
Workgroup: Network Working Group

Internet-Draft: draft-ietf-lsvr-l3dl-12

Published: 11 February 2024

Intended Status: Experimental

Expires: 14 August 2024

Authors: R. Bush

Arrcus & Internet Initiative Japan

R. Austein

Arrcus

R. Housley

Vigil Security

K. Patel

Arrcus

Layer-3 Discovery and Liveness

Abstract

In Massive Data Centers, BGP-SPF and similar routing protocols are

used to build topology and reachability databases. These protocols

need to discover IP Layer-3 attributes of links, such as neighbor IP

addressing, logical link IP encapsulation abilities, and link

liveness. This Layer-3 Discovery and Liveness protocol collects

these data, which may then be disseminated using BGP-SPF and similar

protocols.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 August 2024.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Background

4. Top Level Overview

5. Inter-Link Protocol Overview

5.1. L3DL Ladder Diagram

6. Transport Layer

7. The Checksum

8. TLV PDUs

9. Logical Link Endpoint Identifier

10. HELLO

11. OPEN

12. ACK

12.1. Retransmission

13. The Encapsulations

13.1. The Encapsulation PDU Skeleton

13.2. Encapsulaion Flags

13.3. IPv4 Encapsulation

13.4. IPv6 Encapsulation

13.5. MPLS Label List

13.6. MPLS IPv4 Encapsulation

13.7. MPLS IPv6 Encapsulation

14. Upper-Layer Protocol Configuration PDU

14.1. ULPC BGP Attribute sub-TLVs

14.1.1. BGP ASN

14.1.2. BGP IPv4 Address

14.1.3. BGP IPv6 Address

14.1.4. BGP Authentication sub-TLV

14.1.5. BGP Miscellaneous Flags

15. VENDOR - Vendor Extensions

16. KEEPALIVE - Layer-2 Liveness

17. Layers-2.5 and 3 Liveness

¶

¶

https://trustee.ietf.org/license-info

18. The North/South Protocol

18.1. Use BGP-LS as Much as Possible

18.2. Extensions to BGP-LS

19. Discussion

19.1. HELLO Discussion

19.2. HELLO versus KEEPALIVE

20. VLANs/SVIs/Sub-interfaces

21. Signature Types

21.1. Signature Algorithm Identifiers

21.2. Trust On First Use Method

21.2.1. Signing a PDU

21.2.2. Verifying the OPEN PDU

21.2.3. Verifying Other PDUs

21.3. Public Key Infrastructure Method

21.3.1. Signing OPEN PDU with PKI

21.3.2. Verifying OPEN PDU with PKI

21.4. Local Policy

21.5. NEWKEY, Key Roll

22. Implementation Considerations

23. Security Considerations

24. IANA Considerations

24.1. PDU Types

24.2. ULPC Type

24.3. Signature Type

24.4. Flag Bits

24.5. Error Codes

25. IEEE Considerations

26. Acknowledgments

27. References

27.1. Normative References

27.2. Informative References

Authors' Addresses

1. Introduction

The Massive Data Center (MDC) environment presents unusual problems

of scale, e.g. O(10,000) forwarding devices, while its homogeneity

presents opportunities for simple approaches. Approaches such as

"Jupiter Rising: A study of non-blocking switching networks"

[PAYWALLED] use a central controller to deal with scaling, while

BGP-SPF [I-D.ietf-lsvr-bgp-spf] provides massive scale-out without

centralization using a tried and tested scalable distributed control

plane, offering a scalable routing solution in "Clos Networks" and

similar environments. But BGP-SPF and similar higher level device-

spanning protocols, e.g. [I-D.malhotra-bess-evpn-lsoe], need logical

link state and addressing data from the network to build the routing

topology. They also need prompt but prudent reaction to (logical)

link failure.¶

https://xml2rfc.tools.ietf.org/public/rfc/bibxml-doi/reference.DOI.10.1145/2975159.xml?anchor=JUPITER
https://xml2rfc.tools.ietf.org/public/rfc/bibxml-doi/reference.DOI.10.1145/2975159.xml?anchor=JUPITER
https://en.wikipedia.org/wiki/Clos_network/

ASN:

BGP-LS:

Layer-3 Discovery and Liveness (L3DL) provides brutally simple

mechanisms for devices to

Discover each other's unique endpoint identification,

Discover mutually supported layer-3 encapsulations, e.g. IP/MPLS,

Discover Layer-3 IP and/or MPLS addressing of interfaces of the

encapsulations,

Present these data, using a very restricted profile of a BGP-LS

[RFC7752] API, to BGP-SPF which computes the topology and builds

routing and forwarding tables,

Enable Layer-3 link liveness such as BFD,

Provide Layer-2 keep-alive messages for session continuity,

Provide for authenticity verification of protocol messages, and

finally.

Communicate the parameters needed to exchange inter-device Upper

Layer Protocol Configuration for upper-layer protocols such as

BGP.

In this document, the use case for L3DL is for point to point links

in a datacenter Clos in order to exchange the data needed for BGP-

SPF [I-D.ietf-lsvr-bgp-spf] bootstrap and continuity. Once layer-2

connectivity has been leveraged to get layer-3 addressability and

forwarding capabilities, parameters for routing protocols such as

BGP can be communicated, and normal layer-3 forwarding and routing

can take over.

L3DL might be found to be more widely applicable to a range of

routing and similar protocols which need layer-3 discovery and

characterisation.

2. Terminology

Even though it concentrates on the inter-device layer, this document

relies heavily on routing terminology. The following attempts to

clarify the use of some possibly confusing terms:

Autonomous System Number [RFC4271], a BGP identifier for an

originator of Layer-3 routes, particularly BGP announcements.

A mechanism by which link-state and TE information can be

collected from networks and shared with external components using

the BGP routing protocol. See [RFC7752].

¶

* ¶

* ¶

*

¶

*

¶

* ¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

¶

BGP-SPF

Clos:

Datagram:

Encapsulation:

Frame:

Link or Logical Link:

LLEI:

MAC Address:

MDC:

MTU:

PDU:

RouterID:

Session:

SPF:

System Identifier:

A hybrid protocol using BGP transport but a Dijkstra

Shortest Path First decision process. See

[I-D.ietf-lsvr-bgp-spf].

A hierarchic subset of a crossbar switch topology commonly

used in data centers.

The L3DL content of a single Layer-2 frame, sans Ethernet

framing. A full L3DL PDU may be packaged in multiple Datagrams.

Address Family Indicator and Subsequent Address

Family Indicator (AFI/SAFI). I.e. classes of layer-2.5 and 3

addresses such as IPv4, IPv6, MPLS, etc.

A Layer-2 Ethernet packet.

A logical connection between two logical

ports on two devices. E.g. two VLANs between the same two ports

are two links.

Logical Link Endpoint Identifier, the unique identifier of

one end of a logical link, see Section 9.

48-bit Layer-2 addresses are assumed since they are

used by all widely deployed Layer-2 network technologies of

interest, especially Ethernet. See [IEEE.802_2001].

Massive Data Center, commonly composed of thousands of Top of

Rack Switches (TORs).

Maximum Transmission Unit, the size in octets of the largest

packet that can be sent on a medium, see [RFC1122] 1.3.3.

Protocol Data Unit, an L3DL application layer message. A PDU's

content may need to be broken into multiple Datagrams to make it

through MTU or other restrictions.

An 32-bit identifier unique in the current routing

domain, see [RFC6286].

An established, via OPEN PDUs, session between two L3DL

capable link end-points,

Shortest Path First, an algorithm for finding the shortest

paths between nodes in a graph; AKA Dijkstra's algorithm.

An eight octet ISO System Identifier a la

[RFC1629] System ID

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

TOR:

ZTP:

Top Of Rack switch, aggregates the servers in a rack and

connects to aggregation layers of the Clos tree, AKA the Clos

spine.

Zero Touch Provisioning gives devices initial addresses,

credentials, etc. on boot/restart.

3. Background

L3DL is primarily designed for a Clos type datacenter scale and

topology, but can accommodate richer topologies which contain

potential cycles.

While L3DL is designed for the MDC, there are no inherent reasons it

could not run on a WAN. The authentication and authorization needed

to run safely on a WAN need to be considered, and the appropriate

level of security options chosen.

Familiarity with the BGP4 Protocol [RFC4271] is assumed. Familiarity

with BGP-SPF, [I-D.ietf-lsvr-bgp-spf], might be useful.

L3DL assumes a new IEEE assigned EtherType (TBD).

The number of addresses of one Encapsulation type on an interface

link may be quite large given a TOR with tens of servers, each

server having a few hundred micro-services, resulting in an

inordinate number of addresses. And highly automated micro-service

migration can cause serious address prefix disaggregation, resulting

in interfaces with thousands of disaggregated prefixes.

Therefore the L3DL protocol is session oriented and uses incremental

announcement and withdrawal with session restart, a la BGP

([RFC4271]).

4. Top Level Overview

Devices discover each other on logical links

Logical Link Endpoint Identifiers (LLEIs) are exchanged

Layer-2 Liveness checks may be started

Encapsulation data are exchanged and IP-Level Liveness checks

enabled

A BGP-like upper layer protocol is assumed to use the identifiers

and encapsulation data to discover and build a topology database

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

*

¶

*

¶

There are two protocols, the inter-device (left-right in the

diagram) per-link layer-3 discovery and the API to the upper level

BGP-like routing protocol (up-down in the above diagram):

Inter-device PDUs are used to exchange device and logical link

identities and layer-2.5 (MPLS) and 3 identifiers (not payloads),

e.g. device IDs, port identities, VLAN IDs, Encapsulations, and

IP addresses.

A Link Layer to BGP API presents these data up the stack to a BGP

protocol or an other device-spanning upper layer protocol,

presenting them using the BGP-LS BGP-like data format.

The upper layer BGP family routing protocols cross all the devices,

though they are not part of these L3DL protocols.

To simplify this document, Layer-2 framing is not shown. L3DL is

about layer-3.

