
Network Working Group H. Chen
Internet-Draft Futurewei
Intended status: Standards Track M. Toy
Expires: December 8, 2020 Verizon
 Y. Yang
 IBM
 A. Wang
 China Telecom
 X. Liu
 Volta Networks
 Y. Fan
 Casa Systems
 L. Liu
 Fujitsu
 June 6, 2020

Flooding Topology Minimum Degree Algorithm
draft-ietf-lsr-flooding-topo-min-degree-00

Abstract

 This document proposes an algorithm for a node to compute a flooding
 topology, which is a subgraph of the complete topology per underline
 physical network. When every node in an area automatically
 calculates a flooding topology by using a same algorithm and floods
 the link states using the flooding topology, the amount of flooding
 traffic in the network is greatly reduced. This would reduce
 convergence time with a more stable and optimized routing
 environment.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Chen, et al. Expires December 8, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft FTC Algorithm June 2020

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 8, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. Flooding Topology . 3
3.1. Flooding Topology Construction 4

4. Algorithms to Compute Flooding Topology 4
4.1. Algorithm with Considering Degree 5
4.2. Algorithm with Considering Others 6

5. Security Considerations 6
6. IANA Considerations . 6
7. Acknowledgements . 7
8. References . 7
8.1. Normative References 7
8.2. Informative References 7

Appendix A. FT Computation Details through Example 7
 Authors' Addresses . 11

1. Introduction

 For some networks such as dense Data Center (DC) networks, the
 existing Link State (LS) flooding mechanism is not efficient and may
 have some issues. The extra LS flooding consumes network bandwidth.
 Processing the extra LS flooding, including receiving, buffering and
 decoding the extra LSs, wastes memory space and processor time. This

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Chen, et al. Expires December 8, 2020 [Page 2]

Internet-Draft FTC Algorithm June 2020

 may cause scalability issues and affect the network convergence
 negatively.

 This document proposes an algorithm for a node to compute a flooding
 topology, which is a subgraph of the complete topology per underline
 physical network. The physical network can be any network, including
 clos leaf spine network. It can be used in the distributed mode of
 flooding topology computation for flooding reduction and the
 centralized mode, which are described in
 [I-D.ietf-lsr-dynamic-flooding]. When the distributed mode is
 selected, every node in an area automatically calculates a flooding
 topology by using a same algorithm and floods the link states using
 the flooding topology, the amount of flooding traffic in the network
 is greatly reduced. This would reduce convergence time with a more
 stable and optimized routing environment.

 There may be multiple algorithms for computing a flooding topology.
 Users can select one they prefer, and smoothly switch from one to
 another.

2. Terminology

 LSA: A Link State Advertisement in OSPF.

 LSP: A Link State Protocol Data Unit (PDU) in IS-IS.

 LS: A Link Sate, which is an LSA or LSP.

 FT: Flooding Topology.

 FTC: Flooding Topology Computation.

3. Flooding Topology

 For a given network topology, a flooding topology is a sub-graph or
 sub-network of the given network topology that has the same
 reachability to every node as the given network topology. Thus all
 the nodes in the given network topology MUST be in the flooding
 topology. All the nodes MUST be inter-connected directly or
 indirectly. As a result, LS flooding will in most cases occur only
 on the flooding topology, that includes all nodes but a subset of
 links. Note even though the flooding topology is a sub-graph of the
 original topology, any single LS MUST still be disseminated in the
 entire network.

Chen, et al. Expires December 8, 2020 [Page 3]

Internet-Draft FTC Algorithm June 2020

3.1. Flooding Topology Construction

 Many different flooding topologies can be constructed for a given
 network topology. For example, a chain connecting all the nodes in
 the given network topology is a flooding topology. A circle
 connecting all the nodes is another flooding topology. A tree
 connecting all the nodes is a flooding topology. In addition, the
 tree plus the connections between some leaves of the tree and branch
 nodes of the tree is a flooding topology.

