
Workgroup: lpwan Working Group

Internet-Draft:

draft-ietf-lpwan-schc-over-sigfox-16

Published: 9 December 2022

Intended Status: Standards Track

Expires: 12 June 2023

Authors: JC. Zuniga C. Gomez

Universitat Politecnica de Catalunya

S. Aguilar

Universitat Politecnica de Catalunya

L. Toutain

IMT-Atlantique

S. Cespedes

Concordia University

D. Wistuba

NIC Labs, Universidad de Chile

J. Boite

Unabiz - Sigfox is now a Unabiz technology

SCHC over Sigfox LPWAN

Abstract

The Static Context Header Compression and fragmentation (SCHC)

specification (RFC8724) describes a generic framework for

application header compression and fragmentation modes designed for

Low Power Wide Area Network (LPWAN) technologies. The present

document defines a profile of SCHC (RFC8724) over Sigfox LPWAN, and

provides optimal parameter values and modes of operation.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 June 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. SCHC over Sigfox

3.1. Network Architecture

3.2. Uplink

3.3. Downlink

3.4. SCHC-ACK on Downlink

3.5. SCHC Rules

3.6. Fragmentation

3.6.1. Uplink Fragmentation

3.6.2. Downlink Fragmentation

3.7. SCHC-over-Sigfox F/R Message Formats

3.7.1. Uplink No-ACK Mode: Single-byte SCHC Header

3.7.2. Uplink ACK-on-Error Mode: Single-byte SCHC Header

3.7.3. Uplink ACK-on-Error Mode: Two-byte SCHC Header Option 1

3.7.4. Uplink ACK-on-Error Mode: Two-byte SCHC Header Option 2

3.7.5. Downlink ACK-Always Mode: Single-byte SCHC Header

3.8. Padding

4. Fragmentation Sequence Examples

4.1. Uplink No-ACK Examples

4.2. Uplink ACK-on-Error Examples: Single-byte SCHC Header

4.3. SCHC Abort Examples

5. Security considerations

6. IANA Considerations

7. Acknowledgements

8. References

8.1. Normative References

8.2. Informative References

Authors' Addresses

1. Introduction

The Generic Framework for Static Context Header Compression and

Fragmentation (SCHC) specification [RFC8724] can be used on top of

all the four LPWAN technologies defined in [RFC8376]. These LPWANs

have similar characteristics such as star-oriented topologies,

¶

https://trustee.ietf.org/license-info

network architecture, connected devices with built-in applications,

etc.

SCHC offers a great level of flexibility to accommodate all these

LPWAN technologies. Even though there are a great number of

similarities between them, some differences exist with respect to

the transmission characteristics, payload sizes, etc. Hence, there

are optimal parameters and modes of operation that can be used when

SCHC is used on top of a specific LPWAN technology.

Sigfox is an LPWAN technology that offers energy-efficient

connectivity for devices at a very low cost. Sigfox brings a

worldwide network composed of Base Stations that receive short (12

bytes) uplink messages sent by devices over the long-range Sigfox

radio protocol. Base Stations then forward messages to the Sigfox

Cloud infrastructure for further processing and final delivery to

the customer. With SCHC functionalities, the Sigfox network offers

more reliable communications (recovery of lost messages) and is able

to convey extended-size payloads (fragmentation/reassembly).

This document describes the recommended parameters, settings, and

modes of operation to be used when SCHC is implemented over a Sigfox

LPWAN. This set of parameters are also known as a "SCHC over Sigfox

profile" or simply "SCHC/Sigfox."

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

It is assumed that the reader is familiar with the terms and

mechanisms defined in [RFC8376] and in [RFC8724].

3. SCHC over Sigfox

The Generic SCHC Framework described in [RFC8724] takes advantage of

previous knowledge of traffic flows existing in LPWAN applications

to avoid context synchronization.

Contexts need to be stored and pre-configured on both ends. This can

be done either by using a provisioning protocol, by out of band

means, or by pre-provisioning them (e.g., at manufacturing time).

The way contexts are configured and stored on both ends is out of

the scope of this document.

¶

¶

¶

¶

¶

¶

¶

¶

3.1. Network Architecture

Figure 1 represents the architecture for Compression/Decompression

(C/D) and Fragmentation/Reassembly (F/R) based on the terminology

defined in [RFC8376], where the Radio Gateway (RGW) is a Sigfox Base

Station and the Network Gateway (NGW) is the Sigfox cloud-based

Network.

Figure 1: Network Architecture

In the case of the global Sigfox Network, RGWs (or Base Stations)

are distributed over multiple countries wherever the Sigfox LPWAN

service is provided. The NGW (or cloud-based Sigfox Core Network) is

a single entity that connects to all RGWs (Sigfox Base Stations) in

the world, providing hence a global single star network topology.

The Sigfox Device sends application packets that are compressed and/

or fragmented by a SCHC C/D + F/R to reduce headers size and/or

fragment the packet. The resulting SCHC Message is sent over a layer

two (L2) Sigfox frame to the Sigfox Base Stations, which then

forward the SCHC Message to the Network Gateway (NGW). The NGW then

delivers the SCHC Message and associated gathered metadata to the

Network SCHC C/D + F/R.

¶

 Sigfox Device Application

+----------------+ +--------------+

| APP1 APP2 APP3 | |APP1 APP2 APP3|

+----------------+ +--------------+

| UDP | | | | UDP |

| IPv6 | | | | IPv6 |

+--------+ | | +--------+

| SCHC C/D & F/R | | |

| | | |

+-------+--------+ +--------+-----+

 $.

 $ +---------+ +--------------+ +---------+ .

 $ | | | | | Network | .

 +~~ |Sigfox BS| |Sigfox Network| | SCHC | .

 | (RGW) | === | (NGW) | === |C/D & F/R|.....

 +---------+ +--------------+ +---------+ IP-based

 Network

Legend:

$, ~ : Radio link

= : Internal Sigfox Network

. : External IP-based Network

¶

¶

The Sigfox Network (NGW) communicates with the Network SCHC C/D + F/

R for compression/decompression and/or for fragmentation/reassembly.

The Network SCHC C/D + F/R shares the same set of rules as the Dev

SCHC C/D + F/R. The Network SCHC C/D + F/R can be collocated with

the NGW or it could be located in a different place, as long as a

tunnel or secured communication is established between the NGW and

the SCHC C/D + F/R functions. After decompression and/or reassembly,

the packet can be forwarded over the Internet to one (or several)

LPWAN Application Server(s) (App).

The SCHC C/D + F/R processes are bidirectional, so the same

principles are applicable on both Uplink (UL) and Downlink (DL).

3.2. Uplink

Uplink Sigfox transmissions occur in repetitions over different

times and frequencies. Besides time and frequency diversities, the

Sigfox network also provides space diversity, as potentially an

Uplink message will be received by several base stations.

Since all messages are self-contained and base stations forward all

these messages back to the same Sigfox Network, multiple input

copies can be combined at the NGW providing for extra reliability

based on the triple diversity (i.e., time, space and frequency).

A detailed description of the Sigfox Radio Protocol can be found in

[sigfox-spec].

Messages sent from the Device to the Network are delivered by the

Sigfox network (NGW) to the Network SCHC C/D + F/R through a

callback/API with the following information:

Device ID

Message Sequence Number

Message Payload

Message Timestamp

Device Geolocation (optional)

RSSI (optional)

Device Temperature (optional)

Device Battery Voltage (optional)

The Device ID is a globally unique identifier assigned to the

Device, which is included in the Sigfox header of every message. The

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

Message Sequence Number is a monotonically increasing number

identifying the specific transmission of this Uplink message, and it

is also part of the Sigfox header. The Message Payload corresponds

to the payload that the Device has sent in the Uplink transmission.

The Message Timestamp, Device Geolocation, RSSI, Device Temperature

and Device Battery Voltage are metadata parameters provided by the

Network.

A detailed description of the Sigfox callbacks/APIs can be found in

[sigfox-callbacks].

Only messages that have passed the L2 Cyclic Redundancy Check (CRC)

at network reception are delivered by the Sigfox Network to the

Network SCHC C/D + F/R.

The L2 Word Size used by Sigfox is 1 byte (8 bits).

Figure 2: SCHC Message in Sigfox

Figure 2 shows a SCHC Message sent over Sigfox, where the SCHC

Message could be a full SCHC Packet (e.g., compressed) or a SCHC

Fragment (e.g., a piece of a bigger SCHC Packet).

