
lpwan Working Group A. Minaburo
Internet-Draft Acklio
Intended status: Standards Track L. Toutain
Expires: May 31, 2020 IMT-Atlantique
 C. Gomez
 Universitat Politecnica de Catalunya
 D. Barthel
 Orange Labs
 JC. Zuniga
 SIGFOX
 November 28, 2019

Static Context Header Compression (SCHC) and fragmentation for LPWAN,
application to UDP/IPv6

draft-ietf-lpwan-ipv6-static-context-hc-23

Abstract

 This document defines the Static Context Header Compression (SCHC)
 framework, which provides both a header compression mechanism and an
 optional fragmentation mechanism. SCHC has been designed for Low
 Power Wide Area Networks (LPWAN).

 SCHC compression is based on a common static context stored both in
 the LPWAN device and in the network infrastructure side. This
 document defines a generic header compression mechanism and its
 application to compress IPv6/UDP headers.

 This document also specifies an optional fragmentation and reassembly
 mechanism. It can be used to support the IPv6 MTU requirement over
 the LPWAN technologies. Fragmentation is needed for IPv6 datagrams
 that, after SCHC compression or when such compression was not
 possible, still exceed the layer-2 maximum payload size.

 The SCHC header compression and fragmentation mechanisms are
 independent of the specific LPWAN technology over which they are
 used. This document defines generic functionalities and offers
 flexibility with regard to parameter settings and mechanism choices.
 This document standardizes the exchange over the LPWAN between two
 SCHC entities. Settings and choices specific to a technology or a
 product are expected to be grouped into profiles, which are specified
 in other documents. Data models for the context and profiles are out
 of scope.

Minaburo, et al. Expires May 31, 2020 [Page 1]

Internet-Draft LPWAN SCHC November 2019

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 31, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Requirements Notation . 5
3. LPWAN Architecture . 5
4. Terminology . 6
5. SCHC overview . 8
5.1. SCHC Packet format 10
5.2. Functional mapping 11

6. Rule ID . 12
7. Compression/Decompression 12
7.1. SCHC C/D Rules . 13
7.2. Rule ID for SCHC C/D 15
7.3. Packet processing . 15
7.4. Matching operators 17
7.5. Compression Decompression Actions (CDA) 18

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Minaburo, et al. Expires May 31, 2020 [Page 2]

Internet-Draft LPWAN SCHC November 2019

7.5.1. processing fixed-length fields 19
7.5.2. processing variable-length fields 19
7.5.3. not-sent CDA . 20
7.5.4. value-sent CDA 20
7.5.5. mapping-sent CDA 20
7.5.6. LSB CDA . 21
7.5.7. DevIID, AppIID CDA 21
7.5.8. Compute-* . 21

8. Fragmentation/Reassembly 22
8.1. Overview . 22
8.2. SCHC F/R Protocol Elements 22
8.2.1. Messages . 22
8.2.2. Tiles, Windows, Bitmaps, Timers, Counters 23
8.2.3. Integrity Checking 25
8.2.4. Header Fields . 26

8.3. SCHC F/R Message Formats 28
8.3.1. SCHC Fragment format 28
8.3.2. SCHC ACK format 30
8.3.3. SCHC ACK REQ format 32
8.3.4. SCHC Sender-Abort format 33
8.3.5. SCHC Receiver-Abort format 33

8.4. SCHC F/R modes . 34
8.4.1. No-ACK mode . 34
8.4.2. ACK-Always mode 36
8.4.3. ACK-on-Error mode 43

9. Padding management . 51
10. SCHC Compression for IPv6 and UDP headers 52
10.1. IPv6 version field 52
10.2. IPv6 Traffic class field 52
10.3. Flow label field . 52
10.4. Payload Length field 53
10.5. Next Header field 53
10.6. Hop Limit field . 53
10.7. IPv6 addresses fields 53
10.7.1. IPv6 source and destination prefixes 54
10.7.2. IPv6 source and destination IID 54

10.8. IPv6 extension headers 54
10.9. UDP source and destination ports 55
10.10. UDP length field . 55
10.11. UDP Checksum field 55

11. IANA Considerations . 56
12. Security considerations 56

 12.1. Security considerations for SCHC
 Compression/Decompression 56

12.1.1. Forged SCHC Packet 56
 12.1.2. Compressed packet size as a side channel to guess a
 secret token . 57
 12.1.3. decompressed packet different from the original

Minaburo, et al. Expires May 31, 2020 [Page 3]

Internet-Draft LPWAN SCHC November 2019

 packet . 58
 12.2. Security considerations for SCHC
 Fragmentation/Reassembly 58

12.2.1. Buffer reservation attack 58
12.2.2. Corrupt Fragment attack 59

 12.2.3. Fragmentation as a way to bypass Network Inspection 59
 12.2.4. Privacy issues associated with SCHC header fields . 59

13. Acknowledgements . 60
14. References . 60
14.1. Normative References 60
14.2. Informative References 61

Appendix A. Compression Examples 61
Appendix B. Fragmentation Examples 64
Appendix C. Fragmentation State Machines 72
Appendix D. SCHC Parameters 78
Appendix E. Supporting multiple window sizes for fragmentation . 80
Appendix F. ACK-Always and ACK-on-Error on quasi-bidirectional

 links . 80
 Authors' Addresses . 82

1. Introduction

 This document defines the Static Context Header Compression (SCHC)
 framework, which provides both a header compression mechanism and an
 optional fragmentation mechanism. SCHC has been designed for Low
 Power Wide Area Networks (LPWAN).

 LPWAN technologies impose some strict limitations on traffic. For
 instance, devices sleep most of the time and may only receive data
 during short periods of time after transmission, in order to preserve
 battery. LPWAN technologies are also characterized by a greatly
 reduced data unit and/or payload size (see [RFC8376]).

 Header compression is needed for efficient Internet connectivity to a
 node within an LPWAN network. The following properties of LPWAN
 networks can be exploited to get an efficient header compression:

 o The network topology is star-oriented, which means that all
 packets between the same source-destination pair follow the same
 path. For the needs of this document, the architecture can simply
 be described as Devices (Dev) exchanging information with LPWAN
 Application Servers (App) through a Network Gateway (NGW).

 o Because devices embed built-in applications, the traffic flows to
 be compressed are known in advance. Indeed, new applications are
 less frequently installed in an LPWAN device, than they are in a
 general-purpose computer or smartphone.

https://datatracker.ietf.org/doc/html/rfc8376

Minaburo, et al. Expires May 31, 2020 [Page 4]

Internet-Draft LPWAN SCHC November 2019

 SCHC compression uses a Context (a set of Rules) in which information
 about header fields is stored. This Context is static: the values of
 the header fields and the actions to do compression/decompression do
 not change over time. This avoids the need for complex
 resynchronization mechanisms. Indeed, a return path may be more
 restricted/expensive, sometimes completely unavailable [RFC8376]. A
 compression protocol that relies on feedback is not compatible with
 the characteristics of such LPWANs.

 In most cases, a small Rule identifier is enough to represent the
 full IPv6/UDP headers. The SCHC header compression mechanism is
 independent of the specific LPWAN technology over which it is used.

 Furthermore, some LPWAN technologies do not provide a fragmentation
 functionality; to support the IPv6 MTU requirement of 1280 bytes
 [RFC8200], they require a fragmentation protocol at the adaptation
 layer below IPv6. Accordingly, this document defines an optional
 fragmentation/reassembly mechanism for LPWAN technologies to support
 the IPv6 MTU requirement.

 This document defines generic functionality and offers flexibility
 with regard to parameters settings and mechanism choices.
 Technology-specific settings are expected to be grouped into Profiles
 specified in other documents.

2. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. LPWAN Architecture

 LPWAN network architectures are similar among them, but each LPWAN
 technology names architecture elements differently. In this
 document, we use terminology from [RFC8376], which identifies the
 following entities in a typical LPWAN network (see Figure 1):

 o Devices (Dev) are the end-devices or hosts (e.g. sensors,
 actuators, etc.). There can be a very high density of devices per
 radio gateway.

 o The Radio Gateway (RGW) is the end point of the constrained link.

 o The Network Gateway (NGW) is the interconnection node between the
 Radio Gateway and the Internet.

https://datatracker.ietf.org/doc/html/rfc8376
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc8376

Minaburo, et al. Expires May 31, 2020 [Page 5]

Internet-Draft LPWAN SCHC November 2019

 o Application Server (App) is the end point of the application level
 protocol on the Internet side.

 () () () |
 () () () () / \ +---------+
 () () () () () () / \======| ^ | +-----------+
 () () () | | <--|--> | |Application|
 () () () () / \==========| v |=============| (App) |
 () () () / \ +---------+ +-----------+
 Dev Radio Gateways NGW

 Figure 1: LPWAN Architecture, simplified from that shown in RFC8376

4. Terminology

 This section defines the terminology and acronyms used in this
 document. It extends the terminology of [RFC8376].

 The SCHC acronym is pronounced like "sheek" in English (or "chic" in
 French). Therefore, this document writes "a SCHC Packet" instead of
 "an SCHC Packet".

 o App: LPWAN Application, as defined by [RFC8376]. An application
 sending/receiving packets to/from the Dev.

 o AppIID: Application Interface Identifier. The IID that identifies
 the application server interface.

 o Bi: Bidirectional. Characterizes a Field Descriptor that applies
 to headers of packets traveling in either direction (Up and Dw,
 see this glossary).

 o CDA: Compression/Decompression Action. Describes the pair of
 inverse actions that are performed at the compressor to compress a
 header field and at the decompressor to recover the original value
 of the header field.

 o Compression Residue. The bits that remain to be sent (beyond the
 Rule ID itself) after applying the SCHC compression.

 o Context: A set of Rules used to compress/decompress headers.

 o Dev: Device, as defined by [RFC8376].

 o DevIID: Device Interface Identifier. The IID that identifies the
 Dev interface.

https://datatracker.ietf.org/doc/html/rfc8376
https://datatracker.ietf.org/doc/html/rfc8376
https://datatracker.ietf.org/doc/html/rfc8376
https://datatracker.ietf.org/doc/html/rfc8376

Minaburo, et al. Expires May 31, 2020 [Page 6]

Internet-Draft LPWAN SCHC November 2019

 o DI: Direction Indicator. This field tells which direction of
 packet travel (Up, Dw or Bi) a Field Description applies to. This
 allows for asymmetric processing, using the same Rule.

 o Dw: Downlink direction for compression/decompression, from SCHC C/
 D in the network to SCHC C/D in the Dev.

 o Field Description. A tuple containing identifier, value, matching
 operator and actions to be applied to a field.

 o FID: Field Identifier. This identifies the protocol and field a
 Field Description applies to.

 o FL: Field Length is the length of the packet header field. It is
 expressed in bits for header fields of fixed lengths or as a type
 (e.g. variable, token length, ...) for field lengths that are
 unknown at the time of Rule creation. The length of a header
 field is defined in the corresponding protocol specification (such
 as IPv6 or UDP).

 o FP: when a Field is expected to appear multiple times in a header,
 Field Position specifies the occurrence this Field Description
 applies to (for example, first uri-path option, second uri-path,
 etc. in a CoAP header).

 o IID: Interface Identifier. See the IPv6 addressing architecture
 [RFC7136]

 o L2: Layer two. The immediate lower layer SCHC interfaces with.
 It is provided by an underlying LPWAN technology. It does not
 necessarily correspond to the OSI model definition of Layer 2.

 o L2 Word: this is the minimum subdivision of payload data that the
 L2 will carry. In most L2 technologies, the L2 Word is an octet.
 In bit-oriented radio technologies, the L2 Word might be a single
 bit. The L2 Word size is assumed to be constant over time for
 each device.

 o MO: Matching Operator. An operator used to match a value
 contained in a header field with a value contained in a Rule.

 o Padding (P). Extra bits that may be appended by SCHC to a data
 unit that it passes to the underlying Layer 2 for transmission.
 SCHC itself operates on bits, not bytes, and does not have any
 alignment prerequisite. See Section 9.

 o Profile: SCHC offers variations in the way it is operated, with a
 number of parameters listed in Appendix D. A Profile indicates a

https://datatracker.ietf.org/doc/html/rfc7136

Minaburo, et al. Expires May 31, 2020 [Page 7]

Internet-Draft LPWAN SCHC November 2019

 particular setting of all these parameters. Both ends of a SCHC
 communication must be provisioned with the same Profile
 information and with the same set of Rules before the
 communication starts, so that there is no ambiguity in how they
 expect to communicate.

 o Rule: A set of Field Descriptions.

 o Rule ID (Rule Identifier): An identifier for a Rule. SCHC C/D on
 both sides share the same Rule ID for a given packet. A set of
 Rule IDs are used to support SCHC F/R functionality.

 o SCHC C/D: SCHC Compressor/Decompressor. A mechanism used on both
 sides, at the Dev and at the network, to achieve Compression/
 Decompression of headers.

 o SCHC F/R: SCHC Fragmentation / Reassembly. A mechanism used on
 both sides, at the Dev and at the network, to achieve
 Fragmentation / Reassembly of SCHC Packets.

 o SCHC Packet: A packet (e.g. an IPv6 packet) whose header has been
 compressed as per the header compression mechanism defined in this
 document. If the header compression process is unable to actually
 compress the packet header, the packet with the uncompressed
 header is still called a SCHC Packet (in this case, a Rule ID is
 used to indicate that the packet header has not been compressed).
 See Section 7 for more details.

 o TV: Target value. A value contained in a Rule that will be
 matched with the value of a header field.

 o Up: Uplink direction for compression/decompression, from the Dev
 SCHC C/D to the network SCHC C/D.

 Additional terminology for the optional SCHC Fragmentation /
 Reassembly mechanism (SCHC F/R) is found in Section 8.2.

5. SCHC overview

 SCHC can be characterized as an adaptation layer between an upper
 layer (typically, IPv6) and an underlying layer (typically, an LPWAN
 technology). SCHC comprises two sublayers (i.e. the Compression
 sublayer and the Fragmentation sublayer), as shown in Figure 2.

Minaburo, et al. Expires May 31, 2020 [Page 8]

Internet-Draft LPWAN SCHC November 2019

 +----------------+
 | IPv6 |
 +- +----------------+
 | | Compression |
 SCHC < +----------------+
 | | Fragmentation |
 +- +----------------+
 |LPWAN technology|
 +----------------+

 Figure 2: Protocol stack comprising IPv6, SCHC and an LPWAN
 technology

 Before an upper layer packet (e.g. an IPv6 packet) is transmitted to
 the underlying layer, header compression is first attempted. The
 resulting packet is called a SCHC Packet, whether or not any
 compression is performed. If needed by the underlying layer, the
 optional SCHC Fragmentation MAY be applied to the SCHC Packet. The
 inverse operations take place at the receiver. This process is
 illustrated in Figure 3.

Minaburo, et al. Expires May 31, 2020 [Page 9]

Internet-Draft LPWAN SCHC November 2019

 A packet (e.g. an IPv6 packet)
 | ^
 v |
 +------------------+ +--------------------+
 | SCHC Compression | | SCHC Decompression |
 +------------------+ +--------------------+
 | ^
 | If no fragmentation (*) |
 +-------------- SCHC Packet -------------->|
 | |
 v |
 +--------------------+ +-----------------+
 | SCHC Fragmentation | | SCHC Reassembly |
 +--------------------+ +-----------------+
 | ^ | ^
 | | | |
 | +---------- SCHC ACK (+) -------------+ |
 | |
 +-------------- SCHC Fragments -------------------+

 Sender Receiver

 *: the decision to not use SCHC Fragmentation is left to each Profile.
 +: optional, depends on Fragmentation mode.

 Figure 3: SCHC operations at the Sender and the Receiver

5.1. SCHC Packet format

 The SCHC Packet is composed of the Compressed Header followed by the
 payload from the original packet (see Figure 4). The Compressed
 Header itself is composed of the Rule ID and a Compression Residue,
 which is the output of compressing the packet header with that Rule
 (see Section 7). The Compression Residue may be empty. Both the
 Rule ID and the Compression Residue potentially have a variable size,
 and are not necessarily a multiple of bytes in size.

 |------- Compressed Header -------|
 +---------------------------------+--------------------+
 | Rule ID | Compression Residue | Payload |
 +---------------------------------+--------------------+

 Figure 4: SCHC Packet

Minaburo, et al. Expires May 31, 2020 [Page 10]

Internet-Draft LPWAN SCHC November 2019

5.2. Functional mapping

 Figure 5 maps the functional elements of Figure 3 onto the LPWAN
 architecture elements of Figure 1.

 Dev App
 +----------------+ +----+ +----+ +----+
App1 App2 App3		App1		App2		App3
UDP		UDP		UDP		UDP
IPv6		IPv6		IPv6		IPv6
SCHC C/D and F/R						
 +--------+-------+ +----+ +----+ +----+
 | +---+ +---+ +----+ +----+ . . .
 +~ |RGW| === |NGW| == |SCHC| == |SCHC|...... Internet
 +---+ +---+ |F/R | |C/D |
 +----+ +----+

 Figure 5: Architecture

 SCHC C/D and SCHC F/R are located on both sides of the LPWAN
 transmission, hereafter called "the Dev side" and "the Network
 infrastructure side".

 The operation in the Uplink direction is as follows. The Device
 application uses IPv6 or IPv6/UDP protocols. Before sending the
 packets, the Dev compresses their headers using SCHC C/D and, if the
 SCHC Packet resulting from the compression needs to be fragmented by
 SCHC, SCHC F/R is performed (see Section 8). The resulting SCHC
 Fragments are sent to an LPWAN Radio Gateway (RGW) which forwards
 them to a Network Gateway (NGW). The NGW sends the data to a SCHC F/
 R for re-assembly (if needed) and then to the SCHC C/D for
 decompression. After decompression, the packet can be sent over the
 Internet to one or several LPWAN Application Servers (App).

 The SCHC F/R and C/D on the Network infrastructure side can be part
 of the NGW, or located in the Internet as long as a tunnel is
 established between them and the NGW. For some LPWAN technologies,
 it may be suitable to locate the SCHC F/R functionality nearer the
 NGW, in order to better deal with time constraints of such
 technologies.

 The SCHC C/Ds on both sides MUST share the same set of Rules. So
 MUST the SCHC F/Rs on both sides.

Minaburo, et al. Expires May 31, 2020 [Page 11]

Internet-Draft LPWAN SCHC November 2019

 The operation in the Downlink direction is similar to that in the
 Uplink direction, only reversing the order in which the architecture
 elements are traversed.

6. Rule ID

 Rule IDs identify the Rules used for Compression/Decompression or for
 Fragmentation/Reassembly.

 The scope of the Rule ID of a Compression/Decompression Rule is the
 link between the SCHC C/D in a given Dev and the corresponding SCHC
 C/D in the Network insfractructure side. The scope of the Rule ID of
 a Fragmentation/Reassembly Rule is the link between the SCHC F/R in a
 given Dev and the corresponding SCHC F/R in the Network
 insfractructure side. If such a link is bidirectional, the scope
 includes both directions.

 Inside their scopes, Rules for Compression/Decompression and Rules
 for Fragmentation/Reassembly share the same Rule ID space.

 The size of the Rule IDs is not specified in this document, as it is
 implementation-specific and can vary according to the LPWAN
 technology and the number of Rules, among others. It is defined in
 Profiles.

 The Rule IDs are used:

 o For SCHC C/D, to identify the Rule (i.e., the set of Field
 Descriptions) that is used to compress a packet header.

 * At least one Rule ID MUST be allocated to tagging packets for
 which SCHC compression was not possible (no matching
 compression Rule was found).

 o In SCHC F/R, to identify the specific mode and settings of F/R for
 one direction of traffic (Up or Dw).

 * When F/R is used for both communication directions, at least
 two Rule ID values are needed for F/R, one per direction of
 traffic. This is because F/R may entail control messages
 flowing in the reverse direction compared to data traffic.

