 0x0000, the MO set to
 "MSB" and the CDA to "LSB".

 In other cases, the length SHOULD be sent and the CDA is replaced by
 "value-sent".

10.11. UDP Checksum field

 The UDP checksum operation is mandatory with IPv6 [RFC8200] for most
 packets but recognizes that there are exceptions to that default
 behavior.

 For instance, protocols that use UDP as a tunnel encapsulation may
 enable zero-checksum mode for a specific port (or set of ports) for
 sending and/or receiving. [RFC8200] also stipulates that any node
 implementing zero-checksum mode must follow the requirements
 specified in "Applicability Statement for the Use of IPv6 UDP
 Datagrams with Zero Checksums" [RFC6936].

 6LoWPAN Header Compression [RFC6282] also authorizes to send UDP
 datagram that are deprived of the checksum protection when an upper
 layer guarantees the integrity of the UDP payload and pseudo-header
 all the way between the compressor that elides the UDP checksum and
 the decompressor that computes again it. A specific example of this
 is when a Message Integrity Check (MIC) protects the compressed
 message all along that path with a strength that is identical or
 better to the UDP checksum.

https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc6936
https://datatracker.ietf.org/doc/html/rfc6282

Minaburo, et al. Expires April 25, 2019 [Page 54]

Internet-Draft LPWAN SCHC October 2018

 In a similar fashion, this specification allows a SCHC compressor to
 elide the UDP checks when another layer guarantees an identical or
 better integrity protection for the UDP payload and the pseudo-
 header. In this case, the TV is not set, the MO is set to "ignore"
 and the CDA is set to "compute-checksum".

 In particular, when SCHC fragmentation is used, a fragmentation MIC
 of 2 bytes or more provides equal or better protection than the UDP
 checksum; in that case, if the compressor is collocated with the
 fragmentation point and the decompressor is collocated with the
 packet reassembly point, then compressor MAY elide the UDP checksum.
 Whether and when the UDP Checksum is elided is to be specified in the
 Profile.

 Since the compression happens before the fragmentation, implementors
 should understand the risks when dealing with unprotected data below
 the transport layer and take special care when manipulating that
 data.

 In other cases, the checksum SHOULD be explicitly sent. The TV is
 not set, the MO is set to "ignore" and the CDA is set to "value-
 sent".

11. IANA Considerations

 This document has no request to IANA.

12. Security considerations

12.1. Security considerations for SCHC Compression/Decompression

 A malicious header compression could cause the reconstruction of a
 wrong packet that does not match with the original one. Such a
 corruption MAY be detected with end-to-end authentication and
 integrity mechanisms. Header Compression does not add more security
 problem than what is already needed in a transmission. For instance,
 to avoid an attack, never re-construct a packet bigger than some
 configured size (with 1500 bytes as generic default).

12.2. Security considerations for SCHC Fragmentation/Reassembly

 This subsection describes potential attacks to LPWAN SCHC F/R and
 suggests possible countermeasures.

 A node can perform a buffer reservation attack by sending a first
 SCHC Fragment to a target. Then, the receiver will reserve buffer
 space for the IPv6 packet. Other incoming fragmented SCHC Packets
 will be dropped while the reassembly buffer is occupied during the

Minaburo, et al. Expires April 25, 2019 [Page 55]

Internet-Draft LPWAN SCHC October 2018

 reassembly timeout. Once that timeout expires, the attacker can
 repeat the same procedure, and iterate, thus creating a denial of
 service attack. The (low) cost to mount this attack is linear with
 the number of buffers at the target node. However, the cost for an
 attacker can be increased if individual SCHC Fragments of multiple
 packets can be stored in the reassembly buffer. To further increase
 the attack cost, the reassembly buffer can be split into SCHC
 Fragment-sized buffer slots. Once a packet is complete, it is
 processed normally. If buffer overload occurs, a receiver can
 discard packets based on the sender behavior, which MAY help identify
 which SCHC Fragments have been sent by an attacker.

 In another type of attack, the malicious node is required to have
 overhearing capabilities. If an attacker can overhear a SCHC
 Fragment, it can send a spoofed duplicate (e.g. with random payload)
 to the destination. If the LPWAN technology does not support
 suitable protection (e.g. source authentication and frame counters to
 prevent replay attacks), a receiver cannot distinguish legitimate
 from spoofed SCHC Fragments. Therefore, the original IPv6 packet
 will be considered corrupt and will be dropped. To protect resource-
 constrained nodes from this attack, it has been proposed to establish
 a binding among the SCHC Fragments to be transmitted by a node, by
 applying content-chaining to the different SCHC Fragments, based on
 cryptographic hash functionality. The aim of this technique is to
 allow a receiver to identify illegitimate SCHC Fragments.

 Further attacks MAY involve sending overlapped fragments (i.e.
 comprising some overlapping parts of the original IPv6 datagram).
 Implementers SHOULD make sure that the correct operation is not
 affected by such event.

 In ACK-on-Error, a malicious node MAY force a SCHC Fragment sender to
 resend a SCHC Fragment a number of times, with the aim to increase
 consumption of the SCHC Fragment sender's resources. To this end,
 the malicious node MAY repeatedly send a fake ACK to the SCHC
 Fragment sender, with a Bitmap that reports that one or more SCHC
 Fragments have been lost. In order to mitigate this possible attack,
 MAX_ACK_RETRIES MAY be set to a safe value which allows to limit the
 maximum damage of the attack to an acceptable extent. However, note
 that a high setting for MAX_ACK_RETRIES benefits SCHC Fragment
 reliability modes, therefore the trade-off needs to be carefully
 considered.

13. Acknowledgements

 Thanks to Carsten Bormann, Philippe Clavier, Diego Dujovne, Eduardo
 Ingles Sanchez, Arunprabhu Kandasamy, Rahul Jadhav, Sergio Lopez
 Bernal, Antony Markovski, Alexander Pelov, Charles Perkins, Edgar

Minaburo, et al. Expires April 25, 2019 [Page 56]

Internet-Draft LPWAN SCHC October 2018

 Ramos, Shoichi Sakane, and Pascal Thubert for useful design
 consideration and comments.

14. References

14.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7217] Gont, F., "A Method for Generating Semantically Opaque
 Interface Identifiers with IPv6 Stateless Address
 Autoconfiguration (SLAAC)", RFC 7217,
 DOI 10.17487/RFC7217, April 2014,
 <https://www.rfc-editor.org/info/rfc7217>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

14.2. Informative References

 [RFC3385] Sheinwald, D., Satran, J., Thaler, P., and V. Cavanna,
 "Internet Protocol Small Computer System Interface (iSCSI)
 Cyclic Redundancy Check (CRC)/Checksum Considerations",

RFC 3385, DOI 10.17487/RFC3385, September 2002,
 <https://www.rfc-editor.org/info/rfc3385>.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
 <https://www.rfc-editor.org/info/rfc4944>.