5. Inter-Link Protocol Overview

Two devices discover each other and their respective identities by

sending multicast HELLO PDUs (Section 10). To assure discovery of

new devices coming up on a multi-link topology, devices on such a

+-------------------+ +-------------------+ +-------------------+

| Device | | Device | | Device |

| | | | | |

|+-----------------+| |+-----------------+| |+-----------------+|

|| || || || || ||

|| BGP-SPF <+---+> BGP-SPF <+---+> BGP-SPF ||

|| || || || || ||

|+--------^--------+| |+--------^--------+| |+--------^--------+|

| | | | | | | | |

| | | | | | | | |

|+--------+--------+| |+--------+--------+| |+--------+--------+|

|| Encapsulations || || Encapsulations || || Encapsulations ||

|| Addresses || || Addresses || || Addresses ||

|| L2 Liveness || || L2 Liveness || || L2 Liveness ||

|+--------^--------+| |+--------^--------+| |+--------^--------+|

| | | | | | | | |

| | | | | | | | |

|+--------v--------+| |+--------v--------+| |+--------v--------+|

|| || || || || ||

||Inter-Device PDUs<+---+>Inter-Device PDUs<+---+>Inter-Device PDUs||

|| || || || || ||

|+-----------------+| |+-----------------+| |+-----------------+|

+-------------------+ +-------------------+ +-------------------+

¶

¶

*

¶

*

¶

¶

¶

topology, and only on a multi-link topology, send periodic HELLOs

forever, see Section 19.1.

Once a new device is recognized, both devices attempt to negotiate

and establish a session by sending unicast OPEN PDUs (Section 11) to

the source MAC addresses (plus VIDs if VLANs) of the received

HELLOs. Once a session is established through the OPEN exchange, the

Encapsulations (Section 13) configured on an end point may be

announced and modified. Note that these are only the encapsulation

and addresses configured on the announcing interface; though a

device's loopback and overlay interface(s) may also be announced.

When two devices on a link have compatible Encapsulations and

addresses, i.e. the same AFI/SAFI and the same subnet, the link is

announced via the BGP-LS API.

5.1. L3DL Ladder Diagram

The HELLO, Section 10, is a priming message sent on all configured

logical links. It is a small L3DL PDU encapsulated in an Ethernet

multicast frame with the simple goal of discovering the identities

of logical link endpoint(s) reachable from a Logical Link Endpoint,

Section 9.

The HELLO and OPEN, Section 11, PDUs, which are used to discover and

exchange detailed Logical Link Endpoint Identifiers, LLEIs, and the

ACK/ERROR PDU, are mandatory; other PDUs are optional; though at

least one encapsulation SHOULD be agreed at some point.

The following is a ladder-style diagram of the L3DL protocol

exchanges:

¶

¶

¶

¶

¶

| HELLO | Logical Link Peer discovery

|---------------------------->|

| HELLO | Mandatory

|<----------------------------|

| |

| |

| OPEN | MACs, IDs, etc.

|---------------------------->|

| ACK |

|<----------------------------|

| |

| OPEN | Mandatory

|<----------------------------|

| ACK |

|---------------------------->|

| |

| |

| Interface IPv4 Addresses | Interface IPv4 Addresses

|---------------------------->| Optional

| ACK |

|<----------------------------|

| |

| Interface IPv4 Addresses |

|<----------------------------|

| ACK |

|---------------------------->|

| |

| |

| Interface IPv6 Addresses | Interface IPv6 Addresses

|---------------------------->| Optional

| ACK |

|<----------------------------|

| |

| Interface IPv6 Addresses |

|<----------------------------|

| ACK |

|---------------------------->|

| |

| |

| Interface MPLSv4 Labels | Interface MPLSv4 Labels

|---------------------------->| Optional

| ACK |

|<----------------------------|

| |

| Interface MPLSv4 Labels | Interface MPLSv4 Labels

|<----------------------------| Optional

| ACK |

|---------------------------->|

| |

| |

| Interface MPLSv6 Labels | Interface MPLSv6 Labels

|---------------------------->| Optional

| ACK |

|<----------------------------|

| |

| Interface MPLSv6 Labels | Interface MPLSv6 Labels

|<----------------------------| Optional

| ACK |

|---------------------------->|

| |

| |

| L3DL KEEPALIVE | Layer-2 Liveness

|---------------------------->| Optional

| L3DL KEEPALIVE |

|<----------------------------|

¶

6. Transport Layer

L3DL PDUs are carried by a simple transport layer which allows long

PDUs to occupy many Ethernet frames. The L3DL content of a single

Ethernet frame, exclusive of Ethernet framing data, is referred to

as a Datagram.

The L3DL Transport Layer encapsulates each Datagram using a common

transport header.

If a PDU does not fit in a single datagram, it is broken into

multiple Datagrams and reassembled by the receiver a la [RFC0791]

Section 2.3 Fragmentation.

This is not classic 'fragmentation', but rather decomposition at the

origin to allow PDU payloads larger than the frame allows. There are

no intermediate devices capable of further fragmentation or

reassembly.

A PDU might need a large number of frames to be sent. As fragments

are not ACK paced (as PDUs are), to avoid overwhelming bursts, the

sender should pace fragments of a large PDU.

L3DL is carrying a relatively small amount of data on relatively

high bandwidth links, and at a time when the link is not active with

other data as it does not yet have layer-3 connectivity. So

congestion is not considered a sufficiently significant risk to

warrant additional complexity.

Should a PDU need to be retransmitted, it MUST BE sent as the

identical Datagram set as the original transmission. The

Transmission Sequence Number informs the receiver that it is the

same PDU.

The L3DL OPEN PDU contains an algorithm identifier, a key, and a

L3DL certificate, which can be used to verify signatures on

subsequent PDUs. This document describes two methods of key

generation and signing for use by L3DL, Trust On First Use (TOFU)

and a PKI-based mechanism to provide authentication as well as

session integrity. See Section 21.

¶

¶

¶

¶

¶

¶

¶

¶

Version:

Transmission Sequence Number:

L:

Datagram Number:

Datagram Length:

Checksum:

Payload:

The fields of the L3DL Transport Header are as follows:

Eight-bit Version number of the protocol, currently 0.

Values other than 0 MUST BE treated as an error. The protocol

version needs to be in one and only one place, so it is in the

datagram as opposed to, for example, the PDU header.

A 16-bit strictly increasing unsigned

integer identifying this PDU, possibly across retransmissions,

that wraps from 2^16-1 to 0. The initial value is arbitrary. See

[RFC1982] on DNS Serial Number Arithmetic for too much detail on

comparing and incrementing a wrapping sequence number.

A bit that set to one if this Datagram is the last Datagram of

the PDU. For a PDU which fits in only one Datagram, it is set to

one. Note that this is the inverse of the marking technique used

by [RFC0791].

A monotonically increasing 23-bit value which

starts at zero for each PDU. This is used to reassemble frames

into PDUs a la [RFC0791] Section 2.3. Note that this limits an

L3DL PDU to 2^24 frames.

Total number of octets in the Datagram including

all payloads and fields. Note that this limits a datagram to 2^16

octets; though Ethernet framing is likely to impose a smaller

limit.

A 32 bit hash over the Datagram to detect bit flips, see

Section 7.

If a Datagram fails checksum verification, the datagram is

invalid and SHOULD be silently discarded. The sender will

retransmit the PDU, and the receiver can assemble it.

The PDU being transported or a fragment thereof.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Version | Transmission Sequence Number |L| Dtgm Number ~

+-+

~ Datagram Number (contd) | Datagram Length |

+-+

| Checksum |

+-+

| Payload... |

+-+

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

To avoid the need for a receiver to reassemble two PDUs at the same

time, a sender MUST NOT send a subsequent PDU when a PDU is already

in flight and not yet acknowledged; assuming it is an ACKed PDU

Type.

7. The Checksum

There is a reason conservative folk use a checksum in UDP. And as

many operators stretch to jumbo frames (over 1,500 octets) longer

checksums are the prudent approach.

For the purpose of computing a checksum, the checksum field itself

is assumed to be zero.

The following code describes a suggested algorithm. This

specification avoids mandatory to implement, algorithm agility, etc.

What matters is that the same algorithm is used consistently in any

deployment.

Sum up 32-bit unsigned ints in a 64-bit long, then take the high-

order section, shift it right filling on the left with zeros,

rotate, add it in, repeat until the high order 32 bits are all zero.

¶

¶

¶

¶

¶

<CODE BEGINS>

#include <stddef.h>

#include <stdint.h>

/* The F table from Skipjack, and it would work for the S-Box. */

static const uint8_t sbox[256] = {

0xa3,0xd7,0x09,0x83,0xf8,0x48,0xf6,0xf4,0xb3,0x21,0x15,0x78,

0x99,0xb1,0xaf,0xf9,0xe7,0x2d,0x4d,0x8a,0xce,0x4c,0xca,0x2e,

0x52,0x95,0xd9,0x1e,0x4e,0x38,0x44,0x28,0x0a,0xdf,0x02,0xa0,

0x17,0xf1,0x60,0x68,0x12,0xb7,0x7a,0xc3,0xe9,0xfa,0x3d,0x53,

0x96,0x84,0x6b,0xba,0xf2,0x63,0x9a,0x19,0x7c,0xae,0xe5,0xf5,

0xf7,0x16,0x6a,0xa2,0x39,0xb6,0x7b,0x0f,0xc1,0x93,0x81,0x1b,

0xee,0xb4,0x1a,0xea,0xd0,0x91,0x2f,0xb8,0x55,0xb9,0xda,0x85,

0x3f,0x41,0xbf,0xe0,0x5a,0x58,0x80,0x5f,0x66,0x0b,0xd8,0x90,

0x35,0xd5,0xc0,0xa7,0x33,0x06,0x65,0x69,0x45,0x00,0x94,0x56,

0x6d,0x98,0x9b,0x76,0x97,0xfc,0xb2,0xc2,0xb0,0xfe,0xdb,0x20,

0xe1,0xeb,0xd6,0xe4,0xdd,0x47,0x4a,0x1d,0x42,0xed,0x9e,0x6e,

0x49,0x3c,0xcd,0x43,0x27,0xd2,0x07,0xd4,0xde,0xc7,0x67,0x18,

0x89,0xcb,0x30,0x1f,0x8d,0xc6,0x8f,0xaa,0xc8,0x74,0xdc,0xc9,

0x5d,0x5c,0x31,0xa4,0x70,0x88,0x61,0x2c,0x9f,0x0d,0x2b,0x87,

0x50,0x82,0x54,0x64,0x26,0x7d,0x03,0x40,0x34,0x4b,0x1c,0x73,

0xd1,0xc4,0xfd,0x3b,0xcc,0xfb,0x7f,0xab,0xe6,0x3e,0x5b,0xa5,

0xad,0x04,0x23,0x9c,0x14,0x51,0x22,0xf0,0x29,0x79,0x71,0x7e,

0xff,0x8c,0x0e,0xe2,0x0c,0xef,0xbc,0x72,0x75,0x6f,0x37,0xa1,

0xec,0xd3,0x8e,0x62,0x8b,0x86,0x10,0xe8,0x08,0x77,0x11,0xbe,

0x92,0x4f,0x24,0xc5,0x32,0x36,0x9d,0xcf,0xf3,0xa6,0xbb,0xac,

0x5e,0x6c,0xa9,0x13,0x57,0x25,0xb5,0xe3,0xbd,0xa8,0x3a,0x01,

0x05,0x59,0x2a,0x46

};