7. Compression/Decompression

 Compression with SCHC is based on using a set of Rules, called the
 Context, to compress or decompress headers. SCHC avoids Context
 synchronization traffic, which consumes considerable bandwidth in
 other header compression mechanisms such as RoHC [RFC5795]. Since

https://datatracker.ietf.org/doc/html/rfc5795

Minaburo, et al. Expires May 31, 2020 [Page 12]

Internet-Draft LPWAN SCHC November 2019

 the content of packets is highly predictable in LPWAN networks,
 static Contexts may be stored beforehand. The Contexts MUST be
 stored at both ends, and they can be learned by a provisioning
 protocol or by out of band means, or they can be pre-provisioned.
 The way the Contexts are provisioned is out of the scope of this
 document.

7.1. SCHC C/D Rules

 The main idea of the SCHC compression scheme is to transmit the Rule
 ID to the other end instead of sending known field values. This Rule
 ID identifies a Rule that matches the original packet values. Hence,
 when a value is known by both ends, it is only necessary to send the
 corresponding Rule ID over the LPWAN network. The manner by which
 Rules are generated is out of the scope of this document. The Rules
 MAY be changed at run-time but the mechanism is out of scope of this
 document.

 The Context is a set of Rules. See Figure 6 for a high level,
 abstract representation of the Context. The formal specification of
 the representation of the Rules is outside the scope of this
 document.

 Each Rule itself contains a list of Field Descriptions composed of a
 Field Identifier (FID), a Field Length (FL), a Field Position (FP), a
 Direction Indicator (DI), a Target Value (TV), a Matching Operator
 (MO) and a Compression/Decompression Action (CDA).

 /---\
 | Rule N |
 /---\|
 | Rule i ||
 /---\||
(FID) Rule 1										
+-------+--+--+--+------------+-----------------+---------------+										
	Field 1	FL	FP	DI	Target Value	Matching Operator	Comp/Decomp Act			
+-------+--+--+--+------------+-----------------+---------------+										
	Field 2	FL	FP	DI	Target Value	Matching Operator	Comp/Decomp Act			
+-------+--+--+--+------------+-----------------+---------------+										
			
+-------+--+--+--+------------+-----------------+---------------+		/								
	Field N	FL	FP	DI	Target Value	Matching Operator	Comp/Decomp Act			
+-------+--+--+--+------------+-----------------+---------------+	/									
 \---/

 Figure 6: A Compression/Decompression Context

Minaburo, et al. Expires May 31, 2020 [Page 13]

Internet-Draft LPWAN SCHC November 2019

 A Rule does not describe how the compressor parses a packet header to
 find and identify each field (e.g. the IPv6 Source Address, the UDP
 Destination Port or a CoAP URI path option). It is assumed that
 there is a protocol parser alongside SCHC that is able to identify
 all the fields encountered in the headers to be compressed, and to
 label them with a Field ID. Rules only describe the compression/
 decompression behavior for each header field, after it has been
 identified.

 In a Rule, the Field Descriptions are listed in the order in which
 the fields appear in the packet header. The Field Descriptions
 describe the header fields with the following entries:

 o Field ID (FID) designates a protocol and field (e.g. UDP
 Destination Port), unambiguously among all protocols that a SCHC
 compressor processes. In the presence of protocol nesting, the
 Field ID also identifies the nesting.

 o Field Length (FL) represents the length of the field. It can be
 either a fixed value (in bits) if the length is known when the
 Rule is created or a type if the length is variable. The length
 of a header field is defined by its own protocol specification
 (e.g. IPv6 or UDP). If the length is variable, the type defines
 the process to compute the length and its unit (bits, bytes...).

 o Field Position (FP): most often, a field only occurs once in a
 packet header. However, some fields may occur multiple times. An
 example is the uri-path of CoAP. FP indicates which occurrence
 this Field Description applies to. If FP is not specified in the
 Field Description, it takes the default value of 1. The value 1
 designates the first occurrence. The value 0 is special. It
 means "don't care", see Section 7.3.

 o A Direction Indicator (DI) indicates the packet direction(s) this
 Field Description applies to. Three values are possible:

 * UPLINK (Up): this Field Description is only applicable to
 packets sent by the Dev to the App,

 * DOWNLINK (Dw): this Field Description is only applicable to
 packets sent from the App to the Dev,

 * BIDIRECTIONAL (Bi): this Field Description is applicable to
 packets traveling both Up and Dw.

 o Target Value (TV) is the value used to match against the packet
 header field. The Target Value can be a scalar value of any type
 (integer, strings, etc.) or a more complex structure (array, list,

Minaburo, et al. Expires May 31, 2020 [Page 14]

Internet-Draft LPWAN SCHC November 2019

 etc.). The types and representations are out of scope for this
 document.

 o Matching Operator (MO) is the operator used to match the Field
 Value and the Target Value. The Matching Operator may require
 some parameters. MO is only used during the compression phase.
 The set of MOs defined in this document can be found in

Section 7.4.

 o Compression Decompression Action (CDA) describes the compression
 and decompression processes to be performed after the MO is
 applied. Some CDAs might use parameter values for their
 operation. CDAs are used in both the compression and the
 decompression functions. The set of CDAs defined in this document
 can be found in Section 7.5.

7.2. Rule ID for SCHC C/D

 Rule IDs are sent by the compression function in one side and are
 received for the decompression function in the other side. In SCHC
 C/D, the Rule IDs are specific to the Context related to one Dev.
 Hence, multiple Dev instances, which refer to different header
 compression Contexts, MAY reuse the same Rule ID for different Rules.
 On the Network infrastructure side, in order to identify the correct
 Rule to be applied, the SCHC Decompressor needs to associate the Rule
 ID with the Dev identifier. Similarly, the SCHC Compressor on the
 Network infrastructure side first identifies the destination Dev
 before looking for the appropriate compression Rule (and associated
 Rule ID) in the Context of that Dev.

7.3. Packet processing

 The compression/decompression process follows several phases:

 o Compression Rule selection: the general idea is to browse the Rule
 set to find a Rule that has a matching Field Descriptor (given the
 DI and FP) for all and only those header fields that appear in the
 packet being compressed. The detailed algorithm is the following:

 * The first step is to check the Field Identifiers (FID). If any
 header field of the packet being examined cannot be matched
 with a Field Description with the correct FID, the Rule MUST be
 disregarded. If any Field Description in the Rule has a FID
 that cannot be matched to one of the header fields of the
 packet being examined, the Rule MUST be disregarded.

 * The next step is to match the Field Descriptions by their
 direction, using the Direction Indicator (DI). If any field of

Minaburo, et al. Expires May 31, 2020 [Page 15]

Internet-Draft LPWAN SCHC November 2019

 the packet header cannot be matched with a Field Description
 with the correct FID and DI, the Rule MUST be disregarded.

 * Then the Field Descriptions are further selected according to
 Field Position (FP). If any field of the packet header cannot
 be matched with a Field Description with the correct FID, DI
 and FP, the Rule MUST be disregarded.

 The value 0 for FP means "don't care", i.e. the comparison of
 this Field Description's FP with the position of the field of
 the packet header being compressed returns True, whatever that
 position. FP=0 can be useful to build compression Rules for
 protocols headers in which some fields order is irrelevant. An
 example could be uri-queries in CoAP. Care needs to be
 exercised when writing Rules containing FP=0 values. Indeed,
 it may result in decompressed packets having fields ordered
 differently compared to the original packet.

 * Once each header field has been associated with a Field
 Description with matching FID, DI and FP, each packet field's
 value is then compared to the corresponding Target Value (TV)
 stored in the Rule for that specific field, using the matching
 operator (MO). If every field in the packet header satisfies
 the corresponding matching operators (MO) of a Rule (i.e. all
 MO results are True), that Rule is valid for use to compress
 the header. Otherwise, the Rule MUST be disregarded.

 This specification does not prevent multiple Rules from
 matching the above steps and therefore being valid for use.
 Whether multiple valid Rules are allowed or not and what to do
 in the case of multiple valid Rules are left to the
 implementation. As long as the same Rule set is installed at
 both ends, this degree of freedom does not constitute an
 interoperability issue.

 * If no valid compression Rule is found, then the header MUST be
 sent in its entirety using the Rule ID of the "default" Rule
 dedicated to this purpose. Sending an uncompressed header is
 likely to require SCHC F/R.

 o Compression: if a valid Rule was found, each field of the header
 is compressed according to the Compression/Decompression Actions
 (CDAs) of the Rule. The fields are compressed in the order that
 the Field Descriptions appear in the Rule. The compression of
 each field results in a residue, which may be empty. The
 Compression Residue for the packet header is the concatenation of
 the non-empty residues for each field of the header, in the order
 the Field Descriptions appear in the Rule. The order in which the

Minaburo, et al. Expires May 31, 2020 [Page 16]

Internet-Draft LPWAN SCHC November 2019

 Field Descriptions appear in the Rule is therefore semantically
 important.

 |------------------- Compression Residue -------------------|
 +-----------------+-----------------+-----+-----------------+
 | field 1 residue | field 2 residue | ... | field N residue |
 +-----------------+-----------------+-----+-----------------+

 Figure 7: Compression Residue structure

 o Sending: The Rule ID is sent to the other end followed by the
 Compression Residue (which could be empty) or the uncompressed
 header, and directly followed by the payload (see Figure 4). The
 way the Rule ID is sent will be specified in the Profile and is
 out of the scope of the present document. For example, it could
 be included in an L2 header or sent as part of the L2 payload.

 o Decompression: when decompressing, on the Network infrastructure
 side the SCHC C/D needs to find the correct Rule based on the L2
 address of the Dev; in this way, it can use the DevIID and the
 Rule ID. On the Dev side, only the Rule ID is needed to identify
 the correct Rule since the Dev typically only holds Rules that
 apply to itself.

 This Rule describes the compressed header format. From this, the
 decompressor determines the order of the residues, the fixed-sized
 or variable-sized nature of each residue (see Section 7.5.2), and
 the size of the fixed-sized residues.

 From the received compressed header, it can therefore retrieve all
 the residue values and associate them to the corresponding header
 fields.

 For each field in the header, the receiver applies the CDA action
 associated to that field in order to reconstruct the original
 header field value. The CDA application order can be different
 from the order in which the fields are listed in the Rule. In
 particular, Compute-* MUST be applied after the application of the
 CDAs of all the fields it computes on.

7.4. Matching operators

 Matching Operators (MOs) are functions used by both SCHC C/D
 endpoints. They are not typed and can be applied to integer, string
 or any other data type. The result of the operation can either be
 True or False. MOs are defined as follows:

Minaburo, et al. Expires May 31, 2020 [Page 17]

Internet-Draft LPWAN SCHC November 2019

 o equal: The match result is True if the field value in the packet
 matches the TV.

 o ignore: No matching is attempted between the field value in the
 packet and the TV in the Rule. The result is always true.

 o MSB(x): A match is obtained if the most significant (leftmost) x
 bits of the packet header field value are equal to the TV in the
 Rule. The x parameter of the MSB MO indicates how many bits are
 involved in the comparison. If the FL is described as variable,
 the x parameter must be a multiple of the FL unit. For example, x
 must be multiple of 8 if the unit of the variable length is bytes.

 o match-mapping: With match-mapping, the Target Value is a list of
 values. Each value of the list is identified by an index.
 Compression is achieved by sending the index instead of the
 original header field value. This operator matches if the header
 field value is equal to one of the values in the target list.

7.5. Compression Decompression Actions (CDA)

 The Compression Decompression Action (CDA) describes the actions
 taken during the compression of header fields and the inverse action
 taken by the decompressor to restore the original value.

 +--------------+-------------+-------------------------------+
 | Action | Compression | Decompression |
 +--------------+-------------+-------------------------------+
 | | | |
 | not-sent | elided | use TV stored in Rule |
 | value-sent | send | use received value |
 | mapping-sent | send index | retrieve value from TV list |
 | LSB | send LSB | concat. TV and received value |
 | compute-* | elided | recompute at decompressor |
 | DevIID | elided | build IID from L2 Dev addr |
 | AppIID | elided | build IID from L2 App addr |
 +--------------+-------------+-------------------------------+

 Table 1: Compression and Decompression Actions

 Table 1 summarizes the basic actions that can be used to compress and
 decompress a field. The first column shows the action's name. The
 second and third columns show the compression and decompression
 behaviors for each action.

Minaburo, et al. Expires May 31, 2020 [Page 18]

Internet-Draft LPWAN SCHC November 2019

7.5.1. processing fixed-length fields

 If the field is identified in the Field Description as being of fixed
 length, then applying the CDA to compress this field results in a
 fixed amount of bits. The residue for that field is simply the bits
 resulting from applying the CDA to the field. This value may be
 empty (e.g. not-sent CDA), in which case the field residue is absent
 from the Compression Residue.

 |- field residue -|
 +-----------------+
 | value |
 +-----------------+

 Figure 8: fixed sized field residue structure

7.5.2. processing variable-length fields

 If the field is identified in the Field Description as being of
 variable length, then applying the CDA to compress this field may
 result in a value of fixed size (e.g. not-sent or mapping-sent) or of
 variable size (e.g. value-sent or LSB). In the latter case, the
 residue for that field is the bits that result from applying the CDA
 to the field, preceded with the size of the value. The most
 significant bit of the size is stored to the left (leftmost bit of
 the residue field).

 |--- field residue ---|
 +-------+-------------+
 | size | value |
 +-------+-------------+

 Figure 9: variable sized field residue structure

 The size (using the unit defined in the FL) is encoded on 4, 12 or 28
 bits as follows:

 o If the size is between 0 and 14, it is encoded as a 4 bits
 unsigned integer.

 o Sizes between 15 and 254 are encoded as 0b1111 followed by the 8
 bits unsigned integer.

 o Larger sizes are encoded as 0xfff followed by the 16 bits unsigned
 integer.

Minaburo, et al. Expires May 31, 2020 [Page 19]

Internet-Draft LPWAN SCHC November 2019

 If the field is identified in the Field Description as being of
 variable length and this field is not present in the packet header
 being compressed, size 0 MUST be sent to denote its absence.

7.5.3. not-sent CDA

 The not-sent action can be used when the field value is specified in
 a Rule and therefore known by both the Compressor and the
 Decompressor. This action SHOULD be used with the "equal" MO. If MO
 is "ignore", there is a risk to have a decompressed field value
 different from the original field that was compressed.

 The compressor does not send any residue for a field on which not-
 sent compression is applied.

 The decompressor restores the field value with the Target Value
 stored in the matched Rule identified by the received Rule ID.

7.5.4. value-sent CDA

 The value-sent action can be used when the field value is not known
 by both the Compressor and the Decompressor. The field is sent in
 its entirety, using the same bit order as in the original packet
 header.

 If this action is performed on a variable length field, the size of
 the residue value (using the units defined in FL) MUST be sent as
 described in Section 7.5.2.

 This action is generally used with the "ignore" MO.

7.5.5. mapping-sent CDA

 The mapping-sent action is used to send an index (the index into the
 Target Value list of values) instead of the original value. This
 action is used together with the "match-mapping" MO.

 On the compressor side, the match-mapping Matching Operator searches
 the TV for a match with the header field value. The mapping-sent CDA
 then sends the corresponding index as the field residue. The most
 significant bit of the index is stored to the left (leftmost bit of
 the residue field).

 On the decompressor side, the CDA uses the received index to restore
 the field value by looking up the list in the TV.

 The number of bits sent is the minimal size for coding all the
 possible indices.

Minaburo, et al. Expires May 31, 2020 [Page 20]

Internet-Draft LPWAN SCHC November 2019

 The first element in the list MUST be represented by index value 0,
 and successive elements in the list MUST have indices incremented by
 1.

7.5.6. LSB CDA

 The LSB action is used together with the "MSB(x)" MO to avoid sending
 the most significant part of the packet field if that part is already
 known by the receiving end.

 The compressor sends the Least Significant Bits as the field residue
 value. The number of bits sent is the original header field length
 minus the length specified in the MSB(x) MO. The bits appear in the
 residue in the same bit order as in the original packet header.

 The decompressor concatenates the x most significant bits of Target
 Value and the received residue value.

 If this action is performed on a variable length field, the size of
 the residue value (using the units defined in FL) MUST be sent as
 described in Section 7.5.2.

7.5.7. DevIID, AppIID CDA

 These actions are used to process respectively the Dev and the App
 Interface Identifiers (DevIID and AppIID) of the IPv6 addresses.
 AppIID CDA is less common since most current LPWAN technologies
 frames contain a single L2 address, which is the Dev's address.

 The IID value MAY be computed from the Device ID present in the L2
 header, or from some other stable identifier. The computation is
 specific to each Profile and MAY depend on the Device ID size.

 In the downlink direction (Dw), at the compressor, the DevIID CDA may
 be used to generate the L2 addresses on the LPWAN, based on the
 packet's Destination Address.

7.5.8. Compute-*

 Some fields can be elided at the compressor and recomputed locally at
 the decompressor.

 Because the field is uniquely identified by its Field ID (e.g. UDP
 length), the relevant protocol specification unambiguously defines
 the algorithm for such computation.

 Examples of fields that know how to recompute themselves are UDP
 length, IPv6 length and UDP checksum.

Minaburo, et al. Expires May 31, 2020 [Page 21]

Internet-Draft LPWAN SCHC November 2019

8. Fragmentation/Reassembly

8.1. Overview

 In LPWAN technologies, the L2 MTU typically ranges from tens to
 hundreds of bytes. Some of these technologies do not have an
 internal fragmentation/reassembly mechanism.

 The optional SCHC Fragmentation/Reassembly (SCHC F/R) functionality
 enables such LPWAN technologies to comply with the IPv6 MTU
 requirement of 1280 bytes [RFC8200]. It is OPTIONAL to implement per
 this specification, but Profiles may specify that it is REQUIRED.

 This specification includes several SCHC F/R modes, which allow for a
 range of reliability options such as optional SCHC Fragment
 retransmission. More modes may be defined in the future.

 The same SCHC F/R mode MUST be used for all SCHC Fragments of a given
 SCHC Packet. This document does not specify which mode(s) must be
 implemented and used over a specific LPWAN technology. That
 information will be given in Profiles.

 SCHC allows transmitting non-fragmented SCHC Packet concurrently with
 fragmented SCHC Packets. In addition, SCHC F/R provides protocol
 elements that allow transmitting several fragmented SCHC Packets
 concurrently, i.e. interleaving the transmission of fragments from
 different fragmented SCHC Packets. A Profile MAY restrict the latter
 behavior.

 The L2 Word size (see Section 4) determines the encoding of some
 messages. SCHC F/R usually generates SCHC Fragments and SCHC ACKs
 that are multiples of L2 Words.

8.2. SCHC F/R Protocol Elements

 This subsection describes the different elements that are used to
 enable the SCHC F/R functionality defined in this document. These
 elements include the SCHC F/R messages, tiles, windows, bitmaps,
 counters, timers and header fields.

 The elements are described here in a generic manner. Their
 application to each SCHC F/R mode is found in Section 8.4.

8.2.1. Messages

 SCHC F/R defines the following messages:

https://datatracker.ietf.org/doc/html/rfc8200

Minaburo, et al. Expires May 31, 2020 [Page 22]

Internet-Draft LPWAN SCHC November 2019

 o SCHC Fragment: A message that carries part of a SCHC Packet from
 the sender to the receiver.

 o SCHC ACK: An acknowledgement for fragmentation, by the receiver to
 the sender. This message is used to indicate whether or not the
 reception of pieces of, or the whole of the fragmented SCHC
 Packet, was successful.

 o SCHC ACK REQ: A request by the sender for a SCHC ACK from the
 receiver.

 o SCHC Sender-Abort: A message by the sender telling the receiver
 that it has aborted the transmission of a fragmented SCHC Packet.

 o SCHC Receiver-Abort: A message by the receiver to tell the sender
 to abort the transmission of a fragmented SCHC Packet.

 The format of these messages is provided in Section 8.3.