 The following parameters need to be considered for constructing a
 flooding topology:

 o Degree: The degree of the flooding topology is the maximum degree
 among the degrees of the nodes on the flooding topology. The
 degree of a node on the flooding topology is the number of
 connections on the flooding topology it has to other nodes.

 o Number of links: The number of links on the flooding topology is a
 key factor for reducing the amount of LS flooding. In general,
 the smaller the number of links, the less the amount of LS
 flooding.

 o Diameter: The diameter of the flooding topology is the shortest
 distance between the two most distant nodes on the flooding
 topology. It is a key factor for reducing the network convergence
 time. The smaller the diameter, the less the convergence time.

 o Redundancy: The redundancy of the flooding topology means a
 tolerance to the failures of some links and nodes on the flooding
 topology. If the flooding topology is split by some failures, it
 is not tolerant to these failures. In general, the larger the
 number of links on the flooding topology is, the more tolerant the
 flooding topology to failures.

 Note that the flooding topology constructed by a node is dynamic in
 nature, that means when the base topology (the entire topology graph)
 changes, the flooding topology (the sub-graph) MUST be re-computed/
 re-constructed to ensure that any node that is reachable on the base
 topology MUST also be reachable on the flooding topology.

4. Algorithms to Compute Flooding Topology

 There are many algorithms to compute a flooding topology. A simple
 and efficient one is briefed, which comprises:

 o Selecting a node R0 with the smallest node ID;

Chen, et al. Expires December 8, 2020 [Page 4]

Internet-Draft FTC Algorithm June 2020

 o Building a tree using R0 as root in breadth first; and then

 o Connecting each node whose degree is one to another node to have a
 flooding topology.

4.1. Algorithm with Considering Degree

 The algorithm is described below, where a variable MaxD with an
 initial value 3, data structures candidate queue Cq and flooding
 topology FT are used. Cq and FT comprise elements of form (N, D,
 PHs), where N represents a Node, D is the Degree of node N, and PHs
 contains the Previous Hops of node N. The detailed FT computation by
 the algorithm is illustrated in Appendix A through an example.

 The algorithm starts from node R0 as root with a maximum degree MaxD
 of value 3, a candidate queue Cq = {(R0, D = 0, PHs = { })}, and an
 empty flooding topology FT = { }. Cq contains one element (R0, D =
 0, PHs = { }), where node R0 is the root, D = 0 indicates that the
 Degree (D for short) of R0 is 0 (i.e., the number of links on the
 flooding topology connected to R0 is 0), PHs = { } indicates that the
 Previous Hops (PHs for short) of R0 is empty.

 1. Finding and removing the first element with node A in Cq that is
 not on FT and one PH's D in PHs < MaxD.

 If A is root R0, then add the element into FT

 otherwise (i.e., A != R0 with one PH's D in PHs < MaxD. Assume
 that PH is the first one in PHs whose D < MaxD), PH's D++, and
 add A with D = 1 and PHs = {PH} into FT.

 Note: if no element in Cq satisfies the conditions, algorithm is
 restarted from R0, ++MaxD, Cq = {(R0,D=0,PHs={ })}, FT = { };

 2. If all the nodes are on the FT, then goto step 4;

 3. Suppose that node Xi (i = 1, 2,..., n) is connected to node A and
 not on FT, and X1, X2,..., Xn are in an increasing order by their
 IDs (i.e., X1's ID < X2's ID < ... < Xn's ID). If Xi is not in
 Cq, then add it into the end of Cq with D = 0 and PHs = {A};
 otherwise (i.e., Xi is in Cq), add A into the end of Xi's PHs;
 Goto step 1.

 4. For each node B on FT whose D is one (from minimum to maximum
 node ID), find a link L attached to B such that L's remote node R
 has minimum D and ID, add link L between B and R into FT and
 increase B's D and R's D by one. Return FT.

Chen, et al. Expires December 8, 2020 [Page 5]

Internet-Draft FTC Algorithm June 2020

4.2. Algorithm with Considering Others

 There may be some constraints on some nodes in a network. For
 example, in a spine-and-leaf network, there may be a constraint on
 the degree of every leaf node on the flooding topology, which is that
 the degree of every leaf node is not greater than a given number
 ConMaxD of value 2. For each of the other nodes such as the spine
 nodes, there is no such constraint, that is that ConMaxD is a huge
 number for each of these nodes.

 Step 1 of the algorithm described above is updated below to consider
 this constraint. In addition to checking constraint PH's D < MaxD,
 step 1 checks another constraint PH's D < PH's ConMaxD.