/* non-normative example C code, constant time even */

uint32_t sbox_checksum_32(const uint8_t *b, const size_t n)

{

 uint32_t sum[4] = {0, 0, 0, 0};

 uint64_t result = 0;

 for (size_t i = 0; i < n; i++)

 sum[i & 3] += sbox[*b++];

 for (int i = 0; i < sizeof(sum)/sizeof(*sum); i++)

 result = (result << 8) + sum[i];

 result = (result >> 32) + (result & 0xFFFFFFFFU);

 result = (result >> 32) + (result & 0xFFFFFFFFU);

 return (uint32_t) result;

}

<CODE ENDS>

¶

PDU Type:

Payload Length:

Payload:

Sig Type:

Signature Length:

Signature:

8. TLV PDUs

The basic L3DL application layer PDU is a typical TLV (Type Length

Value) PDU. It includes a signature to provide optional integrity

and authentication. It may be broken into multiple Datagrams, see

Section 6.

The fields of the basic L3DL header are as follows:

An integer differentiating PDU payload types. See

Section 24.1.

Total number of octets in the Payload field.

The application layer content of the L3DL PDU.

The type of the Signature, see Section 24.3. Type 0, a

null signature, is defined in this document.

Sig Type 0 indicates a null Signature. For a trivial PDU such as

KEEPALIVE, the underlying Datagram checksum may be sufficient for

integrity, though it lacks authenticity.

Other Sig Types may be defined in other documents, cf.

[I-D.ymbk-lsvr-l3dl-signing].

The length of the Signature, possibly including

padding, in octets. If Sig Type is 0, Signature Length MUST BE 0.

The result of running the signature algorithm specified

in Sig Type over all octets of the PDU except for the Signature

itself.

9. Logical Link Endpoint Identifier

L3DL discovers neighbors on logical links and establishes sessions

between the two ends of all consenting discovered logical links. A

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| PDU Type | Payload Length ~

+-+

~ | Payload ... |

+-+

| Sig Type | Signature Length | ~

+-+ +

~ Signature ~

+-+

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

logical link is described by a pair of Logical Link Endpoint

Identifiers, LLEIs.

An LLEI is a variable length descriptor which could be an ASN, a

classic RouterID, a catenation of the two, an eight octet ISO System

Identifier [RFC1629], or any other identifier unique to a single

logical link endpoint in the topology.

An L3DL deployment will choose and define an LLEI which suits its

needs, simple or complex. Examples of two extremes follow:

A simplistic view of a link between two devices is two ports,

identified by unique MAC addresses, carrying a layer-3 protocol

conversation. In this case, the MAC addresses might suffice for the

LLEIs.

Unfortunately, things can get more complex. Multiple VLANs can run

between those two MAC addresses. In practice, many real devices use

the same MAC address on multiple ports and/or sub-interfaces.

Therefore, in the general circumstance, a fully described LLEI might

be as follows:

System Identifier, a la [RFC1629], is an eight octet identifier

unique in the entire operational space. Routers and switches usually

have internal MAC Addresses which can be padded with high order

zeros and used if no System ID exists on the device. If no unique

identifier is burned into a device, the local L3DL configuration

SHOULD create and assign a unique one, likely by configuration.

ifIndex is the SNMP identifier of the (sub-)interface, see

[RFC1213]. This uniquely identifies the port.

For a layer-3 tagged sub-interface or a VLAN/SVI interface, IfIndex

is that of the logical sub-interface, so no further disambiguation

is needed.

L3DL PDUs learned over VLAN-ports may be interpreted by upper

layer-3 routing protocols as being learned on the corresponding

layer-3 SVI interface for the VLAN.

¶

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| |

+ System Identifier +

| |

+-+

| ifIndex |

+-+

¶

¶

¶

¶

¶

01-80-C2-00-00-0E:

To Be Assigned:

LLEIs are big-endian.

10. HELLO

The HELLO PDU is unique in that it is encapsulated in a multicast

Ethernet frame. It solicits response(s) from other LLEI(s) on the

link. See Section 19.1 for why multicast is used. The destination

multicast MAC Addressees to be used MUST be one of the following,

See Clause 9.2.2 of [IEEE802-2014]:

Nearest Bridge = Propagation constrained to a

single physical link; stopped by all types of bridges (including

MPRs (media converters)). This SHOULD be used when the link is

known to be a simple point to point link.

When a switch receives a frame with a multicast

destination MAC it does not recognize, it forwards to all ports.

This destination MAC SHOULD be sent when the interface is known

to be connected to a switch. See Section 25. This SHOULD be used

when the link may be a multi-point link.

All other L3DL PDUs are encapsulated in unicast frames, as the

peer's destination MAC address is known after the HELLO exchange.

When an interface is turned up on a device, it SHOULD issue a HELLO

if it is to participate in L3DL sessions.

If a constrained Nearest Bridge destination address has been

configured for a point-to-point interface, see above, then the HELLO

SHOULD NOT be repeated once a session has been created by an

exchange of OPENs.

If the configured destination address is one that is propagated by

switches, the HELLO SHOULD be repeated at a configured interval,

with a default of 60 seconds. This allows discovery by new devices

which come up on the layer-2 mesh. In this multi-link scenario, the

operator should be aware of the trade-off between timer tuning and

network noise and adjust the inter-HELLO timer accordingly.

If more than one device responds, one adjacency is formed for each

unique source LLEI response. L3DL treats each adjacency as a

separate logical link.

¶

¶

¶

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| PDU Type = 0 | Payload Length = 0 ~

+-+

~ | Sig Type = 0 | Signature Length = 0 |

+-+

¶

¶

When a HELLO is received from a source MAC address (plus VID if

VLAN) with which there is no established L3DL session, the receiver

SHOULD respond by sending an OPEN PDU to the source MAC address

(plus VID). The two devices establish an L3DL session by exchanging

OPEN PDUs.

To ameliorate possible load spikes during bootstrap or event

recovery, there SHOULD be a jittered delay between receipt of a

HELLO and issue of the OPEN. The default delay range SHOULD be zero

to five seconds, and MUST be configurable.

If a HELLO is received from a MAC address with which there is an

established session, the HELLO should be dropped.

The Payload Length is zero as there is no payload.

HELLO PDUs can not be signed as keying material has yet to be

exchanged. Hence the signature MUST always be the null type.

11. OPEN

Each device has learned the other's MAC Address from the HELLO

exchange, see Section 10. Therefore the OPEN and all subsequent PDUs

MUST BE unicast, as opposed to the HELLO's multicast frame.

The Payload Length is the number of octets in all fields of the PDU

from the Nonce through the Serial Number, not including the three

final signature fields.

¶

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| PDU Type = 1 | Payload Length |

+-+

| | Nonce |

+-+

| | LLEI Length | My LLEI |

+-+

| | AttrCount | |

+-+

| Attribute List ... | Auth Type | Key Length |

+-+

| | Key ... |

+-+

| Serial Number |

+-+

| Sig Type | Signature Length | Signature ... |

+-+

¶

¶

The Nonce enables detection of a duplicate OPEN PDU. It SHOULD be

either a random number or a high resolution timestamp. It is needed

to prevent session closure due to a repeated OPEN caused by a race

or a dropped or delayed ACK.

My LLEI is the sender's LLEI, see Section 9.

AttrCount is the number of attributes in the Attribute List.

Attributes are single octets the semantics of which are operator-

defined.

A node may have zero or more operator-defined attributes, e.g.:

spine, leaf, backbone, route reflector, arabica, ...

Attribute syntax and semantics are local to an operator or

datacenter; hence there is no global registry. Nodes exchange their

attributes only in the OPEN PDU.

Auth Type is the Signature algorithm suite, see Section 8.

Key Length is a 16-bit field denoting the length in octets of the

Key itself, not including the Auth Type or the Key Length. If the

Auth Type is zero, then the Key Length MUST also be zero, and there

MUST BE no Key data.

The Key is specific to the operational environment. A failure to

authenticate is a failure to start the L3DL session, an ERROR PDU

MUST BE sent (Error Code 3), and HELLOs MUST be restarted.

Although delay and jitter in responding with an OPEN were specified

above, beware of load created by long strings of authentication

failures and retries. A configurable failure count limit (default 8)

SHOULD result in giving up on the connection attempt.

The Serial Number is a monotonically increasing 32-bit value

representing the sender's state at the time of sending the last PDU.

It may be an integer, a timestamp, etc. If incrementing the Serial

Number would cause it to be zero, it should be incremented again.

On session restart (new OPEN), a receiver MAY send the last received

Serial Number to tell the sender to only send data with a Serial

Number greater (in the [RFC1982] sense), or send a Serial Number of

zero to request all data.

The Serial Number supports session resumption in anticipation of

peers having a very large amount of state they would prefer not to

re-exchange because of some glitch. The Serial Number is not

expected to wrap for a considerable time, e.g. days or weeks. But to

address the rare case it does, [RFC1982] on DNS Serial Number

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Arithmetic should be used as it is in the Transmission Sequence

Number.

This allows a sender of an OPEN to tell the receiver that the sender

would like to resume a session and that the receiver only needs to

send data starting with the PDU with the lowest Serial Number

greater (in the [RFC1982] sense) than the one sent in the OPEN. If

the sender is not trying to resume a dropped session, the Serial

Number MUST be zero.