8.2.2. Tiles, Windows, Bitmaps, Timers, Counters

8.2.2.1. Tiles

 The SCHC Packet is fragmented into pieces, hereafter called tiles.
 The tiles MUST be non-empty and pairwise disjoint. Their union MUST
 be equal to the SCHC Packet.

 See Figure 10 for an example.

 SCHC Packet
 +----+--+-----+---+----+-+---+---+-----+...-----+----+---+------+
Tiles | | | | | | | | | | | | | |
 +----+--+-----+---+----+-+---+---+-----+...-----+----+---+------+

 Figure 10: a SCHC Packet fragmented in tiles

 Modes (see Section 8.4) MAY place additional constraints on tile
 sizes.

 Each SCHC Fragment message carries at least one tile in its Payload,
 if the Payload field is present.

8.2.2.2. Windows

 Some SCHC F/R modes may handle successive tiles in groups, called
 windows.

Minaburo, et al. Expires May 31, 2020 [Page 23]

Internet-Draft LPWAN SCHC November 2019

 If windows are used

 o all the windows of a SCHC Packet, except the last one, MUST
 contain the same number of tiles. This number is WINDOW_SIZE.

 o WINDOW_SIZE MUST be specified in a Profile.

 o the windows are numbered.

 o their numbers MUST increment by 1 from 0 upward, from the start of
 the SCHC Packet to its end.

 o the last window MUST contain WINDOW_SIZE tiles or less.

 o tiles are numbered within each window.

 o the tile indices MUST decrement by 1 from WINDOW_SIZE - 1
 downward, looking from the start of the SCHC Packet toward its
 end.

 o each tile of a SCHC Packet is therefore uniquely identified by a
 window number and a tile index within this window.

 See Figure 11 for an example.

 +---...-------------+
 | SCHC Packet |
 +---...-------------+

Tile # | 4 | 3 | 2 | 1 | 0 | 4 | 3 | 2 | 1 | 0 | 4 | | 0 | 4 | 3 |
Window # |-------- 0 --------|-------- 1 --------|- 2 ... 27 -|-- 28 -|

 Figure 11: a SCHC Packet fragmented in tiles grouped in 29 windows,
 with WINDOW_SIZE = 5

Appendix E discusses the benefits of selecting one among multiple
 window sizes depending on the size of the SCHC Packet to be
 fragmented.

 When windows are used

 o Bitmaps (see Section 8.2.2.3) MAY be sent back by the receiver to
 the sender in a SCHC ACK message.

 o A Bitmap corresponds to exactly one Window.

Minaburo, et al. Expires May 31, 2020 [Page 24]

Internet-Draft LPWAN SCHC November 2019

8.2.2.3. Bitmaps

 Each bit in the Bitmap for a window corresponds to a tile in the
 window. Each Bitmap has therefore WINDOW_SIZE bits. The bit at the
 left-most position corresponds to the tile numbered WINDOW_SIZE - 1.
 Consecutive bits, going right, correspond to sequentially decreasing
 tile indices. In Bitmaps for windows that are not the last one of a
 SCHC Packet, the bit at the right-most position corresponds to the
 tile numbered 0. In the Bitmap for the last window, the bit at the
 right-most position corresponds either to the tile numbered 0 or to a
 tile that is sent/received as "the last one of the SCHC Packet"
 without explicitly stating its number (see Section 8.3.1.2).

 At the receiver

 o a bit set to 1 in the Bitmap indicates that a tile associated with
 that bit position has been correctly received for that window.

 o a bit set to 0 in the Bitmap indicates that there has been no tile
 correctly received, associated with that bit position, for that
 window. Possible reasons include that the tile was not sent at
 all, not received, or received with errors.

8.2.2.4. Timers and counters

 Some SCHC F/R modes can use the following timers and counters

 o Inactivity Timer: a SCHC Fragment receiver uses this timer to
 abort waiting for a SCHC F/R message.

 o Retransmission Timer: a SCHC Fragment sender uses this timer to
 abort waiting for an expected SCHC ACK.

 o Attempts: this counter counts the requests for SCHC ACKs, up to
 MAX_ACK_REQUESTS.

8.2.3. Integrity Checking

 The integrity of the fragmentation-reassembly process of a SCHC
 Packet MUST be checked at the receive end. By default, integrity
 checking is performed by computing a Reassembly Check Sequence (RCS)
 based on the SCHC Packet at the sender side and transmitting it to
 the receiver for comparison with the RCS locally computed after
 reassembly.

 The RCS supports UDP checksum elision by SCHC C/D (see
Section 10.11).

Minaburo, et al. Expires May 31, 2020 [Page 25]

Internet-Draft LPWAN SCHC November 2019

 The CRC32 polynomial 0xEDB88320 (i.e. the reversed polynomial
 representation, which is used e.g. in the Ethernet standard
 [ETHERNET]) is RECOMMENDED as the default algorithm for computing the
 RCS. Nevertheless, other RCS lengths or other algorithms MAY be
 required by the Profile.

 The RCS MUST be computed on the full SCHC Packet concatenated with
 the padding bits, if any, of the SCHC Fragment carrying the last
 tile. The rationale is that the SCHC reassembler has no way of
 knowing the boundary between the last tile and the padding bits.
 Indeed, this requires decompressing the SCHC Packet, which is out of
 the scope of the SCHC reassembler.

 Note that the concatenation of the complete SCHC Packet and any
 padding bits, if present, of the last SCHC Fragment does not
 generally constitute an integer number of bytes. For implementers to
 be able to use byte-oriented CRC libraries, it is RECOMMENDED that
 the concatenation of the complete SCHC Packet and any last fragment
 padding bits be zero-extended to the next byte boundary and that the
 RCS be computed on that byte array. A Profile MAY specify another
 behavior.

8.2.4. Header Fields

 The SCHC F/R messages contain the following fields (see the formats
 in Section 8.3):

 o Rule ID: this field is present in all the SCHC F/R messages. It
 is used to identify

 * that a SCHC F/R message is being carried, as opposed to an
 unfragmented SCHC Packet,

 * which SCHC F/R mode is used

 * in case this mode uses windows, what the value of WINDOW_SIZE
 is,

 * what other optional fields are present and what the field sizes
 are.

 The Rule ID tells apart a non-fragmented SCHC Packet from SCHC
 Fragments. It will also tell apart SCHC Fragments of fragmented
 SCHC Packets that use different SCHC F/R modes or different
 parameters. Interleaved transmission of these is therefore
 possible.

Minaburo, et al. Expires May 31, 2020 [Page 26]

Internet-Draft LPWAN SCHC November 2019

 All SCHC F/R messages pertaining to the same SCHC Packet MUST bear
 the same Rule ID.

 o Datagram Tag (DTag). This field allows differentiating SCHC F/R
 messages belonging to different SCHC Packets that may be using the
 same Rule ID simultaneously. Hence, it allows interleaving
 fragments of a new SCHC Packet with fragments of a previous SCHC
 Packet under the same Rule ID.

 The size of the DTag field (called T, in bits) is defined by each
 Profile for each Rule ID. When T is 0, the DTag field does not
 appear in the SCHC F/R messages and the DTag value is defined as
 0.

 When T is 0, there can be no more than one fragmented SCHC Packet
 in transit for each fragmentation Rule ID.

 If T is not 0, DTag

 * MUST be set to the same value for all the SCHC F/R messages
 related to the same fragmented SCHC Packet,

 * MUST be set to different values for SCHC F/R messages related
 to different SCHC Packets that are being fragmented under the
 same Rule ID, and whose transmission may overlap.

 o W: The W field is optional. It is only present if windows are
 used. Its presence and size (called M, in bits) is defined by
 each SCHC F/R mode and each Profile for each Rule ID.

 This field carries information pertaining to the window a SCHC F/R
 message relates to. If present, W MUST carry the same value for
 all the SCHC F/R messages related to the same window. Depending
 on the mode and Profile, W may carry the full window number, or
 just the least significant bit or any other partial representation
 of the window number.

 o Fragment Compressed Number (FCN). The FCN field is present in the
 SCHC Fragment Header. Its size (called N, in bits) is defined by
 each Profile for each Rule ID.

 This field conveys information about the progress in the sequence
 of tiles being transmitted by SCHC Fragment messages. For
 example, it can contain a partial, efficient representation of a
 larger-sized tile index. The description of the exact use of the
 FCN field is left to each SCHC F/R mode. However, two values are
 reserved for special purposes. They help control the SCHC F/R
 process:

Minaburo, et al. Expires May 31, 2020 [Page 27]

Internet-Draft LPWAN SCHC November 2019

 * The FCN value with all the bits equal to 1 (called All-1)
 signals that the very last tile of a SCHC Packet has been
 transmitted. By extension, if windows are used, the last
 window of a packet is called the All-1 window.

 * If windows are used, the FCN value with all the bits equal to 0
 (called All-0) signals the last tile of a window that is not
 the last one of the SCHC packet. By extension, such a window
 is called an All-0 window.

 o Reassembly Check Sequence (RCS). This field only appears in the
 All-1 SCHC Fragments. Its size (called U, in bits) is defined by
 each Profile for each Rule ID.

 See Section 8.2.3 for the RCS default size, default polynomial and
 details on RCS computation.

 o C (integrity Check): C is a 1-bit field. This field is used in
 the SCHC ACK message to report on the reassembled SCHC Packet
 integrity check (see Section 8.2.3).

 A value of 1 tells that the integrity check was performed and is
 successful. A value of 0 tells that the integrity check was not
 performed, or that is was a failure.

 o Compressed Bitmap. The Compressed Bitmap is used together with
 windows and Bitmaps (see Section 8.2.2.3). Its presence and size
 is defined for each F/R mode for each Rule ID.

 This field appears in the SCHC ACK message to report on the
 receiver Bitmap (see Section 8.3.2.1).

8.3. SCHC F/R Message Formats

 This section defines the SCHC Fragment formats, the SCHC ACK format,
 the SCHC ACK REQ format and the SCHC Abort formats.

8.3.1. SCHC Fragment format

 A SCHC Fragment conforms to the general format shown in Figure 12.
 It comprises a SCHC Fragment Header and a SCHC Fragment Payload. The
 SCHC Fragment Payload carries one or several tile(s).

 +-----------------+-----------------------+~~~~~~~~~~~~~~~~~~~~~
 | Fragment Header | Fragment Payload | padding (as needed)
 +-----------------+-----------------------+~~~~~~~~~~~~~~~~~~~~~

 Figure 12: SCHC Fragment general format

Minaburo, et al. Expires May 31, 2020 [Page 28]

Internet-Draft LPWAN SCHC November 2019

8.3.1.1. Regular SCHC Fragment

 The Regular SCHC Fragment format is shown in Figure 13. Regular SCHC
 Fragments are generally used to carry tiles that are not the last one
 of a SCHC Packet. The DTag field and the W field are OPTIONAL, their
 presence is specified by each mode and Profile.

 |--- SCHC Fragment Header ----|
 |-- T --|-M-|-- N --|
 +-- ... --+- ... -+---+- ... -+--------...-------+~~~~~~~~~~~~~~~~~~~~~
 | Rule ID | DTag | W | FCN | Fragment Payload | padding (as needed)
 +-- ... --+- ... -+---+- ... -+--------...-------+~~~~~~~~~~~~~~~~~~~~~

 Figure 13: Detailed Header Format for Regular SCHC Fragments

 The FCN field MUST NOT contain all bits set to 1.

 The Fragment Payload of a SCHC Fragment with FCN equal to 0 (called
 an All-0 SCHC Fragment) MUST be distinguishable by size from a SCHC
 ACK REQ message (see Section 8.3.3) that has the same T, M and N
 values, even in the presence of padding. This condition is met if
 the Payload is at least the size of an L2 Word. This condition is
 also met if the SCHC Fragment Header is a multiple of L2 Words.

8.3.1.2. All-1 SCHC Fragment

 The All-1 SCHC Fragment format is shown in Figure 14. The sender
 uses the All-1 SCHC Fragment format for the message that completes
 the emission of a fragmented SCHC Packet. The DTag field, the W
 field, the RCS field and the Payload are OPTIONAL, their presence is
 specified by each mode and Profile. At least one of RCS field or
 Payload MUST be present. The FCN field is all ones.

|-------- SCHC Fragment Header -------|
 |-- T --|-M-|-- N --|-- U --|
+-- ... --+- ... -+---+- ... -+- ... -+------...-----+~~~~~~~~~~~~~~~~~~
| Rule ID | DTag | W | 11..1 | RCS | Frag Payload | pad. (as needed)
+-- ... --+- ... -+---+- ... -+- ... -+------...-----+~~~~~~~~~~~~~~~~~~
 (FCN)

 Figure 14: Detailed Header Format for the All-1 SCHC Fragment

 The All-1 SCHC Fragment message MUST be distinguishable by size from
 a SCHC Sender-Abort message (see Section 8.3.4) that has the same T,
 M and N values, even in the presence of padding. This condition is
 met if the RCS is present and is at least the size of an L2 Word, or
 if the Payload is present and at least the size an L2 Word. This

Minaburo, et al. Expires May 31, 2020 [Page 29]

Internet-Draft LPWAN SCHC November 2019

 condition is also met if the SCHC Sender-Abort Header is a multiple
 of L2 Words.

8.3.2. SCHC ACK format

 The SCHC ACK message is shown in Figure 15. The DTag field and the W
 field are OPTIONAL, their presence is specified by each mode and
 Profile. The Compressed Bitmap field MUST be present in SCHC F/R
 modes that use windows, and MUST NOT be present in other modes.

 |---- SCHC ACK Header ----|
 |-- T --|-M-| 1 |
 +--- ... -+- ... -+---+---+~~~~~~~~~~~~~~~~~~
 | Rule ID | DTag | W |C=1| padding as needed (success)
 +--- ... -+- ... -+---+---+~~~~~~~~~~~~~~~~~~

 +--- ... -+- ... -+---+---+------ ... ------+~~~~~~~~~~~~~~~
 | Rule ID | DTag | W |C=0|Compressed Bitmap| pad. as needed (failure)
 +--- ... -+- ... -+---+---+------ ... ------+~~~~~~~~~~~~~~~

 Figure 15: Format of the SCHC ACK message

 The SCHC ACK Header contains a C bit (see Section 8.2.4).

 If the C bit is set to 1 (integrity check successful), no Bitmap is
 carried.

 If the C bit is set to 0 (integrity check not performed or failed)
 and if windows are used, a Compressed Bitmap for the window referred
 to by the W field is transmitted as specified in Section 8.3.2.1.

8.3.2.1. Bitmap Compression

 For transmission, the Compressed Bitmap in the SCHC ACK message is
 defined by the following algorithm (see Figure 16 for a follow-along
 example):

 o Build a temporary SCHC ACK message that contains the Header
 followed by the original Bitmap (see Section 8.2.2.3 for a
 description of Bitmaps).

 o Position scissors at the end of the Bitmap, after its last bit.

 o While the bit on the left of the scissors is 1 and belongs to the
 Bitmap, keep moving left, then stop. When this is done,

Minaburo, et al. Expires May 31, 2020 [Page 30]

Internet-Draft LPWAN SCHC November 2019

 o While the scissors are not on an L2 Word boundary of the SCHC ACK
 message and there is a Bitmap bit on the right of the scissors,
 keep moving right, then stop.

 o At this point, cut and drop off any bits to the right of the
 scissors

 When one or more bits have effectively been dropped off as a result
 of the above algorithm, the SCHC ACK message is a multiple of L2
 Words, no padding bits will be appended.

 Because the SCHC Fragment sender knows the size of the original
 Bitmap, it can reconstruct the original Bitmap from the Compressed
 Bitmap received in the SCH ACK message.

 Figure 16 shows an example where L2 Words are actually bytes and
 where the original Bitmap contains 17 bits, the last 15 of which are
 all set to 1.

 |---- SCHC ACK Header ----|-------- Bitmap --------|
 |-- T --|-M-| 1 |
 +--- ... -+- ... -+---+---+---------------------------------+
 | Rule ID | DTag | W |C=0|1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1|
 +--- ... -+- ... -+---+---+---------------------------------+
 next L2 Word boundary ->|

 Figure 16: SCHC ACK Header plus uncompressed Bitmap

 Figure 17 shows that the last 14 bits are not sent.

 |---- SCHC ACK Header ----|CpBmp|
 |-- T --|-M-| 1 |
 +--- ... -+- ... -+---+---+-----+
 | Rule ID | DTag | W |C=0|1 0 1|
 +--- ... -+- ... -+---+---+-----+
 next L2 Word boundary ->|

 Figure 17: Resulting SCHC ACK message with Compressed Bitmap

 Figure 18 shows an example of a SCHC ACK with tile indices ranging
 from 6 down to 0, where the Bitmap indicates that the second and the
 fourth tile of the window have not been correctly received.

Minaburo, et al. Expires May 31, 2020 [Page 31]

Internet-Draft LPWAN SCHC November 2019

 |---- SCHC ACK Header ----|--- Bitmap --|
 |-- T --|-M-| 1 |6 5 4 3 2 1 0| (tile #)
 +---------+-------+---+---+-------------+
 | Rule ID | DTag | W |C=0|1 0 1 0 1 1 1| uncompressed Bitmap
 +---------+-------+---+---+-------------+
 next L2 Word boundary ->|<-- L2 Word -->|

 +---------+-------+---+---+-------------+~~~+
 | Rule ID | DTag | W |C=0|1 0 1 0 1 1 1|Pad| transmitted SCHC ACK
 +---------+-------+---+---+-------------+~~~+
 next L2 Word boundary ->|<-- L2 Word -->|

 Figure 18: Example of a SCHC ACK message, missing tiles

 Figure 19 shows an example of a SCHC ACK with FCN ranging from 6 down
 to 0, where integrity check has not been performed or has failed and
 the Bitmap indicates that there is no missing tile in that window.

 |---- SCHC ACK Header ----|--- Bitmap --|
 |-- T --|-M-| 1 |6 5 4 3 2 1 0| (tile #)
 +---------+-------+---+---+-------------+
 | Rule ID | DTag | W |C=0|1 1 1 1 1 1 1| with uncompressed Bitmap
 +---------+-------+---+---+-------------+
 next L2 Word boundary ->|

 +--- ... -+- ... -+---+---+-+
 | Rule ID | DTag | W |C=0|1| transmitted SCHC ACK
 +--- ... -+- ... -+---+---+-+
 next L2 Word boundary ->|

 Figure 19: Example of a SCHC ACK message, no missing tile

8.3.3. SCHC ACK REQ format

 The SCHC ACK REQ is used by a sender to request a SCHC ACK from the
 receiver. Its format is shown in Figure 20. The DTag field and the
 W field are OPTIONAL, their presence is specified by each mode and
 Profile. The FCN field is all zero.

 |---- SCHC ACK REQ Header ----|
 |-- T --|-M-|-- N --|
 +-- ... --+- ... -+---+- ... -+~~~~~~~~~~~~~~~~~~~~~
 | Rule ID | DTag | W | 0..0 | padding (as needed) (no payload)
 +-- ... --+- ... -+---+- ... -+~~~~~~~~~~~~~~~~~~~~~

 Figure 20: SCHC ACK REQ format

Minaburo, et al. Expires May 31, 2020 [Page 32]

Internet-Draft LPWAN SCHC November 2019

8.3.4. SCHC Sender-Abort format

 When a SCHC Fragment sender needs to abort an on-going fragmented
 SCHC Packet transmission, it sends a SCHC Sender-Abort message to the
 SCHC Fragment receiver.

 The SCHC Sender-Abort format is shown in Figure 21. The DTag field
 and the W field are OPTIONAL, their presence is specified by each
 mode and Profile. The FCN field is all ones.

 |---- Sender-Abort Header ----|
 |-- T --|-M-|-- N --|
 +-- ... --+- ... -+---+- ... -+~~~~~~~~~~~~~~~~~~~~~
 | Rule ID | DTag | W | 11..1 | padding (as needed)
 +-- ... --+- ... -+---+- ... -+~~~~~~~~~~~~~~~~~~~~~

 Figure 21: SCHC Sender-Abort format

 If the W field is present,

 o the fragment sender MUST set it to all ones. Other values are
 RESERVED.

 o the fragment receiver MUST check its value. If the value is
 different from all ones, the message MUST be ignored.

