LTANS A. Jerman Blazic TOoC

Internet-Draft SETCCE

Intended status:

P. Sylvester
Standards Track y

Expires: January 14, Groupe ON-X - EdelwWeb
2010 Project
C. wallace

Cygnacom Solutions

July 13, 2009

Long-term Archive Protocol (LTAP)
draft-ietf-ltans-ltap-08

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79. This document may contain material
from IETF Documents or IETF Contributions published or made publicly
available before November 10, 2008. The person(s) controlling the
copyright in some of this material may not have granted the IETF Trust
the right to allow modifications of such material outside the IETF
Standards Process. Without obtaining an adequate license from the
person(s) controlling the copyright in such materials, this document
may not be modified outside the IETF Standards Process, and derivative
works of it may not be created outside the IETF Standards Process,
except to format it for publication as an RFC or to translate it into
languages other than English.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The 1list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 14, 2010.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (http://trustee.ietf.org/license-info).
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.

Abstract

This document describes a service operated as a trusted third party to
securely archive electronic documents called a long-term archive
service (LTA). We describe an architecture framework and a protocol
allowing clients to interact with such a service. Bindings to concrete
transport and security protocol layers are given.

Table of Contents

1 Introduction and Rationale
1.1. Requirements notation
2. Framework
2.1. Functional Overview
2.2. Service functions of an LTA
2.3. Transactions
2.4. Life cycles of objects
2.5. Roles, Service Types, Policies and Configurations
2.6. Identification
2.7. External definitions
2.8. Entities
2.9. Data Model
3. Common Data Types
3.1. MessageImprint
3.2. Artifact
3.3. MetaData
3.4. Nonce
3.5. Rawbata
3.6. DataOrTransaction
3.7. ArchiveData
3.8. SerialNumber
3.9. LtapTime
3.10. Version
3.11. EntityIdentifiers
3.12. ServiceType
3.13. StatusInformation
3.14. RequestInformation
4. Top level protocol elements

4.1. Request
4.2. StatusNotice
4.3. OperationResponse

4.4. Response

5. Service Operations
5.1. ARCHIVE operation
5.2. EXPORT operation
5.3. DELETE operation
5.4. VERIFY operation
5.5. STATUS operation
5.6. LISTIDS operation
Presentation and Bindings
6.1. Common parameters and encoding requirements
6.2. e-mail bindings
6.3. HTTP Bindings
6.4. Security
Credits
Security Considerations

IPR Patent Information

IANA considerations

References

11.1. Normative references
11.2. 1Informative references
Appendix A. ASN.1 module
Appendix B. XML schema for LTAP
§ Authors' Addresses

@

BR[O |0 |~
‘P‘.@" | |:

1. Introduction and Rationale TOC

The possibility of long term conservation of documents has always been
a key facture for cultures. Until recently, there were only few
different technologies and procedures to achieve these goals, and they
were used over long periods allowing to determine their quality. The
technologies mostkly used up to day include paper and micro-film. Since
about half a century, technologies to store information in new forms
and on new media, for example digitally encoded on electronic media.
The amount of data created since has been augmented enormously due the
simplicity of aquisition, treatment, and access.

Contrary to the past, the simplicity of treatment often relies on the
usage and availability of tools to access to stored information, and
these tools are not rarely tied to specific storage technologies and
data formats, and some tools and technologies are treated as
proprietary. The innovation rate is rather high, and ti is not uncommon
to see storage technolgies become obsolete or unusable after a decade
of existance. Combined the exponential growth of data (not necessarily
information) that is created and not organised properly. An equivalent
amount of medium and long term archiving procedures as for the paper

world has not been developped. This complex situation results in large
amount of data cimetaries, i.e. the loss of very valuable information.
We note that these problems of the electronic world are not totally
specific to it; in the past 200 years we have seen for example a
catastophy in paper based conservation with the emergence of chemical
processes and environmental polution which have made certain types of
paper very unstable which had created unforeseen problems in archiving.
Conservation of documents is important, one can even say that
appropriate conservation rules are a prerequisite for data to become a
document. Conservation has several aspects, e.g., duration or
accessibility, which vary based on the nature of the document. For
example, a document may be conserved for a certain period and may be
destroyed after that, or its lifetime may be extended when the document
becomes part of a conflict. Also, documents may become part of
historical archives. A document may be accessible on a public or
restricted basis to a set of potentially interested or authorized
entities. It must be able to determine the quality of the stored
information, and to be able to migrate the physical and logical
support. It is also necessary for a very long term to foresee the
possibility to migrate data formats without loss of authenticity.
Conservation of documents needs to be treated at several layers, there
are at least legal, organisational, semantical, syntactical,
technological, physical layers and even security, mental, moral,
ethical or philosophical aspects, etc. This specification of this
document are situated largely in the technical and syntactical layers
and provide a security and stability layer for stored douments based on
the use of a specialized service for conservation of electronic
documents called long-term archive service (LTA). The service creates
and makes available enough information to demonstrate the existence,
integrity and authenticity of electronic data over any period of time.
In other words, the service assumes the responsibility to retrieve and,
optionally, store data for conservation, create and store evidence to
guarantee data integrity and completeness, and to maintain
accessibility of data and evidence created.

This document describes a protocol for interacting with an LTA service.
The document contains only description of a general request and
response structure, and a detailed protocol description concerning
access to an LTA service. Other specifications and descriptions, e.g. a
framework protocol containing mappings to transport and security
services, are addressed elsewhere. The protocol is intended to be used
in client-server architecture, where client is simply an end user (a
physical user or another service) and the server as an LTA service
provider. In the sequel we often imit the word service or server and
refer to the provider functionality or implementation simply as LTA.
The process of replacing paper based workflow and document handling
which is also known as 'dematerialization' ignores to a certain degree
the requirements for long-term stability of documents. Document
conservation is generally performed by specialized services. For
electronic formats it is proposed to use similar approaches, while

maintaining the distance of technical characteristics (paper versus
electronic). Conservation might be taken out from other workflow
activities, while the same procedures (evidence creation) might be used
for any milestone in an electronic document lifecycle (e.g. version
marking).

Since conservation of documents created by one entity is only necessary
if there is a potential entity to which the document may be presented
at some time, the conservation service (LTA) acts as a trusted third
party for those two entities. The main role of an LTA is to generate
and provide enough information for archived data existence in time,
integrity and authenticity demonstration over long periods of time.
Provision of data storage services is optional and may be assured by
supportive infrastructure (e.g. database or document storage/management
system).

Conservation is more that just storing a document. Not only, but in
particular when the life time is very long, appropriate measures to
ensure the integrity and provable or, a bit more realistic, highly
plausible authenticity of the document need to be implamented. This
aspect is handled by this specification. Sometimes, complete transfer
of the document information to a new physical support has to be done
like transformations from marble to paper or paper to microfilm. The
need for such transformation makes the definition of what constitutes
the actual document somewhat difficult, in particular it should be done
independantly of the support, and even independantly of a current
format of the document information. Transformation of documents are out
of scope of this specification besides the obvious possibility of
storing all formats of a document and assertions about the
transformations.

Defined data structures are presented in XSD and ASN1 forms. Most XSD
elements have been automatically generated from the ASN.1. XER encoded
data are compatible with data structures encoded according to the XSD.

1.1. Requirements notation TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119] (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.).

2. Framework TOC

This chapter describes a general framework for secure exchange of
request and response messages between an archive client and archive

server, e.g. an LTA. It provides a high level outline and identifies
common and external aspects from the concrete protocol data units.