3.3. Downlink

Downlink transmissions are Device-driven and can only take place

following an Uplink communication that so indicates. Hence, a Sigfox

Device explicitly indicates its intention to receive a Downlink

message using a Downlink request flag when sending the preceding

Uplink message to the network. The Downlink request flag is part of

the Sigfox protocol headers. After completing the Uplink

transmission, the Device opens a fixed window for Downlink

reception. The delay and duration of the reception opportunity

window have fixed values. If there is a Downlink message to be sent

for this given Device (e.g., either a response to the Uplink message

or queued information waiting to be transmitted), the network

transmits this message to the Device during the reception window. If

no message is received by the Device after the reception opportunity

window has elapsed, the Device closes the reception window

opportunity and gets back to the normal mode (e.g., continue Uplink

transmissions, sleep, stand-by, etc.)

¶

¶

¶

¶

¶

 | Sigfox Header | Sigfox payload |

 +---------------+---------------- +

 | SCHC message |

¶

¶

When a Downlink message is sent to a Device, a reception

acknowledgement is generated by the Device and sent back to the

Network through the Sigfox radio protocol and reported in the Sigfox

Network backend.

A detailed description of the Sigfox Radio Protocol can be found in

[sigfox-spec] and a detailed description of the Sigfox callbacks/

APIs can be found in [sigfox-callbacks]. Downlink request flag can

be included in the information exchange between the Sigfox Network

and Network SCHC.

3.4. SCHC-ACK on Downlink

As explained previously, Downlink transmissions are Device-driven

and can only take place following a specific Uplink transmission

that indicates and allows a following Downlink opportunity. For this

reason, when SCHC bi-directional services are used (e.g., Ack-on-

Error fragmentation mode) the SCHC protocol implementation needs to

consider the times when a Downlink message (e.g., SCHC-ACK) can be

sent and/or received.

For the Uplink ACK-on-Error fragmentation mode, a Downlink

opportunity MUST be indicated by the last fragment of every window,

which is signal by a specific the Fragment Compressed Number (FCN)

value, i.e., FCN = All-0, or FCN = All-1. The FCN is the tile index

in an specific window. FCN and window number combination allows to

uniquely identified a SCHC Fragment as explained in [RFC8724]. The

Device sends the fragments in sequence and, after transmitting the

FCN = All-0 or FCN = All-1, it opens up a reception opportunity. The

Network SCHC can then decide to respond at that opportunity (or wait

for a further one) with a SCHC-ACK indicating in case there are

missing fragments from the current or previous windows. If there is

no SCHC-ACK to be sent, or if the network decides to wait for a

further Downlink transmission opportunity, then no Downlink

transmission takes place at that opportunity and after a timeout the

Uplink transmissions continue. Intermediate SCHC fragments with FCN

different from All-0 or All-1 MUST NOT use the Downlink request flag

to request a SCHC-ACK.

3.5. SCHC Rules

The RuleID MUST be included in the SCHC header. The total number of

rules to be used affects directly the Rule ID field size, and

therefore the total size of the fragmentation header. For this

reason, it is recommended to keep the number of rules that are

defined for a specific device to the minimum possible.

RuleIDs can be used to differentiate data traffic classes (e.g.,

QoS, control vs. data, etc.), and data sessions. They can also be

¶

¶

¶

¶

¶

used to interleave simultaneous fragmentation sessions between a

Device and the Network.

3.6. Fragmentation

The SCHC specification [RFC8724] defines a generic fragmentation

functionality that allows sending data packets or files larger than

the maximum size of a Sigfox payload. The functionality also defines

a mechanism to send reliably multiple messages, by allowing to

resend selectively any lost fragments.

The SCHC fragmentation supports several modes of operation. These

modes have different advantages and disadvantages depending on the

specifics of the underlying LPWAN technology and application Use

Case. This section describes how the SCHC fragmentation

functionality should optimally be implemented when used over a

Sigfox LPWAN for the most typical Use Case applications.

As described in section 8.2.3 of [RFC8724], the integrity of the

fragmentation-reassembly process of a SCHC Packet MUST be checked at

the receiver end. Since only Uplink/Downlink messages/fragments that

have passed the Sigfox CRC-check are delivered to the Network/Sigfox

Device SCHC C/D + F/R, integrity can be guaranteed when no

consecutive messages are missing from the sequence and all FCN

bitmaps are complete. With this functionality in mind, and in order

to save protocol and processing overhead, the use of a Reassembly

Check Sequence (RCS) as described in Section 3.6.1.5 MUST be used.

3.6.1. Uplink Fragmentation

Sigfox Uplink transmissions are completely asynchronous and take

place in any random frequency of the allowed Uplink bandwidth

allocation. In addition, devices may go to deep sleep mode, and then

wake up and transmit whenever there is a need to send information to

the network, as there is no need to perform any network attachment,

synchronization, or other procedure before transmitting a data

packet.

Since Uplink transmissions are asynchronous, a SCHC fragment can be

transmitted at any given time by the Device. Sigfox Uplink messages

are fixed in size, and as described in [RFC8376] they can carry 0-12

bytes payload. Hence, a single SCHC Tile size per fragmentation mode

can be defined so that every Sigfox message always carries one SCHC

Tile.

When the ACK-on-Error mode is used for Uplink fragmentation, the

SCHC Compound ACK defined in [I-D.ietf-lpwan-schc-compound-ack])

MUST be used in the Downlink responses.

¶

¶

¶

¶

¶

¶

¶

3.6.1.1. SCHC-Sender Abort

As defined in [RFC8724], a SCHC-Sender Abort can be triggered when

the number of SCHC ACK REQ attempts is greater than or equal to

MAX_ACK_REQUESTS. In the case of SCHC over Sigfox, a SCHC-Sender

Abort MUST be sent if the number of repeated All-1s sent in

sequence, without a Compound ACK reception inbetween, is greater

than or equal to MAX_ACK_REQUESTS.

3.6.1.2. SCHC Receiver-Abort

As defined in [RFC8724], a SCHC Receiver-Abort is triggered when the

receiver has no RuleID and DTag pairs available for a new session.

In the case of SCHC/Sigfox a SCHC Receiver-Abort MUST be sent if,

for a single device, all the RuleIDs are being processed by the

receiver (i.e., have an active session) at a certain time and a new

one is requested, or if the RuleID of the fragment is not valid.

A SCHC Receiver-Abort MUST be triggered when the Inactivity Timer

expires.

MAX_ACK_REQUESTS can be increase when facing high error rates.

Although a SCHC Receiver-Abort can be triggered at any point in

time, a SCHC Receiver-Abort Downlink message MUST only be sent when

there is a Downlink transmission opportunity.

3.6.1.3. Single-byte SCHC Header for Uplink Fragmentation

3.6.1.3.1. Uplink No-ACK Mode: Single-byte SCHC Header

Single-byte SCHC Header No-ACK mode SHOULD be used for transmitting

short, non-critical packets that require fragmentation and do not

require full reliability. This mode can be used by Uplink-only

devices that do not support Downlink communications, or by

bidirectional devices when they send non-critical data. Note that

sending non-critical data by using a reliable fragmentation mode

(which is only possible for bidirectional devices) may incur

unnecessary overhead.

Since there are no multiple windows in the No-ACK mode, the W bit is

not present. However, it MUST use the FCN field to indicate the size

of the data packet. In this sense, the data packet would need to be

split into X fragments and, similarly to the other fragmentation

modes, the first transmitted fragment would need to be marked with

FCN = X-1. Consecutive fragments MUST be marked with decreasing FCN

values, having the last fragment marked with FCN = (All-1). Hence,

even though the No-ACK mode does not allow recovering missing

fragments, it allows indicating implicitly the size of the expected

packet to the Network and hence detect at the receiver side whether

¶

¶

¶

¶

¶

¶

all fragments have been received or not. In case the FCN field is

not used to indicate the size of the data packet, the Network can

detect whether all fragments have been received or not by using the

integrity check.

When using the Single-byte SCHC Header for Uplink Fragmentation, the

Fragmentation Header MUST be of 8 bit size, and it is composed as

follows:

RuleID size: 3 bits

DTag size (T): 0 bit

Fragment Compressed Number (FCN) size (N): 5 bits

As per [RFC8724], in the No-ACK mode the W (window) field is not

present.

Regular tile size: 11 bytes

All-1 tile size: 0 to 10 bytes

Inactivity Timer: Application-dependent. The default value is 12

hours.

RCS size: 5 bits

The maximum SCHC Packet size is of 340 bytes.

Section Section 3.7.1 presents SCHC Fragment format examples and

Section Section 4.1 provides fragmentation examples, using Single-

byte SCHC Header No-ACK mode.

3.6.1.3.2. Uplink ACK-on-Error Mode: Single-byte SCHC Header

ACK-on-Error with single-byte header SHOULD be used for short to

medium size packets that need to be sent reliably. ACK-on-Error is

optimal for reliable SCHC Packet transmission over Sigfox

transmissions, since it leads to a reduced number of ACKs in the

lower capacity Downlink channel. Also, Downlink messages can be sent

asynchronously and opportunistically. In contrast, ACK-Always would

not minimize the number of ACKs, and No-ACK would not allow reliable

transmission.