 The SCHC Sender-Abort MUST NOT be acknowledged.

8.3.5. SCHC Receiver-Abort format

 When a SCHC Fragment receiver needs to abort an on-going fragmented
 SCHC Packet transmission, it transmits a SCHC Receiver-Abort message
 to the SCHC Fragment sender.

 The SCHC Receiver-Abort format is shown in Figure 22. The DTag field
 and the W field are OPTIONAL, their presence is specified by each
 mode and Profile.

 |--- Receiver-Abort Header ---|
 |--- T ---|-M-| 1 |
 +--- ... ---+-- ... --+---+---+-+-+-+-+-+-+-+-+-+-+-+
 | Rule ID | DTag | W |C=1| 1..1| 1..1 |
 +--- ... ---+-- ... --+---+---+-+-+-+-+-+-+-+-+-+-+-+
 next L2 Word boundary ->|<-- L2 Word -->|

 Figure 22: SCHC Receiver-Abort format

 If the W field is present,

Minaburo, et al. Expires May 31, 2020 [Page 33]

Internet-Draft LPWAN SCHC November 2019

 o the fragment receiver MUST set it to all ones. Other values are
 RESERVED.

 o if the value is different from all ones, the fragment sender MUST
 ignore the message.

 The SCHC Receiver-Abort has the same header as a SCHC ACK message.
 The bits that follow the SCHC Receiver-Abort Header MUST be as
 follows

 o if the Header does not end at an L2 Word boundary, append bits set
 to 1 as needed to reach the next L2 Word boundary

 o append exactly one more L2 Word with bits all set to ones

 Such a bit pattern never occurs in a legit SCHC ACK. This is how the
 fragment sender recognizes a SCHC Receiver-Abort.

 The SCHC Receiver-Abort MUST NOT be acknowledged.

8.4. SCHC F/R modes

 This specification includes several SCHC F/R modes, which

 o allow for a range of reliability options, such as optional SCHC
 Fragment retransmission

 o support various LPWAN characteristics, such as links with variable
 MTU or unidirectional links.

 More modes may be defined in the future.

Appendix B provides examples of fragmentation sessions based on the
 modes described hereafter.

Appendix C provides examples of Finite Sate Machines implementing the
 SCHC F/R modes decribed hereafter.

8.4.1. No-ACK mode

 The No-ACK mode has been designed under the assumption that data unit
 out-of-sequence delivery does not occur between the entity performing
 fragmentation and the entity performing reassembly. This mode
 supports LPWAN technologies that have a variable MTU.

 In No-ACK mode, there is no communication from the fragment receiver
 to the fragment sender. The sender transmits all the SCHC Fragments

Minaburo, et al. Expires May 31, 2020 [Page 34]

Internet-Draft LPWAN SCHC November 2019

 without expecting any acknowledgement. Therefore, No-ACK does not
 require bidirectional links: unidirectional links are just fine.

 In No-ACK mode, only the All-1 SCHC Fragment is padded as needed.
 The other SCHC Fragments are intrinsically aligned to L2 Words.

 The tile sizes are not required to be uniform. Windows are not used.
 The Retransmission Timer is not used. The Attempts counter is not
 used.

 Each Profile MUST specify which Rule ID value(s) correspond to SCHC
 F/R messages operating in this mode.

 The W field MUST NOT be present in the SCHC F/R messages. SCHC ACK
 MUST NOT be sent. SCHC ACK REQ MUST NOT be sent. SCHC Sender-Abort
 MAY be sent. SCHC Receiver-Abort MUST NOT be sent.

 The value of N (size of the FCN field) is RECOMMENDED to be 1.

 Each Profile, for each Rule ID value, MUST define

 o the size of the DTag field,

 o the size and algorithm for the RCS field,

 o the expiration time of the Inactivity Timer

 Each Profile, for each Rule ID value, MAY define

 o a value of N different from the recommended one,

 o the meaning of values sent in the FCN field, for values different
 from the All-1 value.

 For each active pair of Rule ID and DTag values, the receiver MUST
 maintain an Inactivity Timer. If the receiver is under-resourced to
 do this, it MUST silently drop the related messages.

8.4.1.1. Sender behavior

 At the beginning of the fragmentation of a new SCHC Packet, the
 fragment sender MUST select a Rule ID and DTag value pair for this
 SCHC Packet.

 Each SCHC Fragment MUST contain exactly one tile in its Payload. The
 tile MUST be at least the size of an L2 Word. The sender MUST
 transmit the SCHC Fragments messages in the order that the tiles
 appear in the SCHC Packet. Except for the last tile of a SCHC

Minaburo, et al. Expires May 31, 2020 [Page 35]

Internet-Draft LPWAN SCHC November 2019

 Packet, each tile MUST be of a size that complements the SCHC
 Fragment Header so that the SCHC Fragment is a multiple of L2 Words
 without the need for padding bits. Except for the last one, the SCHC
 Fragments MUST use the Regular SCHC Fragment format specified in

Section 8.3.1.1. The SCHC Fragment that carries the last tile MUST
 be an All-1 SCHC Fragment, described in Section 8.3.1.2.

 The sender MAY transmit a SCHC Sender-Abort.

 Figure 37 shows an example of a corresponding state machine.

8.4.1.2. Receiver behavior

 Upon receiving each Regular SCHC Fragment,

 o the receiver MUST reset the Inactivity Timer,

 o the receiver assembles the payloads of the SCHC Fragments

 On receiving an All-1 SCHC Fragment,

 o the receiver MUST append the All-1 SCHC Fragment Payload and the
 padding bits to the previously received SCHC Fragment Payloads for
 this SCHC Packet

 o the receiver MUST perform the integrity check

 o if integrity checking fails, the receiver MUST drop the
 reassembled SCHC Packet

 o the reassembly operation concludes.

 On expiration of the Inactivity Timer, the receiver MUST drop the
 SCHC Packet being reassembled.

 On receiving a SCHC Sender-Abort, the receiver MAY drop the SCHC
 Packet being reassembled.

 Figure 38 shows an example of a corresponding state machine.

8.4.2. ACK-Always mode

 The ACK-Always mode has been designed under the following assumptions

 o Data unit out-of-sequence delivery does not occur between the
 entity performing fragmentation and the entity performing
 reassembly

Minaburo, et al. Expires May 31, 2020 [Page 36]

Internet-Draft LPWAN SCHC November 2019

 o The L2 MTU value does not change while the fragments of a SCHC
 Packet are being transmitted.

 o There is a feedback path from the reassembler to the fragmenter.
 See Appendix F for a discussion on using ACK-Always mode on quasi-
 bidirectional links.

 In ACK-Always mode, windows are used. An acknowledgement, positive
 or negative, is transmitted by the fragment receiver to the fragment
 sender at the end of the transmission of each window of SCHC
 Fragments.

 The tiles are not required to be of uniform size. In ACK-Always
 mode, only the All-1 SCHC Fragment is padded as needed. The other
 SCHC Fragments are intrinsically aligned to L2 Words.

 Briefly, the algorithm is as follows: after a first blind
 transmission of all the tiles of a window, the fragment sender
 iterates retransmitting the tiles that are reported missing until the
 fragment receiver reports that all the tiles belonging to the window
 have been correctly received, or until too many attempts were made.
 The fragment sender only advances to the next window of tiles when it
 has ascertained that all the tiles belonging to the current window
 have been fully and correctly received. This results in a per-window
 lock-step behavior between the sender and the receiver.

 Each Profile MUST specify which Rule ID value(s) correspond to SCHC
 F/R messages operating in this mode.

 The W field MUST be present and its size M MUST be 1 bit.

 Each Profile, for each Rule ID value, MUST define

 o the value of N (size of the FCN field),

 o the value of WINDOW_SIZE, which MUST be strictly less than 2^N,

 o the size and algorithm for the RCS field,

 o the size of the DTag field,

 o the value of MAX_ACK_REQUESTS,

 o the expiration time of the Retransmission Timer

 o the expiration time of the Inactivity Timer

Minaburo, et al. Expires May 31, 2020 [Page 37]

Internet-Draft LPWAN SCHC November 2019

 For each active pair of Rule ID and DTag values, the sender MUST
 maintain

 o one Attempts counter

 o one Retransmission Timer

 For each active pair of Rule ID and DTag values, the receiver MUST
 maintain

 o one Inactivity Timer

 o one Attempts counter

8.4.2.1. Sender behavior

 At the beginning of the fragmentation of a new SCHC Packet, the
 fragment sender MUST select a Rule ID and DTag value pair for this
 SCHC Packet.

 Each SCHC Fragment MUST contain exactly one tile in its Payload. All
 tiles with the index 0, as well as the last tile, MUST be at least
 the size of an L2 Word.

 In all SCHC Fragment messages, the W field MUST be filled with the
 least significant bit of the window number that the sender is
 currently processing.

 For a SCHC Fragment that carries a tile other than the last one of
 the SCHC Packet,

 o the Fragment MUST be of the Regular type specified in
Section 8.3.1.1

 o the FCN field MUST contain the tile index

 o each tile MUST be of a size that complements the SCHC Fragment
 Header so that the SCHC Fragment is a multiple of L2 Words without
 the need for padding bits.

 The SCHC Fragment that carries the last tile MUST be an All-1 SCHC
 Fragment, described in Section 8.3.1.2.

 The fragment sender MUST start by transmitting the window numbered 0.

 All message receptions being discussed in the rest of this section
 are to be understood as "matching the RuleID and DTag pair being
 processed", even if not spelled out, for brevity.

Minaburo, et al. Expires May 31, 2020 [Page 38]

Internet-Draft LPWAN SCHC November 2019

 The sender starts by a "blind transmission" phase, in which it MUST
 transmit all the tiles composing the window, in decreasing tile index
 order.

 Then, it enters a "retransmission phase" in which it MUST initialize
 an Attempts counter to 0, it MUST start a Retransmission Timer and it
 MUST await a SCHC ACK. Then,

 o upon receiving a SCHC ACK,

 * if the SCHC ACK indicates that some tiles are missing at the
 receiver, then the sender MUST transmit all the tiles that have
 been reported missing, it MUST increment Attempts, it MUST
 reset the Retransmission Timer and MUST await the next SCHC
 ACK.

 * if the current window is not the last one and the SCHC ACK
 indicates that all tiles were correctly received, the sender
 MUST stop the Retransmission Timer, it MUST advance to the next
 fragmentation window and it MUST start a blind transmission
 phase as described above.

 * if the current window is the last one and the SCHC ACK
 indicates that more tiles were received than the sender sent,
 the fragment sender MUST send a SCHC Sender-Abort, and it MAY
 exit with an error condition.

 * if the current window is the last one and the SCHC ACK
 indicates that all tiles were correctly received yet integrity
 check was a failure, the fragment sender MUST send a SCHC
 Sender-Abort, and it MAY exit with an error condition.

 * if the current window is the last one and the SCHC ACK
 indicates that integrity checking was successful, the sender
 exits successfully.

 o on Retransmission Timer expiration,

 * if Attempts is strictly less that MAX_ACK_REQUESTS, the
 fragment sender MUST send a SCHC ACK REQ and MUST increment the
 Attempts counter.

 * otherwise the fragment sender MUST send a SCHC Sender-Abort,
 and it MAY exit with an error condition.

 At any time,

Minaburo, et al. Expires May 31, 2020 [Page 39]

Internet-Draft LPWAN SCHC November 2019

 o on receiving a SCHC Receiver-Abort, the fragment sender MAY exit
 with an error condition.

 o on receiving a SCHC ACK that bears a W value different from the W
 value that it currently uses, the fragment sender MUST silently
 discard and ignore that SCHC ACK.

 Figure 39 shows an example of a corresponding state machine.

8.4.2.2. Receiver behavior

 On receiving a SCHC Fragment with a Rule ID and DTag pair not being
 processed at that time

 o the receiver SHOULD check if the DTag value has not recently been
 used for that Rule ID value, thereby ensuring that the received
 SCHC Fragment is not a remnant of a prior fragmented SCHC Packet
 transmission. If the SCHC Fragment is determined to be such a
 remnant, the receiver MAY silently ignore it and discard it.

 o the receiver MUST start a process to assemble a new SCHC Packet
 with that Rule ID and DTag value pair.

 o the receiver MUST start an Inactivity Timer for that RuleID and
 DTag pair. It MUST initialize an Attempts counter to 0 for that
 RuleID and DTag pair. It MUST initialize a window counter to 0.
 If the receiver is under-resourced to do this, it MUST respond to
 the sender with a SCHC Receiver Abort.

 In the rest of this section, "local W bit" means the least
 significant bit of the window counter of the receiver.

 On reception of any SCHC F/R message for the RuleID and DTag pair
 being processed, the receiver MUST reset the Inactivity Timer
 pertaining to that RuleID and DTag pair.

 All message receptions being discussed in the rest of this section
 are to be understood as "matching the RuleID and DTag pair being
 processed", even if not spelled out, for brevity.

 The receiver MUST first initialize an empty Bitmap for the first
 window, then enter an "acceptance phase", in which

 o on receiving a SCHC Fragment or a SCHC ACK REQ, either one having
 the W bit different from the local W bit, the receiver MUST
 silently ignore and discard that message.

Minaburo, et al. Expires May 31, 2020 [Page 40]

Internet-Draft LPWAN SCHC November 2019

 o on receiving a SCHC ACK REQ with the W bit equal to the local W
 bit, the receiver MUST send a SCHC ACK for this window.

 o on receiving a SCHC Fragment with the W bit equal to the local W
 bit, the receiver MUST assemble the received tile based on the
 window counter and on the FCN field in the SCHC Fragment and it
 MUST update the Bitmap.

 * if the SCHC Fragment received is an All-0 SCHC Fragment, the
 current window is determined to be a not-last window, the
 receiver MUST send a SCHC ACK for this window and it MUST enter
 the "retransmission phase" for this window.

 * if the SCHC Fragment received is an All-1 SCHC Fragment, the
 padding bits of the All-1 SCHC Fragment MUST be assembled after
 the received tile, the current window is determined to be the
 last window, the receiver MUST perform the integrity check and
 it MUST send a SCHC ACK for this window. Then,

 + If the integrity check indicates that the full SCHC Packet
 has been correctly reassembled, the receiver MUST enter the
 "clean-up phase" for this window.

 + If the integrity check indicates that the full SCHC Packet
 has not been correctly reassembled, the receiver enters the
 "retransmission phase" for this window.

 In the "retransmission phase":

 o if the window is a not-last window

 * on receiving a SCHC Fragment that is not All-0 or All-1 and
 that has a W bit different from the local W bit, the receiver
 MUST increment its window counter and allocate a fresh Bitmap,
 it MUST assemble the tile received and update the Bitmap and it
 MUST enter the "acceptance phase" for that new window.

 * on receiving a SCHC ACK REQ with a W bit different from the
 local W bit, the receiver MUST increment its window counter and
 allocate a fresh Bitmap, it MUST send a SCHC ACK for that new
 window and it MUST enter the "acceptance phase" for that new
 window.

 * on receiving a SCHC All-0 Fragment with a W bit different from
 the local W bit, the receiver MUST increment its window counter
 and allocate a fresh Bitmap, it MUST assemble the tile received
 and update the Bitmap, it MUST send a SCHC ACK for that new

Minaburo, et al. Expires May 31, 2020 [Page 41]

Internet-Draft LPWAN SCHC November 2019

 window and it MUST stay in the "retransmission phase" for that
 new window.

 * on receiving a SCHC All-1 Fragment with a W bit different from
 the local W bit, the receiver MUST increment its window counter
 and allocate a fresh Bitmap, it MUST assemble the tile
 received, including the padding bits, it MUST update the Bitmap
 and perform the integrity check, it MUST send a SCHC ACK for
 the new window, which is determined to be the last window.
 Then,

 + If the integrity check indicates that the full SCHC Packet
 has been correctly reassembled, the receiver MUST enter the
 "clean-up phase" for that new window.

 + If the integrity check indicates that the full SCHC Packet
 has not been correctly reassembled, the receiver enters the
 "retransmission phase" for that new window.

 * on receiving a SCHC Fragment with a W bit equal to the local W
 bit,

 + if the SCHC Fragment received is an All-1 SCHC Fragment, the
 receiver MUST silently ignore it and discard it.

 + otherwise, the receiver MUST assemble the tile received and
 update the Bitmap. If the Bitmap becomes fully populated
 with 1's or if the SCHC Fragment is an All-0, the receiver
 MUST send a SCHC ACK for this window.

 * on receiving a SCHC ACK REQ with the W bit equal to the local W
 bit, the receiver MUST send a SCHC ACK for this window.

 o if the window is the last window

 * on receiving a SCHC Fragment or a SCHC ACK, either one having a
 W bit different from the local W bit, the receiver MUST
 silently ignore and discard that message.

 * on receiving a SCHC ACK REQ with the W bit equal to the local W
 bit, the receiver MUST send a SCHC ACK for this window.

 * on receiving a SCHC Fragment with a W bit equal to the local W
 bit,

 + if the SCHC Fragment received is an All-0 SCHC Fragment, the
 receiver MUST silently ignore it and discard it.

Minaburo, et al. Expires May 31, 2020 [Page 42]

Internet-Draft LPWAN SCHC November 2019

 + otherwise, the receiver MUST update the Bitmap and it MUST
 assemble the tile received. If the SCHC Fragment received
 is an All-1 SCHC Fragment, the receiver MUST assemble the
 padding bits of the All-1 SCHC Fragment after the received
 tile, it MUST perform the integrity check and

 - if the integrity check indicates that the full SCHC
 Packet has been correctly reassembled, the receiver MUST
 send a SCHC ACK and it enters the "clean-up phase".

 - if the integrity check indicates that the full SCHC
 Packet has not been correctly reassembled,

 o if the SCHC Fragment received was an All-1 SCHC
 Fragment, the receiver MUST send a SCHC ACK for this
 window.

 In the "clean-up phase":

 o On receiving an All-1 SCHC Fragment or a SCHC ACK REQ, either one
 having the W bit equal to the local W bit, the receiver MUST send
 a SCHC ACK.

 o Any other SCHC Fragment received MUST be silently ignored and
 discarded.

 At any time, on expiration of the Inactivity Timer, on receiving a
 SCHC Sender-Abort or when Attempts reaches MAX_ACK_REQUESTS, the
 receiver MUST send a SCHC Receiver-Abort and it MAY exit the receive
 process for that SCHC Packet.

 Figure 40 shows an example of a corresponding state machine.

8.4.3. ACK-on-Error mode

 The ACK-on-Error mode supports LPWAN technologies that have variable
 MTU and out-of-order delivery. It operates with links that provide a
 feedback path from the reassembler to the fragmenter. See Appendix F
 for a discussion on using ACK-on-Error mode on quasi-bidirectional
 links.

 In ACK-on-Error mode, windows are used.

 All tiles, but the last one and the penultimate one, MUST be of equal
 size, hereafter called "regular". The size of the last tile MUST be
 smaller than or equal to the regular tile size. Regarding the
 penultimate tile, a Profile MUST pick one of the following two
 options:

Minaburo, et al. Expires May 31, 2020 [Page 43]

Internet-Draft LPWAN SCHC November 2019

 o The penultimate tile size MUST be the regular tile size

 o or the penultimate tile size MUST be either the regular tile size
 or the regular tile size minus one L2 Word.

 A SCHC Fragment message carries one or several contiguous tiles,
 which may span multiple windows. A SCHC ACK reports on the reception
 of exactly one window of tiles.

 See Figure 23 for an example.