2.1. Functional Overview TOC

A conservation service or long-term archive (LTA) consists of several
functional blocks. Some of these blocks are not considered as they
present basic infrastructure, such as the communication network,
storage device, data management, etc. Instead, an LTA implements the
archive interaction protocol as defined by this specification (LTAP)
and manages archive objects (logically interpreted as packages of
archive data and conservation attributes) and evidence records
[RFC4998] (Gondrom, T., Brandner, R., and U. Pordesch, "“Evidence Record
Syntax (ERS),” August 2007.). An LTA is a part of a general archive
service that provides evidence used to demonstrate the existence of an
archived data object at a given time and the integrity of the archived
data object since that time. The LTA is the primary part tasked with
creating and delivering conservation attributes for archived data.
[RFC4810] (wWallace, C., Pordesch, U., and R. Brandner, “Long-Term
Archive Service Requirements,” March 2007.) defines the services that
must be provided by an LTA. A principal function of the LTA is to
generate or obtain evidence information for (archive) data submited. An
LTA may accept and store data for which it generates (or acquires from
another service) and maintains evidence inforamtion. Alternatively, it
may simply act as an evidence or information service without data
storage capabilities (it relies upon other services for storage of the
archived data). Evidence generated and maintained by an LTA addresses
the problems of long-term integrity and temporal existence.

Archive objects are the central logical structures defined by the LTA
and maintained on a long-term basis. They are atomic elements of an LTA
service consisting of three logical parts:

*Archive data (including metadata or other related data) entering
the LTA using the interaction protocol,

*Archive process-related meta or binding information, and
*Evidence information

The archive data may contain data of any type, e.g., raw data, signed
data, encrypted data or time stamped data as defined by [RFC4810]
(Wallace, C., Pordesch, U., and R. Brandner, “Long-Term Archive Service
Requirements,” March 2007.). Archive data may be associated with
additional data or attributes, e.g. meta information or digital
signatures.

Data generated or collected by the LTA are archive process-related meta
or binding information including demonstration information and evidence

information. Archive metadata may be needed to provide enough
information for e.g. special (e.g., legal) purposes or validity
demonstration purposes. Examples are complementary information to
verify digital signatures or to attest their validity. The LTA collects
meta or binding information directly from a user or some other entity
(e.g. Certificate Authority). Such information may contain the data
owner name, organization, location, etc.. Meta or binding information
may be submitted using the LTAP.

Demonstration information is collected to demonstrate facts on the
archive data. Such information may be digital signature reference
information. The LTA may use external resources to collect such
information, usually without user intervention. Evidence data is
generated by the LTA or collected from an external resource, e.g. a
time stamping authority. Evidence information is provided for all data:
archive data submitted by a client and archive process-related data
(including binding and demonstration information) collected by the LTA
from the client or alternative resource.

The LTA performs perpetual maintenance of archive objects and
associated metadata for the main purpose of demonstrating archive data
existence in time and providing integrity information for the complete
archiving time. Archive objects are periodically processed to provide
long-term stability (e.g. by proof-reading, copying to new material, or
performing time stamp renewal). This protocol specification make no
assumptions about the details of such verification operations except
that an implementation MUST specify how the outcome is reflected in the
archive metadata of each object. The protocol provides for a simple
means to initiate a verification on an archive object through a
protocol action.

The LTAP protocol interprets the logical data structure to hold all
needed information (including references) to build an archive object
including archive data itself (or reference to archive data). The
logical structure of the LTAP messages includes archive data, archiving
process-related information and references together with request and
processing information. Using LTAP, the LTA should have enough
information to build and perform operations on an archive object or
group of archive objects.

An LTA is a service that is responsible for preserving evidence data
and/or data for long periods of time, as defined by [RFC4810] (wallace,

C., Pordesch, U., and R. Brandner, “Long-Term Archive Service
Requirements,” March 2007.),. The service is accessible using the
protocol defined in this document.

The protocol is intended to be used as well as core functionality
available to customers of a service provider, as well as an internal
protocol inside the LTA to access core building blocks as a black box.
The latter usage is intended to permit the creating of security zones
and auditable implementations. As a consequence, only a subset of
functions defined in the protocol may be available to particular
clients/customers of an LTA.

The protocol consists of two layers, the higher layer defines the
available service functions and their mapping to encodings, the lower
layer defines the rules for the exchange of protocol messages common
for all all functions.

It is assumed that an LTA ensures the long-term availability of stored
data and created evidence information, as necessary, and uses
appropriate means to manage data and access rights. The details of
these important features of an LTA are outside the scope of this
specification.

The common high-level architecture consists of a protocol used to
exchange requests and responses securely, potentially over different
types of transport connections, to ensure the long-term validity of
responses.

Clients and servers use one of several object types to build requests
and responses. Data objects include raw (archive) data, request
information, meta information, identification information and
attestations.

Requests and responses are exchanged in a secure way responding to
different security requirements, which may concern the security of the
transport as well as the long-term validity of the data being
exchanged.

The LTA is not a method for implementing something like a secure file
system. In general, archived data are rarely accessed, restored or
transferred. Thus, the archive operation is the most important one and
performance is an important concern. In this case that client
applications need frequent access to the data, they generally keep a
copy of the data including evidence information, whose integrity can be
compared from time to time or when requested.

2.2. Service functions of an LTA TOC

The primary aim of this protocol is to enable a formal interaction
between a client and an LTA. The result of the interaction is a
verifiable attestation of procedures performed by an LTA (e.g. archive
data plus evidence record). The format for data structures used to
demonstrate integrity, i.e. to demonstrate that data has not undergone
any transformations while in the care of the archive, is partially
defined in other documents, namely in [RFC4998] (Gondrom, T., Brandner,

R., and U. Pordesch, “Evidence Record Syntax (ERS),” August 2007.).
This specification does not place any requirements on the structure of
archived data objects. However, it operates on elements that are
derived from archive data objects (e.g. message imprints).

The LTA interface enables clients to perform at least the following
operations in cooperation with an LTA:

ARCHIVE:

Submit data to an LTA and request creation of evidence
information for data

EXPORT: Retrieve data (including archive data, meta information and
evidence information) from an LTA

DELETE: Remove data and/or evidence information from an LTA.
VERIFY: Determine the integrity and validity of LTA archived data.
STATUS: Inform about the status of data.

LISTIDS: Return a list of references to archived objects.

These operations MUST be implemented by an LTA service. There is a
minimal profile for the parameter structures for transactions with a
single server that does act as a final repository.

The operations are intended for different types of clients, including
archive data owners but also entities that want to audit the service or
are authorised to access to data. Since an LTA may restrict the access
based on functions, a client MAY implement only the accessible subset
of functions.

An LTA MAY propose additional services either by extending the
operations by the means of additional parameters or by defining new
operations like archive transfer, extension of lifetime, data splitting
or relaying.

For example, often an extension of the initial lifetime of an object
must be possible. With the core operations it is not possible to
perform this in one operation. In order to do so, a client has to read
the object and store it under a different service (not necessarily with
the same provider). To extend the lifetime of an object, an EXPORT
operation followed by an ARCHIVE operation has be used to transfer or
copy the object to an LTA service having the required lifetime policy/
configuration.

Finally, after the transfer, the initial object may be deleted or not.
The combination of such a sequence of operations into single one is an
example of an extended service provided to clients.

Since it may not be desirable to make the data available to a
potentially untrustworthy client, the combined operation could be
implement using an extension to the core LTA functionality by allowing
a reference to data as a parameter to the ARCHIVE function.

2.3. Transactions TOC

The model for the exchange of LTAP requests and responses is borrowed
from other environments and technologies like EDI, X.400 or ebXML. It's
main characteristic is that exchanges for LTAP are conceptually

asynchronous. As a consequence, it is necessary to provide a mechanism
to allow a client to determime that the LTA has received and processed
a request. An LTAP exchange consists of sending a request and
retrieving at least one of two different types of responses. A client
initiates an archive service by submiting a request. This LTAP request
consists of data to be archived and information related to the archive
process. The process information may include client authorization,
archive policy, service parameters, etc. The first type of response is
a technical acknowledgement from the LTA that the request has been
received and the process information has been accepted (or rejected).
The second type of response is a statement from an LTA containing an
indication of the outcome of the requested operation. This result
(called an attestation) is, in general, a document with long-term
validity allowing the client to reference the operation, and, in
particular, to reference the data that has been preserved by the LTA.
The asynchronous nature of the LTAP protocol is required by LTA
operations, which may require a specific amount of time to perform,
e.g. the archive operation needs to safely store the data and to
produce evidence information.