 [RFC5795] Sandlund, K., Pelletier, G., and L-E. Jonsson, "The RObust
 Header Compression (ROHC) Framework", RFC 5795,
 DOI 10.17487/RFC5795, March 2010,
 <https://www.rfc-editor.org/info/rfc5795>.

 [RFC6282] Hui, J., Ed. and P. Thubert, "Compression Format for IPv6
 Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
 DOI 10.17487/RFC6282, September 2011,
 <https://www.rfc-editor.org/info/rfc6282>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7217
https://www.rfc-editor.org/info/rfc7217
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc3385
https://www.rfc-editor.org/info/rfc3385
https://datatracker.ietf.org/doc/html/rfc4944
https://www.rfc-editor.org/info/rfc4944
https://datatracker.ietf.org/doc/html/rfc5795
https://www.rfc-editor.org/info/rfc5795
https://datatracker.ietf.org/doc/html/rfc6282
https://www.rfc-editor.org/info/rfc6282

Minaburo, et al. Expires April 25, 2019 [Page 57]

Internet-Draft LPWAN SCHC October 2018

 [RFC6936] Fairhurst, G. and M. Westerlund, "Applicability Statement
 for the Use of IPv6 UDP Datagrams with Zero Checksums",

RFC 6936, DOI 10.17487/RFC6936, April 2013,
 <https://www.rfc-editor.org/info/rfc6936>.

 [RFC7136] Carpenter, B. and S. Jiang, "Significance of IPv6
 Interface Identifiers", RFC 7136, DOI 10.17487/RFC7136,
 February 2014, <https://www.rfc-editor.org/info/rfc7136>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

 [RFC8376] Farrell, S., Ed., "Low-Power Wide Area Network (LPWAN)
 Overview", RFC 8376, DOI 10.17487/RFC8376, May 2018,
 <https://www.rfc-editor.org/info/rfc8376>.

Appendix A. SCHC Compression Examples

 This section gives some scenarios of the compression mechanism for
 IPv6/UDP. The goal is to illustrate the behavior of SCHC.

 The most common case using the mechanisms defined in this document
 will be a LPWAN Dev that embeds some applications running over CoAP.
 In this example, three flows are considered. The first flow is for
 the device management based on CoAP using Link Local IPv6 addresses
 and UDP ports 123 and 124 for Dev and App, respectively. The second
 flow will be a CoAP server for measurements done by the Device (using
 ports 5683) and Global IPv6 Address prefixes alpha::IID/64 to
 beta::1/64. The last flow is for legacy applications using different
 ports numbers, the destination IPv6 address prefix is gamma::1/64.

 Figure 23 presents the protocol stack for this Device. IPv6 and UDP
 are represented with dotted lines since these protocols are
 compressed on the radio link.

https://datatracker.ietf.org/doc/html/rfc6936
https://www.rfc-editor.org/info/rfc6936
https://datatracker.ietf.org/doc/html/rfc7136
https://www.rfc-editor.org/info/rfc7136
https://datatracker.ietf.org/doc/html/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://datatracker.ietf.org/doc/html/rfc8376
https://www.rfc-editor.org/info/rfc8376

Minaburo, et al. Expires April 25, 2019 [Page 58]

Internet-Draft LPWAN SCHC October 2018

 Management Data
 +----------+---------+---------+
 | CoAP | CoAP | legacy |
 +----||----+---||----+---||----+
 . UDP . UDP | UDP |

 . IPv6 . IPv6 . IPv6 .
 +------------------------------+
 | SCHC Header compression |
 | and fragmentation |
 +------------------------------+
 | LPWAN L2 technologies |
 +------------------------------+
 DEV or NGW

 Figure 23: Simplified Protocol Stack for LP-WAN

 Note that in some LPWAN technologies, only the Devs have a device ID.
 Therefore, when such technologies are used, it is necessary to
 statically define an IID for the Link Local address for the SCHC C/D.

 Rule 0
 +----------------+--+--+--+---------+--------+------------++------+
 | Field |FL|FP|DI| Value | Match | Comp Decomp|| Sent |
 | | | | | | Opera. | Action ||[bits]|
 +----------------+--+--+--+---------+---------------------++------+
 |IPv6 version |4 |1 |Bi|6 | equal | not-sent || |
 |IPv6 DiffServ |8 |1 |Bi|0 | equal | not-sent || |
 |IPv6 Flow Label |20|1 |Bi|0 | equal | not-sent || |
 |IPv6 Length |16|1 |Bi| | ignore | comp-length|| |
 |IPv6 Next Header|8 |1 |Bi|17 | equal | not-sent || |
 |IPv6 Hop Limit |8 |1 |Bi|255 | ignore | not-sent || |
 |IPv6 DEVprefix |64|1 |Bi|FE80::/64| equal | not-sent || |
 |IPv6 DevIID |64|1 |Bi| | ignore | DevIID || |
 |IPv6 APPprefix |64|1 |Bi|FE80::/64| equal | not-sent || |
 |IPv6 AppIID |64|1 |Bi|::1 | equal | not-sent || |
 +================+==+==+==+=========+========+============++======+
 |UDP DEVport |16|1 |Bi|123 | equal | not-sent || |
 |UDP APPport |16|1 |Bi|124 | equal | not-sent || |
 |UDP Length |16|1 |Bi| | ignore | comp-length|| |
 |UDP checksum |16|1 |Bi| | ignore | comp-chk || |
 +================+==+==+==+=========+========+============++======+

 Rule 1
 +----------------+--+--+--+---------+--------+------------++------+
 | Field |FL|FP|DI| Value | Match | Action || Sent |
 | | | | | | Opera. | Action ||[bits]|

Minaburo, et al. Expires April 25, 2019 [Page 59]

Internet-Draft LPWAN SCHC October 2018

 +----------------+--+--+--+---------+--------+------------++------+
 |IPv6 version |4 |1 |Bi|6 | equal | not-sent || |
 |IPv6 DiffServ |8 |1 |Bi|0 | equal | not-sent || |
 |IPv6 Flow Label |20|1 |Bi|0 | equal | not-sent || |
 |IPv6 Length |16|1 |Bi| | ignore | comp-length|| |
 |IPv6 Next Header|8 |1 |Bi|17 | equal | not-sent || |
 |IPv6 Hop Limit |8 |1 |Bi|255 | ignore | not-sent || |
 |IPv6 DEVprefix |64|1 |Bi|[alpha/64, match- |mapping-sent|| 1 |
 | | | | |fe80::/64] mapping| || |
 |IPv6 DevIID |64|1 |Bi| | ignore | DevIID || |
 |IPv6 APPprefix |64|1 |Bi|[beta/64,| match- |mapping-sent|| 2 |
 | | | | |alpha/64,| mapping| || |
 | | | | |fe80::64]| | || |
 |IPv6 AppIID |64|1 |Bi|::1000 | equal | not-sent || |
 +================+==+==+==+=========+========+============++======+
 |UDP DEVport |16|1 |Bi|5683 | equal | not-sent || |
 |UDP APPport |16|1 |Bi|5683 | equal | not-sent || |
 |UDP Length |16|1 |Bi| | ignore | comp-length|| |
 |UDP checksum |16|1 |Bi| | ignore | comp-chk || |
 +================+==+==+==+=========+========+============++======+