If the receiver of an OPEN PDU with a non-zero Serial Number can not

resume from the requested point, it should return an ACK with an

Error Code of 2, Session could not be continued. The sender of the

failing OPEN PDU SHOULD then send an OPEN PDU with a Serial Number

of zero.

The Signature fields are described in Section 8 and in an asymmetric

key environment serve as a proof of possession of the signing auth

data by the sender.

Once two logical link endpoints know each other, and have ACKed each

other's OPEN PDUs, Layer-2 KEEPALIVEs (see Section 16) MAY be

started to ensure Layer-2 liveness and keep the session semantics

alive. The timing and acceptable drop of KEEPALIVE PDUs are

discussed in Section 16.

If a sender of OPEN does not receive an ACK of the OPEN PDU, then

they MUST resend the same OPEN PDU, with the same Nonce. Resending

an unacknowledged OPEN PDU, like other ACKed PDUs, SHOULD use

exponential back-off, see [RFC1122].

If a properly authenticated OPEN arrives at L3DL speaker A with a

new Nonce from an LLEI, speaker B, with which A believes it already

has an L3DL session (OPENs have already been exchanged), and the

Serial Number in the OPEN PDU is non-zero, speaker A SHOULD

establish a new sending session by sending an OPEN with the Serial

Number being the same as that of A's last sent and ACKed PDU. A MUST

resume sending encapsulations etc. subsequent to the requested

Sequence Number. And B MUST retain all previously discovered

encapsulation and other data received from A.

If a properly authenticated OPEN arrives with a new Nonce from an

LLEI with which the receiving logical link endpoint believes it

already has an L3DL session (OPENs have already been exchanged), and

the Serial Number in the OPEN is zero, then the receiver MUST assume

that the sending LLEI or entire device has been reset. All

Previously discovered encapsulation data MUST NOT be kept and MUST

BE withdrawn via the BGP-LS API and the recipient MUST respond with

a new OPEN.

¶

¶

¶

¶

¶

¶

¶

¶

12. ACK

The ACK PDU acknowledges receipt of a PDU and reports any error

condition which might have been raised.

The ACK acknowledges receipt of an OPEN, Encapsulation, VENDOR PDU,

etc.

The ACKed PDU is the PDU Type of the PDU being acknowledged, e.g.,

OPEN, one of the Encapsulations, etc.

If there was an error processing the received PDU, then the EType is

non-zero. If the EType is zero, Error Code and Error Hint MUST also

be zero.

A non-zero EType is the receiver's way of telling the PDU's sender

that the receiver had problems processing the PDU. The Error Code

and Error Hint will tell the sender more detail about the error.

The decimal value of EType gives a strong hint how the receiver

sending the ACK believes things should proceed:

0 - No Error, Error Code and Error Hint MUST be zero

1 - Warning, something not too serious happened, continue

2 - Session should not be continued, try to restart

3 - Restart is hopeless, call the operator

4-15 - Reserved

The Error Codes, noting protocol failures, are listed in

Section 24.5. Someone stuck in the 1990s might think the catenation

of EType and Error Code as an echo of 0x1zzz, 0x2zzz, etc. They

might be right; or not.

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| PDU Type = 3 | Payload Length = 5 ~

+-+

~ | ACKed PDU | EType | Error Code |

+-+

| Error Hint | Sig Type |Signature Leng.~

+-+

~ | Signature ... |

+-+

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The Error Hint, an arbitrary 16 bits, is any additional data the

sender of the error PDU thinks will help the recipient or the

debugger with the particular error.

The Signature fields are described in Section 8.

12.1. Retransmission

If a PDU sender expects an ACK, e.g. for an OPEN, an Encapsulation,

a VENDOR PDU, etc., and does not receive the ACK for a configurable

time (default one second), and the interface is live at layer-2, the

sender resends the PDU using exponential back-off, see [RFC1122].

This cycle MAY be repeated a configurable number of times (default

three) before it is considered a failure. The session MAY BE

considered closed in this case of this ACK failure.

If the link is broken at layer-2, retransmission MAY BE retried when

the link is restored.

13. The Encapsulations

Once the devices know each other's LLEIs, know each other's upper

layer (L2.5 and L3) identities, have means to ensure link state,

etc., the L3DL session is considered established, and the devices

SHOULD exchange L3 interface encapsulations, L3 addresses, and L2.5

labels.

The Encapsulation types the peers exchange may be IPv4

(Section 13.3), IPv6 (Section 13.4), MPLS IPv4 (Section 13.6), MPLS

IPv6 (Section 13.7), and/or possibly others not defined here.

The sender of an Encapsulation PDU MUST NOT assume that the peer is

capable of the same Encapsulation Type. An ACK (Section 12) merely

acknowledges receipt. Only if both peers have sent the same

Encapsulation Type is it safe for Layer-3 protocols to assume that

they are compatible for that type.

A receiver of an encapsulation might recognize an addressing

conflict, such as both ends of the link trying to use the same

address. In this case, the receiver SHOULD respond with an error

(Error Code 2) ACK. As there may be other usable addresses or

encapsulations, this error might log and continue, letting an upper

layer topology builder deal with what works.

Further, to consider a logical link of a type to formally be

established so that it may be pushed up to upper layer protocols,

the addressing for the type must be compatible, e.g. on the same IP

subnet.

¶

¶

¶

¶

¶

¶

¶

¶

¶

13.1. The Encapsulation PDU Skeleton

The header for all encapsulation PDUs is as follows:

An Encapsulation PDU describes zero or more addresses of the

encapsulation type.

The 24-bit Count is the number of Encapsulations in the

Encapsulation list.

The Serial Number is a monotonically increasing 32-bit value

representing the sender's state in time. It may be an integer, a

timestamp, etc. On session restart (new OPEN), a receiver MAY send

the last received Session Number to tell the sender to only send

newer data.

If a sender has multiple links on the same interface, separate

state: data, ACKs, etc. must be kept for each peer session.

Over time, multiple Encapsulation PDUs may be sent for an interface

as configuration changes.

If the length of an Encapsulation PDU exceeds the Datagram size

limit on media, the PDU is broken into multiple Datagrams. See

Section 8.

The Signature fields are described in Section 8.

The Receiver MUST acknowledge the Encapsulation PDU with a Type=3,

ACK PDU (Section 12) with the Encapsulation Type being that of the

encapsulation being announced, see Section 12.

If the Sender does not receive an ACK in a configurable interval

(default one second), and the interface is live at layer-2, they

SHOULD retransmit. After a user configurable number of failures

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| PDU Type | Payload Length ~

+-+

~ | Count |

+-+

| Serial Number |

+-+

| Encapsulation List... | Sig Type |

+-+

| Signature Length | Signature ... |

+-+

¶

¶

¶

¶

¶

¶

¶

¶

¶

(default three), the L3DL session should be considered dead and the

OPEN process SHOULD be restarted.

If the link is broken at layer-2, retransmission MAY BE retried if

data have not changed in the interim.

13.2. Encapsulaion Flags

The Encapsulation Flags are a sequence of bit fields as follows:

Each encapsulation in an Encapsulation PDU of Type T may announce

new and/or withdraw old encapsulations of Type T. It indicates this

with the Ann/With Encapsulation Flag, Announce == 1, Withdraw == 0.

Each Encapsulation interface address in an Encapsulation PDU is

either a new encapsulation be announced (Ann/With == 1) (yes, a la

BGP) or requests one be withdrawn (Ann/With == 0). Adding an

encapsulation which already exists SHOULD raise an Announce/Withdraw

Error (see Section 24.5); the EType SHOULD be 2, suggesting a

session restart (see Section 12 so all encapsulations will be

resent.

If an LLEI has multiple addresses for an encapsulation type, one and

only one address MAY be marked as primary (Primary Flag == 1) for

that Encapsulation Type.

An Encapsulation interface address in an Encapsulation PDU MAY be

marked as a loopback, in which case the Loopback bit is set.

Loopback addresses are generally not seen directly on an external

interface. One or more loopback addresses MAY be exposed by

configuration on one or more L3DL speaking external interfaces, e.g.

for iBGP peering. They SHOULD be marked as such, Loopback Flag == 1.

Each Encapsulation interface address in an Encapsulation PDU is that

of the direct 'underlay interface (Under/Over == 1), or an 'overlay'

address (Under/Over == 0), likely that of a VM or container guest

bridged or configured on to the interface already having an underlay

address.

13.3. IPv4 Encapsulation

The IPv4 Encapsulation describes a device's ability to exchange IPv4

packets on one or more subnets. It does so by stating the

interface's addresses and the corresponding prefix lengths.

¶

¶

¶

 0 1 2 3 4 ... 7

+------------+------------+------------+------------+------------+

| Ann/With | Primary | Under/Over | Loopback | Reserved ..|

+------------+------------+------------+------------+------------+

¶

¶

¶

¶

¶

¶

¶

The 24-bit Count is the sum of the number of IPv4 Encapsulations

being announced and/or withdrawn.

13.4. IPv6 Encapsulation

The IPv6 Encapsulation describes a logical link's ability to

exchange IPv6 packets on one or more subnets. It does so by stating

the interface's addresses and the corresponding prefix lengths.

The 24-bit Count is the sum of the number of IPv6 Encapsulations

being announced and/or withdrawn.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| PDU Type = 4 | Payload Length ~

+-+

~ | Count |

+-+

| Serial Number |

+-+

| Encaps Flags | IPv4 Address ~

+-+

~ | PrefixLen | more ... | Sig Type |

+-+

| Signature Length | Signature ... |

+-+

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| PDU Type = 5 | Payload Length ~

+-+

~ | Count |

+-+

| Serial Number |

+-+

| Encaps Flags | |

+-+-+-+-+-+-+-+-+ +

| |

+ +

| |

+ +

| IPv6 Address |

+ +-+

| | PrefixLen | more ... | Sig Type |

+-+

| Signature Length | Signature ... |

+-+

¶

¶

13.5. MPLS Label List

As an MPLS enabled interface may have a label stack, see [RFC3032],

a variable length list of labels is needed. These are the labels the

sender will accept for the prefix to which the list is attached.

A Label Count of zero is an implicit withdraw of all labels for that

prefix on that interface.

13.6. MPLS IPv4 Encapsulation

The MPLS IPv4 Encapsulation describes a logical link's ability to

exchange labeled IPv4 packets on one or more subnets. It does so by

stating the interface's addresses the corresponding prefix lengths,

and the corresponding labels which will be accepted for each

address.