The possibility to deliver the result attestation in a asynchronous way
permits cost effective implementations of the LTA.

An LTA may deliver immediately a second type response. This occurs for
example for a STATUS or LISTIDS function or when an operation is
retried and the final result is available.

A client can repeat an operation, since the request or the response
might have been lost.

For an ARCHIVE operation, the client MAY provide a unique
identification for the request that to be used by the LTA to ensure
idempotence of the operation. When retrying an ARCHIVE operation, a
client MAY replace the raw data to be archived by a MessageImprint
representing the data in order to reduce the payload size.

For the ARCHIVE, DELETE, VERIFY operations, after receipt of the
technical acknowledgement (first type response), the client can also
use a STATUS operation for the object in order to indirectly determine
the outcome of a transaction. Depending on the lower layer bindings,
sending a STATUS request or retrying another operation may be the only
way to determine the outcome of an archive operation.

2.4. Life cycles of objects TOC

Using the defined transactions and the operations on objects, two
levels of life cycles are defined. One is directly derived from the
operation of a single transaction. The other is related to the long-
term situation of an object.

2.4.1. Transaction Level Life Cycle TOC

When a client initiates an archive operation, client and server have
some knowledge of the progress of the operation. The following list
explains the different states of a transaction seen by both the client
and the service, and decribes actions and events changing the state of
the transaction.

To: The client has not initiated an archive operation. The LTA does
not know anything about an object.

Ti: The client has initiated an archive operation. The LTA may have
received the object or not; the client cannot assume that the LTA
has received the request. Client may retry the operation after a
timeout.

T2: The LTA has received the request and has generated a first type
response. The server ensures idempotence of at least the ARCHIVE
operation, i.e. on multiple occurrences of an identical request,
the LTA sends the same response and transaction identification.
The LTA may still lose the state, e.g., in case of a power
failure.

T3: The client has received the initial response. The client can
retry the initial operation using the transaction identification
at the place of the data in order to receive a final answer. In
case of negative response, i.e. LTA in state TO, client can fall
back to T1.

T4: The LTA has send a definitive answer for an operation and has
assumed the responsibility of operation.

T5: The client has received a definitive answer and can consider
the operation as terminated.

In case of negative reponses to a transaction, the LTA keeps the result
for a certain time in order to provide a reasonable answer to a client
that retries an operation.

2.4.2. Long term life cycle. TOC

We can distinguish the following phases in the lifetimes of an archived
object:

L6: The LTA has no knowledge about an object.

L1:
An LTA has received an archive object and is proceeding the
request. The LTA may accept or reject the request, or may lose
knowledge about it.

L2: An LTA has archived an object. An LTA can accept other
operations, i.e., EXPORT, DELETE or VERIFY operations. When
receiving an EXPORT or VERIFY operation, some metadata may be
updated, e.g., last time of access, last verification operation
etc.

L3: After a DELETE operation prior to the initially defined
lifetime of the operation, the LTA MAY keep an information about
the actual status of the object (e.g. deleted) until the end of
the lifetime. If available, the LTA MAY returns other remaining
metadata containing for example a new location of the data.

L4: After the lifetime of an object, an object or the reference to
is being deleted. At the end of this internal operation, the LTA
is in state LO.

When an LTA has archived an object, it keeps a certain number of
metadata, which gives information about the current status of the
object. Some metadata MAY remain available even after deleting the
object. Among the remaining metadata there may be the date of deletion
or a reference to where the information can actually be received.

A change from state L2 can also occur when an LTA determines loss of
integrity or loss of data.

The LTA MUST maintain a chronological order for references to archived
data.

2.5. Roles, Service Types, Policies and Configurations TOC

The protocol assumes a number of different actors playing different
roles. The basic roles are a client and a server. These roles are
simply defined by the types of protocol data units, i.e., requests and
responses. Several other roles may exist, which are currently not in
the scope of the protocol specification. An example of an additional
role is a relay or a proxy using both the basic roles of client and
server. In general two entities are distinguished, based on different
characteristics: an entity that requests its data to be archived or to
be acted upon, and an entity that accepts data and assures
responsibility of archived data, or acts on the data. Other entities
serving as a lower layer transport services, data storage services or
security services are out of the scope of protocol definition.

Clients may occur in different roles. Besides users that archive data,
there may be relying or controlling entities like a judge who must be

able to get access to it. Or, there are entities like auditors that may
access to some data. The protocol distinguishs such roles by the
definition of the following service types and service policy
information.

The LTA interface implementation MUST enable clients to perform all the
service operations.

A client implementation MAY only support a subset of the service types
in order to have a small footprint. This is motivated by the fact that
different operations are generally invoked by different entities in
totally different environments, e.g., a client may only submit data and
never verify an evidence record.

The way a particular operation is performed is only defined at the LTA
server side implementation and can be influenced by policy information
parameters. A client MAY indicate one or more service policy
identifiers associated to a service type in order to select different
features to be performed by the LTA. The goal of policy identifiers is
to keep client configurations simple.

An LTA service may provide additional features, which may be identified
by clients, that govern how services are performed. An LTA might offer
a series of features based on quality characteristics, e.g. number of
timestamps used, refresh period, etc. The protocol specification builds
on the assumption that features are clearly identifiable and are
included in the protocol elements. Features enable clients to request
specific handling by the LTA, such as requesting a premium service that
assures prompt and immediate archiving vs. a standard service that
handles queues and generates evidence data periodically based on data
collections, i.e., one timestamp per a document bundle. Also, services
may differ according to data storage characteristics (e.g. client may
request full evidence and storage capacity or only evidence creation
service), redundancy characteristics (single timestamp versus multiple
time stamping), etc. Service characteristics are defined by archive or
operation policies.

An LTA may use external services, like validation and evidence creation
services. Another service is provision of physical infrastructure or
data storage and management systems. Such entities can also be
referenced by service policy identifiers.

In general, for each client, in particular those that are archiving, a
default or single possible configuration is defined at the server in
order to group features and policies into defined sets. A server may
operate different configurations and from the protocol standpoint,
general configuration is selected by the policy identificator.

As a last mechanism to provide parameters to the archive server, LTA
clients MAY use specific configuration parameters in their requests.
The definition of such parameters is not in the scope of this protocol.
Configuration parameters allow clients to transfer arbitary key/value
pairs from the client to the server.

In principle, a single sequence of policy information is sufficient to
indicate both the service type and the configuration parameters. A

multi-dimensional approach with configuration and service types rounds
up the requirements for LTA and scenarios of archiving processes.
This specification defines no particular policy or configuration.

2.6. Identification TOC

This text defines one ASN.1 module using current ASN.1 syntax. The last
compoenet of the module object identifier is a version indication. A
value of 0 indicates any draft of this memo.

The ASN.1 Module

Current ASN.1 Module start

LTAP {iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5)
ltans(11) id-mod(®) id-mod-ltap(4) 0}

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

An equivalent XML schema using XSD notation is also defined. The schema
has been generated automatically.
XML Schema Identification

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:enc="http://www.w3.0rg/2001/04/xmlenc#"
targetNamespace="http://www.setcce.org/schemas/1ltap"
elementFormbefault="qualified"
attributeFormbDefault="unqualified">

<annotation><documentation xml:lang="en">
XML Schema for LTAP

</documentation></annotation>

2.7. External definitions TOC

The module export all definitions, and imports several definitions from
other modules.
ASN.1 external definitions

-- EXPORTS ALL
IMPORTS

PolicyInformation, GeneralNames

FROM PKIX1Implicit-2009
{iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-pkix1-implicit-02(59)}

CONTENT-TYPE, ContentInfo

FROM CryptographicMessageSyntax2004
{ iso(1) member-body(2) us(840) rsadsi(113549)
pkcs(1) pkcs-9(9) smime(16) modules(0)
id-mod-cms-2004-02(41) }

FROM PKCS7
{iso(1) member-body(2) us(840) rsadsi(113549)
pkcs(1) pkcs-7(7) modules(@) pkcs-7(1)}