 1. Finding and removing the first element with node A in Cq that is
 not on FT and one PH's D in PHs < MaxD and PH's D < PH's ConMaxD.

 If A is root R0, then add the element into FT

 otherwise (i.e., A != R0 with one PH's D in PHs < MaxD and PH's
 D < PH's ConMaxD. Assume that PH is the first one in PHs
 whose D < MaxD and PH's D < PH's ConMaxD), PH's D++, and add A
 with D = 1 and PHs = {PH} into FT.

 Note: if no element in Cq satisfies the conditions, algorithm is
 restarted from R0, ++MaxD, Cq = {(R0,D=0,PHs={ })}, FT = { };

5. Security Considerations

 This document does not introduce any new security issue.

6. IANA Considerations

 Under Registry Name: "IGP Algorithm Type For Computing Flooding
 Topology" under an existing "Interior Gateway Protocol (IGP)
 Parameters" IANA registries (refer to Section 7.3. IGP
 [I-D.ietf-lsr-dynamic-flooding]), IANA is requested to assign one
 value of IGP Algorithm Type For Computing Flooding Topology as
 follows:

 +==========+==+=============+
 |Type Value| Type Name | reference |
 +==========+==+=============+
 | 1 | Breadth First Minimum Degree Algorithm |This document|
 +----------+--+-------------+
 | 2 | Breadth First Leaf Constraint Algorithm|This document|
 +----------+--+-------------+

Chen, et al. Expires December 8, 2020 [Page 6]

Internet-Draft FTC Algorithm June 2020

7. Acknowledgements

 The authors would like to thank Dean Cheng, Acee Lindem, Zhibo Hu,
 Robin Li, Stephane Litkowski and Alvaro Retana for their valuable
 suggestions and comments on this draft.

8. References

8.1. Normative References

 [I-D.ietf-lsr-dynamic-flooding]
 Li, T., Psenak, P., Ginsberg, L., Chen, H., Przygienda,
 T., Cooper, D., Jalil, L., and S. Dontula, "Dynamic
 Flooding on Dense Graphs", draft-ietf-lsr-dynamic-

flooding-06 (work in progress), May 2020.

 [RFC1195] Callon, R., "Use of OSI IS-IS for routing in TCP/IP and
 dual environments", RFC 1195, DOI 10.17487/RFC1195,
 December 1990, <https://www.rfc-editor.org/info/rfc1195>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328,
 DOI 10.17487/RFC2328, April 1998,
 <https://www.rfc-editor.org/info/rfc2328>.

8.2. Informative References

 [I-D.ietf-rtgwg-spf-uloop-pb-statement]
 Litkowski, S., Decraene, B., and M. Horneffer, "Link State
 protocols SPF trigger and delay algorithm impact on IGP
 micro-loops", draft-ietf-rtgwg-spf-uloop-pb-statement-10
 (work in progress), January 2019.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

Appendix A. FT Computation Details through Example

 This section presents the details on FT computation by the algorithm
 through an example. The detailed procedure of computing a FT for a
 network of five nodes with full mess connections is illustrated.
 Suppose that the network has five nodes R0, R1, R2, R3 and R4; R0's

https://datatracker.ietf.org/doc/html/draft-ietf-lsr-dynamic-flooding-06
https://datatracker.ietf.org/doc/html/draft-ietf-lsr-dynamic-flooding-06
https://datatracker.ietf.org/doc/html/rfc1195
https://www.rfc-editor.org/info/rfc1195
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2328
https://www.rfc-editor.org/info/rfc2328
https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-spf-uloop-pb-statement-10
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126

Chen, et al. Expires December 8, 2020 [Page 7]

Internet-Draft FTC Algorithm June 2020

 ID < R1's ID < R2's ID < R3's ID < R4's ID. The algorithm starts
 with Cq = {(R0, D=0, PH={})}, FT = {}, MaxD = 3.