 Rule 2
 +----------------+--+--+--+---------+--------+------------++------+
 | Field |FL|FP|DI| Value | Match | Action || Sent |
 | | | | | | Opera. | Action ||[bits]|
 +----------------+--+--+--+---------+--------+------------++------+
 |IPv6 version |4 |1 |Bi|6 | equal | not-sent || |
 |IPv6 DiffServ |8 |1 |Bi|0 | equal | not-sent || |
 |IPv6 Flow Label |20|1 |Bi|0 | equal | not-sent || |
 |IPv6 Length |16|1 |Bi| | ignore | comp-length|| |
 |IPv6 Next Header|8 |1 |Bi|17 | equal | not-sent || |
 |IPv6 Hop Limit |8 |1 |Up|255 | ignore | not-sent || |
 |IPv6 Hop Limit |8 |1 |Dw| | ignore | value-sent || 8 |
 |IPv6 DEVprefix |64|1 |Bi|alpha/64 | equal | not-sent || |
 |IPv6 DevIID |64|1 |Bi| | ignore | DevIID || |
 |IPv6 APPprefix |64|1 |Bi|gamma/64 | equal | not-sent || |
 |IPv6 AppIID |64|1 |Bi|::1000 | equal | not-sent || |
 +================+==+==+==+=========+========+============++======+
 |UDP DEVport |16|1 |Bi|8720 | MSB(12)| LSB || 4 |
 |UDP APPport |16|1 |Bi|8720 | MSB(12)| LSB || 4 |
 |UDP Length |16|1 |Bi| | ignore | comp-length|| |
 |UDP checksum |16|1 |Bi| | ignore | comp-chk || |
 +================+==+==+==+=========+========+============++======+

 Figure 24: Context Rules

Minaburo, et al. Expires April 25, 2019 [Page 60]

Internet-Draft LPWAN SCHC October 2018

 All the fields described in the three Rules depicted on Figure 24 are
 present in the IPv6 and UDP headers. The DevIID-DID value is found
 in the L2 header.

 The second and third Rules use global addresses. The way the Dev
 learns the prefix is not in the scope of the document.

 The third Rule compresses port numbers to 4 bits.

Appendix B. Fragmentation Examples

 This section provides examples for the different fragment reliability
 modes specified in this document.

 Figure 25 illustrates the transmission in No-ACK mode of a SCHC
 Packet that needs 11 SCHC Fragments. FCN is 1 bit wide.

 Sender Receiver
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-----FCN=1 + MIC --->| Integrity check: success
 (End)

 Figure 25: Transmission in No-ACK mode of a SCHC Packet carried by 11
 SCHC Fragments

 In the following examples, N (the size of the FCN field) is 3 bits.
 Therefore, the All-1 FCN value is 7.

 Figure 26 illustrates the transmission in ACK-on-Error mode of a SCHC
 Packet fragmented in 11 tiles, with one tile per SCHC Fragment,
 MAX_WIND_FCN=6 and no lost SCHC Fragment.

Minaburo, et al. Expires April 25, 2019 [Page 61]

Internet-Draft LPWAN SCHC October 2018

 Sender Receiver
 |-----W=0, FCN=6----->|
 |-----W=0, FCN=5----->|
 |-----W=0, FCN=4----->|
 |-----W=0, FCN=3----->|
 |-----W=0, FCN=2----->|
 |-----W=0, FCN=1----->|
 |-----W=0, FCN=0----->|
 (no ACK)
 |-----W=1, FCN=6----->|
 |-----W=1, FCN=5----->|
 |-----W=1, FCN=4----->|
 |--W=1, FCN=7 + MIC-->| Integrity check: success
 |<-- ACK, W=1, C=1 ---| C=1
 (End)

 Figure 26: Transmission in ACK-on-Error mode of a SCHC Packet
 fragmented in 11 tiles, with one tile per SCHC Fragment,
 MAX_WIND_FCN=6 and no lost SCHC Fragment.

 Figure 27 illustrates the transmission in ACK-on-Error mode of a SCHC
 Packet fragmented in 11 tiles, with one tile per SCHC Fragment,
 MAX_WIND_FCN=6 and three lost SCHC Fragments.

 Sender Receiver
 |-----W=0, FCN=6----->|
 |-----W=0, FCN=5----->|
 |-----W=0, FCN=4--X-->|
 |-----W=0, FCN=3----->|
 |-----W=0, FCN=2--X-->|
 |-----W=0, FCN=1----->|
 |-----W=0, FCN=0----->| 6543210
 |<-- ACK, W=0, C=0 ---| Bitmap:1101011
 |-----W=0, FCN=4----->|
 |-----W=0, FCN=2----->|
 (no ACK)
 |-----W=1, FCN=6----->|
 |-----W=1, FCN=5----->|
 |-----W=1, FCN=4--X-->|
 |- W=1, FCN=7 + MIC ->| Integrity check: failure
 |<-- ACK, W=1, C=0 ---| C=0, Bitmap:1100001
 |-----W=1, FCN=4----->| Integrity check: success
 |<-- ACK, W=1, C=1 ---| C=1
 (End)

 Figure 27: Transmission in ACK-on-Error mode of a SCHC Packet
 fragmented in 11 tiles, with one tile per SCHC Fragment,
 MAX_WIND_FCN=6 and three lost SCHC Fragments.

Minaburo, et al. Expires April 25, 2019 [Page 62]

Internet-Draft LPWAN SCHC October 2018

 Figure 28 shows an example of a transmission in ACK-on-Error mode of
 a SCHC Packet fragmented in 73 tiles, with N=5, MAX_WIND_FCN=27, M=2
 and 3 lost SCHC Fragments.