The 24-bit Count is the sum of the number of MPLSv4 Encapsulation

being announced and/or withdrawn.

13.7. MPLS IPv6 Encapsulation

The MPLS IPv6 Encapsulation describes a logical link's ability to

exchange labeled IPv6 packets on one or more subnets. It does so by

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Label Count | Label | Exp |S|

+-+

| Label | Exp |S| more ... |

+-+

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| PDU Type = 6 | Payload Length ~

+-+

~ | Count |

+-+

| Serial Number |

+-+

| Encaps Flags | MPLS Label List ... | ~

+-+

~ IPv4 Address | PrefixLen |

+-+

| more ... | Sig Type | Signature Length |

+-+

| Signature |

+-+

¶

¶

stating the interface's addresses, the corresponding prefix lengths,

and the corresponding labels which will be accepted for each

address.

The 24-bit Count is the sum of the number of MPLSv6 Encapsulations

being announced and/or withdrawn.

14. Upper-Layer Protocol Configuration PDU

To communicate parameters required to configure peering and

operation of Upper-Layer Protocols at IP layer-3 and above, e.g.,

BGP sessions on a link, a neutral sub-TLV based Upper-Layer Protocol

PDU is defined as follows:

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| PDU Type = 7 | Payload Length ~

+-+

~ | Count |

+-+

| Serial Number |

+-+

| Encaps Flags | MPLS Label List ... | |

+-+ +

| |

+ +

| |

+ +

| IPv6 Address |

+ +-+-+-+-+-+-+-+-+

| | Prefix Len |

+-+

| more ... | Sig Type | Signature Length |

+-+

| Signature ... |

+-+

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 9 | Payload Length ~

+-+

~ | ULPC Type | AttrCount | ~

+-+

~ Attribute List ... | Sig Type | Signature Len ~

+-+

~ | Signature ... |

+-+

¶

0 :

1 :

2-255 :

The Type and Payload Length are defined in Section 8.

ULPC Type: A one octet integer denoting the type of the upper-layer

protocol

Reserved

BGP

Reserved

The one octet AttrCount is the number of attribute sub-TLVs in the

Attribute List.

The Attribute List is a, possibly null, set of sub-TLVs describing

the configuration attributes of the specific upper-layer protocol.

An Attribute consists of a one octet Attribute Type, a one octet

Attribute Length of the number of octets in the Attribute, and a

Payload of arbitrary length up to 253 octets.

14.1. ULPC BGP Attribute sub-TLVs

The parameters needed for BGP peering on a link are exchanged in

sub-TLVs within an Upper-Layer Protocol PDU. The following describe

the various sub-TLVs for BGP.

The goal is to provide the minimal set of configuration parameters

needed by BGP OPEN to successfully start a BGP peering. The goal is

specifically not to replace or conflict with data exchanged during

BGP OPEN. Multiple sources of truth are a recipe for complexity and

hence pain.

If there are multiple BGP sessions on a link, e.g., IPv4 and IPv6,

then separate BGP ULPC PDUs should be sent, one for each address

family.

A peer receiving BGP ULPC PDUs has only one active BGP ULPC PDU for

an particular address family on a specific link at any point in

time; receipt of a new BGP ULPC PDU for a particular address family

replaces the data any previous one; but does not actually affect the

session.

If there are one or more open BGP sessions, receipt of a new BGP

ULPC PDU SHOULD NOT affect these sessions. The received data are

stored for a future session restart.

¶

¶

¶

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Attr Type = 1 | Attr Len | Payload |

+-+

¶

¶

¶

¶

¶

¶

As a link may have multiple encapsulations and multiple addresses

for an IP encapsulation, which address of which encapsulation is to

be used for the BGP session MUST be specified.

For each BGP peering on a link here MUST be one agreed

encapsulation, and the addresses used MUST be in the corresponding

L3DL IPv4/IPv6 Announcement PDUs. If the choice is ambiguous, an

Attribute may be used to signal preferences.

If a peering address has been announced as a loopback, i.e. MUST BE

flagged as such in the L3DL Encapsulation PDU (see Section 13.2), a

two or three hop BGP session will be established. Otherwise a direct

one hop session is used. The BGP session to a loopback will forward

to the peer's address which was marked as Primary in the L3DL

Encapsulation Flags, iff it is in a subnet which is shared with both

BGP speakers. If the primary is not in a common subnet, then the BGP

speaker MAY pick a forwarding next hop that is in a subnet they

share. If there are multiple choices, the BGP speaker SHOULD have

signaled which subnet to choose in an Upper-Layer Protocol

Configuration PDU Attribute.

Attributes MUST be unique in the Attribute List. I.e. a particular

Attr Type MUST NOT occur more than once in the Attribute List. If a

ULPC PDU is received with more than one occurrence of a particular

Attr Type, an Error ACK MUST be returned.

As there are separate PDU Attr Types for IPv4 and IPv6 peering

addresses, separate sessions for the two AFIs MAY be created for the

same ASN in one ULPC PDU.

14.1.1. BGP ASN

The four octet Autonomous System number MUST be specified. If the AS

Number is less than 32 bits, it is padded with high order zeros.

14.1.2. BGP IPv4 Address

The four octet BGP IPv4 Address sub-TLV announces the sender's IPv4

BGP peering source address to be used by the receiver. At least one

of IPv4 or IPv6 BGP source addresses MUST be announced.

¶

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Attr Type = 1 | Attr Len = 6 | My ASN ~

+-+

~ |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

¶

As usual, the BGP OPEN capability negotiation will determine the

AFI/SAFIs to be transported over the peering, see [RFC4760] .

14.1.3. BGP IPv6 Address

The BGP IPv6 Address sub-TLV announces the sender's 16 octet IPv6

BGP peering source address and one octet Prefix Length to be used by

the receiver. At least one of IPv4 or IPv6 BGP source addresses MUST

be announced.

As usual, the BGP OPEN capability negotiation will determine the

AFI/SAFIs to be transported over the peering, see [RFC4760].

14.1.4. BGP Authentication sub-TLV

The BGP Authentication sub-TLV provides any authentication data

needed to OPEN the BGP session. Depending on operator configuration

of the environment, it might be a simple MD5 key (see [RFC2385]),

the name of a key chain in a KARP database (see [RFC7210]), or one

of multiple Authentication sub-TLVs to support [RFC4808].

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Attr Type = 2 | Attr Len = 5 | My IPv4 Peering Address ~

+-+

~ | Prefix Len |

+-+

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Attr Type = 3 | Attr Len = 17 | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +

| |

+ +

| My IPv6 Peering Address |

+ +

| |

+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| | Prefix Len |

+-+

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Attr Type = 4 | Attr Len | ~

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~

~ BGP Authentication Data ... ~

+-+

¶

Bit 0:

Bit 1:

Bit 2-15:

14.1.5. BGP Miscellaneous Flags

The BGP session OPEN has extensive, and a bit complex, capability

negotiation facilities. In case one or more extra attributes might

be needed, the two octet BGP Miscellaneous Flags sub-TLV may be

used. No flags are currently defined.

Misc Flags:

GTSM

BFD

Must be zero

The GTSM flag, when 1, indicates that the sender wishes to enable

the [RFC5082] Generalized TTL Security Mechanism for the session.

The BFD flag, when 1, indicates that the sender wishes to enable the

[RFC5880] Bidirectional Forwarding Detection for the session.

15. VENDOR - Vendor Extensions

Vendors or enterprises may define TLVs beyond the scope of L3DL

standards. This is done using a Private Enterprise Number [IANA-PEN]

followed by Enterprise Data in a format defined for that Enterprise

Number and Ent Type.

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Attr Type = 5 | Attr Len = 4 | Misc Flags |

+-+

¶

¶

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| PDU Type = 255| Payload Length ~

+-+

~ | Serial Number ~

+-+

~ | Enterprise Number |

+-+

| Ent Type | Enterprise Data ... ~

+-+

~ | Sig Type | Signature Length |

+-+

| Signature ... |

+-+

¶

¶

Ent Type allows a VENDOR PDU to be sub-typed in the event that the

vendor/enterprise needs multiple PDU types.

As with Encapsulation PDUs, a receiver of a VENDOR PDU MUST respond

with an ACK or an ERROR PDU. Similarly, a VENDOR PDU MUST only be

sent over an open session.

16. KEEPALIVE - Layer-2 Liveness

L3DL devices SHOULD beacon frequent Layer-2 KEEPALIVE PDUs to ensure

session continuity. The inter-KEEPALIVE interval is configurable,

with a default of ten seconds. A receiver may choose to ignore

KEEPALIVE PDUs.

An operational deployment MUST BE configured whether to use

KEEPALIVEs or not, either globally, or as finely as to per-link

granularity. Disagreement MAY result in repeated session failure and

reestablishment.

KEEPALIVEs SHOULD be beaconed at a configured frequency. One per

second is the default. Layer-3 liveness, such as BFD, may be more

(or less) aggressive.

When a sender transmits a PDU which is not a KEEPALIVE, the sender

SHOULD reset the KEEPALIVE timer. I.e. sending any PDU acts as a

keepalive. Once the last fragment has been sent, the KEEPALIVE timer

SHOULD be restarted. Do not wait for the ACK.

If a KEEPALIVE or other PDUs have not been received from a peer with

which a receiver has an open session for a configurable time

(default 30 seconds), the link SHOULD be presumed down. The devices

MAY keep configuration state and restore it without retransmission

if no data have changed. Otherwise, a new session SHOULD be

established and new Encapsulation PDUs exchanged.

17. Layers-2.5 and 3 Liveness

Layer-2 liveness may be continuously tested by KEEPALIVE PDUs, see

Section 16. As layer-2.5 or layer-3 connectivity could still break,

liveness above layer-2 MAY be frequently tested using BFD

([RFC5880]) or a similar technique.

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| PDU Type = 2 | Payload Length = 0 ~

+-+

~ | Sig Type = 0 | Signature Length = 0 |

+-+

¶

¶

¶

¶

¶

¶

¶

This protocol assumes that one or more Encapsulation addresses may

be used to ping, run BFD, or whatever the operator configures.

18. The North/South Protocol

Thus far, a one-hop point-to-point logical link discovery protocol

has been defined.