These are corresponding XML definitions for the imported structures.
XML external definitions

<xsd:complexType name="Name'">
<xsd:choice>
<xsd:element name="rdnSequence" type="RDNSequence"/>
</xsd:choice>
</xsd:complexType>

<xsd:complexType name="RDNSequence'>
<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:element name="RelativeDistinguishedName"
type="RelativeDistinguishedName"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="RelativeDistinguishedName">
<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:element name="AttributeTypeAndDistinguishedVvalue"
type="AttributeTypeAndDistinguishedValue"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="AttributeTypeAndDistinguishedvalue">
<xsd:sequence>
<xsd:element name="type">
<xsd:simpleType>
<xsd:restriction base="OBJECT_IDENTIFIER"/>
</xsd:simpleType>
</xsd:element>
<xsd:element name="value">
<xsd:complexType mixed="true">
<xsd:choice>
<xsd:any processContents="lax"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="PolicyInformation'">
<xsd:sequence>
<xsd:element name="policyIdentifier"
type="CertPolicyId"/>
<xsd:element name="policyQualifiers" minOccurs="0">
<xsd:complexType>
<xsd:sequence minOccurs="0" max0ccurs="unbounded">
<xsd:element name="PolicyQualifierInfo"
type="PolicyQualifierInfo"/>
</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="PolicyQualifierInfo">
<xsd:sequence>
<xsd:element name="policyQualifierId">
<xsd:simpleType>
<xsd:restriction base="OBJECT_IDENTIFIER"/>
</xsd:simpleType>
</xsd:element>
<xsd:element name="qualifier" minOccurs="0">
<xsd:complexType mixed="true">
<xsd:choice>
<xsd:any processContents="lax"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>

<xsd:simpleType name="CertPolicyId">
<xsd:restriction base="OBJECT_IDENTIFIER"/>
</xsd:simpleType>

2.8. Entities TOC

Entities that participate in protocol exchanges are represented by
identifiers and may possess attributes. It is outside the scope of this
definition to define an organisation of identifiers and attributes, in
particular the way how entity identifiers are related to identifiers
used for authentication, or what attributes are associated to data.

As the current LTAP specification assumes end-to-end communication
only, there is no distinction between technical roles like 'client,
'server', 'relay', 'proxy' or 'authorized agent'. For LTAP, only client
and server roles are defined.

The explicit usage of identifiers and attributes enables decisions to
be traceable, i.e., the participating entities can indicate to a
certain degree why they want a service or why it has been provided.
Furthermore, entity identifiers and attributes MAY be provided by the
transport or security layer information. These information can be added
to protocol elements as trace attributes.

2.8.1. Entity Identifiers TOC

Entity identifiers are used in the protocol to indicate the
participating entities. A client can indicate one or more identifiers
indicating who is making the request or participating in its creation
and one or more identifiers indicating who should perform the service.
A server can indidate who has provided the service and who is the
indented client.

It MUST be ensured in some way that in an actual context of a client/
server network names are scalable and global both in terms of actual
community space and time to live of the treated data objects.
Identifiers are labeled in some way, i.e. string representations are
typed and can be derived from various external layers. Identifiers
SHOULD use an appropriate structure such as ASN.1 definition of
GeneralName.

2.8.2. Attributes TOC

Entities may possess additional attributes like roles, scopes or
capabilities. Entities MAY indicate attribute values in protocol
exchanges so that they can be used for authentication purposes or
billing.

Attributes may be related to attributes of data, for example, an entity
may acts as a judge or arbitrator for a particular jurisdiction. The
attribute jurisdiction is associated to the entity and to data treated
by the service, and thus, can be used for authorisation control.

2.9. Data Model TOC

The data fields of a LTAP request are as follows:
*request information or status information
*raw data to archive, or references to data or to transactions.

*metadata providing additional information about the data to
archive

*authorisation and authentication information of the entities
paticipating in the procedure

*other information, required for supporting functions like billing

2.9.1. Data objects TOC

The data to be archived are arbitrary binary data and, minimally, an
associated type that MUST be either available as part of a server
configuration policy or explicitly indicated by the client.

Data can be referenced by identifiers. Data identifiers are used to
uniquely identify data objects. Data identifiers SHOULD have an
additional local structure (e.g., contain a checksum), in order to
avoid or detect client copying errors. An additional measure to enhance
the redundancy of identifiers is the usage of time values which can be
used in combination with data identifiers.

Servers MUST create a server-wide unique identifier for each data
object managed by the LTA. The identifier MUST be global during the
intended lifetime of an object.

Clients may provide their own data identifiers in requests. Whether the
client provided identifiers are unique is outside the scope of the
protocol. LTAs treat these identifiers as opaque information.

In order to identify data for the short lifespan of a transaction,
artifacts can be used to reference data or transactions.

2.9.2. Collections of objects TOC

Data grouping can occur for various reasons, i.e. logical, contextual,
semantic, operational, etc. Grouping of objects can be performed by a
client using metadata present for each object. This document does not
specify how client can create groups of objects, collections,
hierarchies etc.

Collections of data can be defined explicitly or implicitly. A document
amy be implicitelt added to a collection using policy and entity
identifiers to request a specific collection strategy (e.g. a
collection of data that is processed on a daily basis for a specific
user). A collection identifier may be explicitely present as metadata.
Grouping can also be implicitely defined by service policies, e.g. per
user or on a daily or volume basis. Details are out of scope of this
specification.

An LTA MAY understand metadata concerning collections in order to
optimize for example evidence creation by building hash trees as
defined in [RFC4998] (Gondrom, T., Brandner, R., and U. Pordesch,
“Evidence Record Syntax (ERS),” August 2007.) or operational reasons,
e.g. for reducing storage costs or to improve performance or
scalability.

T0C

2.9.3. MetaData

Meta information is associated with archive data and can be included
implicitly, i.e. be a part of a document, or explicitly, i.e. as a
document attachment. An LTA does not interprete metadata that may
express logical relations among documents in the archive that is
submitted selectively using several requests. For LTAs, the client is
only in control of selecting and enclosing meta information, which is
logically, contextually or for any other reason related to a document.
Meta information may occur in various forms and may be an integral part
of archive data, e.g. security attributes in form of digital
signatures. To process such information, the LTA MUST retrieve enough
information on the type and purpose of information enclosed, which may
simply be defined with the use of an apropriate archive service policy,
e.g. archive service for digitally signed documents.

An LTA may perform specific actions related to meta information
processing (and preservation, such as complementary data collection in
form of digital certificates). This can also be done by an external
service, e.g. DVCS (Adams, C., Sylvester, P., Zolotarev, M., and R.
Zuccherato, “Internet X.509 Public Key Infrastructure Data Validation
and Certification Server Protocols,” February 2001.) [RFC3029] or SCVP
(Freeman, T., Housley, R., Malpani, A., Cooper, D., and W. Polk,
“Server-Based Certificate Validation Protocol (SCVP),” December 2007.)
[RFC5055].

In some scenarios, a specific set of meta information must be preserved
together with archive data, e.g. information identifying the document
owner/author, location or time. The LTAP protocol does not define
constraints on information type and structure. The LTAP request
structure is defined to accept any type of data.

2.9.4. Binding Information TOC

Clients and servers MAY include additional information in their
requests and responses concerning the lower layer binding to a
transport like SOAP, HTTP or S/MIME, e.g. end-point addresses. This
category may also include things like billing/accounting information,
i.e. whatever a business transaction needs but which is not part of
metadata, i.e. outside the scope of the archived data.

2.9.5. Evidence Data TOC

Evidence information demonstrates the integrity and existence of
archived data. The LTA accepts data for the single purpose of
generating or obtaining evidence information for data submitted by a

client. The evidence information structure is defined in [RFC4998
(Gondrom, T., Brandner, R., and U. Pordesch, “Evidence Record Syntax
(ERS),"” August 2007.).