 0. // remove the first element containing root R0 from Cq
 Cq = { };
 // add the element into FT
 FT = { (R0,D=0,PHs={ }) }; // root R0 on FT
 // for each Ri connected to R0 (not in Cq), add it to the end of Cq
 Cq = { (R1,D=0,PHs={R0}), (R2,D=0,PHs={R0}), (R3,D=0,PHs={R0}),
 ^^^^^^^^^^^^^^^^^ (R4,D=0,PHs={R0}) }

 R0
 __/--- O ---__
 __/ / \ __
 __/ / \ __
 __/ / \ __
 / / \ \
 R1 O--_--------/---------\--------_/--O R4
 \ ____ / \ ____/ /
 \ \/ \/ /
 \ /_____ ____/\ /
 \ / _____/___ \ /
 \ / / \ \ /
 \/____/ ___\/
 R2 O -------------------- O R3

 1. //remove first element (R1,D=0,PHs={R0}) from Cq, R0's D=0 < MaxD
 Cq = { (R2,0,{R0}), (R3,0,{R0}), (R4,0,{R0}) };
 // add (R1,1,{R0}) into FT, increase PH R0's D by one
 FT = { (R0,1, { }), (R1,1, {R0}) }; // Link R1--R0 on FT
 ^^^ ^^^^^^^^^^^^
 // for Ri connected to R1 (in Cq) not on FT, append R1 to Ri's PHs
 Cq = { (R2,0, {R0,R1}), (R3,0, {R0,R1}), (R4,0,{R0,R1}) }.
 ^^ ^^ ^^
 R0 ==== Link on FT
 __//== O ---__
 __// / \ __ link R1--R0 added to FT
 __// / \ __
 __// / \ __
 // / \ \
 R1 O--_--------/---------\--------_/--O R4
 \ ____ / \ ____/ /
 \ \/ \/ /
 \ /_____ ____/\ /
 \ / _____/___ \ /
 \ / / \ \ /
 \/____/ ___\/
 R2 O --------------------- O R3

Chen, et al. Expires December 8, 2020 [Page 8]

Internet-Draft FTC Algorithm June 2020

 2. // remove the first element (R2,0, {R0,R1}) from Cq, R0's D=1 < MaxD
 Cq = { (R3,0, {R0,R1}), (R4,0,{R0,R1}) }
 // add (R2,1,{R0}) into FT, increase R0's D by one
 FT = { (R0,2,{ }), (R1,1,{R0}), (R2,1,{R0}) } //Link R2--R0 on FT
 ^^^ ^^^^^^^^^^^
 // for Ri connected to R2 (in Cq) not on FT, append R2 to Ri's PHs
 Cq = { (R3,0, {R0,R1,R2}), (R4,0,{R0,R1,R2}) }
 ^^ ^^
 R0 ==== Link on FT
 __//== O ---__
 __// // \ __ link R2--R0 added to FT
 __// // \ __
 __// // \ __
 // // \ \
 R1 O--_-------//---------\--------_/--O R4
 \ ____ // \ ____/ /
 \ \/ \/ /
 \ //_____ ____/\ /
 \ // _____/___ \ /
 \ // / \ \ /
 \/____/ ___\/
 R2 O --------------------- O R3

 3. //remove the 1st element (R3,0,{R0,R1,R2}) from Cq, R0's D=2 < MaxD
 Cq = { (R4,0,{R0,R1,R2}) }
 // add (R3,1,{R0}) into FT, increase R0's D by one
 FT = { (R0,3,{}), (R1,1,{R0}), (R2,1,{R0}), (R3,1,{R0}) }
 ^^^ ^^^^^^^^^^^
 // for Ri connected to R3 (in Cq) not on FT, append R3 to Ri's PHs
 Cq = { (R4,0,{R0,R1,R2,R3}) }.
 ^^
 R0 ==== Link on FT
 __//== O ---__
 __// // \\ __ link R3--R0 added to FT
 __// // \\ __
 __// // \\ __
 // // \\ \
 R1 O--_-------//---------\\-------_/--O R4
 \ ____ // \\ ____/ /
 \ \/ \/ /
 \ //_____ ____/\\ /
 \ // _____/___ \\ /
 \ // / \ \\ /
 \/____/ ___\/
 R2 O --------------------- O R3

Chen, et al. Expires December 8, 2020 [Page 9]