Allowing transmission of packets/files up to 300 bytes long, the

SCHC Uplink Fragmentation Header size is of 8 bits in size and is

composed as follows:

Rule ID size: 3 bits

¶

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

*

¶

* ¶

¶

¶

¶

¶

* ¶

DTag size (T): 0 bit

Window index (W) size (M): 2 bits

Fragment Compressed Number (FCN) size (N): 3 bits

MAX_ACK_REQUESTS: 5

WINDOW_SIZE: 7 (with a maximum value of FCN=0b110)

Regular tile size: 11 bytes

All-1 tile size: 0 to 10 bytes

Retransmission Timer: Application-dependent. The default value is

12 hours.

Inactivity Timer: Application-dependent. The default value is 12

hours.

RCS size: 3 bits

Section Section 3.7.2 presents SCHC Fragment format examples and

Section Section 4.2 provides fragmentation examples, using ACK-on-

Error with single-byte header.

3.6.1.4. Two-byte SCHC Header for Uplink Fragmentation

ACK-on-Error with two-byte header SHOULD be used for medium-large

size packets that need to be sent reliably. ACK-on-Error is optimal

for reliable SCHC Packet transmission over Sigfox, since it leads to

a reduced number of ACKs in the lower capacity Downlink channel.

Also, Downlink messages can be sent asynchronously and

opportunistically. In contrast, ACK-Always would not minimize the

number of ACKs, and No-ACK would not allow reliable transmission.

3.6.1.4.1. Uplink ACK-on-Error Mode: Two-byte SCHC Header Option 1

In order to allow transmission of medium-large packets/files up to

480 bytes long, the SCHC Uplink Fragmentation Header size is of 16

bits in size and composed as follows:

Rule ID size is: 6 bits

DTag size (T) is: 0 bit

Window index (W) size (M): 2 bits

Fragment Compressed Number (FCN) size (N): 4 bits.

MAX_ACK_REQUESTS: 5

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

WINDOW_SIZE: 12 (with a maximum value of FCN=0b1011)

Regular tile size: 10 bytes

All-1 tile size: 1 to 10 bytes

Retransmission Timer: Application-dependent. The default value is

12 hours.

Inactivity Timer: Application-dependent. The default value is 12

hours.

RCS size: 4 bits

Note that WINDOW_SIZE is limited to 12. This because, 4 windows (M =

2) with bitmaps of size 12 can be fitted in a single SCHC Compound

ACK.

Section Section 3.7.3 presents SCHC Fragment format examples, using

ACK-on-Error with two-byte header Option 1.

3.6.1.4.2. Uplink ACK-on-Error Mode: Two-byte SCHC Header Option 2

In order to allow transmission of very large packets/files up to

2400 bytes long, the SCHC Uplink Fragmentation Header size is of be

16 bits in size and composed as follows:

Rule ID size is: 8 bits

DTag size (T) is: 0 bit

Window index (W) size (M): 3 bits

Fragment Compressed Number (FCN) size (N): 5 bits.

MAX_ACK_REQUESTS: 5

WINDOW_SIZE: 31 (with a maximum value of FCN=0b11110)

Regular tile size: 10 bytes

All-1 tile size: 0 to 9 bytes

Retransmission Timer: Application-dependent. The default value is

12 hours.

Inactivity Timer: Application-dependent. The default value is 12

hours.

RCS size: 5 bits

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

Section Section 3.7.4 presents SCHC Fragment format examples, using

ACK-on-Error with two-byte header Option 1.

3.6.1.5. All-1 and RCS behaviour

For ACK-on-Error, as defined in [RFC8724], it is expected that the

last SCHC fragment of the last window will always be delivered with

an All-1 FCN. Since this last window may not be full (i.e., it may

be comprised of less than WINDOW_SIZE fragments), an All-1 fragment

may follow a value of FCN higher than 1 (0b01). In this case, the

receiver cannot determine from the FCN values alone whether there

are or not any missing fragments right before the All-1 fragment.

For Rules where the number of fragments in the last window is

unknown, an RCS field MUST be used, indicating the number of

fragments in the last window, including the All-1. With this RCS

value, the receiver can detect if there are missing fragments before

the All-1 and hence construct the corresponding SCHC ACK Bitmap

accordingly, and send it in response to the All-1.

3.6.2. Downlink Fragmentation

In some LPWAN technologies, as part of energy-saving techniques,

Downlink transmission is only possible immediately after an Uplink

transmission. This allows the device to go in a very deep sleep mode

and preserve battery, without the need to listen to any information

from the network. This is the case for Sigfox-enabled devices, which

can only listen to Downlink communications after performing an

Uplink transmission and requesting a Downlink.

When there are fragments to be transmitted in the Downlink, an

Uplink message is required to trigger the Downlink communication. In

order to avoid potentially high delay for fragmented datagram

transmission in the Downlink, the fragment receiver MAY perform an

Uplink transmission as soon as possible after reception of a

Downlink fragment that is not the last one. Such Uplink transmission

MAY be triggered by sending a SCHC message, such as a SCHC ACK.

However, other data messages can equally be used to trigger Downlink

communications. The fragment receiver SHOULD send an Uplink

transmission (e.g., empty message) and request a Downlink every 24

hours when no SCHC session is started. The use or not of this Uplink

transmission (and the transmission rate, if used) will depend on

application specific requirements.

Sigfox Downlink messages are fixed in size, and as described in

[RFC8376] they can carry up to 8 bytes payload. Hence, a single SCHC

Tile size per mode can be defined so that every Sigfox message

always carries one SCHC Tile.

¶

¶

¶

¶

¶

¶

For reliable Downlink fragment transmission, the ACK-Always mode

SHOULD be used. Note that ACK-on-Error does not guarantee Uplink

feedback (since no SCHC ACK will be sent when no errors occur in a

window), and No-ACK would not allow reliable transmission.

The SCHC Downlink Fragmentation Header size is of 8 bits in size and

is composed as follows:

RuleID size: 3 bits

DTag size (T): 0 bit

Window index (W) size (M) is: 0 bit

Fragment Compressed Number (FCN) size (N): 5 bits

MAX_ACK_REQUESTS: 5

WINDOW_SIZE: 31 (with a maximum value of FCN=0b11110)

Regular tile size: 7 bytes

All-1 tile size: 0 to 6 bytes

Retransmission Timer: Application-dependent. The default value is

12 hours.

Inactivity Timer: Application-dependent. The default value is 12

hours.

RCS size: 5 bits

3.7. SCHC-over-Sigfox F/R Message Formats

This section depicts the different formats of SCHC Fragment, SCHC

ACK (including the SCHC Compound ACK defined in

[I-D.ietf-lpwan-schc-compound-ack]), and SCHC Abort used in SCHC

over Sigfox.

3.7.1. Uplink No-ACK Mode: Single-byte SCHC Header

3.7.1.1. Regular SCHC Fragment

Figure 3 shows an example of a regular SCHC fragment for all

fragments except the last one. As tiles are of 11 bytes, padding

MUST NOT be added. The penultimate tile of a SCHC Packet is of

regular size.

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

¶

¶

Figure 3: Regular SCHC Fragment format for all fragments except the

last one

3.7.1.2. All-1 SCHC Fragment

Figure 4 shows an example of the All-1 message. The All-1 message

MAY contain the last tile of the SCHC Packet. Padding MUST NOT be

added, as the resulting size is L2-word-multiple.

The All-1 messages Fragment Header includes a 5-bit RCS, and 3 bits

are added as padding to complete two bytes. The payload size of the

All-1 message ranges from 0 to 80 bits.

Figure 4: All-1 SCHC Message format with last tile

As per [RFC8724] the All-1 must be distinguishable from a SCHC

Sender-Abort message (with same Rule ID, and N values). The All-1

MAY have the last tile of the SCHC Packet. The SCHC Sender-Abort

message header size is of 1 byte, with no padding bits.

For the All-1 message to be distinguishable from the Sender-Abort

message, the Sender-Abort message MUST be of 1 byte (only header

with no padding). This way, the minimum size of the All-1 is 2

bytes, and the Sender-Abort message is 1 byte.