In the case where LTA accepts data only for the purpose of generating
evidence information (without storage capabilites to avoid, e.g.
confidentiality issues), the archivation process is limited in time.
When an LTA performs a renewal of evidence, archived data may be
required to be available, e.g. when renewing a hash tree. In such
scenarios, the LTA requires availability of archived data for hash re-
computation. The LTAP protocol does not support function for data re-
submission.

3. Common Data Types TOC

A number of data types are common to both requests and responses.

3.1. MessageImprint TOC

The MessageImprint type is used to store a short representation of data
which can be used to link to some data using the result of a one way
hash function applied to some data. It is not assumed always identify
some data unabiguously (by definition of a hash function), in
particlur, collisions may exist now or in the future. Uniqueness is
only assumed within a limited set of data objects in time and number
for the lifetime of protocol exchanges.

The structure of a MessageImprint is a sequence of an globally defined
identification of a hash function and an representation of an octet
string encoding a value of the hash function.

ASN.1 MessageImprint

MessageImprint ::= SEQUENCE {
digestAlgorithm DigestMethodType,
digestVvalue DigestValueType

}

DigestMethodType ::= OBJECT IDENTIFIER

DigestValueType ::= OCTET STRING

XML MessageImprint

<xsd:complexType name="MessageImprint'">
<xsd:sequence>
<xsd:element name="digestAlgorithm"
type="DigestMethodType'"/>
<xsd:element name="digestValue"
type="DigestValueType"/>
</xsd:sequence>
</xsd:complexType>

<xsd:simpleType name="DigestValueType'">
<xsd:restriction base="OCTET_STRING"/>
</xsd:simpleType>

<xsd:simpleType name="DigestMethodType'">
<xsd:restriction base="OBJECT_IDENTIFIER"/>
</xsd:simpleType>

3.2. Artifact TOC

The Artifact type is used to reference a transaction, or a result of a
transaction, returned as a protocol answer in an initial response, to
allow retrieval of a response or progress of a transaction later by the
initial client or another authorised entity.

ASN.1 Artifact

Artifact ::= PrintableString

The corresponding XML type is:
XML Artifact

<xsd:simpleType name="Artifact">

<xsd:restriction base="PrintableString"/>
</xsd:simpleType>

3.3. MetaData T0C

The Metadata type is a list of open types which can be regarded as key/
value pairs giving addtional information concerning:

*the archived data, e.g. type, short description, title, author...

*operational information related to the preservation process, e.g.
owner, access rights, dates,

*a reference.

The Metadata type is a recursive definition allowing hierarchical
metadata structures using a fixed combination of base types for value
fields and identifiers. This technique is similar to the one used SNMP
for example. There are no open types.

The 'type' identifies in a globally unique way the semantics of the
value. The 'oid' choice can be used in a similar way as with the MIBs
in SNMP. The 'uri' choce allows to reference metadata defined by URIs.
The semantics 'attribute' choice normally depends on the semantics of a
surrounding definition. Global values for 'attribute' may exist, i.e.
the choice can be used in the outermost MetaData sequence.

This specification defines one global 'attribute' "datatype". The
'values' item MUST contain one occurence of either a 'stringvalue'
which indicates a mime-type, or an 'oidValue' or 'uriValue' indicating
an FTAM document type.

The semantics are defined by application layers. No attempt is made to
recur to some other existing metedata specification, e.g., the Dublin
Core. An LTA is free to map metadata.

Since some global metadata are always associated to data objects and
necessary for the LTA service, an LTA MUST provide a complete
description of all metadata it associates with an archived data object
for operational purposes. A client is not required to understand the
semantics of metadata.

ASN.1 MetaData

MetaData ::

SEQUENCE OF MetaItem

MetaItem ::= SEQUENCE {

type CHOICE {
0id OBJECT IDENTIFIER,
attribute UTF8String,
uri TIA5String

Y

values SEQUENCE OF value CHOICE {
oidvalue OBJECT IDENTIFIER,
stringValue UTF8String,
urivalue IA5String,
integervValue INTEGER,
opaqueValue OCTET STRING,
composedValue MetaItem

XML MetaData

<xsd:complexType name="MetaData'>
<xsd:sequence minOccurs="0"

max

Occurs="unbounded">

<xsd:element name="MetaItem"

typ

</xsd:sequence>
</xsd:complexType>

e="Metaltem"/>

<xsd:complexType name="MetaItem">
<xsd:sequence>
<xsd:element name="type'">
<xsd:complexType>
<xsd:choice>
<xsd:element

<xsd:element

<xsd:element

</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="values">
<xsd:complexType>

<xsd:sequence minOccurs="0"

<xsd:choice>

<xsd

<xsd:

<xsd:

<xsd:

<xsd:

<xsd:

</xsd

:element

element

element

element

element

element

:choice>

name="o0id"
type="0BJECT_IDENTIFIER"/>
name="attribute"
type="UTF8String"/>
name="uri"
type="IA5String"/>

maxOccurs="unbounded">

name="oidvalue"
type="OBJECT_IDENTIFIER"/>
name="stringValue"
type="UTF8String"/>
name="urivalue"
type="IA5String"/>
name="integerValue"
type="INTEGER"/>
name="opaqueValue"
type="0OCTET_STRING"/>
name="composedValue"
type="Metaltem"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

</xsd:sequence>
</xsd:complexType>

3.4. Nonce TOC
The Nonce type is used to prevent replays of responses for the STATUS
operation. It is an opaque OCTET STRING. A client SHOULD NOT encode
additional information inside a value.
ASN.1 Nonce

Nonce ::= OCTET STRING
XML Nonce

<xsd:simpleType name="Nonce'">

<xsd:restriction base="OCTET_STRING"/>
</xsd:simpleType>

3.5. RawData TOC

This type is used to encode data to be archived or returned.
Three formats for data are possible:

*binary data
*textual data
*structured data

ASN.1 RawData

RawData ::= CHOICE {
binary OCTET STRING,
text UTF8String,
structured MetaData

}

XML RawData

<xsd:complexType name="RawData">
<xsd:choice>
<xsd:element name="binary" type="OCTET_STRING"/>
<xsd:element name="text" type="UTF8String"/>
<xsd:element name="structured" type="MetaData"/>
</xsd:choice>

</xsd:complexType>

3.6. DataOrTransaction _TOC _
This choice type is used to identify data by:
*RawData for the data themselves,
*an Artifact identifying a transaction, or
*a reference to the data, e.g. an URI.
ASN.1 DataOrTransaction

DataOrTransaction ::= CHOICE {
data RawData,
transaction Artifact,
dataref IA5String

XML DataOrTransaction

<xsd:complexType name="DataOrTransaction'">
<xsd:choice>
<xsd:element name="data" type="RawData'"/>
<xsd:element name="transaction" type="Artifact"/>
<xsd:element name="dataref" type="IA5String"/>
</xsd:choice>
</xsd:complexType>

3.7. ArchiveData TOC

This type is used to describe data together with optional metadata and
reference information. At least one of the optional elements MUST be
provided in order to either provide or identify the data.

A client MUST provide a metadata type to indicate the type of the data,
or the type of the data MUST be defined as part of the service policy.
For preservation purposes, an LTA must have information on archive data
type (e.g., signed or unsigned). If type is not included, it is assumed
that data retrieved must be processed as binary string (e.g signatures
are not verifed.).

The number of element items allowed in requests or responses depends on
the service function.

The optional dataImprint item contains a hash value of data of a
dataSpecifier item of corresponding Archivedata element item in
(provided for example in a initial ARCHIVE request.) The
dataImprintvalue is calculated on choices in the RawData type in the

following way: For the opaque and string choices, the content of the
octet string are used and result in the same digest independantly of
the actual encoding of the data. For the structured choice the result
differs depending on the encoding (XSD or DER).