 Sender Receiver
 |-----W=0, FCN=27----->| 4 tiles sent
 |-----W=0, FCN=23----->| 4 tiles sent
 |-----W=0, FCN=19----->| 4 tiles sent
 |-----W=0, FCN=15--X-->| 4 tiles sent (not received)
 |-----W=0, FCN=11----->| 4 tiles sent
 |-----W=0, FCN=7 ----->| 4 tiles sent
 |-----W=0, FCN=3 ----->| 4 tiles sent
 |-----W=1, FCN=27----->| 4 tiles sent
 |-----W=1, FCN=23----->| 4 tiles sent
 |-----W=1, FCN=19----->| 4 tiles sent
 |-----W=1, FCN=15----->| 4 tiles sent
 |-----W=1, FCN=11----->| 4 tiles sent
 |-----W=1, FCN=7 ----->| 4 tiles sent
 |-----W=1, FCN=3 --X-->| 4 tiles sent (not received)
 |-----W=2, FCN=27----->| 4 tiles sent
 |-----W=2, FCN=23----->| 4 tiles sent
 ^ |-----W=2, FCN=19----->| 1 tile sent
 | |-----W=2, FCN=18----->| 1 tile sent
 | |-----W=2, FCN=17----->| 1 tile sent
 |-----W=2, FCN=16----->| 1 tile sent
 s |-----W=2, FCN=15----->| 1 tile sent
 m |-----W=2, FCN=14----->| 1 tile sent
 a |-----W=2, FCN=13--X-->| 1 tile sent (not received)
 l |-----W=2, FCN=12----->| 1 tile sent
 l |---W=2, FCN=31 + MIC->| Integrity check: failure
 e |<--- ACK, W=0, C=0 ---| C=0, Bitmap:1111111111110000111111111111
 r |-----W=0, FCN=15----->| 1 tile sent
 |-----W=0, FCN=14----->| 1 tile sent
 L |-----W=0, FCN=13----->| 1 tile sent
 2 |-----W=0, FCN=12----->| 1 tile sent
 |<--- ACK, W=1, C=0 ---| C=0, Bitmap:1111111111111111111111110000
 M |-----W=1, FCN=3 ----->| 1 tile sent
 T |-----W=1, FCN=2 ----->| 1 tile sent
 U |-----W=1, FCN=1 ----->| 1 tile sent
 |-----W=1, FCN=0 ----->| 1 tile sent
 | |<--- ACK, W=2, C=0 ---| C=0, Bitmap:1111111111111101000000000001
 | |-----W=2, FCN=13----->| Integrity check: success
 V |<--- ACK, W=2, C=1 ---| C=1
 (End)

 Figure 28: ACK-on-Error mode with variable MTU.

Minaburo, et al. Expires April 25, 2019 [Page 63]

Internet-Draft LPWAN SCHC October 2018

 In this example, the L2 MTU becomes reduced just before sending the
 "W=2, FCN=19" fragment, leaving space for only 1 tile in each
 forthcoming SCHC Fragment. Before retransmissions, the 73 tiles are
 carried by a total of 25 SCHC Fragments, the last 9 being of smaller
 size.

 Note 1: Bitmaps are shown prior to compression for transmission

 Note 2: other sequences of events (e.g. regarding when ACKs are sent
 by the Receiver) are also allowed by this specification. Profiles
 may restrict this flexibility.

 Figure 29 illustrates the transmission in ACK-Always mode of a SCHC
 Packet fragmented in 11 tiles, with one tile per SCHC Fragment, with
 N=3, MAX_WIND_FCN=6 and no loss.

 Sender Receiver
 |-----W=0, FCN=6----->|
 |-----W=0, FCN=5----->|
 |-----W=0, FCN=4----->|
 |-----W=0, FCN=3----->|
 |-----W=0, FCN=2----->|
 |-----W=0, FCN=1----->|
 |-----W=0, FCN=0----->|
 |<-- ACK, W=0, C=0 ---| Bitmap:1111111
 |-----W=1, FCN=6----->|
 |-----W=1, FCN=5----->|
 |-----W=1, FCN=4----->|
 |--W=1, FCN=7 + MIC-->| Integrity check: success
 |<-- ACK, W=1, C=1 ---| C=1
 (End)

 Figure 29: Transmission in ACK-Always mode of a SCHC Packet
 fragmented in 11 tiles, with one tile per SCHC Fragment, with N=3,
 MAX_WIND_FCN=6 and no loss.

 Figure 30 illustrates the transmission in ACK-Always mode of a SCHC
 Packet fragmented in 11 tiles, with one tile per SCHC Fragment, N=3,
 MAX_WIND_FCN=6 and three lost SCHC Fragments.

Minaburo, et al. Expires April 25, 2019 [Page 64]

Internet-Draft LPWAN SCHC October 2018

 Sender Receiver
 |-----W=0, FCN=6----->|
 |-----W=0, FCN=5----->|
 |-----W=0, FCN=4--X-->|
 |-----W=0, FCN=3----->|
 |-----W=0, FCN=2--X-->|
 |-----W=0, FCN=1----->|
 |-----W=0, FCN=0----->| 6543210
 |<-- ACK, W=0, C=0 ---| Bitmap:1101011
 |-----W=0, FCN=4----->|
 |-----W=0, FCN=2----->|
 |<-- ACK, W=0, C=0 ---| Bitmap:1111111
 |-----W=1, FCN=6----->|
 |-----W=1, FCN=5----->|
 |-----W=1, FCN=4--X-->|
 |--W=1, FCN=7 + MIC-->| Integrity check: failure
 |<-- ACK, W=1, C=0 ---| C=0, Bitmap:11000001
 |-----W=1, FCN=4----->| Integrity check: success
 |<-- ACK, W=1, C=1 ---| C=1
 (End)

 Figure 30: Transmission in ACK-Always mode of a SCHC Packet
 fragmented in 11 tiles, with one tile per SCHC Fragment, N=3,
 MAX_WIND_FCN=6 and three lost SCHC Fragments.

 Figure 31 illustrates the transmission in ACK-Always mode of a SCHC
 Packet fragmented in 6 tiles, with one tile per SCHC Fragment, N=3,
 MAX_WIND_FCN=6, three lost SCHC Fragments and only one retry needed
 to recover each lost SCHC Fragment.

 Sender Receiver
 |-----W=0, FCN=6----->|
 |-----W=0, FCN=5----->|
 |-----W=0, FCN=4--X-->|
 |-----W=0, FCN=3--X-->|
 |-----W=0, FCN=2--X-->|
 |--W=0, FCN=7 + MIC-->| Integrity check: failure
 |<-- ACK, W=0, C=0 ---| C=0, Bitmap:1100001
 |-----W=0, FCN=4----->| Integrity check: failure
 |-----W=0, FCN=3----->| Integrity check: failure
 |-----W=0, FCN=2----->| Integrity check: success
 |<-- ACK, W=0, C=1 ---| C=1
 (End)

 Figure 31: Transmission in ACK-Always mode of a SCHC Packet
 fragmented in 6 tiles, with one tile per SCHC Fragment, N=3,
 MAX_WIND_FCN=6, three lost SCHC Fragments.

Minaburo, et al. Expires April 25, 2019 [Page 65]

Internet-Draft LPWAN SCHC October 2018

 Figure 32 illustrates the transmission in ACK-Always mode of a SCHC
 Packet fragmented in 6 tiles, with one tile per SCHC Fragment, N=3,
 MAX_WIND_FCN=6, three lost SCHC Fragments, and the second SCHC ACK
 lost.