3.7.1.3. SCHC Sender-Abort Message format

 |- SCHC Fragment Header -|

 +------------------------+---------+

 | RuleID | FCN | Payload |

 +------------+-----------+---------+

 | 3 bits | 5 bits | 88 bits |

¶

¶

 |-------- SCHC Fragment Header -------|

 +--------------------------------------+--------------+

 | RuleID | FCN=ALL-1 | RCS | b'000 | Payload |

 +--------+-----------+--------+--------+--------------+

 | 3 bits | 5 bits | 5 bits | 3 bits | 0 to 80 bits |

¶

¶

Figure 5: SCHC Sender-Abort message format

3.7.2. Uplink ACK-on-Error Mode: Single-byte SCHC Header

3.7.2.1. Regular SCHC Fragment

Figure 6 shows an example of a regular SCHC fragment for all

fragments except the last one. As tiles are of 11 bytes, padding

MUST NOT be added.

Figure 6: Regular SCHC Fragment format for all fragments except the

last one

The SCHC ACK REQ MUST NOT be used, instead the All-1 SCHC Fragment

MUST be used to request a SCHC ACK from the receiver (Network SCHC).

As per [RFC8724], the All-0 message is distinguishable from the SCHC

ACK REQ (All-1 message). The penultimate tile of a SCHC Packet is of

regular size.

3.7.2.2. All-1 SCHC Fragment

Figure 7 shows an example of the All-1 message. The All-1 message

MAY contain the last tile of the SCHC Packet. Padding MUST NOT be

added, as the resulting size is L2-word-multiple.

 Sender-Abort

 |------ Header ------|

 +--------------------+

 | RuleID | FCN=ALL-1 |

 +--------+-----------+

 | 3 bits | 5 bits |

¶

 |-- SCHC Fragment Header --|

 +--------------------------+---------+

 | RuleID | W | FCN | Payload |

 +--------+--------+--------+---------+

 | 3 bits | 2 bits | 3 bits | 88 bits |

¶

¶

Figure 7: All-1 SCHC Message format with last tile

As per [RFC8724] the All-1 must be distinguishable from a SCHC

Sender-Abort message (with same Rule ID, M, and N values). The All-1

MAY have the last tile of the SCHC Packet. The SCHC Sender-Abort

message header size is of 1 byte, with no padding bits.

For the All-1 message to be distinguishable from the Sender-Abort

message, the Sender-Abort message MUST be of 1 byte (only header

with no padding). This way, the minimum size of the All-1 is 2

bytes, and the Sender-Abort message is 1 byte.

3.7.2.3. SCHC ACK Format

Figure 8 shows the SCHC ACK format when all fragments have been

correctly received (C=1). Padding MUST be added to complete the 64-

bit Sigfox Downlink frame payload size.

Figure 8: SCHC Success ACK message format

In case SCHC fragment losses are found in any of the windows of the

SCHC Packet (C=0), the SCHC Compound ACK defined in

[I-D.ietf-lpwan-schc-compound-ack] MUST be used. The SCHC Compound

ACK message format is shown in Figure 9.

 |------------- SCHC Fragment Header -----------|

 +---+--------------+

 | RuleID | W | FCN=ALL-1 | RCS |b'00000 | Payload |

 +--------+--------+-----------+--------+--------+--------------+

 | 3 bits | 2 bits | 3 bits | 3 bits | 5 bits | 0 to 80 bits |

¶

¶

¶

 |---- SCHC ACK Header ----|

 +-------------------------+---------+

 | RuleID | W | C=b'1 | b'0-pad |

 +--------+--------+-------+---------+

 | 3 bits | 2 bits | 1 bit | 58 bits |

¶

Figure 9: SCHC Compound ACK message format

3.7.2.4. SCHC Sender-Abort Message format

Figure 10: SCHC Sender-Abort message format

3.7.2.5. SCHC Receiver-Abort Message format

Figure 11: SCHC Receiver-Abort message format

3.7.3. Uplink ACK-on-Error Mode: Two-byte SCHC Header Option 1

3.7.3.1. Regular SCHC Fragment

Figure 12 shows an example of a regular SCHC fragment for all

fragments except the last one. The penultimate tile of a SCHC Packet

is of the regular size.

|--- SCHC ACK Header ---|- W=w1 -|...|----- W=wi ------|

+------+--------+-------+--------+...+--------+--------+------+-------+

|RuleID| W=b'w1 | C=b'0 | Bitmap |...| W=b'wi | Bitmap | b'00 |b'0-pad|

+------+--------+-------+--------+...+--------+--------+------+-------+

|3 bits| 2 bits | 1 bit | 7 bits |...| 2 bits | 7 bits |2 bits|

 Losses are found in windows W = w1,...,wi; where w1<w2<...<wi

 |---- Sender-Abort Header ----|

 +-----------------------------+

 | RuleID | W=b'11 | FCN=ALL-1 |

 +--------+--------+-----------+

 | 3 bits | 2 bits | 3 bits |

 |- Receiver-Abort Header -|

 +---------------------------------+-----------------+---------+

 | RuleID | W=b'11 | C=b'1 | b'11 | 0xFF (all 1's) | b'0-pad |

 +--------+--------+-------+-------+-----------------+---------+

 | 3 bits | 2 bits | 1 bit | 2 bit | 8 bit | 48 bits |

 next L2 Word boundary ->| <-- L2 Word --> |

¶

Figure 12: Regular SCHC Fragment format for all fragments except the

last one

The SCHC ACK REQ MUST NOT be used, instead the All-1 SCHC Fragment

MUST be used to request a SCHC ACK from the receiver (Network SCHC).

As per [RFC8724], the All-0 message is distinguishable from the SCHC

ACK REQ (All-1 message).

3.7.3.2. All-1 SCHC Fragment

Figure 13 shows an example of the All-1 message. The All-1 message

MUST contain the last tile of the SCHC Packet.

The All-1 message Fragment Header contains a RCS of 4 bits to

complete the two-byte size. The size of the last tile ranges from 8

to 80 bits.

Figure 13: All-1 SCHC message format with last tile

As per [RFC8724] the All-1 must be distinguishable from the a SCHC

Sender-Abort message (with same Rule ID, M and N values). The All-1

MUST have the last tile of the SCHC Packet, that MUST be of at least

1 byte. The SCHC Sender-Abort message header size is of 2 byte, with

no padding bits.

For the All-1 message to be distinguishable from the Sender-Abort

message, the Sender-Abort message MUST be of 2 byte (only header

with no padding). This way, the minimum size of the All-1 is 3

bytes, and the Sender-Abort message is 2 bytes.

3.7.3.3. SCHC ACK Format

Figure 14 shows the SCHC ACK format when all fragments have been

correctly received (C=1). Padding MUST be added to complete the 64-

bit Sigfox Downlink frame payload size.

 |------- SCHC Fragment Header ------|

 +-----------------------------------+---------+

 | RuleID | W | FCN | b'0000 | Payload |

 +--------+--------+--------+--------+---------+

 | 6 bits | 2 bits | 4 bits | 4 bits | 80 bits |

¶

¶

¶

 |--------- SCHC Fragment Header -------|

 +--------------------------------------+--------------+

 | RuleID | W | FCN=ALL-1 | RCS | Payload |

 +--------+--------+-----------+--------+--------------+

 | 6 bits | 2 bits | 4 bits | 4 bits | 8 to 80 bits |

¶

¶

¶

Figure 14: SCHC Success ACK message format

The SCHC Compound ACK message MUST be used in case SCHC fragment

losses are found in any window of the SCHC Packet (C=0). The SCHC

Compound ACK message format is shown in Figure 15. The SCHC Compound

ACK can report up to 4 windows with losses. as shown in Figure 16.

When sent in the Downlink, the SCHC Compound ACK MUST be 0 padded

(Padding bits must be 0) to complement the 64 bits required by the

Sigfox payload.

Figure 15: SCHC Compound ACK message format

Figure 16: SCHC Compound ACK message format example with losses in all

windows

 |---- SCHC ACK Header ----|

 +-------------------------+---------+

 | RuleID | W | C=b'1 | b'0-pad |

 +--------+--------+-------+---------+

 | 6 bits | 2 bits | 1 bit | 55 bits |

¶

¶

|--- SCHC ACK Header ---|- W=w1 -|...|---- W=wi -----|

+--------+------+-------+--------+...+------+--------+------+-------+

| RuleID |W=b'w1| C=b'0 | Bitmap |...|W=b'wi| Bitmap | b'00 |b'0-pad|

+--------+------+-------+--------+...+------+--------+------+-------+

| 6 bits |2 bits| 1 bit | 12 bits|...|2 bits| 12 bits|2 bits|

 Losses are found in windows W = w1,...,wi; where w1<w2<...<wi

 |- SCHC ACK Header -|- W=0 -| |- W=1 -|...

 +------+------+-----+-------+------+-------+...

 |RuleID|W=b'00|C=b'0|Bitmap |W=b'01|Bitmap |...

 +------+------+-----+-------+------+-------+...

 |6 bits|2 bits|1 bit|12 bits|2 bits|12 bits|...