ASN.1 ArchivebData

ArchiveData ::= SEQUENCE OF element SEQUENCE{
dataSpecifier DataOrTransaction ,
metaData MetaData OPTIONAL ,
dataImprint [0] MessageImprint OPTIONAL

}

XML ArchiveData

<xsd:complexType name="ArchiveData'">
<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:element name="element">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="data"
type="DataOrTransaction"/>
<xsd:element name="metaData"
type="MetaData" minOccurs="0"/>
<xsd:element name="dataImprint"
type="MessageImprint" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>

3.8. SerialNumber TOC

A SerialNumber type is an integer type and is used to identify a
request and its response. An LTA MAY add an additional verifiable
structure, e.g. checksum digits, in order to avoid copying errors in
long-term applications with potential media break.

ASN.1 SerialNumber

SerialNumber ::= INTEGER

XML SerialNumber

<xsd:simpleType name="SerialNumber">
<xsd:restriction base="INTEGER"/>
</xsd:simpleType>

3.9. LtapTime TOC

Clients and servers can add an indication of (its idea of) the time
when a request or response was created, search intervals etc. The
LtapTime type is used for that purpose. The string content MUST be
encoded according to the distinguished encoding rules (DER).

ASN.1 LtapTime

LtapTime ::= GeneralizedTime
XML LtapTime
<xsd:simpleType name="LtapTime">

<xsd:restriction base="GeneralizedTime"/>
</xsd:simpleType>

3.10. Version TOC

The Version type is used in requests and responses to indicate the
protocol version used. This specification is provided for two values:

*vO - This version should be used by implementation that want to
experiment with draft version of this specification.

*v1l - this version is used to indicate that the request and
response corresponds to this specification.

This memo does not define an extension mechanism at the syntactical
level.
ASN.1 Version

Version ::= ENUMERATED {

Vo,
vl

XML Version

<xsd:complexType name="Version">
<xsd:choice>
<xsd:element name="vO" type="NULL"/>
<xsd:element name="v1" type="NULL"/>
</xsd:choice>

</xsd:complexType>

3.11. EntityIdentifiers TOC

The EntityIdentifiers type are used in the protocol to encode
participating entities. A client can indicate one or more identifiers
indicating who is making the request or participating in its creation
and one or more identifiers indicating who should perform the service.
A server can indidate who has provided the service and who is the
indented client.

A client MAY also indicate an identifier to return a response in case
of an asynchronous operation, e.g. an e-mail address.

It MUST be ensured that in an actual context of a client/server network
names are scalable and global both in terms of actual community space
and time to live of the treated data objects.

The EntityIdentifiers types is a defined as GeneralNames. The
X400Address, ediPartyName MUST NOT be used.

ASN.1 EntityIdentifiers

EntityIdentifiers ::= GeneralNames
XML EntityIdentifiers

<xsd:complexType name="EntityIdentifiers">
<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:choice>
<xsd:element name="rfc822Name" type="IA5String"/>
<xsd:element name="dNSName" type="IA5String"/>
<xsd:element name="directoryName" type="Name"/>
<xsd:element name="uniformResourceIdentifier"
type="IA5String"/>
<xsd:element name="iPAddress" type="OCTET_STRING"/>
<xsd:element name="registeredID"
type="0BJECT_IDENTIFIER"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>

3.12. ServiceType

TOC

This ServicetType type is enumeration of the core services defined in

this memo and object identifier defined by a service provider. It
indicates operations accessible by the protocol.
ASN.1 ServiceType

ServiceType ::= CHOICE {

core ENUMERATED {
archive,
delete,
export,
status,
verify,
listids

+

ltapextendedservice OBJECT IDENTIFIER

XML ServiceType

<xsd:complexType name="ServiceType">
<xsd:choice>
<xsd:element name="core">
<xsd:complexType>
<xsd:choice>
<xsd:element name="archive" type="NULL"/>
<xsd:element name="delete" type="NULL"/>
<xsd:element name="export" type="NULL"/>
<xsd:element name="status" type="NULL"/>
<xsd:element name="verify" type="NULL"/>
<xsd:element name="listids" type="NULL"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="ltapextendedservice"
type="0BJECT_IDENTIFIER"/>
</xsd:choice>
</xsd:complexType>

3.13. StatusInformation

The LTA indicates the global status of a transaction using this
enumeration type. The semantics of the values is as follows:

TOC

waiting

The response is an initial first type reponse. The request
has been technically accepted by the LTA.

granted The response is a second type final response from the LTA.

grantedWithMods The response is a second type final response from
the LTA. The operation performed by the LTA but only with some

modifications.

error The operation has not been accepted.

more There are more responses available for the LISTIDS function..

In case of modifications or error, the LTA MUST also return details
using the following GeneralErrorNotice
ASN.1 StatusInformation

StatusInformation ::= ENUMERATED {
granted,
grantedwithMods,
rejection,
waiting,

more

XML StatusInformation

<xsd:complexType name="StatusInformation'">
<xsd:choice>

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
</xsd:

element
element
element
element
element
choice>

name="granted" type="NULL"/>
name="grantedwithMods" type="NULL"/>
name="rejection" type="NULL"/>
name="waiting" type="NULL"/>
name="more" type="NULL"/>

</xsd:complexType>

3.14. RequestInformation TOC

This type defines a data structure resuming an operation other than the
data. The items are filled in by requestor and and may be augmented or
modified by the responder. I

ASN.1 RequestInformation

RequestInformation ::= SEQUENCE {

version

Version DEFAULT vi,

servicePolicyInfo PolicyInformation,

serviceType

requestorID
servicelD
returnID
serial
nonce
requestTime
startTime
nextTime
bindingInfo

ServiceType,

EntityIdentifier,
EntityIdentifier,
EntityIdentifier OPTIONAL,
SerialNumber OPTIONAL,
Nonce OPTIONAL,

LtapTime OPTIONAL,

[0] LtapTime OPTIONAL,

[1] LtapTime OPTIONAL,

[2] MetaData OPTIONAL

XML RequestInformation

<xsd:complexType name="RequestInformation">

<xsd:sequence>

<xsd:element

<xsd:element

<xsd:element

<xsd:element

<xsd:element

<xsd:element

<xsd:element

<xsd:element

<xsd:element

<xsd:element

<xsd:element

<xsd:element

name="version"

type="Version" minOccurs="0"/>
name="servicePolicyInfo"
type="PolicyInformation"/>
name="serviceType"
type="ServiceType'"/>
name="requestorID"
type="EntityIdentifier"/>
name="serviceID"
type="EntityIdentifier"/>
name="returnID"
type="EntityIdentifier" minOccurs="0"/>
name="serial"
type="SerialNumber" minOccurs="0"/>
name="nonce"

type="Nonce" minOccurs="0"/>
name="requestTime"
type="LtapTime" minOccurs="0"/>
name="startTime"
type="LtapTime" minOccurs="0"/>
name="nextTime"

type="LtapTime" minOccurs="0"/>
name="bindingInfo"
type="MetaData" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

The version item indicates the version of the protocol to be

used.

The item serviceType indicate the operation to be performed. The value
can be one of the enumeration values defined in this memo or an object
identifier defining another operation. Additional operations may use
metadata for additional parameters.

The serviceID item identifies the LTA service provider(s)

The servicePolicyInfo item defines the service policy.

If a client specifies a nonce item, the server MUST return either the
same value, or a value that has the client value as a prefix.

The meaning of the startTime and nextTime items depend on the value of
the serviceType item and is described later.

The serial item indicates a serial number of a request has been
received, the item MUST NOT be set by the requestor and MUST be set by
the responder in order to uniquely identify the request.

The requestTime item indicates the time when the request has been
received, the item MAY be set by the requestor in case of a proxy and
it SHOULD be set in any response.

The bindingInfo item contains additional information required by the
LTA or returned to the client. These metadata are associated with the
request and not with the archived data.

The semantics of the items startTime and nextTime depend on the
serviceType.

4. Top level protocol elements TOC
On the top level, there are three protocol elements, one is used in

requests, and the two other are either describing the successful
outcome of an operation or an error notice.

4.1. Request TOC

This type defined the top level information structure describing a
request. It contains a RequestInformation data structure, as well as
data or data references. At least one of the data or
transactionIdentifier items must be provided. The structure is
enveloped in a security or typing envelope LTAPRequest.