The devices know their unique LLEIs and know the unique peer LLEIs

and Encapsulations on each logical link interface.

Full topology discovery is not appropriate at the L3DL layer, so

Dijkstra a la IS-IS etc. is assumed to be done by higher level

protocols such as BGP-SPF.

Therefore the LLEIs, link Encapsulations, and state changes are

pushed North via a small subset of the BGP-LS API. The upper layer

routing protocol(s), e.g. BGP-SPF, learn and maintain the topology,

run Dijkstra, and build the routing database(s).

For example, if a neighbor's IPv4 Encapsulation address changes, the

devices seeing the change push that change Northbound.

18.1. Use BGP-LS as Much as Possible

BGP-LS [RFC7752] defines BGP-like Datagrams describing logical link

state (links, nodes, link prefixes, and many other things), and a

new BGP path attribute providing Northbound transport, all of which

can be ingested by upper layer protocols such as BGP-SPF; see

Section 4 of [I-D.ietf-lsvr-bgp-spf].

For IPv4 links, TLVs 259 and 260 are used. For IPv6 links, TLVs 261

and 262. If there are multiple addresses on a link, multiple TLV

pairs are pushed North, having the same ID pairs.

18.2. Extensions to BGP-LS

The Northbound protocol needs a few minor extensions to BGP-LS.

Luckily, others have needed the same extensions.

Similarly to BGP-SPF, the BGP protocol is used in the Protocol-ID

field specified in table 1 of

[I-D.ietf-idr-bgpls-segment-routing-epe]. The local and remote node

descriptors for all NLRI are the IDs described in Section 11. This

is equivalent to an adjacency SID or a node SID if the address is a

loopback address.

Label Sub-TLVs from [I-D.ietf-idr-bgp-ls-segment-routing-ext]

Section 2.1.1, are used to associate one or more MPLS Labels with a

link.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

19. Discussion

This section explores some trade-offs taken and some considerations.

19.1. HELLO Discussion

A device with multiple Layer-2 interfaces, traditionally called a

switch, may be used to forward frames and therefore packets from

multiple devices to one logical interface (LLEI), I, on an L3DL

speaking device. Interface I could discover a peer J across the

switch. Later, a prospective peer K could come up across the switch.

If I was not still sending and listening for HELLOs, the potential

peering with K could not be discovered. Therefore, on multi-link

interfaces, L3DL MUST continue to send HELLOs as long as they are

turned up.

19.2. HELLO versus KEEPALIVE

Both HELLO and KEEPALIVE are periodic. KEEPALIVE might be eliminated

in favor of keeping only HELLOs. But KEEPALIVEs are unicast, and

thus less noisy on the network, especially if HELLO is configured to

transit layer-2-only switches, see Section 19.1.

20. VLANs/SVIs/Sub-interfaces

One can think of the protocol as an instance (i.e. state machine)

which runs on each logical link of a device.

As the upper routing layer must view VLAN topologies as separate

graphs, L3DL treats VLAN ports as separate links.

L3DL PDUs learned over VLAN-ports may be interpreted by upper

layer-3 routing protocols as being learned on the corresponding

layer-3 SVI interface for the VLAN.

As Sub-Interfaces each have their own LLIEs, they act as separate

interfaces, forming their own links.

21. Signature Types

The L3DL OPEN PDU contains an algorithm identifier, a key, and a

L3DL certificate, which can be used to verify signatures on

subsequent PDUs. This document describes two methods of key

generation and signing for use by L3DL, Trust On First Use (TOFU)

and a PKI-based mechanism to provide authentication as well as

session integrity.

The Key in the OPEN PDU SHOULD be the public key of an asymmetric

key pair. The sender signs with the private key, of course. The

¶

¶

¶

¶

¶

¶

¶

¶

device sending the OPEN PDU may use one key for all links, a

different key for each link, or some mix(es) thereof.

In the TOFU method the key sent in the OPEN PDU is generated on the

sending device, is believed without question by the receiver, and

used to verify all subsequent PDUs from the same sender with the

same public key and algorithm.

With the PKI method, an enrollment step is performed. The public key

is signed by the the operational environment's trust anchor. In this

way, the relying party can be confident that the public key is under

control of the identified L3DL protocol entity.

As part of enrollment or before hand, all relying parties must have

received the trust anchor in an authentic manner.

To the receiver verifying signatures on PDUs, the two methods are

indistinguishable; the key provided in the OPEN PDU is used to

verify the signatures of subsequent PDUs. The difference that PKI-

based keys may be verified against the trust anchor when the OPEN

PDU is received.

In the PKI method the public key in the OPEN PDU MUST be verified

against the trust anchor for the operational domain. The OPEN PDU

public key is then used to verify all subsequent PDUs in the

session. A mechanism for 'rolling' from the current public key to a

fresh one is described in Section 21.5.

21.1. Signature Algorithm Identifiers

To avoid the creation of yet another IANA registry for digital

signature algorithm identifiers, this specification makes use of the

existing IANA registry for "DNS Security Algorithm Numbers" [IANA].

In this registry, each signature algorithm is identified by an 8-bit

value. The entries in this registry with "Y" in the "Zone Signing"

column are appropriate for use with this protocol.

For interoperability, all implementations of this protocol MUST

support the RSASHA256 algorithm (identified by the value 0x08).

Implementation MAY support any other registered "Zone Signing"

signature algorithms.

21.2. Trust On First Use Method

There are three parts to using a key: signing PDUs, verifying the

OPEN PDU, and verifying subsequent PDUs.

¶

¶

¶

¶

¶

¶

¶

¶

¶

21.2.1. Signing a PDU

All signed PDUs are generated in the same way:

Compose the PDU, with all fields including "Sig Algo" and

"Signature Length" set, but omitting the trailing "Signature"

field itself. The Certificate Length should be zero and the

Certificate field should be empty. This is the "message to be

signed" for purposes of the signature algorithm.

Generate the signature as specified for the chosen algorithm,

using the private key of the asymmetric key pair. In general,

this will involve first hashing the "message to be signed" then

signing the hash, but the precise details may vary with the

specific signature algorithm. The result will be a sequence of

octets, the length of which MUST be equal to the value in the

"Signature Length" field.

Construct the complete message by appending the signature octets

to the otherwise complete message composed above.

In the case of the OPEN PDU, the message to be signed will include

the public member of the asymmetric keypair, but as far as the

signature algorithm is concerned that's just payload, no different

from any other PDU content.

21.2.2. Verifying the OPEN PDU

The process for verifying an OPEN PDU is slightly different from the

process for verifying other PDU types, because the OPEN PDU also

establishes the session key.

Verify that the PDU is syntactically correct, and extract the

Auth Type, Key, Sig Type, and Signature fields.

Verify that Auth Type and Sig Type refer to the same algorithm

suite, and that said algorithm suite is one that the

implementation understands.

Construct the "message to be verified" by truncating the PDU to

remove the Signature field (in practice this should not require

copying any data, just subtract the signature length from the PDU

length).

Verify the message constructed above against the public key using

the rules for the specific signature suite.

Record Auth Type and Key as this sessions's authentication type

and session key, for use in verifying subseuqent PDUs.

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

If any of the above verification steps fail, generate an error using

error code 2 ("Authorization failure in OPEN").

21.2.3. Verifying Other PDUs

The process for verifying non-OPEN PDUs is slightly simpler, but

follows the same basic pattern as for OPEN PDUs.

Verify that the PDU is syntactically correct, and extract the Sig

Type and Signature fields.

Verify that Sig Type refers to the same algorithm suite as the

Auth Type recorded during verification of the OPEN PDU.

Construct the "message to be verified" by truncating the PDU to

remove the Signature field.

Verify the message constructed above against the recorded session

key using the rules for the specific signature suite.

If any of the above verification steps fail, generate an error using

error code 3 ("Signature failure in PDU").

21.3. Public Key Infrastructure Method

Using a PKI is almost the same as using TOFU, but with one

additional step: during verification of an OPEN PDU, after

extracting the Key field from the PDU but before attempting to use

it to verify the OPEN PDU signature, the receiver MUST verify the

received key against the PKI to confirm that it's an authorized key.

Generating an OPEN PDU using the PKI method requires a certificate,

which must be supplied via out of band configuration. The

certificate is a signature of the public key to be sent in the Key

field of the OPEN PDU, signed by the trust anchor private key.

Verifying an OPEN PDU using the PKI method requires the public key

of the trust anchor, which the receiver uses to verify the

certificate, thereby demonstrating that the supplied public key

represents an authorized L3DL speaker in this administrative domain.

We use the term "certificate" here in the generic sense, not as

defined in [RFC5280]. X.509 certificates are not used here; X.509

certificates are more complicated than needed for L3DL. The L3DL

certificates are just signatures of one key (the public key supplied

in the Key field of the OPEN PDU) that can be verified by another

trusted public key (the trust anchor).

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

21.3.1. Signing OPEN PDU with PKI

Generating and signing the OPEN PDU with the PKI method is almost

the same as in Section 21.2.1. The only difference is that the PKI

method MUST supply the appropriate certificate in the Certificate

field.

Note that the Auth Type field applies to both the Key and

Certificate fields. That is: the certificate uses the same

certificate suite as the session keys, L3DL does not support cross-

algorithm-suite certification.

21.3.2. Verifying OPEN PDU with PKI

Verifying the OPEN PDU with PKI is similar to verifying with TOFU as

described in Section 21.2.2, but includes one critical extra step:

After extracting the Key field from the PDU but before verifying the

Signature, extract the Certificate field and verfiy that the

Certificate is a valid signature of the Key field, according to the

rules for the signature suite specified by Auth Type. If this step

fails, handle as in Section 21.2.2.

21.4. Local Policy

Whether to use TOFU, PKI, or no signatures at all is a matter of

local policy, to be decided by the operator. The useful policy

combinations for Key and Certificate are probably:

Not signing: sender need not sign, receiver does not check.

Require TOFU: sender MUST supply key and receiver MUST check, but

L3DL certificates not needed and ignored if sent.

Allow TOFU: sender MUST supply key and receiver MUST check,

receiver SHOULD check certificate if supplyed by sender.

Require PKI: sender MUST supply key and L3DL certificate,

receiver MUST check signature and verify the L3DL certificate.