 ... |- W=2 -| |- W=3 -|

 ...+------+-------+------+-------+---+

 ...|W=b'10|Bitmap |W=b'11|Bitmap |b'0|

 ...+------+-------+------+-------+---+

 ...|2 bits|12 bits|2 bits|12 bits|

 Losses are found in windows W = w1,...,wi; where w1<w2<...<wi

3.7.3.4. SCHC Sender-Abort Messages

Figure 17: SCHC Sender-Abort message format

3.7.3.5. SCHC Receiver-Abort Message

Figure 18: SCHC Receiver-Abort message format

3.7.4. Uplink ACK-on-Error Mode: Two-byte SCHC Header Option 2

3.7.4.1. Regular SCHC Fragment

Figure 19 shows an example of a regular SCHC fragment for all

fragments except the last one. The penultimate tile of a SCHC Packet

is of the regular size.

Figure 19: Regular SCHC Fragment format for all fragments except the

last one

The SCHC ACK REQ MUST NOT be used, instead the All-1 SCHC Fragment

MUST be used to request a SCHC ACK from the receiver (Network SCHC).

As per [RFC8724], the All-0 message is distinguishable from the SCHC

ACK REQ (All-1 message).

 |---- Sender-Abort Header ----|

 +-----------------------------+

 | RuleID | W | FCN=ALL-1 |

 +--------+--------+-----------+

 | 6 bits | 2 bits | 4 bits |

 |- Receiver-Abort Header -|

 +---------------------------------+-----------------+---------+

 | RuleID | W=b'11 | C=b'1 | 0x7F | 0xFF (all 1's) | b'0-pad |

 +--------+--------+-------+-------+-----------------+---------+

 | 6 bits | 2 bits | 1 bit | 7 bit | 8 bit | 40 bits |

 next L2 Word boundary ->| <-- L2 Word --> |

¶

 |-- SCHC Fragment Header --|

 +--------------------------+---------+

 | RuleID | W | FCN | Payload |

 +--------+--------+--------+---------+

 | 8 bits | 3 bits | 5 bits | 80 bits |

¶

3.7.4.2. All-1 SCHC Fragment

Figure 20 shows an example of the All-1 message. The All-1 message

MAY contain the last tile of the SCHC Packet.

The All-1 message Fragment Header contains an RCS of 5 bits, and 3

padding bits to complete a 3-byte Fragment Header. The size of the

last tile, if present, ranges from 8 to 72 bits.

Figure 20: All-1 SCHC message format with last tile

As per [RFC8724] the All-1 must be distinguishable from the a SCHC

Sender-Abort message (with same Rule ID, M and N values). The SCHC

Sender-Abort message header size is of 2 byte, with no padding bits.

For the All-1 message to be distinguishable from the Sender-Abort

message, the Sender-Abort message MUST be of 2 byte (only header

with no padding). This way, the minimum size of the All-1 is 3

bytes, and the Sender-Abort message is 2 bytes.

3.7.4.3. SCHC ACK Format

Figure 21 shows the SCHC ACK format when all fragments have been

correctly received (C=1). Padding MUST be added to complete the 64-

bit Sigfox Downlink frame payload size.

Figure 21: SCHC Success ACK message format

The SCHC Compound ACK message MUST be used in case SCHC fragment

losses are found in any window of the SCHC Packet (C=0). The SCHC

Compound ACK message format is shown in Figure 22. The SCHC Compound

ACK can report up to 3 windows with losses.

¶

¶

 |-------------- SCHC Fragment Header -----------|

 +---+--------------+

 | RuleID | W | FCN=ALL-1 | RCS | b'000 | Payload |

 +--------+--------+-----------+--------+--------+--------------+

 | 8 bits | 3 bits | 5 bits | 5 bits | 3 bits | 8 to 72 bits |

¶

¶

¶

 |---- SCHC ACK Header ----|

 +-------------------------+---------+

 | RuleID | W | C=b'1 | b'0-pad |

 +--------+--------+-------+---------+

 | 8 bits | 3 bits | 1 bit | 52 bits |

¶

When sent in the Downlink, the SCHC Compound ACK MUST be 0 padded

(Padding bits must be 0) to complement the 64 bits required by the

Sigfox payload.

Figure 22: SCHC Compound ACK message format

3.7.4.4. SCHC Sender-Abort Messages

Figure 23: SCHC Sender-Abort message format

3.7.4.5. SCHC Receiver-Abort Message

Figure 24: SCHC Receiver-Abort message format

3.7.5. Downlink ACK-Always Mode: Single-byte SCHC Header

3.7.5.1. Regular SCHC Fragment

Figure 25 shows an example of a regular SCHC fragment for all

fragments except the last one. The penultimate tile of a SCHC Packet

is of the regular size.

¶

|-- SCHC ACK Header --|- W=w1 -|...|---- W=wi -----|

+------+------+-------+--------+...+------+--------+------+-------+

|RuleID|W=b'w1| C=b'0 | Bitmap |...|W=b'wi| Bitmap | 000 |b'0-pad|

+------+------+-------+--------+...+------+--------+------+-------+

|8 bits|3 bits| 1 bit | 31 bits|...|3 bits| 31 bits|3 bits|

 Losses are found in windows W = w1,...,wi; where w1<w2<...<wi

 |---- Sender-Abort Header ----|

 +-----------------------------+

 | RuleID | W | FCN=ALL-1 |

 +--------+--------+-----------+

 | 8 bits | 3 bits | 5 bits |

 |-- Receiver-Abort Header -|

 +-----------------------------------+-----------------+---------+

 | RuleID | W=b'111 | C=b'1 | b'1111 | 0xFF (all 1's) | b'0-pad |

 +--------+---------+-------+--------+-----------------+---------+

 | 8 bits | 3 bits | 1 bit | 4 bit | 8 bit | 40 bits |

 next L2 Word boundary ->| <-- L2 Word --> |

¶

Figure 25: Regular SCHC Fragment format for all fragments except the

last one

The SCHC ACK MUST NOT be used, instead the All-1 SCHC Fragment MUST

be used to request a SCHC ACK from the receiver. As per [RFC8724],

the All-0 message is distinguishable from the SCHC ACK REQ (All-1

message).

3.7.5.2. All-1 SCHC Fragment

Figure 26 shows an example of the All-1 message. The All-1 message

MAY contain the last tile of the SCHC Packet.

The All-1 message Fragment Header contains an RCS of 5 bits, and 3

padding bits to complete a 2-byte Fragment Header. The size of the

last tile, if present, ranges from 8 to 48 bits.

Figure 26: All-1 SCHC message format with last tile

As per [RFC8724] the All-1 must be distinguishable from the a SCHC

Sender-Abort message (with same Rule ID and N values). The SCHC

Sender-Abort message header size is of 1 byte, with no padding bits.

For the All-1 message to be distinguishable from the Sender-Abort

message, the Sender-Abort message MUST be of 1 byte (only header

with no padding). This way, the minimum size of the All-1 is 2

bytes, and the Sender-Abort message is 1 bytes.

3.7.5.3. SCHC ACK Format

Figure 27 shows the SCHC ACK format when all fragments have been

correctly received (C=1). Padding MUST be added to complete 2 bytes.

 SCHC Fragment

 |-- Header --|

 +-----------------+---------+

 | RuleID | FCN | Payload |

 +--------+--------+---------+

 | 3 bits | 5 bits | 56 bits |

¶

¶

¶

 |--------- SCHC Fragment Header -------|

 +--------------------------------------+--------------+

 | RuleID | FCN=ALL-1 | RCS | b'000 | Payload |

 +--------+-----------+--------+--------+--------------+

 | 3 bits | 5 bits | 5 bits | 3 bits | 0 to 48 bits |

¶

¶

¶

Figure 27: SCHC Success ACK message format

The SCHC ACK message format is shown in Figure 28.

Figure 28: SCHC Compound ACK message format

3.7.5.4. SCHC Sender-Abort Messages

Figure 29: SCHC Sender-Abort message format

3.7.5.5. SCHC Receiver-Abort Message

Figure 30: SCHC Receiver-Abort message format

 SCHC ACK

 |-- Header --|

 +----------------+---------+

 | RuleID | C=b'1 | b'0-pad |

 +--------+-------+---------+

 | 3 bits | 1 bit | 4 bits |

¶

 |---- SCHC ACK Header ----|

 +--------+-------+--------+---------+

 | RuleID | C=b'0 | Bitmap | b'0-pad |

 +--------+-------+--------+---------+

 | 3 bits | 1 bit | 31 bits| 5 bits |

 Sender-Abort

 |---- Header ----|

 +--------------------+

 | RuleID | FCN=ALL-1 |

 +--------+-----------+

 | 3 bits | 5 bits |

 Receiver-Abort

 |--- Header ---|

 +----------------+--------+-----------------+

 | RuleID | C=b'1 | b'1111 | 0xFF (all 1's) |

 +--------+-------+--------+-----------------+

 | 3 bits | 1 bit | 4 bit | 8 bit |

3.8. Padding

The Sigfox payload fields have different characteristics in Uplink

and Downlink.