 Sender Receiver
 |-----W=0, FCN=6----->|
 |-----W=0, FCN=5----->|
 |-----W=0, FCN=4--X-->|
 |-----W=0, FCN=3--X-->|
 |-----W=0, FCN=2--X-->|
 |--W=0, FCN=7 + MIC-->| Integrity check: failure
 |<-- ACK, W=0, C=0 ---| C=0, Bitmap:1100001
 |-----W=0, FCN=4----->| Integrity check: failure
 |-----W=0, FCN=3----->| Integrity check: failure
 |-----W=0, FCN=2----->| Integrity check: success
 |<-X-ACK, W=0, C=1 ---| C=1
 timeout | |
 |--- W=0, ACK REQ --->| ACK REQ
 |<-- ACK, W=0, C=1 ---| C=1
 (End)

 Figure 32: Transmission in ACK-Always mode of a SCHC Packet
 fragmented in 6 tiles, with one tile per SCHC Fragment, N=3,
 MAX_WIND_FCN=6, three lost SCHC Fragments, and the second SCHC ACK
 lost.

 Figure 33 illustrates the transmission in ACK-Always mode of a SCHC
 Packet fragmented in 6 tiles, with N=3, MAX_WIND_FCN=6, with three
 lost SCHC Fragments, and one retransmitted SCHC Fragment lost again.

Minaburo, et al. Expires April 25, 2019 [Page 66]

Internet-Draft LPWAN SCHC October 2018

 Sender Receiver
 |-----W=0, FCN=6----->|
 |-----W=0, FCN=5----->|
 |-----W=0, FCN=4--X-->|
 |-----W=0, FCN=3--X-->|
 |-----W=0, FCN=2--X-->|
 |--W=0, FCN=7 + MIC-->| Integrity check: failure
 |<-- ACK, W=0, C=0 ---| C=0, Bitmap:1100001
 |-----W=0, FCN=4----->| Integrity check: failure
 |-----W=0, FCN=3----->| Integrity check: failure
 |-----W=0, FCN=2--X-->|
 timeout| |
 |--- W=0, ACK REQ --->| ACK REQ
 |<-- ACK, W=0, C=0 ---| C=0, Bitmap: 1111101
 |-----W=0, FCN=2----->| Integrity check: success
 |<-- ACK, W=0, C=1 ---| C=1
 (End)

 Figure 33: Transmission in ACK-Always mode of a SCHC Packet
 fragmented in 6 tiles, with N=3, MAX_WIND_FCN=6, with three lost SCHC
 Fragments, and one retransmitted SCHC Fragment lost again.

 Figure 34 illustrates the transmission in ACK-Always mode of a SCHC
 Packet fragmented in 28 tiles, with one tile per SCHC Fragment, N=5,
 MAX_WIND_FCN=23 and two lost SCHC Fragments.

Minaburo, et al. Expires April 25, 2019 [Page 67]

Internet-Draft LPWAN SCHC October 2018

 Sender Receiver
 |-----W=0, FCN=23----->|
 |-----W=0, FCN=22----->|
 |-----W=0, FCN=21--X-->|
 |-----W=0, FCN=20----->|
 |-----W=0, FCN=19----->|
 |-----W=0, FCN=18----->|
 |-----W=0, FCN=17----->|
 |-----W=0, FCN=16----->|
 |-----W=0, FCN=15----->|
 |-----W=0, FCN=14----->|
 |-----W=0, FCN=13----->|
 |-----W=0, FCN=12----->|
 |-----W=0, FCN=11----->|
 |-----W=0, FCN=10--X-->|
 |-----W=0, FCN=9 ----->|
 |-----W=0, FCN=8 ----->|
 |-----W=0, FCN=7 ----->|
 |-----W=0, FCN=6 ----->|
 |-----W=0, FCN=5 ----->|
 |-----W=0, FCN=4 ----->|
 |-----W=0, FCN=3 ----->|
 |-----W=0, FCN=2 ----->|
 |-----W=0, FCN=1 ----->|
 |-----W=0, FCN=0 ----->|
 | |
 |<--- ACK, W=0, C=0 ---| Bitmap:110111111111101111111111
 |-----W=0, FCN=21----->|
 |-----W=0, FCN=10----->|
 |<--- ACK, W=0, C=0 ---| Bitmap:111111111111111111111111
 |-----W=1, FCN=23----->|
 |-----W=1, FCN=22----->|
 |-----W=1, FCN=21----->|
 |--W=1, FCN=31 + MIC-->| Integrity check: success
 |<--- ACK, W=1, C=1 ---| C=1
 (End)

 Figure 34: Transmission in ACK-Always mode of a SCHC Packet
 fragmented in 28 tiles, with one tile per SCHC Fragment, N=5,
 MAX_WIND_FCN=23 and two lost SCHC Fragments.

Appendix C. Fragmentation State Machines

 The fragmentation state machines of the sender and the receiver, one
 for each of the different reliability modes, are described in the
 following figures:

Minaburo, et al. Expires April 25, 2019 [Page 68]

Internet-Draft LPWAN SCHC October 2018

 +===========+
 +------------+ Init |
 | FCN=0 +===========+
 | No Window
 | No Bitmap
 | +-------+
 | +========+==+ | More Fragments
 | | | <--+ ~~~~~~~~~~~~~~~~~~~~
 +--------> | Send | send Fragment (FCN=0)
 +===+=======+
 | last fragment
 | ~~~~~~~~~~~~
 | FCN = 1
 v send fragment+MIC
 +============+
 | END |
 +============+

 Figure 35: Sender State Machine for the No-ACK Mode

 +------+ Not All-1
 +==========+=+ | ~~~~~~~~~~~~~~~~~~~
 | + <--+ set Inactivity Timer
 | RCV Frag +-------+
 +=+===+======+ |All-1 &
 All-1 & | | |MIC correct
 MIC wrong | |Inactivity |
 | |Timer Exp. |
 v | |
 +==========++ | v
 | Error |<-+ +========+==+
 +===========+ | END |
 +===========+

 Figure 36: Receiver State Machine for the No-ACK Mode

Minaburo, et al. Expires April 25, 2019 [Page 69]