 +---...-----------+
 | SCHC Packet |
 +---...-----------+

 Tile # | 4 | 3 | 2 | 1 | 0 | 4 | 3 | 2 | 1 | 0 | 4 | | 0 | 4 |3|
 Window # |-------- 0 --------|-------- 1 --------|- 2 ... 27 -|- 28-|

 SCHC Fragment msg |-----------|

 Figure 23: a SCHC Packet fragmented in tiles, ACK-on-Error mode

 The W field is wide enough that it unambiguously represents an
 absolute window number. The fragment receiver sends SCHC ACKs to the
 fragment sender about windows for which tiles are missing. No SCHC
 ACK is sent by the fragment receiver for windows that it knows have
 been fully received.

 The fragment sender retransmits SCHC Fragments for tiles that are
 reported missing. It can advance to next windows even before it has
 ascertained that all tiles belonging to previous windows have been
 correctly received, and can still later retransmit SCHC Fragments
 with tiles belonging to previous windows. Therefore, the sender and
 the receiver may operate in a decoupled fashion. The fragmented SCHC
 Packet transmission concludes when

 o integrity checking shows that the fragmented SCHC Packet has been
 correctly reassembled at the receive end, and this information has
 been conveyed back to the sender,

 o or too many retransmission attempts were made,

 o or the receiver determines that the transmission of this
 fragmented SCHC Packet has been inactive for too long.

 Each Profile MUST specify which Rule ID value(s) correspond to SCHC
 F/R messages operating in this mode.

Minaburo, et al. Expires May 31, 2020 [Page 44]

Internet-Draft LPWAN SCHC November 2019

 The W field MUST be present in the SCHC F/R messages.

 Each Profile, for each Rule ID value, MUST define

 o the tile size (a tile does not need to be multiple of an L2 Word,
 but it MUST be at least the size of an L2 Word)

 o the value of M (size of the W field),

 o the value of N (size of the FCN field),

 o the value of WINDOW_SIZE, which MUST be strictly less than 2^N,

 o the size and algorithm for the RCS field,

 o the size of the DTag field,

 o the value of MAX_ACK_REQUESTS,

 o the expiration time of the Retransmission Timer

 o the expiration time of the Inactivity Timer

 o if the last tile is carried in a Regular SCHC Fragment or an All-1
 SCHC Fragment (see Section 8.4.3.1)

 o if the penultimate tile MAY be one L2 Word smaller than the
 regular tile size. In this case, the regular tile size MUST be at
 least twice the L2 Word size.

 For each active pair of Rule ID and DTag values, the sender MUST
 maintain

 o one Attempts counter

 o one Retransmission Timer

 For each active pair of Rule ID and DTag values, the receiver MUST
 maintain

 o one Inactivity Timer

 o one Attempts counter

Minaburo, et al. Expires May 31, 2020 [Page 45]

Internet-Draft LPWAN SCHC November 2019

8.4.3.1. Sender behavior

 At the beginning of the fragmentation of a new SCHC Packet,

 o the fragment sender MUST select a Rule ID and DTag value pair for
 this SCHC Packet. A Rule MUST NOT be selected if the values of M
 and WINDOW_SIZE for that Rule are such that the SCHC Packet cannot
 be fragmented in (2^M) * WINDOW_SIZE tiles or less.

 o the fragment sender MUST initialize the Attempts counter to 0 for
 that Rule ID and DTag value pair.

 A Regular SCHC Fragment message carries in its payload one or more
 tiles. If more than one tile is carried in one Regular SCHC Fragment

 o the selected tiles MUST be contiguous in the original SCHC Packet

 o they MUST be placed in the SCHC Fragment Payload adjacent to one
 another, in the order they appear in the SCHC Packet, from the
 start of the SCHC Packet toward its end.

 Tiles that are not the last one MUST be sent in Regular SCHC
 Fragments specified in Section 8.3.1.1. The FCN field MUST contain
 the tile index of the first tile sent in that SCHC Fragment.

 In a Regular SCHC Fragment message, the sender MUST fill the W field
 with the window number of the first tile sent in that SCHC Fragment.

 Depending on the Profile, the last tile of a SCHC Packet MUST be sent
 either

 o in a Regular SCHC Fragment, alone or as part of a multi-tiles
 Payload

 o alone in an All-1 SCHC Fragment

 In an All-1 SCHC Fragment message, the sender MUST fill the W field
 with the window number of the last tile of the SCHC Packet.

 The fragment sender MUST send SCHC Fragments such that, all together,
 they contain all the tiles of the fragmented SCHC Packet.

 The fragment sender MUST send at least one All-1 SCHC Fragment.

 The fragment sender MUST listen for SCHC ACK messages after having
 sent

 o an All-1 SCHC Fragment

Minaburo, et al. Expires May 31, 2020 [Page 46]

Internet-Draft LPWAN SCHC November 2019

 o or a SCHC ACK REQ.

 A Profile MAY specify other times at which the fragment sender MUST
 listen for SCHC ACK messages. For example, this could be after
 sending a complete window of tiles.

 Each time a fragment sender sends an All-1 SCHC Fragment or a SCHC
 ACK REQ,

 o it MUST increment the Attempts counter

 o it MUST reset the Retransmission Timer

 On Retransmission Timer expiration

 o if Attempts is strictly less than MAX_ACK_REQUESTS, the fragment
 sender MUST send either the All-1 SCHC Fragment or a SCHC ACK REQ
 with the W field corresponding to the last window,

 o otherwise the fragment sender MUST send a SCHC Sender-Abort and it
 MAY exit with an error condition.

 All message receptions being discussed in the rest of this section
 are to be understood as "matching the RuleID and DTag pair being
 processed", even if not spelled out, for brevity.

 On receiving a SCHC ACK,

 o if the W field in the SCHC ACK corresponds to the last window of
 the SCHC Packet,

 * if the C bit is set, the sender MAY exit successfully

 * otherwise,

 + if the Profile mandates that the last tile be sent in an
 All-1 SCHC Fragment,

 - if the SCHC ACK shows no missing tile at the receiver,
 the sender

 o MUST send a SCHC Sender-Abort

 o MAY exit with an error condition

 - otherwise

Minaburo, et al. Expires May 31, 2020 [Page 47]

Internet-Draft LPWAN SCHC November 2019

 o the fragment sender MUST send SCHC Fragment messages
 containing all the tiles that are reported missing in
 the SCHC ACK.

 o if the last message in this sequence of SCHC Fragment
 messages is not an All-1 SCHC Fragment, then the
 fragment sender MUST in addition send a SCHC ACK REQ
 with the W field corresponding to the last window,
 after the sequence.

 + otherwise,

 - if the SCHC ACK shows no missing tile at the receiver,
 the sender MUST send the All-1 SCHC Fragment

 - otherwise

 o the fragment sender MUST send SCHC Fragment messages
 containing all the tiles that are reported missing in
 the SCHC ACK.

 o the fragment sender MUST then send either the All-1
 SCHC Fragment or a SCHC ACK REQ with the W field
 corresponding to the last window.

 o otherwise, the fragment sender

 * MUST send SCHC Fragment messages containing the tiles that are
 reported missing in the SCHC ACK

 * then it MAY send a SCHC ACK REQ with the W field corresponding
 to the last window

 See Figure 41 for one among several possible examples of a Finite
 State Machine implementing a sender behavior obeying this
 specification.

8.4.3.2. Receiver behavior

 On receiving a SCHC Fragment with a Rule ID and DTag pair not being
 processed at that time

 o the receiver SHOULD check if the DTag value has not recently been
 used for that Rule ID value, thereby ensuring that the received
 SCHC Fragment is not a remnant of a prior fragmented SCHC Packet
 transmission. If the SCHC Fragment is determined to be such a
 remnant, the receiver MAY silently ignore it and discard it.

Minaburo, et al. Expires May 31, 2020 [Page 48]

Internet-Draft LPWAN SCHC November 2019

 o the receiver MUST start a process to assemble a new SCHC Packet
 with that Rule ID and DTag value pair. The receiver MUST start an
 Inactivity Timer for that Rule ID and DTag value pair. It MUST
 initialize an Attempts counter to 0 for that Rule ID and DTag
 value pair. If the receiver is under-resourced to do this, it
 MUST respond to the sender with a SCHC Receiver Abort.

 On reception of any SCHC F/R message for the RuleID and DTag pair
 being processed, the receiver MUST reset the Inactivity Timer
 pertaining to that RuleID and DTag pair.

 All message receptions being discussed in the rest of this section
 are to be understood as "matching the RuleID and DTag pair being
 processed", even if not spelled out, for brevity.

 On receiving a SCHC Fragment message, the receiver determines what
 tiles were received, based on the payload length and on the W and FCN
 fields of the SCHC Fragment.

 o if the FCN is All-1, if a Payload is present, the full SCHC
 Fragment Payload MUST be assembled including the padding bits.
 This is because the size of the last tile is not known by the
 receiver, therefore padding bits are indistinguishable from the
 tile data bits, at this stage. They will be removed by the SCHC
 C/D sublayer. If the size of the SCHC Fragment Payload exceeds or
 equals the size of one regular tile plus the size of an L2 Word,
 this SHOULD raise an error flag.

 o otherwise, tiles MUST be assembled based on the a priori known
 tile size.

 * If allowed by the Profile, the end of the payload MAY contain
 the last tile, which may be shorter. Padding bits are
 indistinguishable from the tile data bits, at this stage.

 * the payload may contain the penultimate tile that, if allowed
 by the Profile, MAY be exactly one L2 Word shorter than the
 regular tile size.

 * Otherwise, padding bits MUST be discarded. The latter is
 possible because

 + the size of the tiles is known a priori,

 + tiles are larger than an L2 Word

 + padding bits are always strictly less than an L2 Word

Minaburo, et al. Expires May 31, 2020 [Page 49]

Internet-Draft LPWAN SCHC November 2019

 On receiving a SCHC ACK REQ or an All-1 SCHC Fragment,

 o if the receiver has at least one window that it knows has tiles
 missing, it MUST return a SCHC ACK for the lowest-numbered such
 window,

 o otherwise,

 * if it has received at least one tile, it MUST return a SCHC ACK
 for the highest-numbered window it currently has tiles for

 * otherwise it MUST return a SCHC ACK for window numbered 0

 A Profile MAY specify other times and circumstances at which a
 receiver sends a SCHC ACK, and which window the SCHC ACK reports
 about in these circumstances.

 Upon sending a SCHC ACK, the receiver MUST increase the Attempts
 counter.

 After receiving an All-1 SCHC Fragment, a receiver MUST check the
 integrity of the reassembled SCHC Packet at least every time it
 prepares for sending a SCHC ACK for the last window.

 Upon receiving a SCHC Sender-Abort, the receiver MAY exit with an
 error condition.

 Upon expiration of the Inactivity Timer, the receiver MUST send a
 SCHC Receiver-Abort and it MAY exit with an error condition.

 On the Attempts counter exceeding MAX_ACK_REQUESTS, the receiver MUST
 send a SCHC Receiver-Abort and it MAY exit with an error condition.

 Reassembly of the SCHC Packet concludes when

 o a Sender-Abort has been received

 o or the Inactivity Timer has expired

 o or the Attempts counter has exceeded MAX_ACK_REQUESTS

 o or when at least an All-1 SCHC Fragment has been received and
 integrity checking of the reassembled SCHC Packet is successful.

 See Figure 42 for one among several possible examples of a Finite
 State Machine implementing a receiver behavior obeying this
 specification, and that is meant to match the sender Finite State
 Machine of Figure 41.

Minaburo, et al. Expires May 31, 2020 [Page 50]

Internet-Draft LPWAN SCHC November 2019

9. Padding management

 SCHC C/D and SCHC F/R operate on bits, not bytes. SCHC itself does
 not have any alignment prerequisite. The size of SCHC Packets can be
 any number of bits.

 If the layer below SCHC constrains the payload to align to some
 boundary, called L2 Words (for example, bytes), the SCHC messages
 MUST be padded. When padding occurs, the number of appended bits
 MUST be strictly less than the L2 Word size.

 If a SCHC Packet is sent unfragmented (see Figure 24), it is padded
 as needed for transmission.

 If a SCHC Packet needs to be fragmented for transmission, it is not
 padded in itself. Only the SCHC F/R messages are padded as needed
 for transmission. Some SCHC F/R messages are intrinsically aligned
 to L2 Words.

 A packet (e.g. an IPv6 packet)
 | ^ (padding bits
 v | dropped)
 +------------------+ +--------------------+
 | SCHC Compression | | SCHC Decompression |
 +------------------+ +--------------------+
 | ^
 | If no fragmentation |
 +---- SCHC Packet + padding as needed ----->|
 | | (integrity
 v | checked)
 +--------------------+ +-----------------+
 | SCHC Fragmentation | | SCHC Reassembly |
 +--------------------+ +-----------------+
 | ^ | ^
 | | | |
 | +--- SCHC ACK + padding as needed --+ |
 | |
 +------- SCHC Fragments + padding as needed---------+

 Sender Receiver

 Figure 24: SCHC operations, including padding as needed

 Each Profile MUST specify the size of the L2 Word. The L2 Word might
 actually be a single bit, in which case no padding will take place at
 all.

Minaburo, et al. Expires May 31, 2020 [Page 51]

Internet-Draft LPWAN SCHC November 2019

 A Profile MAY define the value of the padding bits. The RECOMMENDED
 value is 0.

10. SCHC Compression for IPv6 and UDP headers

 This section lists the IPv6 and UDP header fields and describes how
 they can be compressed. An example of a set of Rules for UDP/IPv6
 header compression is provided in Appendix A.

10.1. IPv6 version field

 The IPv6 version field is labeled by the protocol parser as being the
 "version" field of the IPv6 protocol. Therefore, it only exists for
 IPv6 packets. In the Rule, TV is set to 6, MO to "ignore" and CDA to
 "not-sent".

10.2. IPv6 Traffic class field

 If the DiffServ field does not vary and is known by both sides, the
 Field Descriptor in the Rule SHOULD contain a TV with this well-known
 value, an "equal" MO and a "not-sent" CDA.

 Otherwise (e.g. ECN bits are to be transmitted), two possibilities
 can be considered depending on the variability of the value:

 o One possibility is to not compress the field and send the original
 value. In the Rule, TV is not set to any particular value, MO is
 set to "ignore" and CDA is set to "value-sent".

 o If some upper bits in the field are constant and known, a better
 option is to only send the LSBs. In the Rule, TV is set to a
 value with the stable known upper part, MO is set to MSB(x) and
 CDA to LSB.

 ECN functionality depends on both bits of the ECN field, which are
 the 2 LSBs of this field, hence sending only a single LSB of this
 field is NOT RECOMMENDED.

10.3. Flow label field

 If the flow label is not set, i.e. its value is zero, the Field
 Descriptor in the Rule SHOULD contain a TV set to zero, an "equal" MO
 and a "not-sent" CDA.

 If the flow label is set to a pseudo-random value according to
 [RFC6437], in the Rule, TV is not set to any particular value, MO is
 set to "ignore" and CDA is set to "value-sent".

https://datatracker.ietf.org/doc/html/rfc6437

Minaburo, et al. Expires May 31, 2020 [Page 52]

Internet-Draft LPWAN SCHC November 2019

 If the flow label is set according to some prior agreement, i.e. by a
 flow state establishment method as allowed by [RFC6437], the Field
 Descriptor in the Rule SHOULD contain a TV with this agreed-upon
 value, an "equal" MO and a "not-sent" CDA.

10.4. Payload Length field

 This field can be elided for the transmission on the LPWAN network.
 The SCHC C/D recomputes the original payload length value. In the
 Field Descriptor, TV is not set, MO is set to "ignore" and CDA is
 "compute-*".

10.5. Next Header field

 If the Next Header field does not vary and is known by both sides,
 the Field Descriptor in the Rule SHOULD contain a TV with this Next
 Header value, the MO SHOULD be "equal" and the CDA SHOULD be "not-
 sent".

 Otherwise, TV is not set in the Field Descriptor, MO is set to
 "ignore" and CDA is set to "value-sent". Alternatively, a matching-
 list MAY also be used.

10.6. Hop Limit field

 The field behavior for this field is different for uplink (Up) and
 downlink (Dw). In Up, since there is no IP forwarding between the
 Dev and the SCHC C/D, the value is relatively constant. On the other
 hand, the Dw value depends on Internet routing and can change more
 frequently. The Direction Indicator (DI) can be used to distinguish
 both directions:

 o in the Up, elide the field: the TV in the Field Descriptor is set
 to the known constant value, the MO is set to "equal" and the CDA
 is set to "not-sent".

 o in the Dw, the Hop Limit is elided for transmission and forced to
 1 at the receiver, by setting TV to 1, MO to "ignore" and CDA to
 "not-sent". This prevents any further forwarding.

10.7. IPv6 addresses fields

 As in 6LoWPAN [RFC4944], IPv6 addresses are split into two 64-bit
 long fields; one for the prefix and one for the Interface Identifier
 (IID). These fields SHOULD be compressed. To allow for a single
 Rule being used for both directions, these values are identified by
 their role (Dev or App) and not by their position in the header
 (source or destination).

https://datatracker.ietf.org/doc/html/rfc6437
https://datatracker.ietf.org/doc/html/rfc4944

Minaburo, et al. Expires May 31, 2020 [Page 53]

Internet-Draft LPWAN SCHC November 2019

10.7.1. IPv6 source and destination prefixes

 Both ends MUST be configured with the appropriate prefixes. For a
 specific flow, the source and destination prefixes can be unique and
 stored in the Context. In that case, the TV for the source and
 destination prefixes contain the values, the MO is set to "equal" and
 the CDA is set to "not-sent".

 If the Rule is intended to compress packets with different prefix
 values, match-mapping SHOULD be used. The different prefixes are
 listed in the TV, the MO is set to "match-mapping" and the CDA is set
 to "mapping-sent". See Figure 26.

 Otherwise, the TV is not set, the MO is set to "ignore" and the CDA
 is set to "value-sent".

10.7.2. IPv6 source and destination IID

 If the Dev or App IID are based on an LPWAN address, then the IID can
 be reconstructed with information coming from the LPWAN header. In
 that case, the TV is not set, the MO is set to "ignore" and the CDA
 is set to "DevIID" or "AppIID". On LPWAN technologies where the
 frames carry a single identifier (corresponding to the Dev.), AppIID
 cannot be used.

 As described in [RFC8065], it may be undesirable to build the Dev
 IPv6 IID out of the Dev address. Another static value is used
 instead. In that case, the TV contains the static value, the MO
 operator is set to "equal" and the CDA is set to "not-sent".

 If several IIDs are possible, then the TV contains the list of
 possible IIDs, the MO is set to "match-mapping" and the CDA is set to
 "mapping-sent".

 It may also happen that the IID variability only expresses itself on
 a few bytes. In that case, the TV is set to the stable part of the
 IID, the MO is set to "MSB" and the CDA is set to "LSB".

 Finally, the IID can be sent in its entirety on the LPWAN. In that
 case, the TV is not set, the MO is set to "ignore" and the CDA is set
 to "value-sent".

10.8. IPv6 extension headers

 This document does not provide recommendations on how to compress
 IPv6 extension headers.

https://datatracker.ietf.org/doc/html/rfc8065

Minaburo, et al. Expires May 31, 2020 [Page 54]

Internet-Draft LPWAN SCHC November 2019

10.9. UDP source and destination ports

 To allow for a single Rule being used for both directions, the UDP
 port values are identified by their role (Dev or App) and not by
 their position in the header (source or destination). The SCHC C/D
 MUST be aware of the traffic direction (Uplink, Downlink) to select
 the appropriate field. The following Rules apply for Dev and App
 port numbers.

 If both ends know the port number, it can be elided. The TV contains
 the port number, the MO is set to "equal" and the CDA is set to "not-
 sent".

 If the port variation is on few bits, the TV contains the stable part
 of the port number, the MO is set to "MSB" and the CDA is set to
 "LSB".

 If some well-known values are used, the TV can contain the list of
 these values, the MO is set to "match-mapping" and the CDA is set to
 "mapping-sent".