Internet-Draft FTC Algorithm June 2020

4. //remove the 1st element (R4,0,{R0,R1,R2,R3}) from Cq,R1's D=1 < MaxD
 Cq = { }
 // add (R4,1,{R1}) into FT, increase R1's D by one
 FT = {(R0,3,{}), (R1,2,{R0}), (R2,1,{R0}), (R3,1,{R0}), (R4,1,{R1})}
 ^^^ ^^^^^^^^^^^
 R0 ==== Link on FT
 __//== O ---__
 __// // \\ __ link R4--R1 added to FT
 __// // \\ __
 __// // \\ __
 // // \\ \
 R1 O==_=======//=========\\=======_/==O R4
 \ ____ // \\ ____/ /
 \ \/ \/ /
 \ //_____ ____/\\ /
 \ // _____/___ \\ /
 \ // / \ \\ /
 \/____/ ___\/
 R2 O --------------------- O R3

 All nodes are on FT now. In the following, for each node on FT whose
 D = 1 (from minimum to maximum ID), link L attached to it and not on
 FT is found such that L's remote node has minimum D and ID. L is
 added into FT.

 5. // On FT, get node R2 with smallest ID whose D=1
 FT = {(R0,3,{}),(R1,2,{R0}),(R2,1,{R0}),(R3,1,{R0}), (R4,1,{R1})}
 // Add link R2--R3 to FT, ^^^^^^^^^^^
 // where R2--R3 is not on FT, R3's D=1 is minimum first and then
 // R3's ID is minimum (R3 and R4 tie for D), R2's D++ and R3's D++
 FT = {(R0,3,{}),(R1,2,{R0}),(R2,2,{R0,R3}),(R3,2,{R0}),(R4,1,{R1})}
 ^^^ ^^ ^^^
 R0 ==== Link on FT
 __//== O ---__
 __// // \\ __ link R2--R3 added to FT
 __// // \\ __
 __// // \\ __
 // // \\ \
 R1 O==_=======//=========\\=======_/==O R4
 \ ____ // \\ ____/ /
 \ \/ \/ /
 \ //_____ ____/\\ /
 \ // _____/___ \\ /
 \ // / \ \\ /
 \/____/ ___\/
 R2 O ===================== O R3

Chen, et al. Expires December 8, 2020 [Page 10]

Internet-Draft FTC Algorithm June 2020

6. // On FT, get node R4 with smallest ID whose D=1
 FT = {(R0,3,{}),(R1,2,{R0}),(R2,2,{R0,R3}),(R3,2,{R0}),(R4,1,{R1})}
 // Add link R4--R2 to FT, where ^^^^^^^^^^^
 // R4--R2 is not on FT, R2's D=2 is minimum first and then R2's ID is
 // minimum (R2 and R3 tie for D), increase R2's D and R4's D by one
 FT = {(R0,3,{}),(R1,2,{R0}),(R2,3,{R0,R3}),(R3,2,{R0}),(R4,2,{R1,R2})}
 ^^^ ^^^ ^^
 R0 ==== Link on FT
 __//== O ---__
 __// // \\ __ link R4--R2 added to FT
 __// // \\ __
 __// // \\ __
 // // \\ \
 R1 O==_=======//=========\\=======//==O R4
 \ ____ // \\ ____// /
 \ \/ \// /
 \ //_____ ___//\\ /
 \ // _____//__ \\ /
 \ // // \ \\ /
 \/ _// ___\/
 R2 O ==//================= O R3

 FT is computed, which has Degree of 3 and Diameter of 2.

Authors' Addresses

 Huaimo Chen
 Futurewei
 Boston
 USA

 Email: huaimo.chen@futurewei.com

 Mehmet Toy
 Verizon
 USA

 Email: mehmet.toy@verizon.com

 Yi Yang
 IBM
 Cary, NC
 United States of America

 Email: yyietf@gmail.com

Chen, et al. Expires December 8, 2020 [Page 11]

Internet-Draft FTC Algorithm June 2020

 Aijun Wang
 China Telecom
 Beiqijia Town, Changping District
 Beijing 102209
 China

 Email: wangaj3@chinatelecom.cn

 Xufeng Liu
 Volta Networks
 McLean, VA
 USA

 Email: xufeng.liu.ietf@gmail.com

 Yanhe Fan
 Casa Systems
 USA

 Email: yfan@casa-systems.com

 Lei Liu
 Fujitsu
 USA

 Email: liulei.kddi@gmail.com

Chen, et al. Expires December 8, 2020 [Page 12]