Internet-Draft LPWAN SCHC October 2018

 +=======+
 | INIT | FCN!=0 & more frags
 | | ~~~~~~~~~~~~~~~~~~~~~~
 +======++ +--+ send Window + frag(FCN)
 W=0 | | | FCN-
 Clear lcl_bm | | v set lcl_bm
 FCN=max value | ++==+========+
 +> | |
 +---------------------> | SEND |
 | +==+===+=====+
 | FCN==0 & more frags | | last frag
 | ~~~~~~~~~~~~~~~~~~~~~ | | ~~~~~~~~~~~~~~~
 | set lcl_bm | | set lcl_bm
 | send wnd + frag(all-0) | | send wnd+frag(all-1)+MIC
 | set Retrans_Timer | | set Retrans_Timer
 | | |
 |Recv_wnd == wnd & | |
 |lcl_bm==recv_bm & | | +-----------------------+
 |more frag | | | lcl_bm!=rcv-bm |
 |~~~~~~~~~~~~~~~~~~~~~~ | | | ~~~~~~~~~ |
 |Stop Retrans_Timer | | | Attempt++ v
 |clear lcl_bm v v | +=====+=+
 |window=next_window +====+===+==+===+ |Resend |
 +---------------------+ | |Missing|
 +----+ Wait | |Frag |
 not expected wnd | | Bitmap | +=======+
   ~~~~~~~~~~~~~~~~ +--->+               ++Retrans_Timer Exp  |
       discard frag      +==+=+===+=+==+=+| ~~~~~~~~~~~~~~~~~ |
                            | |   | ^  ^  |reSend(empty)All-* | | |
                            | |   | |  |  |Set Retrans_Timer  |
                            | |   | |  +--+Attempt++          |
   MIC_bit==1 &             | |   | +-------------------------+
   Recv_window==window &    | |   |   all missing frags sent
                no more frag| |   |   ~~~~~~~~~~~~~~~~~~~~~~
    ~~~~~~~~~~~~~~~~~~~~~~~~| |   |   Set Retrans_Timer
 Stop Retrans_Timer| | |
 +=============+ | | |
 | END +<--------+ | |
 +=============+ | | Attempt > MAX_ACK_REQUESTS
 All-1 Window & | | ~~~~~~~~~~~~~~~~~~
 MIC_bit ==0 & | v Send Abort
 lcl_bm==recv_bm | +=+===========+
                 ~~~~~~~~~~~~ +>|    ERROR    |
                   Send Abort   +=============+

          Figure 37: Sender State Machine for the ACK-Always Mode



Minaburo, et al.         Expires April 25, 2019                [Page 70]



Internet-Draft                 LPWAN SCHC                   October 2018

    Not All- & w=expected +---+   +---+w = Not expected
    ~~~~~~~~~~~~~~~~~~~~~ |   |   |   |~~~~~~~~~~~~~~~~
 Set lcl_bm(FCN) | v v |discard
 ++===+===+===+=+
 +---------------------+ Rcv +--->* ABORT
 | +------------------+ Window |
 | | +=====+==+=====+
 | | All-0 & w=expect | ^ w =next & not-All
 | | ~~~~~~~~~~~~~~~~~~ | |~~~~~~~~~~~~~~~~~~~~~
 | | set lcl_bm(FCN) | |expected = next window
 | | send lcl_bm | |Clear lcl_bm
 | | | |
 | | w=expected & not-All | |
 | | ~~~~~~~~~~~~~~~~~~ | |
 | | set lcl_bm(FCN)+-+ | | +--+ w=next & All-0
 | | if lcl_bm full | | | | | | ~~~~~~~~~~~~~~~
 | | send lcl_bm | | | | | | expected = nxt wnd
 | | v | v | | | Clear lcl_bm
 | |w=expected& All-1 +=+=+=+==+=++ | set lcl_bm(FCN)
 | | ~~~~~~~~~~~ +->+ Wait +<+ send lcl_bm
 | | discard +--| Next |
 | | All-0 +---------+ Window +--->* ABORT
 | | ~~~~~ +-------->+========+=++
 | | snd lcl_bm All-1 & w=next| | All-1 & w=nxt
 | | & MIC wrong| | & MIC right
 | | ~~~~~~~~~~~~~~~~~| | ~~~~~~~~~~~~~~~~~~
 | | set lcl_bm(FCN)| |set lcl_bm(FCN)
 | | send lcl_bm| |send lcl_bm
 | | | +----------------------+
 | |All-1 & w=expected | | |
 | |& MIC wrong v +---+ w=expected & |
 | |~~~~~~~~~~~~~~~~~~~~ +====+=====+ | MIC wrong |
 | |set lcl_bm(FCN) | +<+ ~~~~~~~~~~~~~~ |
 | |send lcl_bm | Wait End | set lcl_bm(FCN)|
 | +--------------------->+ +--->* ABORT |
 | +===+====+=+-+ All-1&MIC wrong|
 | | ^ | ~~~~~~~~~~~~~~~| |
 | w=expected & MIC right | +---+ send lcl_bm |
 | ~~~~~~~~~~~~~~~~~~~~~~ | |
 | set lcl_bm(FCN) | +-+ Not All-1 |
 | send lcl_bm | | | ~~~~~~~~~ |
 | | | | discard |
 |All-1&w=expected & MIC right | | | |
 |~~~~~~~~~~~~~~~~~~~~~~~~~~~~ v | v +----+All-1 |
 |set lcl_bm(FCN) +=+=+=+=+==+ |~~~~~~~~~ |
 |send lcl_bm | +<+Send lcl_bm |
 +-------------------------->+ END | |
 +==========+<---------------+

Minaburo, et al. Expires April 25, 2019 [Page 71]

Internet-Draft LPWAN SCHC October 2018

 --->* ABORT
               ~~~~~~~
               Inactivity_Timer = expires
           When DWL
             IF Inactivity_Timer expires
                Send DWL Request
                Attempt++

         Figure 38: Receiver State Machine for the ACK-Always Mode

                  +=======+
                  |       |
                  | INIT  |
                  |       |       FCN!=0 & more frags
                  +======++       ~~~~~~~~~~~~~~~~~~~~~~
     Frag RuleID trigger |   +--+ Send cur_W + frag(FCN);
     ~~~~~~~~~~~~~~~~~~~ |   |  | FCN--;
 cur_W=0; FCN=max_value;| | | set [cur_W, cur_Bmp]
 clear [cur_W, Bmp_n];| | v
 clear rcv_Bmp | ++==+==========+ **BACK_TO_SEND
 +->+ | cur_W==rcv_W &
 **BACK_TO_SEND | SEND | [cur_W,Bmp_n]==rcv_Bmp
+-------------------------->+ | & more frags
| +----------------------->+ | ~~~~~~~~~~~~
| | ++===+=========+ cur_W++;
| | FCN==0 & more frags| |last frag clear [cur_W, Bmp_n]
| | ~~~~~~~~~~~~~~~~~~~~~~~| |~~~~~~~~~
| | set cur_Bmp; | |set [cur_W, Bmp_n];
| |send cur_W + frag(All-0);| |send cur_W + frag(All-1)+MIC;
| | set Retrans_Timer| |set Retrans_Timer
| | | | +-----------------------------------+
| |Retrans_Timer expires & | | |cur_W==rcv_W&[cur_W,Bmp_n]!=rcv_Bmp|
| |more Frags | | | ~~~~~~~~~~~~~~~~~~~ |
| |~~~~~~~~~~~~~~~~~~~~ | | | Attempts++; W=cur_W |
| |stop Retrans_Timer; | | | +--------+ rcv_W==Wn &|
| |[cur_W,Bmp_n]==cur_Bmp; v v | | v [Wn,Bmp_n]!=rcv_Bmp|
| |cur_W++ +=====+===+=+=+==+ +=+=========+ ~~~~~~~~~~~|
| +-------------------+ | | Resend | Attempts++;|
+----------------------+ Wait x ACK | | Missing | W=Wn |
+--------------------->+ | | Frags(W) +<-------------+
| rcv_W==Wn &+-+ | +======+====+
| [Wn,Bmp_n]!=rcv_Bmp| ++=+===+===+==+==+ |
| ~~~~~~~~~~~~~~| ^ | | | ^ |
| send (cur_W,+--+ | | | +-------------+
| ALL-0-empty) | | | all missing frag sent(W)
| | | | ~~~~~~~~~~~~~~~~~
| Retrans_Timer expires &| | | set Retrans_Timer

Minaburo, et al. Expires April 25, 2019 [Page 72]

Internet-Draft LPWAN SCHC October 2018

| No more Frags| | |
| ~~~~~~~~~~~~~~| | |
| stop Retrans_Timer;| | |
|(re)send frag(All-1)+MIC | | |
+-------------------------+ | |
 cur_W==rcv_W&| |