ASN.1 Request

Request ::= SEQUENCE {
information RequestInformation,
data ArchiveData OPTIONAL,

transactionIdentifier IA5String OPTIONAL

XML Request

<xsd:complexType name="Request">
<xsd:sequence>
<xsd:element name="information"
type="RequestInformation"/>
<xsd:element name="data"
type="ArchiveData" minOccurs="0"/>
<xsd:element name="transactionIdentifier"
type="IA5String" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

4.2. StatusNotice TOC

A server may return a general error notice indicating an important
failure with referencing the request. The element can be created either
by the service, e.g., when a request cannot be decoded, but also by a
client lower layer, e.g. when a connection cannot be established.

ASN.1 StatusNotice

StatusNotice ::= SEQUENCE {
status StatusInformation,
errorInformation UTF8String (SIZE(©0..8192)),
lastvalid LtapTime OPTIONAL,
transactionIdentifier IA5String OPTIONAL

}

XML StatusNotice

<xsd:complexType name="StatusNotice">
<xsd:sequence>
<xsd:element name="status"
type="StatusInformation"/>
<xsd:element name="errorInformation'">
<xsd:complexType mixed="true">
<xsd:complexContent mixed="true">
<xsd:extension base="UTF8String"/>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="lastValid"
type="LtapTime" minOccurs="0"/>
<xsd:element name="transactionIdentifier"
type="IA5String" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

4.3. OperationResponse TOC

This structure is returned on a successful or unsuccessful operation of
the service. It references the initial request as well as the data that
had been submitted.

ASN.1 OperationResponse

OperationResponse ::= SEQUENCE {
information RequestInformation,
status StatusNotice,
data ArchiveData

XML OperationResponse

<xsd:complexType name="OperationResponse'>
<xsd:sequence>
<xsd:element name="information"
type="RequestInformation"/>
<xsd:element name="status" type="StatusNotice"/>
<xsd:element name="data" type="ArchiveData"/>
</xsd:sequence>
</xsd:complexType>

4.4. Response TOC

This type is the top level information structure returned on a
successful or unsuccessful operation of the service. It is included in
security or typing envelope LTAPResponse.

ASN.1 Response

Response ::= CHOICE {
operationResponse OperationResponse,
errorNotice [@] StatusNotice

XML Response

<xsd:complexType name="Response">
<xsd:choice>
<xsd:element name="operationResponse"
type="OperationResponse"/>
<xsd:element name="errorNotice"
type="StatusNotice"/>
</xsd:choice>
</xsd:complexType>

5. Service Operations TOC

This section describes in detail the different operations that a client
can initiate with a request and their outcomes. All operations share
the same data types for the input and output but the choices are filled
in differently.

For all operations, the archive service may react in the following
ways:

Error The request is not understood or cannot be transmitted, an
ErrorNotice is returned.

Acceptance The request is accepted, an OperationResponse indicating
that the transaction is 'waiting'. The item nextTime in the
requestInformation SHOULD be set by the responder in case when

the client needs to poll for the final response to indicate to
the client not poll before that date.

Rejection The request is rejected. an OperationResponse describing
the error is returned.

Result This a final response, an OperationResponse containing the
result of the transaction is returned.

When the transport layer is asynchronous, the protocol is the
following: The client MUST fill the item 'returnID' in the
requestInformation. A server MAY respond either with the final result
or with two messages indicating acceptance and result. The client MAY
retry the operation (slightly modified) after that date. Since any
operation can be lost, a client has to set an appropriate value for
initial retry timeout.

When the transport layer is synchronous, e.g. if HTTP is used, the
server immediately returns either an error or acceptance, and the
client MUST retry the operation (slightly modified) in order to get the
final result.

A server may offer a mixed environment where the initial response is
obtained in a synchronous way, and the final response can be
transferred in an asynchronous way. In this case, the client MAY be
required to set a returnlID.

5.1. ARCHIVE operation TOC

The major operation of the archive service is the ARCHIVE operation. A
client prepares the data and associated metadata, and transfers the
request to the archive service. The client builds a Request with an
information item including service policy interpreting service
characteristics and service configuration parameters. Data to be
archived and metadata are enclosed.

*the service type is set to "archive"

*If this is an initial request, the data are filled in with one
element and rawData.

*The messageImprint item MAY be set in order to perform an
integrity check on the rawData. The LTA calculated a
messageImprint and returns the calcumated value in the
corresponding item of the response. If a messageImprint is
present in the request, the server compares it to the calculated
value, and rejects the request in case the two value differ.

*If this is a retry of a previous operation, the client has
several option depending on the outcome of the previous operation
and available information. If no response has been received by
the client, the client MAY either repeat the operation as is, or
send remove the content octets of the selected choice (replacing
it by a zero length choice) and send a messageImprint.

*If available from an initial response, the client MUST provide an
artifact, if available from an response.

The server SHOULD use an artifact when the StatusInformation is
'waiting', in order to simplify its processing when the client retries
the operation. When an operation is retried, the client SHOULD use the
returned artifact instead of the data.

The final response contains a data reference to be usable in other
operations concerning the same data object.

When a client archives may objects in parallel operations, it may be
unreasonable to poll for each outstanding result individually. An LTA
MAY support a LISTIDS function returning artifacts for finished archive
operations.

5.2. EXPORT operation TOC
This operation allows a client to retrieve data.

*Data identification must be a data reference and/or a message
imprint.

*The service type is set to "export".

In the final result, the LTA returns data and metadata of the object.

5.3. DELETE operation TOC

This operation allows a client to delete data or request data
shredding. After a successful operation, the the server does not
maintain any status information about the object.

*Data identification must include data itself or data reference or
message imprint.

*The metadata MAY be set to replace the existing metadata of the
object.

*The service type is set to "delete".

The LTA MAY either return a result with updated metadata or nothing.
If the client retries a delete operation, it may happen that the LTA
has already deleted all traces of the operation. In this case, the
server always pretends having deleted the referenced data. The client
cannot distinguish whether the data have ever existed.

5.4. VERIFY operation TOC

This operation allows a client to verify the authenticity of
information stored in the archive. Depending on the actual status of
the object and on the policy of the LTA, the LTA initiates an internal
procedure to determine the validity of the data. An LTA may perform the
similar steps as for the initial archiving operation. The LTA MAY
choose not to perform the operation if the actual status is
sufficiently recent. In this case, the operation is identical to STATUS
operation.

*Data identification must be a data reference and/or a message
imprint.

*The service type is set to "verify".

The LTA returns updated metadata of the object.

5.5. STATUS operation TOC

A client can request the status of a data object.

Client builds a Request with request information including service
policy interpreting service characteristics and service configuration
parameters.

*The service type is set to "status".

*Data identification must be a data reference and/or a message
imprint..

*If a nonce is present in a request, a server MUST respond with a
response containing the value provided in the request. This does
not mean that the server must determine the actual status in a
particular backend operation.

In the final response, the LTA returns the current status and the
metadata for the object.

5.6. LISTIDS operation TOC

A client can request a list of reference of objects archived. The
client builds a Request with request information including service
policy interpreting service characteristics and service configuration
parameters.

*The service type is set to "LISTIDS".

*Data identification MUST be a data reference, an artifact and/or
a message imprint. If present, the LTA returns references to
objects starting with this reference in the chronological order
defined by the LTA. The reference or artifact MUST be known to
the LTA.

*The startDate and endDate MAY be set to indidate a range. The
exact definition of when an object belongs to that range is
defined by the LTA.

The LTA returns a list of references as a sequence of DataOrTransaction
items. The artifact and dataReference choices are allowed. If the
request contains an artifact, the LTA MUST return the artifacts that
correspond to terminated transactions.

The number of references returned is defined by the LTA and may not be
the complete set. If the LTA has more data to provide, it sets the
StatusInformation to 'more'. The client has to repeat the operation
using the last returned reference as data identification. A client can
distinguish this case from the initial acknowledge which has the same
value for StatusInformation. For the Acceptance response no references
are returned. There may be a final response with no references incase
when no data exist for the specified criteria.