Uplink frames can contain a payload size from 0 to 12 bytes. The

Sigfox radio protocol allows sending zero bits, one single bit of

information for binary applications (e.g., status), or an integer

number of bytes. Therefore, for 2 or more bits of payload it is

required to add padding to the next integer number of bytes. The

reason for this flexibility is to optimize transmission time and

hence save battery consumption at the device.

Downlink frames on the other hand have a fixed length. The payload

length MUST be 64 bits (i.e., 8 bytes). Hence, if less information

bits are to be transmitted, padding MUST be used with bits equal to

0. The receiver MUST removed the added padding bits before the SCHC

reassembly process.

4. Fragmentation Sequence Examples

In this section, some sequence diagrams depicting messages exchanges

for different fragmentation modes and use cases are shown. In the

examples, 'Seq' indicates the Sigfox Sequence Number of the frame

carrying a fragment.

4.1. Uplink No-ACK Examples

The FCN field indicates the size of the data packet. The first

fragment is marked with FCN = X-1, where X is the number of

fragments the message is split into. All fragments are marked with

decreasing FCN values. Last packet fragment is marked with the FCN =

All-1 (1111).

Case No losses - All fragments are sent and received successfully.

¶

¶

¶

¶

¶

¶

 Sender Receiver

 |-------FCN=6,Seq=1-------->|

 |-------FCN=5,Seq=2-------->|

 |-------FCN=4,Seq=3-------->|

 |-------FCN=3,Seq=4-------->|

 |-------FCN=2,Seq=5-------->|

 |-------FCN=1,Seq=6-------->|

 |-------FCN=31,Seq=7------->| All fragments received

 (End)

Figure 31: Uplink No-ACK No-Losses

When the first SCHC fragment is received, the Receiver can calculate

the total number of SCHC fragments that the SCHC Packet is composed

of. For example, if the first fragment is numbered with FCN=6, the

receiver can expect six more messages/fragments (i.e., with FCN

going from 5 downwards, and the last fragment with a FCN equal to

15).

Case losses on any fragment except the first.

Figure 32: Uplink No-ACK Losses (scenario 1)

4.2. Uplink ACK-on-Error Examples: Single-byte SCHC Header

The single-byte SCHC header ACK-on-Error mode allows sending up to

28 fragments and packet sizes up to 300 bytes. The SCHC fragments

may be delivered asynchronously and Downlink ACK can be sent

opportunistically.

Case No losses

The Downlink flag must be enabled in the sender Uplink message to

allow a Downlink message from the receiver. The Downlink Enable in

the figures shows where the sender MUST enable the Downlink, and

wait for an ACK.

¶

¶

Sender Receiver

 |-------FCN=6,Seq=1-------->|

 |-------FCN=5,Seq=2----X |

 |-------FCN=4,Seq=3-------->|

 |-------FCN=3,Seq=4-------->|

 |-------FCN=2,Seq=5-------->|

 |-------FCN=1,Seq=6-------->|

 |-------FCN=31,Seq=7------->| Missing Fragment Unable to reassemble

(End)

¶

¶

¶

Figure 33: Uplink ACK-on-Error No-Losses

Case Fragment losses in first window

In this case, fragments are lost in the first window (W=0). After

the first All-0 message arrives, the Receiver leverages the

opportunity and sends a SCHC ACK with the corresponding bitmap and

C=0.

After the loss fragments from the first window (W=0) are resent, the

sender continues transmitting the fragments of the following window

(W=1) without opening a reception opportunity. Finally, the All-1

fragment is sent, the Downlink is enabled, and the SCHC ACK is

received with C=1. Note that the SCHC Compound ACK also uses a

Sequence Number.

 Sender Receiver

 |-----W=0,FCN=6,Seq=1----->|

 |-----W=0,FCN=5,Seq=2----->|

 |-----W=0,FCN=4,Seq=3----->|

 |-----W=0,FCN=3,Seq=4----->|

 |-----W=0,FCN=2,Seq=5----->|

 |-----W=0,FCN=1,Seq=6----->|

DL Enable |-----W=0,FCN=0,Seq=7----->|

 (no ACK)

 |-----W=1,FCN=6,Seq=8----->|

 |-----W=1,FCN=5,Seq=9----->|

 |-----W=1,FCN=4,Seq=10---->|

DL Enable |-----W=1,FCN=7,Seq=11---->| All fragments received

 |<- Compound ACK,W=1,C=1 --| C=1

 (End)

¶

¶

¶

Figure 34: Uplink ACK-on-Error Losses on First Window

Case Fragment All-0 lost in first window (W=0)

In this example, the All-0 of the first window (W=0) is lost.

Therefore, the Receiver waits for the next All-0 message of

intermediate windows, or All-1 message of last window to generate

the corresponding SCHC ACK, notifying the absence of the All-0 of

window 0.

The sender resends the missing All-0 messages (with any other

missing fragment from window 0) without opening a reception

opportunity.

 Sender Receiver

 |-----W=0,FCN=6,Seq=1----->|

 |-----W=0,FCN=5,Seq=2--X |

 |-----W=0,FCN=4,Seq=3----->|

 |-----W=0,FCN=3,Seq=4----->|

 |-----W=0,FCN=2,Seq=5--X | __

 |-----W=0,FCN=1,Seq=6----->| | W=0

DL Enable |-----W=0,FCN=0,Seq=7----->| Missing Fragments<- FCN=5,Seq=2

 |<- Compound ACK,W=0,C=0 --| Bitmap:1011011 | FCN=2,Seq=5

 |-----W=0,FCN=5,Seq=9----->| --

 |-----W=0,FCN=2,Seq=10---->|

 |-----W=1,FCN=6,Seq=11---->|

 |-----W=1,FCN=5,Seq=12---->|

 |-----W=1,FCN=4,Seq=13---->|

DL Enable |-----W=1,FCN=7,Seq=14---->| All fragments received

 |<-Compound ACK,W=1,C=1 ---| C=1

 (End)

¶

¶

¶

Figure 35: Uplink ACK-on-Error All-0 Lost on First Window

In the following diagram, besides the All-0 there are other fragment

losses in the first window (W=0).

 Sender Receiver

 |-----W=0,FCN=6,Seq=1----->|

 |-----W=0,FCN=5,Seq=2----->|

 |-----W=0,FCN=4,Seq=3----->|

 |-----W=0,FCN=3,Seq=4----->|

 |-----W=0,FCN=2,Seq=5----->|

 |-----W=0,FCN=1,Seq=6----->| DL Enable

 |-----W=0,FCN=0,Seq=7--X |

 (no ACK)

 |-----W=1,FCN=6,Seq=8----->|

 |-----W=1,FCN=5,Seq=9----->| __

 |-----W=1,FCN=4,Seq=10---->| |W=0

DL Enable |-----W=1,FCN=7,Seq=11---->| Missing Fragment<- FCN=0,Seq=7

 |<-Compound ACK,W=0,C=0 ---| Bitmap:1111110 |__

 |-----W=0,FCN=0,Seq=13---->| All fragments received

DL Enable |-----W=1,FCN=7,Seq=14---->|

 |<-Compound ACK,W=1,C=1 ---| C=1

 (End)

¶

Figure 36: Uplink ACK-on-Error All-0 and other Fragments Lost on First

Window

In the next examples, there are fragment losses in both the first

(W=0) and second (W=1) windows. The retransmission cycles after the

All-1 is sent (i.e., not in intermediate windows) MUST always finish

with an All-1, as it serves as an ACK Request message to confirm the

correct reception of the retransmitted fragments.