 [cur_W,Bmp_n]==rcv_Bmp&| | Attempts > MAX_ACK_REQUESTS
 No more Frags & MIC flag==OK| | ~~~~~~~~~~
            ~~~~~~~~~~~~~~~~~~|   | send Abort
 +=========+stop Retrans_Timer|   |  +===========+
 |   END   +<-----------------+   +->+   ERROR   |
 +=========+                         +===========+

         Figure 39: Sender State Machine for the ACK-on-Error Mode

   This is an example only.  The specification in Section 8.4.3.1 is
   open to very different sequencing of operations.



Minaburo, et al.         Expires April 25, 2019                [Page 73]



Internet-Draft                 LPWAN SCHC                   October 2018

                   +=======+        New frag RuleID received
                   |       |        ~~~~~~~~~~~~~
                   | INIT  +-------+cur_W=0;clear([cur_W,Bmp_n]);
                   +=======+       |sync=0
                                   |
      Not All* & rcv_W==cur_W+---+ | +---+
        ~~~~~~~~~~~~~~~~~~~~ |   | | |  (E)
 set[cur_W,Bmp_n(FCN)]| v v v |
 ++===+=+=+===+=+
 +----------------------+ +--+ All-0&Full[cur_W,Bmp_n]
 | ABORT *<---+ Rcv Window | | ~~~~~~~~~~
 | +-------------------+ +<-+ cur_W++;set Inact_timer;
 | | +->+=+=+=+=+=+====+ clear [cur_W,Bmp_n]
 | | All-0 empty(Wn)| | | | ^ ^
 | | ~~~~~~~~~~~~~~ +----+ | | | |rcv_W==cur_W & sync==0;
 | | sendACK([Wn,Bmp_n]) | | | |& Full([cur_W,Bmp_n])
 | | | | | |& All* || last_miss_frag
 | | | | | |~~~~~~~~~~~~~~~~~~~~~~
 | | All* & rcv_W==cur_W|(C)| |sendACK([cur_W,Bmp_n]);
 | | & sync==0| | | |cur_W++; clear([cur_W,Bmp_n])
 | |&no_full([cur_W,Bmp_n])| |(E)|
 | | ~~~~~~~~~~~~~~~~ | | | | +========+
 | | sendACK([cur_W,Bmp_n])| | | | | Error/ |
 | | | | | | +----+ | Abort |
 | | v v | | | | +===+====+
 | | +===+=+=+=+===+=+ (D) ^
 | | +--+ Wait x | | |
 | | All-0 empty(Wn)+->| Missing Frags |<-+ |
 | | ~~~~~~~~~~~~~~ +=============+=+ |
 | | sendACK([Wn,Bmp_n]) +--------------+
 | | *ABORT
 v v
 (A)(B)
 (D) All* || last_miss_frag
 (C) All* & sync>0 & rcv_W!=cur_W & sync>0
          ~~~~~~~~~~~~                    & Full([rcv_W,Bmp_n])
          Wn=oldest[not full(W)];         ~~~~~~~~~~~~~~~~~~~~
          sendACK([Wn,Bmp_n])             Wn=oldest[not full(W)];
                                          sendACK([Wn,Bmp_n]);sync--

                                ABORT-->* Uplink Only &
                                          Inact_Timer expires
      (E) Not All* & rcv_W!=cur_W         || Attempts > MAX_ACK_REQUESTS
          ~~~~~~~~~~~~~~~~~~~~            ~~~~~~~~~~~~~~~~~~~~~
 sync++; cur_W=rcv_W; send Abort
 set[cur_W,Bmp_n(FCN)]

Minaburo, et al. Expires April 25, 2019 [Page 74]

Internet-Draft LPWAN SCHC October 2018

 (A)(B)
 | |
 | | All-1 & rcv_W==cur_W & MIC!=OK All-0 empty(Wn)
 | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +-+ ~~~~~~~~~~
 | | sendACK([cur_W,Bmp_n],MIC=0) | v sendACK([Wn,Bmp_n])
 | | +===========+=++
 | +--------------------->+ Wait End +-+
 | +=====+=+====+=+ | All-1
 | rcv_W==cur_W & MIC==OK | | ^ | & rcv_W==cur_W
 | ~~~~~~~~~~~~~~~~~~~~~~ | | +---+ & MIC!=OK
 | sendACK([cur_W,Bmp_n],MIC=1) | | ~~~~~~~~~~~~~~~~~~~
 | | | sendACK([cur_W,Bmp_n],MIC=0);
 | | | Attempts++
 |All-1 & Full([cur_W,Bmp_n]) | |
 |& MIC==OK & sync==0 | +-->* ABORT
 |~~~~~~~~~~~~~~~~~~~ v
 |sendACK([cur_W,Bmp_n],MIC=1) +=+=========+
 +---------------------------->+ END |
 +===========+

 ABORT -->* Uplink Only &
 Inact_Timer = expires
 || Attempts > MAX_ACK_REQUESTS
                       ~~~~~~~~~~~~~~~~~~~~~
                       send Abort

        Figure 40: Receiver State Machine for the ACK-on-Error Mode

Appendix D.  SCHC Parameters

   This section lists the information that need to be provided in the
   LPWAN technology-specific documents.

   o  Most common uses cases, deployment scenarios

   o  Mapping of the SCHC architectural elements onto the LPWAN
      architecture

   o  Assessment of LPWAN integrity checking

   o  Various potential channel conditions for the technology and the
      corresponding recommended use of SCHC C/D and F/R

   This section lists the parameters that need to be defined in the
   Profile.



Minaburo, et al.         Expires April 25, 2019                [Page 75]



Internet-Draft                 LPWAN SCHC                   October 2018

   o  Rule ID numbering scheme, fixed-sized or variable-sized Rule IDs,
      number of Rules, the way the Rule ID is transmitted

   o  Padding: size of the L2 Word (for most LPWAN technologies, this
      would be a byte; for some technologies, a bit)

   o  Decision to use SCHC fragmentation mechanism or not.  If yes:

      *  reliability mode(s) used, in which cases (e.g. based on link
         channel condition)

      *  Rule ID values assigned to each mode in use

      *  presence and number of bits for DTag (T) for each Rule ID value

      *  support for interleaved packet transmission, to what extent

      *  WINDOW_SIZE, for modes that use windows

      *  number of bits for W (M) for each Rule ID value, for modes that
         use windows

      *  number of bits for FCN (N) for each Rule ID value

      *  value of MAX_WIND_FCN and use of FCN values, if applicable to
         the SCHC F/R mode.

      *  size of MIC and algorithm for its computation, for each Rule
         ID, if different from the default CRC32.  Byte fill-up with
         zeroes or other mechanism, to be specified.

      *  Retransmission Timer duration for each Rule ID value, if
         applicable to the SCHC F/R mode

      *  Inactivity Timer duration for each Rule ID value, if applicable
         to the SCHC F/R mode

      *  MAX_ACK_REQUEST value for each Rule ID value, if applicable to
         the SCHC F/R mode

   o  if L2 Word is wider than a bit and SCHC fragmentation is used,
      value of the padding bits (0 or 1).  This is needed because the
      padding bits of the last fragment are included in the MIC
      computation.

   A Profile MAY define a delay to be added between each SCHC message
   transmission to respect local regulations or other constraints