21.5. NEWKEY, Key Roll

Modern key management allows for agility in 'rolling' to a new key

or even algorithm in case of key expiry, key compromise, or merely

prudence. Declaring a new key with an L3DL OPEN PDU would cause

serious churn in topology as a new OPEN PDU may cause a withdraw of

previously announced encapsulations. Therefore, a gentler rekeying

is needed.

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

¶

Prior to 'rolling' to a new key or new algorithm, a new public/

private key pair is generated. If PKI is being used, then the trust

anchor also signs the new public key to create a new L3DL

certificate.

The New Key Type, New Key Length, New Key, New Cert Length, and New

Certificate fields declare the replacement algorithm, key, and L3DL

certificate.

The NEWKEY PDU is signed using the current (soon to be old)

algorithm and key.

The sender and the receiver should be cautious of signature

algorithm downgrade attacks.

To avoid possible race conditions, the receiver SHOULD accept

signatures using either the new or old key for a configurable time

(default 30 seconds). This is intended to accommodate situations

such as senders with high peer out-degree and a single per-device

asymmetric key.

If the sender does not receive an ACK in the normal window,

including retransmission, then the sender MAY choose to allow a

session reset by either issuing a new OPEN PDU or by letting the

receiver eventually have a signature failure (error code 3) on a

PDU.

The rekeying operation changes the session key and the associated

algorithm described in Section 21.2.3. The NEWKEY PDU itself is

verified using the old algorithm and session key. After the NEWKEY

PDU has been accepted, subsequent PDUs are verified with the new

algorithm and the new session key.

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 8 | Payload Length | New Key Type |

 +-+

 | New Key Length | New Key ... |

 +-+

 | | New Cert Length |

 +-+

 | New Certificate ... |

 +-+

 | Old Key Type | Old Signature Length | |

 +-+ +

 | Old Signature ... |

 +-+

¶

¶

¶

¶

¶

¶

¶

22. Implementation Considerations

An implementation SHOULD provide the ability to configure each

logical interface as L3DL speaking or not.

An implementation SHOULD provide the ability to configure whether

HELLOs on an L3DL enabled interface send Nearest Bridge or the MAC

which is propagated by switches from that interface; see Section 10.

An implementation SHOULD provide the ability to distribute one or

more loopback addresses or interfaces into L3DL on an external L3DL

speaking interface.

An implementation SHOULD provide the ability to distribute one or

more overlay and/or underlay addresses or interfaces into L3DL on an

external L3DL speaking interface.

An implementation SHOULD provide the ability to configure one of the

addresses of an encapsulation as primary on an L3DL speaking

interface. If there is only one address for a particular

encapsulation, the implementation MAY mark it as primary by default.

An implementation MAY allow optional configuration which updates the

local forwarding table with overlay and underlay data both learned

from L3DL peers and configured locally.

23. Security Considerations

The protocol as is MUST NOT be used outside a datacenter or

similarly closed environment without authentication and

authorization mechanisms such as [I-D.ymbk-lsvr-l3dl-signing].

Many MDC operators have a strange belief that physical walls and

firewalls provide sufficient security. This is not credible. All MDC

protocols need to be examined for exposure and attack surface. In

the case of L3DL, Authentication and Integrity as provided in

[I-D.ymbk-lsvr-l3dl-signing] is strongly recommended.

It is generally unwise to assume that on the wire Layer-2 is secure.

Strange/unauthorized devices may plug into a port. Mis-wiring is

very common in datacenter installations. A poisoned laptop might be

plugged into a device's port, form malicious sessions, etc. to

divert, intercept, or drop traffic.

Similarly, malicious nodes/devices could mis-announce addressing.

If OPENs are not being authenticated, an attacker could forge an

OPEN for an existing session and cause the session to be reset.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

For these reasons, the OPEN PDU's authentication data exchange

SHOULD be used.

If the KEEPALIVE PDU is not signed (as suggested in Section 8) to

save computation, then a MITM could fake a session being alive.

As the ULPC PDU may contain keying material, see Section 14.1.4, it

SHOULD BE signed.

Any keying material in the PDU SHOULD BE salted and hashed.

The BGP Authentication sub-TLV provides for provisioning MD5, which

is a quite weak hash, horribly out of fashion, and kills puppies.

But, like it or not, it has been sufficient against the kinds of

attacks BGP TCP sessions have endured. So it is what BGP deployments

use.

The TOFU method requires a leap of faith to accept the key in the

OPEN PDU, as it can not be verified against any authority. Hence it

is jokingly referred to as Married On First Date. The assurance it

does provide is that subsequent signed PDUs are from the same peer.

And data integrity is a positive side effect of the signature

covering the payload.

The PKI method offers assurance that the L3DL certificate, and hence

the public key, provided in the OPEN PDU are authorized by a central

authority, e.g. the network's security team. The onward assurance of

talking to the same peer and data integrity are the same as in the

TOFU method.

With the PKI method, automated device provisioning could restrict

which L3DL certificates are allowed from which peers on a per

interface basis. This would complicate key rolls. Where one draws

the line between rigidity, flexibility, and security varies.

The REKEY PDU is open to abuse to create a signature algorithm

downgrade attack.

24. IANA Considerations

24.1. PDU Types

This document requests the IANA create a registry for L3DL PDU Type,

which may range from 0 to 255. The name of the registry should be

L3DL-PDU-Type. The policy for adding to the registry is RFC Required

per [RFC5226], either standards track or experimental. The initial

entries should be the following:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

24.2. ULPC Type

This document requests the IANA create a registry for L3DL ULPC

Type, which may range from 0 to 255. The name of the registry should

be L3DL-ULPC-Type. The policy for adding to the registry is RFC

Required per [RFC5226], either standards track or experimental. The

initial entries should be the following:

24.3. Signature Type

This document requests the IANA create a registry for L3DL Signature

Type, AKA Sig Type, which may range from 0 to 255. The name of the

registry should be L3DL-Signature-Type. The policy for adding to the

registry is RFC Required per [RFC5226], either standards track or

experimental. The initial entries should be the following:

24.4. Flag Bits

This document requests the IANA create a registry for L3DL PL Flag

Bits, which may range from 0 to 7. The name of the registry should

be L3DL-PL-Flag-Bits. The policy for adding to the registry is RFC

 PDU

 Code PDU Name

 ---- -------------------

 0 HELLO

 1 OPEN

 2 KEEPALIVE

 3 ACK

 4 IPv4 Announcement

 5 IPv6 Announcement

 6 MPLS IPv4 Announcement

 7 MPLS IPv6 Announcement

 8 NEWKEY

 9 ULPC

 10-254 Reserved

 255 VENDOR

¶

¶

 Value Name

 ----- -------------------

 0 Reserved

 1 BGP

 2-255 Reserved

¶

¶

 Number Name

 ------ -------------------

 0 Null

 1 TOFU - Trust On First Use

 2 PKI

 3-255 Reserved

¶

Required per [RFC5226], either standards track or experimental. The

initial entries should be the following:

24.5. Error Codes

This document requests the IANA create a registry for L3DL Error

Codes, a 16 bit integer. The name of the registry should be L3DL-

Error-Codes. The policy for adding to the registry is RFC Required

per [RFC5226], either standards track or experimental. The initial

entries should be the following:

25. IEEE Considerations

This document requires a new EtherType.

This document requires a new multicast MAC address that will be

broadcast through a switch.

26. Acknowledgments

The authors thank Cristel Pelsser for multiple reviews, Harsha

Kovuru for comments during implementation, Jeff Haas for review and

comments, Jörg Ott for an early but deep transport review, Joe

Clarke for a useful review, John Scudder for deeply serious review

and comments, Larry Kreeger for a lot of layer-2 clue, Martijn

Schmidt for his contribution, Nalinaksh Pai for transport

discussions, Neeraj Malhotra for review, Paul Congdon for Ethernet

hints, Russ Housley for checksum discussion and sBox, and Steve

Bellovin for checksum advice.

27. References

27.1. Normative References

¶

 Bit Bit Name

 ---- -------------------

 0 Announce/Withdraw (ann == 0)

 1 Primary

 2 Underlay/Overlay (under == 0)

 3 Loopback

 4-7 Reserved

¶

¶

 Error

 Code Error Name

 ---- -------------------

 0 No Error

 1 Checksum Error

 2 Logical Link Addressing Conflict

 3 Authorization Failure

 4 Announce/Withdraw Error

¶

¶

¶

¶

[I-D.ietf-idr-bgp-ls-segment-routing-ext]

[I-D.ietf-idr-bgpls-segment-routing-epe]

[I-D.ietf-lsvr-bgp-spf]

[I-D.ymbk-lsvr-l3dl-signing]

[IANA]

[IANA-PEN]

[IEEE.802_2001]

[IEEE802-2014]

[RFC1213]

Previdi, S., Talaulikar, K., Filsfils, C., Gredler, H.,

and M. Chen, "Border Gateway Protocol - Link State (BGP-

LS) Extensions for Segment Routing", Work in Progress,

Internet-Draft, draft-ietf-idr-bgp-ls-segment-routing-

ext-18, 15 April 2021, <https://datatracker.ietf.org/doc/

html/draft-ietf-idr-bgp-ls-segment-routing-ext-18>.

Previdi, S., Talaulikar, K., Filsfils, C., Patel, K.,

Ray, S., and J. Dong, "Border Gateway Protocol - Link

State (BGP-LS) Extensions for Segment Routing BGP Egress

Peer Engineering", Work in Progress, Internet-Draft,

draft-ietf-idr-bgpls-segment-routing-epe-19, 16 May 2019,

<https://datatracker.ietf.org/doc/html/draft-ietf-idr-

bgpls-segment-routing-epe-19>.

Patel, K., Lindem, A., Zandi, S., and W.

Henderickx, "BGP Link-State Shortest Path First (SPF)

Routing", Work in Progress, Internet-Draft, draft-ietf-

lsvr-bgp-spf-29, 25 November 2023, <https://

datatracker.ietf.org/doc/html/draft-ietf-lsvr-bgp-

spf-29>.

Bush, R. and R. Austein, "Layer 3

Discovery and Liveness Signing", Work in Progress,

Internet-Draft, draft-ymbk-lsvr-l3dl-signing-01, 6 May

2020, <https://datatracker.ietf.org/doc/html/draft-ymbk-

lsvr-l3dl-signing-01>.