 Sender Receiver

 |-----W=0,FCN=6,Seq=1----->|

 |-----W=0,FCN=5,Seq=2--X |

 |-----W=0,FCN=4,Seq=3----->|

 |-----W=0,FCN=3,Seq=4--X |

 |-----W=0,FCN=2,Seq=5----->|

 |-----W=0,FCN=1,Seq=6----->|

DL Enable |-----W=0,FCN=0,Seq=7--X |

 (no ACK)

 |-----W=1,FCN=6,Seq=8----->|

 |-----W=1,FCN=5,Seq=9----->| __

 |-----W=1,FCN=4,Seq=10---->| |W=0

DL Enable |-----W=1,FCN=7,Seq=11---->| Missing Fragment<- FCN=5,Seq=2

 |<--Compound ACK,W=0,C=0 --| Bitmap:1010110 |FCN=3,Seq=4

 |-----W=0,FCN=5,Seq=13---->| |FCN=0,Seq=7

 |-----W=0,FCN=3,Seq=14---->| --

 |-----W=0,FCN=0,Seq=15---->| All fragments received

DL Enable |-----W=1,FCN=7,Seq=16---->|

 |<-Compound ACK,W=1,C=1 ---| C=1

 (End)

¶

Figure 37: Uplink ACK-on-Error All-0 and other Fragments Lost on First

and Second Windows (1)

Similar case as above, but with fewer fragments in the second window

(W=1)

 Sender Receiver

 |-----W=0,FCN=6,Seq=1----->|

 |-----W=0,FCN=5,Seq=2--X |

 |-----W=0,FCN=4,Seq=3----->|

 |-----W=0,FCN=3,Seq=4--X | __

 |-----W=0,FCN=2,Seq=5----->| |W=0

 |-----W=0,FCN=1,Seq=6----->| |FCN=5,Seq=2

DL enable |-----W=0,FCN=0,Seq=7--X | |FCN=3,Seq=4

 (no ACK) |FCN=0,Seq=7

 |-----W=1,FCN=6,Seq=8--X | |W=1

 |-----W=1,FCN=5,Seq=9----->| |FCN=6,Seq=8

 |-----W=1,FCN=4,Seq=10-X | |FCN=4,Seq=10

DL enable |-----W=1,FCN=7,Seq=11---->| Missing Fragment<-|__

 |<-Compoud ACK,W=0,1, C=0--| Bitmap W=0:1010110

 |-----W=0,FCN=5,Seq=13---->| W=1:0100001

 |-----W=0,FCN=3,Seq=14---->|

 |-----W=0,FCN=0,Seq=15---->|

 |-----W=1,FCN=6,Seq=16---->|

 |-----W=1,FCN=4,Seq=17---->| All fragments received

DL enable |-----W=1,FCN=7,Seq=18---->|

 |<-Compoud ACK,W=1,C=1 ----| C=1

 (End)

¶

Figure 38: Uplink ACK-on-Error All-0 and other Fragments Lost on First

and Second Windows (2)

Case SCHC ACK is lost

SCHC over Sigfox does not implement the SCHC ACK REQ message.

Instead, it uses the SCHC All-1 message to request a SCHC ACK, when

required.

 Sender Receiver

 |-----W=0,FCN=6,Seq=1----->|

 |-----W=0,FCN=5,Seq=2--X |

 |-----W=0,FCN=4,Seq=3----->|

 |-----W=0,FCN=3,Seq=4--X |

 |-----W=0,FCN=2,Seq=5----->| __

 |-----W=0,FCN=1,Seq=6----->| |W=0

DL enable |-----W=0,FCN=0,Seq=7--X | |FCN=5,Seq=2

 (no ACK) |FCN=3,Seq=4

 |-----W=1,FCN=6,Seq=8--X | |FCN=0,Seq=7

DL enable |-----W=1,FCN=7,Seq=9----->| Missing Fragment--> W=1

 |<-Compound ACK,W=0,1, C=0-| Bitmap W=0:1010110,|FCN=6,Seq=8

 |-----W=0,FCN=5,Seq=11---->| W=1:0000001 |__

 |-----W=0,FCN=3,Seq=12---->|

 |-----W=0,FCN=0,Seq=13---->|

 |-----W=1,FCN=6,Seq=14---->| All fragments received

DL enable |-----W=1,FCN=7,Seq=15---->|

 |<-Compound ACK, W=1,C=1---| C=1

 (End)

¶

¶

Figure 39: Uplink ACK-on-Error ACK Lost

Case SCHC Compound ACK at the end

In this example, SCHC Fragment losses are found in both window 0 and

1. However, the sender does not send a SCHC ACK after the All-0 of

window 0. Instead, it sends a SCHC Compound ACK notifying losses of

both windows.

 Sender Receiver

 |-----W=0,FCN=6,Seq=1----->|

 |-----W=0,FCN=5,Seq=2----->|

 |-----W=0,FCN=4,Seq=3----->|

 |-----W=0,FCN=3,Seq=4----->|

 |-----W=0,FCN=2,Seq=5----->|

 |-----W=0,FCN=1,Seq=6----->|

DL Enable |-----W=0,FCN=0,Seq=7----->|

 (no ACK)

 |-----W=1,FCN=6,Seq=8----->|

 |-----W=1,FCN=5,Seq=9----->|

 |-----W=1,FCN=4,Seq=10---->|

DL Enable |-----W=1,FCN=7,Seq=11---->| All fragments received

 | X--Compound ACK,W=1,C=1 -| C=1

DL Enable |-----W=1,FCN=7,Seq=13---->| RESEND ACK

 |<-Compound ACK,W=1,C=1 ---| C=1

 (End)

¶

¶

Figure 40: Uplink ACK-on-Error Fragments Lost on First and Second

Windows with one Compound ACK

The number of times the same SCHC ACK message will be retransmitted

is determined by the MAX_ACK_REQUESTS.

4.3. SCHC Abort Examples

Case SCHC Sender-Abort

The sender may need to send a Sender-Abort to stop the current

communication. This may happen, for example, if the All-1 has been

sent MAX_ACK_REQUESTS times.

 Sender Receiver

 |-----W=0,FCN=6,Seq=1----->|

 |-----W=0,FCN=5,Seq=2--X |

 |-----W=0,FCN=4,Seq=3----->|

 |-----W=0,FCN=3,Seq=4--X |

 |-----W=0,FCN=2,Seq=5----->|

 |-----W=0,FCN=1,Seq=6----->| __

DL enable |-----W=0,FCN=0,Seq=7----->| Waits for |W=0

 (no ACK) next DL opportunity |FCN=5,Seq=2

 |-----W=1,FCN=6,Seq=8--X | |FCN=3,Seq=4

DL enable |-----W=1,FCN=7,Seq=9----->| Missing Fragment<-- W=1

 |<-Compound ACK,W=0,1, C=0-| Bitmap W=0:1010110 |FCN=6,Seq=8

 |-----W=0,FCN=5,Seq=11---->| W=1:0000001 --

 |-----W=0,FCN=3,Seq=12---->|

 |-----W=1,FCN=6,Seq=13---->| All fragments received

DL enable |-----W=1,FCN=7,Seq=14---->|

 |<-Compound ACK, W=1, C=1 -| C=1

 (End)

¶

¶

¶

Figure 41: Uplink ACK-on-Error Sender-Abort

Case Receiver-Abort

The receiver may need to send a Receiver-Abort to stop the current

communication. This message can only be sent after a Downlink

enable.

 Sender Receiver

 |-----W=0,FCN=6,Seq=1----->|

 |-----W=0,FCN=5,Seq=2----->|

 |-----W=0,FCN=4,Seq=3----->|

 |-----W=0,FCN=3,Seq=4----->|

 |-----W=0,FCN=2,Seq=5----->|

 |-----W=0,FCN=1,Seq=6----->|

DL Enable |-----W=0,FCN=0,Seq=7----->|

 (no ACK)

 |-----W=1,FCN=6,Seq=8----->|

 |-----W=1,FCN=5,Seq=9----->|

 |-----W=1,FCN=4,Seq=10---->|

DL Enable |-----W=1,FCN=7,Seq=11---->| All fragments received

 | X--Compound ACK,W=1,C=1 -| C=1

DL Enable |-----W=1,FCN=7,Seq=13---->| RESEND ACK (1)

 | X--Compound ACK,W=1,C=1 -| C=1

DL Enable |-----W=1,FCN=7,Seq=15---->| RESEND ACK (2)

 | X--Compound ACK,W=1,C=1 -| C=1

DL Enable |-----W=1,FCN=7,Seq=17---->| RESEND ACK (3)

 | X--Compound ACK,W=1,C=1 -| C=1

DL Enable |-----W=1,FCN=7,Seq=18---->| RESEND ACK (4)

 | X--Compound ACK,W=1,C=1 -| C=1

DL Enable |-----W=1,FCN=7,Seq=19---->| RESEND ACK (5)

 | X--Compound ACK,W=1,C=1 -| C=1

DL Enable |----Sender-Abort,Seq=20-->| exit with error condition

 (End)

¶

¶

Figure 42: Uplink ACK-on-Error Receiver-Abort

5. Security considerations

The radio protocol authenticates and ensures the integrity of each

message. This is achieved by using a unique device ID and an AES-128

based message authentication code, ensuring that the message has

been generated and sent by the device or network with the ID claimed

in the message.