 Otherwise the port numbers are sent over the LPWAN. The TV is not
 set, the MO is set to "ignore" and the CDA is set to "value-sent".

10.10. UDP length field

 The UDP length can be computed from the received data. The TV is not
 set, the MO is set to "ignore" and the CDA is set to "compute-*".

10.11. UDP Checksum field

 The UDP checksum operation is mandatory with IPv6 for most packets
 but there are exceptions [RFC8200].

 For instance, protocols that use UDP as a tunnel encapsulation may
 enable zero-checksum mode for a specific port (or set of ports) for
 sending and/or receiving. [RFC8200] requires any node implementing
 zero-checksum mode to follow the requirements specified in
 "Applicability Statement for the Use of IPv6 UDP Datagrams with Zero
 Checksums" [RFC6936].

 6LoWPAN Header Compression [RFC6282] also specifies that a UDP
 checksum can be elided by the compressor and re-computed by the
 decompressor when an upper layer guarantees the integrity of the UDP
 payload and pseudo-header. A specific example of this is when a
 message integrity check protects the compressed message between the
 compressor that elides the UDP checksum and the decompressor that

https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc6936
https://datatracker.ietf.org/doc/html/rfc6282

Minaburo, et al. Expires May 31, 2020 [Page 55]

Internet-Draft LPWAN SCHC November 2019

 computes it, with a strength that is identical or better to the UDP
 checksum.

 Similarly, a SCHC compressor MAY elide the UDP checksum when another
 layer guarantees at least equal integrity protection for the UDP
 payload and the pseudo-header. In this case, the TV is not set, the
 MO is set to "ignore" and the CDA is set to "compute-*".

 In particular, when SCHC fragmentation is used, a fragmentation RCS
 of 2 bytes or more provides equal or better protection than the UDP
 checksum; in that case, if the compressor is collocated with the
 fragmentation point and the decompressor is collocated with the
 packet reassembly point, and if the SCHC Packet is fragmented even
 when it would fit unfragmented in the L2 MTU, then the compressor MAY
 verify and then elide the UDP checksum. Whether and when the UDP
 Checksum is elided is to be specified in the Profile.

 Since the compression happens before the fragmentation, implementors
 should understand the risks when dealing with unprotected data below
 the transport layer and take special care when manipulating that
 data.

 In other cases, the checksum SHOULD be explicitly sent. The TV is
 not set, the MO is set to "ignore" and the CDA is set to "value-
 sent".

11. IANA Considerations

 This document has no request to IANA.

12. Security considerations

 As explained in Section 5, SCHC is expected to be implemented on top
 of LPWAN technologies, which are expected to implement security
 measures.

 In this section, we analyze the potential security threats that could
 be introduced into an LPWAN by adding the SCHC functionalities.

12.1. Security considerations for SCHC Compression/Decompression

12.1.1. Forged SCHC Packet

 Let's assume that an attacker is able to send a forged SCHC Packet to
 a SCHC Decompressor.

 Let's first consider the case where the Rule ID contained in that
 forged SCHC Packet does not correspond to a Rule allocated in the

Minaburo, et al. Expires May 31, 2020 [Page 56]

Internet-Draft LPWAN SCHC November 2019

 Rule table. An implementation should detect that the Rule ID is
 invalid and should silently drop the offending SCHC Packet.

 Let's now consider that the Rule ID corresponds to a Rule in the
 table. With the CDAs defined in this document, the reconstructed
 packet is at most a constant number of bits bigger than the SCHC
 Packet that was received. This assumes that the compute-*
 decompression actions produce a bounded number of bits, irrespective
 of the incoming SCHC Packet. This property is true for IPv6 Length,
 UDP Length and UDP Checksum, for which the compute-* CDA is
 recommended by this document.

 As a consequence, SCHC Decompression does not amplify attacks, beyond
 adding a bounded number of bits to the SCHC Packet received. This
 bound is determined by the Rule stored in the receiving device.

 As a general safety measure, a SCHC Decompressor should never re-
 construct a packet larger than MAX_PACKET_SIZE (defined in a Profile,
 with 1500 bytes as generic default).

12.1.2. Compressed packet size as a side channel to guess a secret
 token

 Some packet compression methods are known to be victims of attacks,
 such as BREACH and CRIME. The attack involves injecting arbitrary
 data into the packet and observing the resulting compresssed packet
 size. The observed size potentially reflects correlation between the
 arbitrary data and some content that was meant to remain secret, such
 as a security token, thereby allowing the attacker to get at the
 secret.

 By contrast, SCHC Compression takes place header field by header
 field, with the SCHC Packet being a mere concatenation of the
 compression residues of each of the individual field. Any
 correlation between header fields does not result in a change in the
 SCHC Packet size compressed under the same Rule.

 If SCHC C/D is used to compress packets that include a secret
 information field, such as a token, the Rule set should be designed
 so that the size of the compression residue for the field to remain
 secret is the same irrespective of the value of the secret
 information. This is achieved by e.g. sending this field in extenso
 with the "ignore" MO and the "value-sent" CDA. This recommendation
 is disputable if it is ascertained that the Rule set itself will
 remain secret.

Minaburo, et al. Expires May 31, 2020 [Page 57]

Internet-Draft LPWAN SCHC November 2019

12.1.3. decompressed packet different from the original packet

 The attention of Rule designers is drawn to situation As explained in
Section 7.3, using FPs with value 0 in Field Descriptors in a Rule

 may result in header fields appearing in the decompressed packet in
 an order different from that in the original packet. Likewise, as
 stated in Section 7.5.3, using an "ignore" MO together with a "not-
 sent" CDA will result in the header field taking the TV value, which
 is likely to be different from the original value.

 Depending on the protocol, the order of header fields in the packet
 may be functionally significant or not.

 Furthermore, if the packet is protected by a checksum or a similar
 integrity protection mechanism, and if the checksum is transmitted
 instead of being recomputed as part of the decompression, these
 situations may result in the packet being considered corrupt and
 dropped.

12.2. Security considerations for SCHC Fragmentation/Reassembly

12.2.1. Buffer reservation attack

 Let's assume that an attacker is able to send a forged SCHC Fragment
 to a SCHC Reassembler.

 A node can perform a buffer reservation attack: the receiver will
 reserve buffer space for the SCHC Packet. If the implementation has
 only one buffer, other incoming fragmented SCHC Packets will be
 dropped while the reassembly buffer is occupied during the reassembly
 timeout. Once that timeout expires, the attacker can repeat the same
 procedure, and iterate, thus creating a denial of service attack. An
 implementation may have multiple reassembly buffers. The cost to
 mount this attack is linear with the number of buffers at the target
 node. Better, the cost for an attacker can be increased if
 individual fragments of multiple SCHC Packets can be stored in the
 reassembly buffer. The finer grained the reassembly buffer (downto
 the smallest tile size), the higher the cost of the attack. If
 buffer overload does occur, a smart receiver could selectively
 discard SCHC Packets being reassembled based on the sender behavior,
 which may help identify which SCHC Fragments have been sent by the
 attacker. Another mild counter-measure is for the target to abort
 the fragmentation/reassembly session as early as it detects a non-
 identical SCHC Fragment duplicate, anticipating for an eventual
 corrupt SCHC Packet, so as to save the sender the hassle of sending
 the rest of the fragments for this SCHC Packet.

Minaburo, et al. Expires May 31, 2020 [Page 58]

Internet-Draft LPWAN SCHC November 2019

12.2.2. Corrupt Fragment attack

 Let's assume that an attacker is able to send a forged SCHC Fragment
 to a SCHC Reassembler. The malicious node is additionally assumed to
 be able to hear an incoming communication destined to the target
 node.

 It can then send a forged SCHC Fragment that looks like it belongs to
 a SCHC Packet already being reassembled at the target node. This can
 cause the SCHC Packet to be considered corrupt and be dropped by the
 receiver. The amplification happens here by a single spoofed SCHC
 Fragment rendering a full sequence of legit SCHC Fragments useless.
 If the target uses ACK-Always or ACK-on-Error mode, such a malicious
 node can also interfere with the acknowledgement and repetition
 algorithm of SCHC F/R. A single spoofed ACK, with all bitmap bits
 set to 0, will trigger the repetition of WINDOW_SIZE tiles. This
 protocol loop amplification depletes the energy source of the target
 node and consumes the channel bandwidth. Similarly, a spoofed ACK
 REQ will trigger the sending of a SCHC ACK, which may be much larger
 than the ACK REQ if WINDOW_SIZE is large. These consequences should
 be borne in mind when defining profiles for SCHC over specific LPWAN
 technologies.

12.2.3. Fragmentation as a way to bypass Network Inspection

 Fragmentation is known for potentially allowing to force through a
 Network Inspection device (e.g. firewall) packets that would be
 rejected if unfragmented. This involves sending overlapping
 fragments to rewrite fields whose initial value led the Network
 Inspection device to allow the flow go through.

 SCHC F/R is expected to be used over one LPWAN link, where no Network
 Inspection device is expected to sit. As described in Section 5.2,
 even if the SCHC F/R on the Network infrastructure side is located in
 the Internet, a tunnel is to be established between it and the NGW.

12.2.4. Privacy issues associated with SCHC header fields

 SCHC F/R allocates a DTag value to fragments belonging to the same
 SCHC Packet. Concerns were raised that, if DTag is a wide counter
 that is incremented in a predictible fashion for each new fragmented
 SCHC Packet, it might lead to a privacy issue, such as enabling
 tracking of a device across LPWANs.

 However, SCHC F/R is expected to be used over exactly one LPWAN link.
 As described in Section 5.2, even if the SCHC F/R on the Network
 infrastructure side is located in the Internet, a tunnel is to be
 established between it and the NGW. Therefore, neither the DTag

Minaburo, et al. Expires May 31, 2020 [Page 59]

Internet-Draft LPWAN SCHC November 2019

 field nor any other SCHC-introduced field is visible over the
 Internet.

13. Acknowledgements

 Thanks to (in alphabetical order) Sergio Aguilar Romero, David Black,
 Carsten Bormann, Deborah Brungard, Brian Carpenter, Philippe Clavier,
 Alissa Cooper, Roman Danyliw, Daniel Ducuara Beltran, Diego Dujovne,
 Eduardo Ingles Sanchez, Rahul Jadhav, Benjamin Kaduk,
 Arunprabhu Kandasamy, Suresh Krishnan, Mirja Kuehlewind, Barry Leiba,
 Sergio Lopez Bernal, Antoni Markovski, Alexey Melnikov,
 Georgios Papadopoulos, Alexander Pelov, Charles Perkins, Edgar Ramos,
 Alvaro Retana, Adam Roach, Shoichi Sakane, Joseph Salowey,
 Pascal Thubert, and Eric Vyncke for useful design considerations,
 reviews and comments.

 Carles Gomez has been funded in part by the Spanish Government
 (Ministerio de Educacion, Cultura y Deporte) through the Jose
 Castillejo grant CAS15/00336, and by the ERDF and the Spanish
 Government through project TEC2016-79988-P. Part of his contribution
 to this work has been carried out during his stay as a visiting
 scholar at the Computer Laboratory of the University of Cambridge.

14. References

14.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6936] Fairhurst, G. and M. Westerlund, "Applicability Statement
 for the Use of IPv6 UDP Datagrams with Zero Checksums",

RFC 6936, DOI 10.17487/RFC6936, April 2013,
 <https://www.rfc-editor.org/info/rfc6936>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6936
https://www.rfc-editor.org/info/rfc6936
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8200
https://www.rfc-editor.org/info/rfc8200

Minaburo, et al. Expires May 31, 2020 [Page 60]

Internet-Draft LPWAN SCHC November 2019

 [RFC8376] Farrell, S., Ed., "Low-Power Wide Area Network (LPWAN)
 Overview", RFC 8376, DOI 10.17487/RFC8376, May 2018,
 <https://www.rfc-editor.org/info/rfc8376>.

14.2. Informative References

 [ETHERNET]
 "IEEE Standard for Ethernet", IEEE standard,
 DOI 10.1109/ieeestd.2018.8457469, n.d..

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
 <https://www.rfc-editor.org/info/rfc4944>.

 [RFC5795] Sandlund, K., Pelletier, G., and L-E. Jonsson, "The RObust
 Header Compression (ROHC) Framework", RFC 5795,
 DOI 10.17487/RFC5795, March 2010,
 <https://www.rfc-editor.org/info/rfc5795>.

 [RFC6282] Hui, J., Ed. and P. Thubert, "Compression Format for IPv6
 Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
 DOI 10.17487/RFC6282, September 2011,
 <https://www.rfc-editor.org/info/rfc6282>.

 [RFC6437] Amante, S., Carpenter, B., Jiang, S., and J. Rajahalme,
 "IPv6 Flow Label Specification", RFC 6437,
 DOI 10.17487/RFC6437, November 2011,
 <https://www.rfc-editor.org/info/rfc6437>.

 [RFC7136] Carpenter, B. and S. Jiang, "Significance of IPv6
 Interface Identifiers", RFC 7136, DOI 10.17487/RFC7136,
 February 2014, <https://www.rfc-editor.org/info/rfc7136>.

 [RFC8065] Thaler, D., "Privacy Considerations for IPv6 Adaptation-
 Layer Mechanisms", RFC 8065, DOI 10.17487/RFC8065,
 February 2017, <https://www.rfc-editor.org/info/rfc8065>.

Appendix A. Compression Examples

 This section gives some scenarios of the compression mechanism for
 IPv6/UDP. The goal is to illustrate the behavior of SCHC.

 The mechanisms defined in this document can be applied to a Dev that
 embeds some applications running over CoAP. In this example, three
 flows are considered. The first flow is for the device management
 based on CoAP using Link Local IPv6 addresses and UDP ports 123 and
 124 for Dev and App, respectively. The second flow will be a CoAP

https://datatracker.ietf.org/doc/html/rfc8376
https://www.rfc-editor.org/info/rfc8376
https://datatracker.ietf.org/doc/html/rfc4944
https://www.rfc-editor.org/info/rfc4944
https://datatracker.ietf.org/doc/html/rfc5795
https://www.rfc-editor.org/info/rfc5795
https://datatracker.ietf.org/doc/html/rfc6282
https://www.rfc-editor.org/info/rfc6282
https://datatracker.ietf.org/doc/html/rfc6437
https://www.rfc-editor.org/info/rfc6437
https://datatracker.ietf.org/doc/html/rfc7136
https://www.rfc-editor.org/info/rfc7136
https://datatracker.ietf.org/doc/html/rfc8065
https://www.rfc-editor.org/info/rfc8065

Minaburo, et al. Expires May 31, 2020 [Page 61]

Internet-Draft LPWAN SCHC November 2019

 server for measurements done by the Dev (using ports 5683) and Global
 IPv6 Address prefixes alpha::IID/64 to beta::1/64. The last flow is
 for legacy applications using different ports numbers, the
 destination IPv6 address prefix is gamma::1/64.

 Figure 25 presents the protocol stack. IPv6 and UDP are represented
 with dotted lines since these protocols are compressed on the radio
 link.

 Management Data
 +----------+---------+---------+
 | CoAP | CoAP | legacy |
 +----||----+---||----+---||----+
 . UDP . UDP | UDP |

 . IPv6 . IPv6 . IPv6 .
 +------------------------------+
 | SCHC Header compression |
 | and fragmentation |
 +------------------------------+
 | LPWAN L2 technologies |
 +------------------------------+
 Dev or NGW

 Figure 25: Simplified Protocol Stack for LP-WAN

 In some LPWAN technologies, only the Devs have a device ID. When
 such technologies are used, it is necessary to statically define an
 IID for the Link Local address for the SCHC C/D.

 Rule 0
 Special Rule ID used to tag an uncompressed UDP/IPV6 packet.

 Rule 1
 +----------------+--+--+--+---------+--------+------------++------+
 | Field |FL|FP|DI| Value | Match | Comp Decomp|| Sent |
 | | | | | | Opera. | Action ||[bits]|
 +----------------+--+--+--+---------+---------------------++------+
 |IPv6 Version |4 |1 |Bi|6 | ignore | not-sent || |
 |IPv6 DiffServ |8 |1 |Bi|0 | equal | not-sent || |
 |IPv6 Flow Label |20|1 |Bi|0 | equal | not-sent || |
 |IPv6 Length |16|1 |Bi| | ignore | compute-* || |
 |IPv6 Next Header|8 |1 |Bi|17 | equal | not-sent || |
 |IPv6 Hop Limit |8 |1 |Bi|255 | ignore | not-sent || |
 |IPv6 DevPrefix |64|1 |Bi|FE80::/64| equal | not-sent || |
 |IPv6 DevIID |64|1 |Bi| | ignore | DevIID || |
 |IPv6 AppPrefix |64|1 |Bi|FE80::/64| equal | not-sent || |

Minaburo, et al. Expires May 31, 2020 [Page 62]

Internet-Draft LPWAN SCHC November 2019

 |IPv6 AppIID |64|1 |Bi|::1 | equal | not-sent || |
 +================+==+==+==+=========+========+============++======+
 |UDP DevPort |16|1 |Bi|123 | equal | not-sent || |
 |UDP AppPort |16|1 |Bi|124 | equal | not-sent || |
 |UDP Length |16|1 |Bi| | ignore | compute-* || |
 |UDP checksum |16|1 |Bi| | ignore | compute-* || |
 +================+==+==+==+=========+========+============++======+

 Rule 2
 +----------------+--+--+--+---------+--------+------------++------+
 | Field |FL|FP|DI| Value | Match | Action || Sent |
 | | | | | | Opera. | Action ||[bits]|
 +----------------+--+--+--+---------+--------+------------++------+
 |IPv6 Version |4 |1 |Bi|6 | ignore | not-sent || |
 |IPv6 DiffServ |8 |1 |Bi|0 | equal | not-sent || |
 |IPv6 Flow Label |20|1 |Bi|0 | equal | not-sent || |
 |IPv6 Length |16|1 |Bi| | ignore | compute-* || |
 |IPv6 Next Header|8 |1 |Bi|17 | equal | not-sent || |
 |IPv6 Hop Limit |8 |1 |Bi|255 | ignore | not-sent || |
 |IPv6 DevPrefix |64|1 |Bi|[alpha/64, match- |mapping-sent|| 1 |
 | | | | |fe80::/64] mapping| || |
 |IPv6 DevIID |64|1 |Bi| | ignore | DevIID || |
 |IPv6 AppPrefix |64|1 |Bi|[beta/64,| match- |mapping-sent|| 2 |
 | | | | |alpha/64,| mapping| || |
 | | | | |fe80::64]| | || |
 |IPv6 AppIID |64|1 |Bi|::1000 | equal | not-sent || |
 +================+==+==+==+=========+========+============++======+
 |UDP DevPort |16|1 |Bi|5683 | equal | not-sent || |
 |UDP AppPort |16|1 |Bi|5683 | equal | not-sent || |
 |UDP Length |16|1 |Bi| | ignore | compute-* || |
 |UDP checksum |16|1 |Bi| | ignore | compute-* || |
 +================+==+==+==+=========+========+============++======+

 Rule 3
 +----------------+--+--+--+---------+--------+------------++------+
 | Field |FL|FP|DI| Value | Match | Action || Sent |
 | | | | | | Opera. | Action ||[bits]|
 +----------------+--+--+--+---------+--------+------------++------+
 |IPv6 Version |4 |1 |Bi|6 | ignore | not-sent || |
 |IPv6 DiffServ |8 |1 |Bi|0 | equal | not-sent || |
 |IPv6 Flow Label |20|1 |Bi|0 | equal | not-sent || |
 |IPv6 Length |16|1 |Bi| | ignore | compute-* || |
 |IPv6 Next Header|8 |1 |Bi|17 | equal | not-sent || |
 |IPv6 Hop Limit |8 |1 |Up|255 | ignore | not-sent || |
 |IPv6 Hop Limit |8 |1 |Dw| | ignore | value-sent || 8 |
 |IPv6 DevPrefix |64|1 |Bi|alpha/64 | equal | not-sent || |
 |IPv6 DevIID |64|1 |Bi| | ignore | DevIID || |
 |IPv6 AppPrefix |64|1 |Bi|gamma/64 | equal | not-sent || |

Minaburo, et al. Expires May 31, 2020 [Page 63]

Internet-Draft LPWAN SCHC November 2019

 |IPv6 AppIID |64|1 |Bi|::1000 | equal | not-sent || |
 +================+==+==+==+=========+========+============++======+
 |UDP DevPort |16|1 |Bi|8720 | MSB(12)| LSB || 4 |
 |UDP AppPort |16|1 |Bi|8720 | MSB(12)| LSB || 4 |
 |UDP Length |16|1 |Bi| | ignore | compute-* || |
 |UDP checksum |16|1 |Bi| | ignore | compute-* || |
 +================+==+==+==+=========+========+============++======+

 Figure 26: Context Rules

 Figure 26 describes a example of a Rule set.