"DNS Security Algorithm Numbers", <https://www.iana.org/

assignments/dns-sec-alg-numbers/dns-sec-alg-

numbers.xhtml>.

"IANA Private Enterprise Numbers", <https://www.iana.org/

assignments/enterprise-numbers/enterprise-numbers>.

IEEE, "IEEE Standard for Local and Metropolitan Area

Networks: Overview and Architecture", IEEE 802-2001, DOI

10.1109/ieeestd.2002.93395, 27 July 2002, <http://

ieeexplore.ieee.org/servlet/opac?punumber=7732>.

Institute of Electrical and Electronics Engineers,

"Local and Metropolitan Area Networks: Overview and

Architecture", IEEE Std 802-2014, 2014.

McCloghrie, K. and M. Rose, "Management Information Base

for Network Management of TCP/IP-based internets: MIB-

II", STD 17, RFC 1213, DOI 10.17487/RFC1213, March 1991,

<https://www.rfc-editor.org/info/rfc1213>.

https://datatracker.ietf.org/doc/html/draft-ietf-idr-bgp-ls-segment-routing-ext-18
https://datatracker.ietf.org/doc/html/draft-ietf-idr-bgp-ls-segment-routing-ext-18
https://datatracker.ietf.org/doc/html/draft-ietf-idr-bgpls-segment-routing-epe-19
https://datatracker.ietf.org/doc/html/draft-ietf-idr-bgpls-segment-routing-epe-19
https://datatracker.ietf.org/doc/html/draft-ietf-lsvr-bgp-spf-29
https://datatracker.ietf.org/doc/html/draft-ietf-lsvr-bgp-spf-29
https://datatracker.ietf.org/doc/html/draft-ietf-lsvr-bgp-spf-29
https://datatracker.ietf.org/doc/html/draft-ymbk-lsvr-l3dl-signing-01
https://datatracker.ietf.org/doc/html/draft-ymbk-lsvr-l3dl-signing-01
https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
http://ieeexplore.ieee.org/servlet/opac?punumber=7732
http://ieeexplore.ieee.org/servlet/opac?punumber=7732
https://www.rfc-editor.org/info/rfc1213

[RFC1629]

[RFC2119]

[RFC3032]

[RFC4271]

[RFC4760]

[RFC5082]

[RFC5226]

[RFC5880]

[RFC6286]

[RFC7752]

Colella, R., Callon, R., Gardner, E., and Y. Rekhter,

"Guidelines for OSI NSAP Allocation in the Internet", RFC

1629, DOI 10.17487/RFC1629, May 1994, <https://www.rfc-

editor.org/info/rfc1629>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,

Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack

Encoding", RFC 3032, DOI 10.17487/RFC3032, January 2001,

<https://www.rfc-editor.org/info/rfc3032>.

Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A

Border Gateway Protocol 4 (BGP-4)", RFC 4271, DOI

10.17487/RFC4271, January 2006, <https://www.rfc-

editor.org/info/rfc4271>.

Bates, T., Chandra, R., Katz, D., and Y. Rekhter,

"Multiprotocol Extensions for BGP-4", RFC 4760, DOI

10.17487/RFC4760, January 2007, <https://www.rfc-

editor.org/info/rfc4760>.

Gill, V., Heasley, J., Meyer, D., Savola, P., Ed., and C.

Pignataro, "The Generalized TTL Security Mechanism

(GTSM)", RFC 5082, DOI 10.17487/RFC5082, October 2007,

<https://www.rfc-editor.org/info/rfc5082>.

Narten, T. and H. Alvestrand, "Guidelines for Writing an

IANA Considerations Section in RFCs", RFC 5226, DOI

10.17487/RFC5226, May 2008, <https://www.rfc-editor.org/

info/rfc5226>.

Katz, D. and D. Ward, "Bidirectional Forwarding Detection

(BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,

<https://www.rfc-editor.org/info/rfc5880>.

Chen, E. and J. Yuan, "Autonomous-System-Wide Unique BGP

Identifier for BGP-4", RFC 6286, DOI 10.17487/RFC6286,

June 2011, <https://www.rfc-editor.org/info/rfc6286>.

Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A.,

and S. Ray, "North-Bound Distribution of Link-State and

Traffic Engineering (TE) Information Using BGP", RFC

7752, DOI 10.17487/RFC7752, March 2016, <https://www.rfc-

editor.org/info/rfc7752>.

https://www.rfc-editor.org/info/rfc1629
https://www.rfc-editor.org/info/rfc1629
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3032
https://www.rfc-editor.org/info/rfc4271
https://www.rfc-editor.org/info/rfc4271
https://www.rfc-editor.org/info/rfc4760
https://www.rfc-editor.org/info/rfc4760
https://www.rfc-editor.org/info/rfc5082
https://www.rfc-editor.org/info/rfc5226
https://www.rfc-editor.org/info/rfc5226
https://www.rfc-editor.org/info/rfc5880
https://www.rfc-editor.org/info/rfc6286
https://www.rfc-editor.org/info/rfc7752
https://www.rfc-editor.org/info/rfc7752

[RFC8174]

[I-D.malhotra-bess-evpn-lsoe]

[RFC0791]

[RFC1122]

[RFC1982]

[RFC2385]

[RFC4808]

[RFC5280]

[RFC7210]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

27.2. Informative References

Malhotra, N., Patel, K., and J.

Rabadan, "LSoE-based PE-CE Control Plane for EVPN", Work

in Progress, Internet-Draft, draft-malhotra-bess-evpn-

lsoe-00, 11 March 2019, <https://datatracker.ietf.org/

doc/html/draft-malhotra-bess-evpn-lsoe-00>.

Postel, J., "Internet Protocol", STD 5, RFC 791, DOI

10.17487/RFC0791, September 1981, <https://www.rfc-

editor.org/info/rfc791>.

Braden, R., Ed., "Requirements for Internet Hosts -

Communication Layers", STD 3, RFC 1122, DOI 10.17487/

RFC1122, October 1989, <https://www.rfc-editor.org/info/

rfc1122>.

Elz, R. and R. Bush, "Serial Number Arithmetic", RFC

1982, DOI 10.17487/RFC1982, August 1996, <https://

www.rfc-editor.org/info/rfc1982>.

Heffernan, A., "Protection of BGP Sessions via the TCP

MD5 Signature Option", RFC 2385, DOI 10.17487/RFC2385,

August 1998, <https://www.rfc-editor.org/info/rfc2385>.

Bellovin, S., "Key Change Strategies for TCP-MD5", RFC

4808, DOI 10.17487/RFC4808, March 2007, <https://www.rfc-

editor.org/info/rfc4808>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Housley, R., Polk, T., Hartman, S., and D. Zhang,

"Database of Long-Lived Symmetric Cryptographic Keys",

RFC 7210, DOI 10.17487/RFC7210, April 2014, <https://

www.rfc-editor.org/info/rfc7210>.

Authors' Addresses

Randy Bush

Arrcus & Internet Initiative Japan

5147 Crystal Springs

https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-malhotra-bess-evpn-lsoe-00
https://datatracker.ietf.org/doc/html/draft-malhotra-bess-evpn-lsoe-00
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1982
https://www.rfc-editor.org/info/rfc1982
https://www.rfc-editor.org/info/rfc2385
https://www.rfc-editor.org/info/rfc4808
https://www.rfc-editor.org/info/rfc4808
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc7210
https://www.rfc-editor.org/info/rfc7210

Bainbridge Island, WA 98110

United States of America

Email: randy@psg.com

Rob Austein

Arrcus, Inc

Email: sra@hactrn.net

Russ Housley

Vigil Security, LLC

516 Dranesville Road

Herndon, VA 20170

United States of America

Email: housley@vigilsec.com

Keyur Patel

Arrcus

2077 Gateway Place, Suite #400

San Jose, CA 95119

United States of America

Email: keyur@arrcus.com

mailto:randy@psg.com
mailto:sra@hactrn.net
mailto:housley@vigilsec.com
mailto:keyur@arrcus.com

	Layer-3 Discovery and Liveness
	Abstract
	Requirements Language
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Background
	4. Top Level Overview
	5. Inter-Link Protocol Overview
	5.1. L3DL Ladder Diagram

	6. Transport Layer
	7. The Checksum
	8. TLV PDUs
	9. Logical Link Endpoint Identifier
	10. HELLO
	11. OPEN
	12. ACK
	12.1. Retransmission

	13. The Encapsulations
	13.1. The Encapsulation PDU Skeleton
	13.2. Encapsulaion Flags
	13.3. IPv4 Encapsulation
	13.4. IPv6 Encapsulation
	13.5. MPLS Label List
	13.6. MPLS IPv4 Encapsulation
	13.7. MPLS IPv6 Encapsulation

	14. Upper-Layer Protocol Configuration PDU
	14.1. ULPC BGP Attribute sub-TLVs
	14.1.1. BGP ASN
	14.1.2. BGP IPv4 Address
	14.1.3. BGP IPv6 Address
	14.1.4. BGP Authentication sub-TLV
	14.1.5. BGP Miscellaneous Flags

	15. VENDOR - Vendor Extensions
	16. KEEPALIVE - Layer-2 Liveness
	17. Layers-2.5 and 3 Liveness
	18. The North/South Protocol
	18.1. Use BGP-LS as Much as Possible
	18.2. Extensions to BGP-LS

	19. Discussion
	19.1. HELLO Discussion
	19.2. HELLO versus KEEPALIVE

	20. VLANs/SVIs/Sub-interfaces
	21. Signature Types
	21.1. Signature Algorithm Identifiers
	21.2. Trust On First Use Method
	21.2.1. Signing a PDU
	21.2.2. Verifying the OPEN PDU
	21.2.3. Verifying Other PDUs

	21.3. Public Key Infrastructure Method
	21.3.1. Signing OPEN PDU with PKI
	21.3.2. Verifying OPEN PDU with PKI

	21.4. Local Policy
	21.5. NEWKEY, Key Roll

	22. Implementation Considerations
	23. Security Considerations
	24. IANA Considerations
	24.1. PDU Types
	24.2. ULPC Type
	24.3. Signature Type
	24.4. Flag Bits
	24.5. Error Codes

	25. IEEE Considerations
	26. Acknowledgments
	27. References
	27.1. Normative References
	27.2. Informative References

	Authors' Addresses