Application data can be encrypted at the application layer or not,

depending on the criticality of the use case. This flexibility

allows providing a balance between cost and effort vs. risk. AES-128

in counter mode is used for encryption. Cryptographic keys are

independent for each device. These keys are associated with the

device ID and separate integrity and encryption keys are pre-

provisioned. An encryption key is only provisioned if

confidentiality is to be used.

The radio protocol has protections against replay attacks, and the

cloud-based core network provides firewalling protection against

undesired incoming communications.

6. IANA Considerations

This document has no IANA actions.

7. Acknowledgements

Carles Gomez has been funded in part by the Spanish Government

through the Jose Castillejo CAS15/00336 grant, the TEC2016-79988-P

grant, and the PID2019-106808RA-I00 grant, and by Secretaria

d'Universitats i Recerca del Departament d'Empresa i Coneixement de

la Generalitat de Catalunya 2017 through grant SGR 376.

 Sender Receiver

 |-----W=0,FCN=6,Seq=1----->|

 |-----W=0,FCN=5,Seq=2----->|

 |-----W=0,FCN=4,Seq=3----->|

 |-----W=0,FCN=3,Seq=4----->|

 |-----W=0,FCN=2,Seq=5----->|

 |-----W=0,FCN=1,Seq=6----->|

DL Enable |-----W=0,FCN=0,Seq=7----->|

 |<------ RECV ABORT ------| under-resourced

 (Error)

¶

¶

¶

¶

¶

[I-D.ietf-lpwan-schc-compound-ack]

[RFC2119]

[RFC8174]

[RFC8724]

[RFC8376]

[sigfox-callbacks]

Sergio Aguilar has been funded by the ERDF and the Spanish

Government through project TEC2016-79988-P and project

PID2019-106808RA-I00, AEI/FEDER, EU.

Sandra Cespedes has been funded in part by the ANID Chile Project

FONDECYT Regular 1201893 and Basal Project FB0008.

Diego Wistuba has been funded by the ANID Chile Project FONDECYT

Regular 1201893.

The authors would like to thank Ana Minaburo, Clement Mannequin,

Rafael Vidal, Julien Boite, Renaud Marty, and Antonis Platis for

their useful comments and implementation design considerations.

8. References

8.1. Normative References

Zuniga, JC., Gomez, C., Aguilar, S., Toutain, L.,

Cespedes, S., and D. Wistuba, "SCHC Compound ACK", Work

in Progress, Internet-Draft, draft-ietf-lpwan-schc-

compound-ack-09, August 2021, <http://www.ietf.org/

internet-drafts/draft-ietf-lpwan-schc-compound-

ack-09.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Minaburo, A., Toutain, L., Gomez, C., Barthel, D., and

JC. Zuniga, "SCHC: Generic Framework for Static Context

Header Compression and Fragmentation", RFC 8724, DOI

10.17487/RFC8724, April 2020, <https://www.rfc-

editor.org/info/rfc8724>.

8.2. Informative References

Farrell, S., Ed., "Low-Power Wide Area Network (LPWAN)

Overview", RFC 8376, DOI 10.17487/RFC8376, May 2018,

<https://www.rfc-editor.org/info/rfc8376>.

Sigfox, "Sigfox Callbacks", <https://

support.sigfox.com/docs/callbacks-documentation>.

¶

¶

¶

¶

http://www.ietf.org/internet-drafts/draft-ietf-lpwan-schc-compound-ack-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-lpwan-schc-compound-ack-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-lpwan-schc-compound-ack-09.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8724
https://www.rfc-editor.org/info/rfc8724
https://www.rfc-editor.org/info/rfc8376
https://support.sigfox.com/docs/callbacks-documentation
https://support.sigfox.com/docs/callbacks-documentation

[sigfox-spec]
Sigfox, "Sigfox Radio Specifications", <https://

build.sigfox.com/sigfox-device-radio-specifications>.

Authors' Addresses

Juan Carlos Zuniga

Montreal QC

Canada

Email: j.c.zuniga@ieee.org

Carles Gomez

Universitat Politecnica de Catalunya

C/Esteve Terradas, 7

08860 Castelldefels

Spain

Email: carles.gomez@upc.edu

Sergio Aguilar

Universitat Politecnica de Catalunya

C/Esteve Terradas, 7

08860 Castelldefels

Spain

Email: sergio.aguilar.romero@upc.edu

Laurent Toutain

IMT-Atlantique

2 rue de la Chataigneraie

CS 17607

35576 Cesson-Sevigne Cedex

France

Email: Laurent.Toutain@imt-atlantique.fr

Sandra Cespedes

Concordia University

1455 De Maisonneuve Blvd. W.

Montreal QC, H3G 1M8

Canada

Email: sandra.cespedes@concordia.ca

Diego Wistuba

NIC Labs, Universidad de Chile

Av. Almte. Blanco Encalada 1975

Santiago

Chile

https://build.sigfox.com/sigfox-device-radio-specifications
https://build.sigfox.com/sigfox-device-radio-specifications
mailto:j.c.zuniga@ieee.org
mailto:carles.gomez@upc.edu
mailto:sergio.aguilar.romero@upc.edu
mailto:Laurent.Toutain@imt-atlantique.fr
mailto:sandra.cespedes@concordia.ca

Email: wistuba@niclabs.cl

Julien Boite

Unabiz - Sigfox is now a Unabiz technology

Labege

France

Email: julien.boite@unabiz.com

URI: http://www.sigfox.com/

mailto:wistuba@niclabs.cl
mailto:julien.boite@unabiz.com
http://www.sigfox.com/

	SCHC over Sigfox LPWAN
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. SCHC over Sigfox
	3.1. Network Architecture
	3.2. Uplink
	3.3. Downlink
	3.4. SCHC-ACK on Downlink
	3.5. SCHC Rules
	3.6. Fragmentation
	3.6.1. Uplink Fragmentation
	3.6.1.1. SCHC-Sender Abort
	3.6.1.2. SCHC Receiver-Abort
	3.6.1.3. Single-byte SCHC Header for Uplink Fragmentation
	3.6.1.3.1. Uplink No-ACK Mode: Single-byte SCHC Header
	3.6.1.3.2. Uplink ACK-on-Error Mode: Single-byte SCHC Header

	3.6.1.4. Two-byte SCHC Header for Uplink Fragmentation
	3.6.1.4.1. Uplink ACK-on-Error Mode: Two-byte SCHC Header Option 1
	3.6.1.4.2. Uplink ACK-on-Error Mode: Two-byte SCHC Header Option 2

	3.6.1.5. All-1 and RCS behaviour

	3.6.2. Downlink Fragmentation

	3.7. SCHC-over-Sigfox F/R Message Formats
	3.7.1. Uplink No-ACK Mode: Single-byte SCHC Header
	3.7.1.1. Regular SCHC Fragment
	3.7.1.2. All-1 SCHC Fragment
	3.7.1.3. SCHC Sender-Abort Message format

	3.7.2. Uplink ACK-on-Error Mode: Single-byte SCHC Header
	3.7.2.1. Regular SCHC Fragment
	3.7.2.2. All-1 SCHC Fragment
	3.7.2.3. SCHC ACK Format
	3.7.2.4. SCHC Sender-Abort Message format
	3.7.2.5. SCHC Receiver-Abort Message format

	3.7.3. Uplink ACK-on-Error Mode: Two-byte SCHC Header Option 1
	3.7.3.1. Regular SCHC Fragment
	3.7.3.2. All-1 SCHC Fragment
	3.7.3.3. SCHC ACK Format
	3.7.3.4. SCHC Sender-Abort Messages
	3.7.3.5. SCHC Receiver-Abort Message

	3.7.4. Uplink ACK-on-Error Mode: Two-byte SCHC Header Option 2
	3.7.4.1. Regular SCHC Fragment
	3.7.4.2. All-1 SCHC Fragment
	3.7.4.3. SCHC ACK Format
	3.7.4.4. SCHC Sender-Abort Messages
	3.7.4.5. SCHC Receiver-Abort Message

	3.7.5. Downlink ACK-Always Mode: Single-byte SCHC Header
	3.7.5.1. Regular SCHC Fragment
	3.7.5.2. All-1 SCHC Fragment
	3.7.5.3. SCHC ACK Format
	3.7.5.4. SCHC Sender-Abort Messages
	3.7.5.5. SCHC Receiver-Abort Message

	3.8. Padding

	4. Fragmentation Sequence Examples
	4.1. Uplink No-ACK Examples
	4.2. Uplink ACK-on-Error Examples: Single-byte SCHC Header
	4.3. SCHC Abort Examples

	5. Security considerations
	6. IANA Considerations
	7. Acknowledgements
	8. References
	8.1. Normative References
	8.2. Informative References

	Authors' Addresses