 In this example, 0 was chosen as the special Rule ID that tags
 packets that cannot be compressed with any compression Rule.

 All the fields described in Rules 1-3 are present in the IPv6 and UDP
 headers. The DevIID-DID value is found in the L2 header.

 Rules 2-3 use global addresses. The way the Dev learns the prefix is
 not in the scope of the document.

 Rule 3 compresses each port number to 4 bits.

Appendix B. Fragmentation Examples

 This section provides examples for the various fragment reliability
 modes specified in this document. In the drawings, Bitmaps are shown
 in their uncompressed form.

 Figure 27 illustrates the transmission in No-ACK mode of a SCHC
 Packet that needs 11 SCHC Fragments. FCN is 1 bit wide.

Minaburo, et al. Expires May 31, 2020 [Page 64]

Internet-Draft LPWAN SCHC November 2019

 Sender Receiver
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-------FCN=0-------->|
 |-----FCN=1 + RCS --->| Integrity check: success
 (End)

 Figure 27: No-ACK mode, 11 SCHC Fragments

 In the following examples, N (the size of the FCN field) is 3 bits.
 The All-1 FCN value is 7.

 Figure 28 illustrates the transmission in ACK-on-Error mode of a SCHC
 Packet fragmented in 11 tiles, with one tile per SCHC Fragment,
 WINDOW_SIZE=7 and no lost SCHC Fragment.

 Sender Receiver
 |-----W=0, FCN=6----->|
 |-----W=0, FCN=5----->|
 |-----W=0, FCN=4----->|
 |-----W=0, FCN=3----->|
 |-----W=0, FCN=2----->|
 |-----W=0, FCN=1----->|
 |-----W=0, FCN=0----->|
 (no ACK)
 |-----W=1, FCN=6----->|
 |-----W=1, FCN=5----->|
 |-----W=1, FCN=4----->|
 |--W=1, FCN=7 + RCS-->| Integrity check: success
 |<-- ACK, W=1, C=1 ---| C=1
 (End)

 Figure 28: ACK-on-Error mode, 11 tiles, one tile per SCHC Fragment,
 no lost SCHC Fragment.

 Figure 29 illustrates the transmission in ACK-on-Error mode of a SCHC
 Packet fragmented in 11 tiles, with one tile per SCHC Fragment,
 WINDOW_SIZE=7 and three lost SCHC Fragments.

Minaburo, et al. Expires May 31, 2020 [Page 65]

Internet-Draft LPWAN SCHC November 2019

 Sender Receiver
 |-----W=0, FCN=6----->|
 |-----W=0, FCN=5----->|
 |-----W=0, FCN=4--X-->|
 |-----W=0, FCN=3----->|
 |-----W=0, FCN=2--X-->|
 |-----W=0, FCN=1----->|
 |-----W=0, FCN=0----->| 6543210
 |<-- ACK, W=0, C=0 ---| Bitmap:1101011
 |-----W=0, FCN=4----->|
 |-----W=0, FCN=2----->|
 (no ACK)
 |-----W=1, FCN=6----->|
 |-----W=1, FCN=5----->|
 |-----W=1, FCN=4--X-->|
 |- W=1, FCN=7 + RCS ->| Integrity check: failure
 |<-- ACK, W=1, C=0 ---| C=0, Bitmap:1100001
 |-----W=1, FCN=4----->| Integrity check: success
 |<-- ACK, W=1, C=1 ---| C=1
 (End)

 Figure 29: ACK-on-Error mode, 11 tiles, one tile per SCHC Fragment,
 lost SCHC Fragments.

 Figure 30 shows an example of a transmission in ACK-on-Error mode of
 a SCHC Packet fragmented in 73 tiles, with N=5, WINDOW_SIZE=28, M=2
 and 3 lost SCHC Fragments.

Minaburo, et al. Expires May 31, 2020 [Page 66]

Internet-Draft LPWAN SCHC November 2019

 Sender Receiver
 |-----W=0, FCN=27----->| 4 tiles sent
 |-----W=0, FCN=23----->| 4 tiles sent
 |-----W=0, FCN=19----->| 4 tiles sent
 |-----W=0, FCN=15--X-->| 4 tiles sent (not received)
 |-----W=0, FCN=11----->| 4 tiles sent
 |-----W=0, FCN=7 ----->| 4 tiles sent
 |-----W=0, FCN=3 ----->| 4 tiles sent
 |-----W=1, FCN=27----->| 4 tiles sent
 |-----W=1, FCN=23----->| 4 tiles sent
 |-----W=1, FCN=19----->| 4 tiles sent
 |-----W=1, FCN=15----->| 4 tiles sent
 |-----W=1, FCN=11----->| 4 tiles sent
 |-----W=1, FCN=7 ----->| 4 tiles sent
 |-----W=1, FCN=3 --X-->| 4 tiles sent (not received)
 |-----W=2, FCN=27----->| 4 tiles sent
 |-----W=2, FCN=23----->| 4 tiles sent
 ^ |-----W=2, FCN=19----->| 1 tile sent
 | |-----W=2, FCN=18----->| 1 tile sent
 | |-----W=2, FCN=17----->| 1 tile sent
 |-----W=2, FCN=16----->| 1 tile sent
 s |-----W=2, FCN=15----->| 1 tile sent
 m |-----W=2, FCN=14----->| 1 tile sent
 a |-----W=2, FCN=13--X-->| 1 tile sent (not received)
 l |-----W=2, FCN=12----->| 1 tile sent
 l |---W=2, FCN=31 + RCS->| Integrity check: failure
 e |<--- ACK, W=0, C=0 ---| C=0, Bitmap:1111111111110000111111111111
 r |-----W=0, FCN=15----->| 1 tile sent
 |-----W=0, FCN=14----->| 1 tile sent
 L |-----W=0, FCN=13----->| 1 tile sent
 2 |-----W=0, FCN=12----->| 1 tile sent
 |<--- ACK, W=1, C=0 ---| C=0, Bitmap:1111111111111111111111110000
 M |-----W=1, FCN=3 ----->| 1 tile sent
 T |-----W=1, FCN=2 ----->| 1 tile sent
 U |-----W=1, FCN=1 ----->| 1 tile sent
 |-----W=1, FCN=0 ----->| 1 tile sent
 | |<--- ACK, W=2, C=0 ---| C=0, Bitmap:1111111111111101000000000001
 | |-----W=2, FCN=13----->| Integrity check: success
 V |<--- ACK, W=2, C=1 ---| C=1
 (End)

 Figure 30: ACK-on-Error mode, variable MTU.

 In this example, the L2 MTU becomes reduced just before sending the
 "W=2, FCN=19" fragment, leaving space for only 1 tile in each
 forthcoming SCHC Fragment. Before retransmissions, the 73 tiles are
 carried by a total of 25 SCHC Fragments, the last 9 being of smaller
 size.

Minaburo, et al. Expires May 31, 2020 [Page 67]

Internet-Draft LPWAN SCHC November 2019

 Note: other sequences of events (e.g. regarding when ACKs are sent by
 the Receiver) are also allowed by this specification. Profiles may
 restrict this flexibility.

 Figure 31 illustrates the transmission in ACK-Always mode of a SCHC
 Packet fragmented in 11 tiles, with one tile per SCHC Fragment, with
 N=3, WINDOW_SIZE=7 and no loss.

 Sender Receiver
 |-----W=0, FCN=6----->|
 |-----W=0, FCN=5----->|
 |-----W=0, FCN=4----->|
 |-----W=0, FCN=3----->|
 |-----W=0, FCN=2----->|
 |-----W=0, FCN=1----->|
 |-----W=0, FCN=0----->|
 |<-- ACK, W=0, C=0 ---| Bitmap:1111111
 |-----W=1, FCN=6----->|
 |-----W=1, FCN=5----->|
 |-----W=1, FCN=4----->|
 |--W=1, FCN=7 + RCS-->| Integrity check: success
 |<-- ACK, W=1, C=1 ---| C=1
 (End)

 Figure 31: ACK-Always mode, 11 tiles, one tile per SCHC Fragment, no
 loss.

 Figure 32 illustrates the transmission in ACK-Always mode of a SCHC
 Packet fragmented in 11 tiles, with one tile per SCHC Fragment, N=3,
 WINDOW_SIZE=7 and three lost SCHC Fragments.

Minaburo, et al. Expires May 31, 2020 [Page 68]

Internet-Draft LPWAN SCHC November 2019

 Sender Receiver
 |-----W=0, FCN=6----->|
 |-----W=0, FCN=5----->|
 |-----W=0, FCN=4--X-->|
 |-----W=0, FCN=3----->|
 |-----W=0, FCN=2--X-->|
 |-----W=0, FCN=1----->|
 |-----W=0, FCN=0----->| 6543210
 |<-- ACK, W=0, C=0 ---| Bitmap:1101011
 |-----W=0, FCN=4----->|
 |-----W=0, FCN=2----->|
 |<-- ACK, W=0, C=0 ---| Bitmap:1111111
 |-----W=1, FCN=6----->|
 |-----W=1, FCN=5----->|
 |-----W=1, FCN=4--X-->|
 |--W=1, FCN=7 + RCS-->| Integrity check: failure
 |<-- ACK, W=1, C=0 ---| C=0, Bitmap:11000001
 |-----W=1, FCN=4----->| Integrity check: success
 |<-- ACK, W=1, C=1 ---| C=1
 (End)

 Figure 32: ACK-Always mode, 11 tiles, one tile per SCHC Fragment,
 three lost SCHC Fragments.

 Figure 33 illustrates the transmission in ACK-Always mode of a SCHC
 Packet fragmented in 6 tiles, with one tile per SCHC Fragment, N=3,
 WINDOW_SIZE=7, three lost SCHC Fragments and only one retry needed to
 recover each lost SCHC Fragment.

 Sender Receiver
 |-----W=0, FCN=6----->|
 |-----W=0, FCN=5----->|
 |-----W=0, FCN=4--X-->|
 |-----W=0, FCN=3--X-->|
 |-----W=0, FCN=2--X-->|
 |--W=0, FCN=7 + RCS-->| Integrity check: failure
 |<-- ACK, W=0, C=0 ---| C=0, Bitmap:1100001
 |-----W=0, FCN=4----->| Integrity check: failure
 |-----W=0, FCN=3----->| Integrity check: failure
 |-----W=0, FCN=2----->| Integrity check: success
 |<-- ACK, W=0, C=1 ---| C=1
 (End)

 Figure 33: ACK-Always mode, 6 tiles, one tile per SCHC Fragment,
 three lost SCHC Fragments.

 Figure 34 illustrates the transmission in ACK-Always mode of a SCHC
 Packet fragmented in 6 tiles, with one tile per SCHC Fragment, N=3,

Minaburo, et al. Expires May 31, 2020 [Page 69]

Internet-Draft LPWAN SCHC November 2019

 WINDOW_SIZE=7, three lost SCHC Fragments, and the second SCHC ACK
 lost.

 Sender Receiver
 |-----W=0, FCN=6----->|
 |-----W=0, FCN=5----->|
 |-----W=0, FCN=4--X-->|
 |-----W=0, FCN=3--X-->|
 |-----W=0, FCN=2--X-->|
 |--W=0, FCN=7 + RCS-->| Integrity check: failure
 |<-- ACK, W=0, C=0 ---| C=0, Bitmap:1100001
 |-----W=0, FCN=4----->| Integrity check: failure
 |-----W=0, FCN=3----->| Integrity check: failure
 |-----W=0, FCN=2----->| Integrity check: success
 |<-X-ACK, W=0, C=1 ---| C=1
 timeout | |
 |--- W=0, ACK REQ --->| ACK REQ
 |<-- ACK, W=0, C=1 ---| C=1
 (End)

 Figure 34: ACK-Always mode, 6 tiles, one tile per SCHC Fragment, SCHC
 ACK loss.

 Figure 35 illustrates the transmission in ACK-Always mode of a SCHC
 Packet fragmented in 6 tiles, with N=3, WINDOW_SIZE=7, with three
 lost SCHC Fragments, and one retransmitted SCHC Fragment lost again.

 Sender Receiver
 |-----W=0, FCN=6----->|
 |-----W=0, FCN=5----->|
 |-----W=0, FCN=4--X-->|
 |-----W=0, FCN=3--X-->|
 |-----W=0, FCN=2--X-->|
 |--W=0, FCN=7 + RCS-->| Integrity check: failure
 |<-- ACK, W=0, C=0 ---| C=0, Bitmap:1100001
 |-----W=0, FCN=4----->| Integrity check: failure
 |-----W=0, FCN=3----->| Integrity check: failure
 |-----W=0, FCN=2--X-->|
 timeout| |
 |--- W=0, ACK REQ --->| ACK REQ
 |<-- ACK, W=0, C=0 ---| C=0, Bitmap: 1111101
 |-----W=0, FCN=2----->| Integrity check: success
 |<-- ACK, W=0, C=1 ---| C=1
 (End)

 Figure 35: ACK-Always mode, 6 tiles, retransmitted SCHC Fragment lost
 again.

Minaburo, et al. Expires May 31, 2020 [Page 70]

Internet-Draft LPWAN SCHC November 2019

 Figure 36 illustrates the transmission in ACK-Always mode of a SCHC
 Packet fragmented in 28 tiles, with one tile per SCHC Fragment, N=5,
 WINDOW_SIZE=24 and two lost SCHC Fragments.

 Sender Receiver
 |-----W=0, FCN=23----->|
 |-----W=0, FCN=22----->|
 |-----W=0, FCN=21--X-->|
 |-----W=0, FCN=20----->|
 |-----W=0, FCN=19----->|
 |-----W=0, FCN=18----->|
 |-----W=0, FCN=17----->|
 |-----W=0, FCN=16----->|
 |-----W=0, FCN=15----->|
 |-----W=0, FCN=14----->|
 |-----W=0, FCN=13----->|
 |-----W=0, FCN=12----->|
 |-----W=0, FCN=11----->|
 |-----W=0, FCN=10--X-->|
 |-----W=0, FCN=9 ----->|
 |-----W=0, FCN=8 ----->|
 |-----W=0, FCN=7 ----->|
 |-----W=0, FCN=6 ----->|
 |-----W=0, FCN=5 ----->|
 |-----W=0, FCN=4 ----->|
 |-----W=0, FCN=3 ----->|
 |-----W=0, FCN=2 ----->|
 |-----W=0, FCN=1 ----->|
 |-----W=0, FCN=0 ----->|
 | |
 |<--- ACK, W=0, C=0 ---| Bitmap:110111111111101111111111
 |-----W=0, FCN=21----->|
 |-----W=0, FCN=10----->|
 |<--- ACK, W=0, C=0 ---| Bitmap:111111111111111111111111
 |-----W=1, FCN=23----->|
 |-----W=1, FCN=22----->|
 |-----W=1, FCN=21----->|
 |--W=1, FCN=31 + RCS-->| Integrity check: success
 |<--- ACK, W=1, C=1 ---| C=1
 (End)

 Figure 36: ACK-Always mode, 28 tiles, one tile per SCHC Fragment,
 lost SCHC Fragments.

Minaburo, et al. Expires May 31, 2020 [Page 71]

Internet-Draft LPWAN SCHC November 2019

Appendix C. Fragmentation State Machines

 The fragmentation state machines of the sender and the receiver, one
 for each of the different reliability modes, are described in the
 following figures:

 +===========+
 +------------+ Init |
 | FCN=0 +===========+
 | No Window
 | No Bitmap
 | +-------+
 | +========+==+ | More Fragments
 | | | <--+ ~~~~~~~~~~~~~~~~~~~~
 +--------> | Send | send Fragment (FCN=0)
 +===+=======+
 | last fragment
 | ~~~~~~~~~~~~
 | FCN = 1
 v send fragment+RCS
 +============+
 | END |
 +============+

 Figure 37: Sender State Machine for the No-ACK Mode

 +------+ Not All-1
 +==========+=+ | ~~~~~~~~~~~~~~~~~~~
 | + <--+ set Inactivity Timer
 | RCV Frag +-------+
 +=+===+======+ |All-1 &
 All-1 & | | |RCS correct
 RCS wrong | |Inactivity |
 | |Timer Exp. |
 v | |
 +==========++ | v
 | Error |<-+ +========+==+
 +===========+ | END |
 +===========+

 Figure 38: Receiver State Machine for the No-ACK Mode

Minaburo, et al. Expires May 31, 2020 [Page 72]