   imposed by the applications.



Minaburo, et al.         Expires April 25, 2019                [Page 76]



Internet-Draft                 LPWAN SCHC                   October 2018

   o  Note on soliciting downlink transmissions: In some LPWAN
      technologies, as part of energy-saving techniques, downlink
      transmission is only possible immediately after an uplink
      transmission.  In order to avoid potentially high delay in the
      downlink transmission of a fragmented SCHC Packet, the SCHC
      Fragment receiver may want to perform an uplink transmission as
      soon as possible after reception of a SCHC Fragment that is not
      the last one.  Such uplink transmission may be triggered by the L2
      (e.g. an L2 ACK sent in response to a SCHC Fragment encapsulated
      in a L2 PDU that requires an L2 ACK) or it may be triggered from
      an upper layer.

   o  the following parameters need to be addressed in documents other
      than this one but not forcely in the LPWAN technology-specific
      documents:

      *  The way the contexts are provisioned

      *  The way the Rules as generated

Appendix E.  Supporting multiple window sizes for fragmentation

   For ACK-Always or ACK-on-Error, implementers MAY opt to support a
   single window size or multiple window sizes.  The latter, when
   feasible, may provide performance optimizations.  For example, a
   large window size SHOULD be used for packets that need to be carried
   by a large number of SCHC Fragments.  However, when the number of
   SCHC Fragments required to carry a packet is low, a smaller window
   size, and thus a shorter Bitmap, MAY be sufficient to provide
   feedback on all SCHC Fragments.  If multiple window sizes are
   supported, the Rule ID MAY be used to signal the window size in use
   for a specific packet transmission.

   Note that the same window size MUST be used for the transmission of
   all SCHC Fragments that belong to the same SCHC Packet.

Appendix F.  Downlink SCHC Fragment transmission

   For downlink transmission of a fragmented SCHC Packet in ACK-Always
   mode, the SCHC Fragment receiver MAY support timer-based SCHC ACK
   retransmission.  In this mechanism, the SCHC Fragment receiver
   initializes and starts a timer (the Inactivity Timer is used) after
   the transmission of a SCHC ACK, except when the SCHC ACK is sent in
   response to the last SCHC Fragment of a packet (All-1 fragment).  In
   the latter case, the SCHC Fragment receiver does not start a timer
   after transmission of the SCHC ACK.



Minaburo, et al.         Expires April 25, 2019                [Page 77]



Internet-Draft                 LPWAN SCHC                   October 2018

   If, after transmission of a SCHC ACK that is not an All-1 fragment,
   and before expiration of the corresponding Inactivity timer, the SCHC
   Fragment receiver receives a SCHC Fragment that belongs to the
   current window (e.g. a missing SCHC Fragment from the current window)
   or to the next window, the Inactivity timer for the SCHC ACK is
   stopped.  However, if the Inactivity timer expires, the SCHC ACK is
   resent and the Inactivity timer is reinitialized and restarted.

   The default initial value for the Inactivity timer, as well as the
   maximum number of retries for a specific SCHC ACK, denoted
   MAX_ACK_RETRIES, are not defined in this document, and need to be
   defined in a Profile.  The initial value of the Inactivity timer is
   expected to be greater than that of the Retransmission timer, in
   order to make sure that a (buffered) SCHC Fragment to be
   retransmitted can find an opportunity for that transmission.

   When the SCHC Fragment sender transmits the All-1 fragment, it starts
   its Retransmission Timer with a large timeout value (e.g. several
   times that of the initial Inactivity timer).  If a SCHC ACK is
   received before expiration of this timer, the SCHC Fragment sender
   retransmits any lost SCHC Fragments reported by the SCHC ACK, or if
   the SCHC ACK confirms successful reception of all SCHC Fragments of
   the last window, the transmission of the fragmented SCHC Packet is
   considered complete.  If the timer expires, and no SCHC ACK has been
   received since the start of the timer, the SCHC Fragment sender
   assumes that the All-1 fragment has been successfully received (and
   possibly, the last SCHC ACK has been lost: this mechanism assumes
   that the retransmission timer for the All-1 fragment is long enough
   to allow several SCHC ACK retries if the All-1 fragment has not;been
   received by the SCHC Fragment receiver, and it also assumes that it
   is unlikely that several ACKs become all lost).

Appendix G.  Note

   Carles Gomez has been funded in part by the Spanish Government
   (Ministerio de Educacion, Cultura y Deporte) through the Jose
   Castillejo grant CAS15/00336, and by the ERDF and the Spanish
   Government through project TEC2016-79988-P.  Part of his contribution
   to this work has been carried out during his stay as a visiting
   scholar at the Computer Laboratory of the University of Cambridge.

Authors' Addresses



Minaburo, et al.         Expires April 25, 2019                [Page 78]



Internet-Draft                 LPWAN SCHC                   October 2018

   Ana Minaburo
   Acklio
   1137A avenue des Champs Blancs
   35510 Cesson-Sevigne Cedex
   France

   Email: ana@ackl.io

   Laurent Toutain
   IMT-Atlantique
   2 rue de la Chataigneraie
   CS 17607
   35576 Cesson-Sevigne Cedex
   France

   Email: Laurent.Toutain@imt-atlantique.fr

   Carles Gomez
   Universitat Politecnica de Catalunya
   C/Esteve Terradas, 7
   08860 Castelldefels
   Spain

   Email: carlesgo@entel.upc.edu

   Dominique Barthel
   Orange Labs
   28 chemin du Vieux Chene
   38243 Meylan
   France

   Email: dominique.barthel@orange.com

   Juan Carlos Zuniga
   SIGFOX
   425 rue Jean Rostand
   Labege  31670
   France

   Email: JuanCarlos.Zuniga@sigfox.com



Minaburo, et al.         Expires April 25, 2019                [Page 79]