Internet-Draft LPWAN SCHC November 2019

 +=======+
 | INIT | FCN!=0 & more frags
 | | ~~~~~~~~~~~~~~~~~~~~~~
 +======++ +--+ send Window + frag(FCN)
 W=0 | | | FCN-
 Clear lcl_bm | | v set lcl_bm
 FCN=max value | ++==+========+
 +> | |
 +---------------------> | SEND |
 | +==+===+=====+
 | FCN==0 & more frags | | last frag
 | ~~~~~~~~~~~~~~~~~~~~~ | | ~~~~~~~~~~~~~~~
 | set lcl_bm | | set lcl_bm
 | send wnd + frag(all-0) | | send wnd+frag(all-1)+RCS
 | set Retrans_Timer | | set Retrans_Timer
 | | |
 |Recv_wnd == wnd & | |
 |lcl_bm==recv_bm & | | +----------------------+
 |more frag | | | lcl_bm!=rcv-bm |
 |~~~~~~~~~~~~~~~~~~~~~~ | | | ~~~~~~~~~ |
 |Stop Retrans_Timer | | | Attempt++ v
 |clear lcl_bm v v | +=====+=+
 |window=next_window +====+===+==+===+ |Resend |
 +---------------------+ | |Missing|
 +----+ Wait | |Frag |
 not expected wnd | | Bitmap | +=======+
   ~~~~~~~~~~~~~~~~ +--->+               ++Retrans_Timer Exp  |
       discard frag      +==+=+===+=+==+=+| ~~~~~~~~~~~~~~~~~ |
                            | |   | ^  ^  |reSend(empty)All-* | | |
                            | |   | |  |  |Set Retrans_Timer  |
                            | |   | |  +--+Attempt++          |
     C_bit==1 &             | |   | +-------------------------+
   Recv_window==window &    | |   |   all missing frags sent
                no more frag| |   |   ~~~~~~~~~~~~~~~~~~~~~~
    ~~~~~~~~~~~~~~~~~~~~~~~~| |   |   Set Retrans_Timer
 Stop Retrans_Timer| | |
 +=============+ | | |
 | END +<--------+ | |
 +=============+ | | Attempt > MAX_ACK_REQUESTS
 All-1 Window & | | ~~~~~~~~~~~~~~~~~~
 C_bit ==0 & | v Send Abort
 lcl_bm==recv_bm | +=+===========+
                 ~~~~~~~~~~~~ +>|    ERROR    |
                   Send Abort   +=============+

          Figure 39: Sender State Machine for the ACK-Always Mode



Minaburo, et al.          Expires May 31, 2020                 [Page 73]



Internet-Draft                 LPWAN SCHC                  November 2019

    Not All- & w=expected +---+   +---+w = Not expected
    ~~~~~~~~~~~~~~~~~~~~~ |   |   |   |~~~~~~~~~~~~~~~~
 Set lcl_bm(FCN) | v v |discard
 ++===+===+===+=+
 +---------------------+ Rcv +--->* ABORT
 | +------------------+ Window |
 | | +=====+==+=====+
 | | All-0 & w=expect | ^ w =next & not-All
 | | ~~~~~~~~~~~~~~~~~~ | |~~~~~~~~~~~~~~~~~~~~~
 | | set lcl_bm(FCN) | |expected = next window
 | | send lcl_bm | |Clear lcl_bm
 | | | |
 | | w=expected & not-All | |
 | | ~~~~~~~~~~~~~~~~~~ | |
 | | set lcl_bm(FCN)+-+ | | +--+ w=next & All-0
 | | if lcl_bm full | | | | | | ~~~~~~~~~~~~~~~
 | | send lcl_bm | | | | | | expected = nxt wnd
 | | v | v | | | Clear lcl_bm
 | |w=expected& All-1 +=+=+=+==+=++ | set lcl_bm(FCN)
 | | ~~~~~~~~~~~ +->+ Wait +<+ send lcl_bm
 | | discard +--| Next |
 | | All-0 +---------+ Window +--->* ABORT
 | | ~~~~~ +-------->+========+=++
 | | snd lcl_bm All-1 & w=next| | All-1 & w=nxt
 | | & RCS wrong| | & RCS right
 | | ~~~~~~~~~~~~~~~~~| | ~~~~~~~~~~~~~~~~~~
 | | set lcl_bm(FCN)| |set lcl_bm(FCN)
 | | send lcl_bm| |send lcl_bm
 | | | +----------------------+
 | |All-1 & w=expected | | |
 | |& RCS wrong v +---+ w=expected & |
 | |~~~~~~~~~~~~~~~~~~~~ +====+=====+ | RCS wrong |
 | |set lcl_bm(FCN) | +<+ ~~~~~~~~~~~~~~ |
 | |send lcl_bm | Wait End | set lcl_bm(FCN)|
 | +--------------------->+ +--->* ABORT |
 | +===+====+=+-+ All-1&RCS wrong|
 | | ^ | ~~~~~~~~~~~~~~~| |
 | w=expected & RCS right | +---+ send lcl_bm |
 | ~~~~~~~~~~~~~~~~~~~~~~ | |
 | set lcl_bm(FCN) | +-+ Not All-1 |
 | send lcl_bm | | | ~~~~~~~~~ |
 | | | | discard |
 |All-1&w=expected & RCS right | | | |
 |~~~~~~~~~~~~~~~~~~~~~~~~~~~~ v | v +----+All-1 |
 |set lcl_bm(FCN) +=+=+=+=+==+ |~~~~~~~~~ |
 |send lcl_bm | +<+Send lcl_bm |
 +-------------------------->+ END | |
 +==========+<---------------+

Minaburo, et al. Expires May 31, 2020 [Page 74]

Internet-Draft LPWAN SCHC November 2019

 --->* ABORT

 In any state
 on receiving a SCHC ACK REQ
 Send a SCHC ACK for the current window

 Figure 40: Receiver State Machine for the ACK-Always Mode

 +=======+
 | |
 | INIT |
 | | FCN!=0 & more frags
 +======++ ~~~~~~~~~~~~~~~~~~~~~~
 Frag RuleID trigger | +--+ Send cur_W + frag(FCN);
     ~~~~~~~~~~~~~~~~~~~ |   |  | FCN--;
  cur_W=0; FCN=max_value;|   |  | set [cur_W, cur_Bmp]
    clear [cur_W, Bmp_n];|   |  v
          clear rcv_Bmp  |  ++==+==========+         **BACK_TO_SEND
                         +->+              |     cur_W==rcv_W &
      **BACK_TO_SEND        |     SEND     |     [cur_W,Bmp_n]==rcv_Bmp
+-------------------------->+              |     & more frags
|  +----------------------->+              |     ~~~~~~~~~~~~
|  |                        ++===+=========+     cur_W++;
|  |      FCN==0 & more frags|   |last frag      clear [cur_W, Bmp_n]
|  |  ~~~~~~~~~~~~~~~~~~~~~~~|   |~~~~~~~~~
|  |        set cur_Bmp;     |   |set [cur_W, Bmp_n];
|  |send cur_W + frag(All-0);|   |send cur_W + frag(All-1)+RCS;
|  |        set Retrans_Timer|   |set Retrans_Timer
|  |                         |   | +-----------------------------------+
|  |Retrans_Timer expires &  |   | |cur_W==rcv_W&[cur_W,Bmp_n]!=rcv_Bmp|
|  |more Frags               |   | |  ~~~~~~~~~~~~~~~~~~~              |
|  |~~~~~~~~~~~~~~~~~~~~     |   | |  Attempts++; W=cur_W              |
|  |stop Retrans_Timer;      |   | | +--------+             rcv_W==Wn &|
|  |[cur_W,Bmp_n]==cur_Bmp;  v   v | |        v     [Wn,Bmp_n]!=rcv_Bmp|
|  |cur_W++            +=====+===+=+=+==+   +=+=========+   ~~~~~~~~~~~|
|  +-------------------+                |   | Resend    |   Attempts++;|
+----------------------+   Wait x ACK   |   | Missing   |         W=Wn |
+--------------------->+                |   | Frags(W)  +<-------------+
|         rcv_W==Wn &+-+                |   +======+====+
| [Wn,Bmp_n]!=rcv_Bmp| ++=+===+===+==+==+          |
|      ~~~~~~~~~~~~~~|  ^ |   |   |  ^             |
|        send (cur_W,+--+ |   |   |  +-------------+
|        ALL-0-empty)     |   |   |     all missing frag sent(W)
|                         |   |   |     ~~~~~~~~~~~~~~~~~
|  Retrans_Timer expires &|   |   |     set Retrans_Timer
|            No more Frags|   |   |
|           ~~~~~~~~~~~~~~|   |   |



Minaburo, et al.          Expires May 31, 2020                 [Page 75]



Internet-Draft                 LPWAN SCHC                  November 2019

|      stop Retrans_Timer;|   |   |
|(re)send frag(All-1)+RCS |   |   |
+-------------------------+   |   |
                 cur_W==rcv_W&|   |
       [cur_W,Bmp_n]==rcv_Bmp&|   | Attempts > MAX_ACK_REQUESTS
  No more Frags & RCS flag==OK|   | ~~~~~~~~~~
            ~~~~~~~~~~~~~~~~~~|   | send Abort
 +=========+stop Retrans_Timer| | +===========+
 | END +<-----------------+ +->+ ERROR |
 +=========+ +===========+

 Figure 41: Sender State Machine for the ACK-on-Error Mode

 This is an example only. It is not normative. The specification in
Section 8.4.3.1 allows for sequences of operations different from the

 one shown here.

Minaburo, et al. Expires May 31, 2020 [Page 76]

Internet-Draft LPWAN SCHC November 2019

 +=======+ New frag RuleID received
 | | ~~~~~~~~~~~~~
 | INIT +-------+cur_W=0;clear([cur_W,Bmp_n]);
 +=======+ |sync=0
 |
 Not All* & rcv_W==cur_W+---+ | +---+
        ~~~~~~~~~~~~~~~~~~~~ |   | | |  (E)
        set[cur_W,Bmp_n(FCN)]|   v v v   |
                            ++===+=+=+===+=+
     +----------------------+              +--+ All-0&Full[cur_W,Bmp_n]
     |           ABORT *<---+  Rcv Window  |  | ~~~~~~~~~~
     |  +-------------------+              +<-+ cur_W++;set Inact_timer;
     |  |                +->+=+=+=+=+=+====+    clear [cur_W,Bmp_n]
     |  | All-0 empty(Wn)|    | | | ^ ^
     |  | ~~~~~~~~~~~~~~ +----+ | | | |rcv_W==cur_W & sync==0;
     |  | sendACK([Wn,Bmp_n])   | | | |& Full([cur_W,Bmp_n])
     |  |                       | | | |& All* || last_miss_frag
     |  |                       | | | |~~~~~~~~~~~~~~~~~~~~~~
     |  |    All* & rcv_W==cur_W|(C)| |sendACK([cur_W,Bmp_n]);
     |  |              & sync==0| | | |cur_W++; clear([cur_W,Bmp_n])
     |  |&no_full([cur_W,Bmp_n])| |(E)|
     |  |      ~~~~~~~~~~~~~~~~ | | | |              +========+
     |  | sendACK([cur_W,Bmp_n])| | | |              | Error/ |
     |  |                       | | | |   +----+     | Abort  |
     |  |                       v v | |   |    |     +===+====+
     |  |                   +===+=+=+=+===+=+ (D)        ^
     |  |                +--+    Wait x     |  |         |
     |  | All-0 empty(Wn)+->| Missing Frags |<-+         |
     |  | ~~~~~~~~~~~~~~    +=============+=+            |
     |  | sendACK([Wn,Bmp_n])             +--------------+
     |  |                                       *ABORT
     v  v
    (A)(B)
                                      (D) All* || last_miss_frag
      (C) All* & sync>0                   & rcv_W!=cur_W & sync>0
          ~~~~~~~~~~~~                    & Full([rcv_W,Bmp_n])
 Wn=oldest[not full(W)]; ~~~~~~~~~~~~~~~~~~~~
 sendACK([Wn,Bmp_n]) Wn=oldest[not full(W)];
 sendACK([Wn,Bmp_n]);sync--

 ABORT-->* Uplink Only &
 Inact_Timer expires
 (E) Not All* & rcv_W!=cur_W || Attempts > MAX_ACK_REQUESTS
          ~~~~~~~~~~~~~~~~~~~~            ~~~~~~~~~~~~~~~~~~~~~
          sync++; cur_W=rcv_W;            send Abort
          set[cur_W,Bmp_n(FCN)]



Minaburo, et al.          Expires May 31, 2020                 [Page 77]



Internet-Draft                 LPWAN SCHC                  November 2019

     (A)(B)
      |  |
      |  | All-1 & rcv_W==cur_W & RCS!=OK        All-0 empty(Wn)
      |  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~     +-+  ~~~~~~~~~~
      |  | sendACK([cur_W,Bmp_n],C=0)       | v  sendACK([Wn,Bmp_n])
      |  |                      +===========+=++
      |  +--------------------->+   Wait End   +-+
      |                         +=====+=+====+=+ | All-1
      |     rcv_W==cur_W & RCS==OK    | |    ^   | & rcv_W==cur_W
      |     ~~~~~~~~~~~~~~~~~~~~~~    | |    +---+ & RCS!=OK
      |  sendACK([cur_W,Bmp_n],C=1)   | |          ~~~~~~~~~~~~~~~~~~~
      |                               | | sendACK([cur_W,Bmp_n],C=0);
      |                               | |          Attempts++
      |All-1 & Full([cur_W,Bmp_n])    | |
      |& RCS==OK & sync==0            | +-->* ABORT
      |~~~~~~~~~~~~~~~~~~~            v
      |sendACK([cur_W,Bmp_n],C=1)   +=+=========+
      +---------------------------->+    END    |
                                    +===========+

        Figure 42: Receiver State Machine for the ACK-on-Error Mode

Appendix D.  SCHC Parameters

   This section lists the information that needs to be provided in the
   LPWAN technology-specific documents.

   o  Most common uses cases, deployment scenarios

   o  Mapping of the SCHC architectural elements onto the LPWAN
      architecture

   o  Assessment of LPWAN integrity checking

   o  Various potential channel conditions for the technology and the
      corresponding recommended use of SCHC C/D and F/R

   This section lists the parameters that need to be defined in the
   Profile.

   o  Rule ID numbering scheme, fixed-sized or variable-sized Rule IDs,
      number of Rules, the way the Rule ID is transmitted

   o  maximum packet size that should ever be reconstructed by SCHC
      Decompression (MAX_PACKET_SIZE).  See Section 12.



Minaburo, et al.          Expires May 31, 2020                 [Page 78]



Internet-Draft                 LPWAN SCHC                  November 2019

   o  Padding: size of the L2 Word (for most LPWAN technologies, this
      would be a byte; for some technologies, a bit)

   o  Decision to use SCHC fragmentation mechanism or not.  If yes:

      *  reliability mode(s) used, in which cases (e.g. based on link
         channel condition)

      *  Rule ID values assigned to each mode in use

      *  presence and number of bits for DTag (T) for each Rule ID value

      *  support for interleaved packet transmission, to what extent

      *  WINDOW_SIZE, for modes that use windows

      *  number of bits for W (M) for each Rule ID value, for modes that
         use windows

      *  number of bits for FCN (N) for each Rule ID value

      *  size of RCS and algorithm for its computation, for each Rule
         ID, if different from the default CRC32.  Byte fill-up with
         zeroes or other mechanism, to be specified.

      *  Retransmission Timer duration for each Rule ID value, if
         applicable to the SCHC F/R mode

      *  Inactivity Timer duration for each Rule ID value, if applicable
         to the SCHC F/R mode

      *  MAX_ACK_REQUESTS value for each Rule ID value, if applicable to
         the SCHC F/R mode

   o  if L2 Word is wider than a bit and SCHC fragmentation is used,
      value of the padding bits (0 or 1).  This is needed because the
      padding bits of the last fragment are included in the RCS
      computation.

   A Profile may define a delay to be added after each SCHC message
   transmission for compliance with local regulations or other
   constraints imposed by the applications.

   o  In some LPWAN technologies, as part of energy-saving techniques,
      downlink transmission is only possible immediately after an uplink
      transmission.  In order to avoid potentially high delay in the
      downlink transmission of a fragmented SCHC Packet, the SCHC
      Fragment receiver may perform an uplink transmission as soon as



Minaburo, et al.          Expires May 31, 2020                 [Page 79]



Internet-Draft                 LPWAN SCHC                  November 2019

      possible after reception of a SCHC Fragment that is not the last
      one.  Such uplink transmission may be triggered by the L2 (e.g. an
      L2 ACK sent in response to a SCHC Fragment encapsulated in a L2
      PDU that requires an L2 ACK) or it may be triggered from an upper
      layer.

   o  the following parameters need to be addressed in documents other
      than this one but not necessarily in the LPWAN technology-specific
      documents:

      *  The way the Contexts are provisioned

      *  The way the Rules are generated

Appendix E.  Supporting multiple window sizes for fragmentation

   For ACK-Always or ACK-on-Error, implementers may opt to support a
   single window size or multiple window sizes.  The latter, when
   feasible, may provide performance optimizations.  For example, a
   large window size should be used for packets that need to be split
   into a large number of tiles.  However, when the number of tiles
   required to carry a packet is low, a smaller window size, and thus a
   shorter Bitmap, may be sufficient to provide reception status on all
   tiles.  If multiple window sizes are supported, the Rule ID signals
   the window size in use for a specific packet transmission.

Appendix F.  ACK-Always and ACK-on-Error on quasi-bidirectional links

   The ACK-Always and ACK-on-Error modes of SCHC F/R are bidirectional
   protocols: they require a feedback path from the reassembler to the
   fragmenter.

   Some LPWAN technologies provide quasi-bidirectional connectivity,
   whereby a downlink transmission from the Network Infrastructure can
   only take place right after an uplink transmission by the Dev.

   When using SCHC F/R to send fragmented SCHC Packets downlink over
   these quasi-bidirectional links, the following situation may arise:
   if an uplink SCHC ACK is lost, the SCHC ACK REQ message by the sender
   could be stuck indefinitely in the downlink queue at the Network
   Infrastructure, waiting for a transmission opportunity.

   There are many ways by which this deadlock can be avoided.  The Dev
   application might be sending recurring uplink messages such as keep-
   alive, or the Dev application stack might be sending other recurring
   uplink messages as part of its operation.  However, these are out of
   the control of this generic SCHC specification.



Minaburo, et al.          Expires May 31, 2020                 [Page 80]



Internet-Draft                 LPWAN SCHC                  November 2019

   In order to cope with quasi-bidirectional links, a SCHC-over-foo
   specification may want to amend the SCHC F/R specification to add a
   timer-based retransmission of the SCHC ACK.  Below is an example of
   the suggested behavior for ACK-Always mode.  Because it is an
   example, [RFC2119] language is deliberately not used here.

   For downlink transmission of a fragmented SCHC Packet in ACK-Always
   mode, the SCHC Fragment receiver may support timer-based SCHC ACK
   retransmission.  In this mechanism, the SCHC Fragment receiver
   initializes and starts a timer (the UplinkACK Timer) after the
   transmission of a SCHC ACK, except when the SCHC ACK is sent in
   response to the last SCHC Fragment of a packet (All-1 fragment).  In
   the latter case, the SCHC Fragment receiver does not start a timer
   after transmission of the SCHC ACK.

   If, after transmission of a SCHC ACK that is not an All-1 fragment,
   and before expiration of the corresponding UplinkACK timer, the SCHC
   Fragment receiver receives a SCHC Fragment that belongs to the
   current window (e.g. a missing SCHC Fragment from the current window)
   or to the next window, the UplinkACK timer for the SCHC ACK is
   stopped.  However, if the UplinkACK timer expires, the SCHC ACK is
   resent and the UplinkACK timer is reinitialized and restarted.

   The default initial value for the UplinkACK Timer, as well as the
   maximum number of retries for a specific SCHC ACK, denoted
   MAX_ACK_REQUESTS, is to be defined in a Profile.  The initial value
   of the UplinkACK timer is expected to be greater than that of the
   Retransmission timer, in order to make sure that a (buffered) SCHC
   Fragment to be retransmitted finds an opportunity for that
   transmission.  One exception to this recommendation is the special
   case of the All-1 SCHC Fragment transmission.

   When the SCHC Fragment sender transmits the All-1 SCHC Fragment, it
   starts its Retransmission Timer with a large timeout value (e.g.
   several times that of the initial UplinkACK Timer).  If a SCHC ACK is
   received before expiration of this timer, the SCHC Fragment sender
   retransmits any lost SCHC Fragments as reported by the SCHC ACK, or
   if the SCHC ACK confirms successful reception of all SCHC Fragments
   of the last window, the transmission of the fragmented SCHC Packet is
   considered complete.  If the timer expires, and no SCHC ACK has been
   received since the start of the timer, the SCHC Fragment sender
   assumes that the All-1 SCHC Fragment has been successfully received
   (and possibly, the last SCHC ACK has been lost: this mechanism
   assumes that the Retransmission Timer for the All-1 SCHC Fragment is
   long enough to allow several SCHC ACK retries if the All-1 SCHC
   Fragment has not been received by the SCHC Fragment receiver, and it
   also assumes that it is unlikely that several ACKs become all lost).

https://datatracker.ietf.org/doc/html/rfc2119


Minaburo, et al.          Expires May 31, 2020                 [Page 81]



Internet-Draft                 LPWAN SCHC                  November 2019

Authors' Addresses

   Ana Minaburo
   Acklio
   1137A avenue des Champs Blancs
   35510 Cesson-Sevigne Cedex
   France

   Email: ana@ackl.io

   Laurent Toutain
   IMT-Atlantique
   2 rue de la Chataigneraie
   CS 17607
   35576 Cesson-Sevigne Cedex
   France

   Email: Laurent.Toutain@imt-atlantique.fr

   Carles Gomez
   Universitat Politecnica de Catalunya
   C/Esteve Terradas, 7
   08860 Castelldefels
   Spain

   Email: carlesgo@entel.upc.edu

   Dominique Barthel
   Orange Labs
   28 chemin du Vieux Chene
   38243 Meylan
   France

   Email: dominique.barthel@orange.com

   Juan Carlos Zuniga
   SIGFOX
   425 rue Jean Rostand
   Labege  31670
   France

   Email: JuanCarlos.Zuniga@sigfox.com



Minaburo, et al.          Expires May 31, 2020                 [Page 82]