6. Presentation and Bindings TOC

In the previous chapters we have presented all basic data types as well
as XSD schema as in with ASN.1. This is done in order to allow
implentations work on both data syntaxes and to be able to present and
transform messages in a defined way.

There is no mandatory transport mechanism in this document. All
mechanisms are optional. Two examples of transport protocols are given
that allow online exchange of request and a response, and asynchronous

communication between a client and an LTA. An LTA MAY use a combination
of protocols, for example in order to return additional responses.

This memo defines bindings for the transfer of requests and/or
responses, one using HTTP and another using e-mail.

6.1. Common parameters and encoding requirements TOC

This memo defines two principalways how requests and responses are
encoded, either using a restricted BER encoding or XML. An LTA MUST
provide at least one of them. Furthermore, we define optional
enveloping protection mechanisms which depend on the encoding. CMS
protection of signedData and envelopedData can be used independantly of
the encoding of the request or response. XML-DSIG and XML-ENC can only
be used for XML encoded requests and responses.

For requests encoded in XML either based on XER (or the equivalent
XSD), the associated MIME type is application/ltap-request+xml. For
request not encoded in XML, the associated MIME type is application/
ltap-request.

Similarly, for responses have an associated MIME types application/
ltap-response and application/ltap-response+xml.

When request and responses are exchanged using an XML encoding, the XSD
top level elements LTAPRequest or LTAPResponse are used, and not an XER
version of ContentInfo.

When a XML Signature is used, an enveloping signature for a Request or
Response or enc:EncryptedData MUST be used

EncryptedData MUST decrypt to a Request or Response or ds:Signature
When the request is presented with the application/ltap-request type,
the client MAY encode it using BER with strings nested at most one
level. Similarily, a response presented with the application/ltap-
response type may have BER with strings nested at most one level.

The Request and Response items can be encapsulated inside CMS
signedData and/or CMS envelopedData, or, If not protected, the Request
is encapsulated in a ContentInfo using id-ct-LTAPRequest as
identification, and the Response is encapsulated in a ContentInfo
structure using id-ct-LTAPResponse for identification.

If the Request and Response which are not encoded in XML are
encapsulated inside SignedData and/or EnvelopedData, the contenttype of
the innermost encapsulatedContent is set to using id-ct-LTAPRequest or
id-ct-LTAPResponse respectively.

Any of the four MIME parts can be encapsulated inside CMS using an id-
data content-type.

LTANS has its own object identifier tree, the content-types are defined
there. The owner of the S/MIME arc doesn't like to register them in the
S/MIME arc.

CMS ContentTypes identifiers

id-1ltans-ct OBJECT IDENTIFIER ::= {
iso(1) identified-organization(3)
dod(6) internet(1) security(5) mechanisms(5)
ltans(11) 1 }

id-ct-LTAPRequest OBJECT IDENTIFIER ::=
{ id-1ltans-ct 4 }

id-ct-LTAPResponse OBJECT IDENTIFIER ::=
{ id-1ltans-ct 5 }

In current ASN.1 we have the following ContentType definitions.
CMS ContentTypes

ltap-Request CONTENT-TYPE ::= {Request
IDENTIFIED BY id-ct-LTAPRequest }
ltap-Response CONTENT-TYPE ::= {Response

IDENTIFIED BY id-ct-LTAPResponse }

LTAPRequest ::= ContentInfo
LTAPResponse ::= ContentInfo

XML top level definitions

<xsd:element name="Request" type="Request"/>
<xsd:element name="Response" type="Response"/>
<xsd:element name="LTAPRequest" type="LTAPRequest"/>
<xsd:element name="LTAPResponse" type="LTAPResponse'"/>

<xsd:complexType name="LTAPResponse'">
<xsd:choice>
<xsd:element name="response" type="Response'/>
<xsd:element name="signedResponse" type="ds:Signature"/>
<xsd:element name="encryptedResponse" type="enc:EncryptedData"/>
</xsd:choice>

</xsd:complexType>

<xsd:complexType name="LTAPRequest">
<xsd:choice>
<xsd:element name="request" type="Request'"/>
<xsd:element name="signedRequest" type="xd:Signature"/>
<xsd:element name="encryptedRequest" type="enc:EncryptedData"/>
</xsd:choice>
</xsd:complexType>

6.2. e-mail bindings

In a request, the last element of item requestorID corresponds to the
From header, the last element of the item serviceID to the To header
and the last element of the returnID to reply-to header. The e-mail
header is not used by the LTA, but rather the items in the
requestInformation. When a server acts as a relay, it MAY add
appropriate values to these items.

For the response, an LTA normally sets the From and To header fields to
either the last items of servicelID and returnID (or requestorID). In
case of a relaying LTA, when the LTA receives a response from another
LTA, it first determines its own identity in requestInformation, sets
the From: header to its own identity and the To: header to the identity
of its client.

6.3. HTTP Bindings TOC

Servers MUST understand HTTP 1.1 requests at least for the ARCHIVE,
EXPORT and LISTIDS functions allowing chunked input of a POST request
and 'Continue' responses. A server SHOULD understand a Content-Encoding
value of gzip. In case of a HTTP 1.0 request and response, a positive
value Content-Length indicating the total size of the data MUST be
used. A client MUST send a Host header in the request.

The Request URI may be used to indicate a particular service endpoint.
When using HTTPS, TLS MUST be supported by clients and servers. Clients
SHOULD send a TLS servername extension in the ClientHello.

The Content-Type header MUST be set to "application/ltap-request" or
"application/ltap-request+xml". The LTAPrequest message MUST be sent in
the body of the HTTP Request.

The Content-Type header MUST be set to "application/ltap-response" or
"application/ltap-response+xml". The LTAP response message MUST be sent
in the body of the HTTP Response.

The HTTP status code MUST be set to 200 if a LTAP response message is
returned. Otherwise, the status code can be set to 3xx to indicate a
redirection, 4xx to indicate a low-level client error (such as a
malformed request), or 5xx to indicate a low-level server error.
Clients SHOULD react automatically to redirections.

When using HTTPS, TLS 1.0 MUST be supported. SSL 3.0 MAY be supported
by servers. Future versions of TLS MAY be supported. Clients SHOULD
send a TLS servername extension in the ClientHello.

RSA ciphersuites MUST be supported. Diffie-Hellman and DSS ciphersuites
MAY be supported. TripleDES ciphersuites MUST be supported. AES
ciphersuites SHOULD be supported.

TOC

6.4. Security

A request and a response MAY be encapsulated in an [RFC3852] (Housley,
R., “Cryptographic Message Syntax (CMS),” July 2004.) signedData or
envelopedData where the content type indicated in the eContentType of
the encapContentInfo is one of the LTAP content types and the eContent
of the encapContentInfo, carried as an octet string containing an
encoded request or response structure.

When using a SignedData structure for authentication, LTAP requests and
responses MAY contain one or more SignerInfo structures, each of which
may contain countersignature attributes depending on operational
environments. Relaying LTAs MAY add additional signatures or a
countersignature attributes or remove the encapsulation and create a
new one depending on the requirements of the next LTA.

For the XML encoded structures, alternatively, security mechanisme from
[W3C.xmldsig-core] (Eastlake, D., Reagle , J., and D. Solo, “XML-
Signature Syntax and Processing,” October 2000.) and [W3C.xmlenc-core]
(Eastlake, D. and J. Reagle , “XML Encryption Syntax and Processing,”
August 2002.) may be used. An LTA MAY impose restrictions on the usage
of these features.

Clients and relays MUST ensure authenticity of a server when submitting
data. In order to do so, they MAY add another encapsulation from
[RFC3852] (Housley, R., “Cryptographic Message Syntax (CMS),”

July 2004.) that provides for confidentiality, and/or MAY use a secure
transport layer, e.g., TLS to perform server authentication and to
ensure confidentiality of the transport.

Responses are generally protected in similar way by using a SignedData
encapsulation with one or more SignerInfos, and CounterSignatures,
depending on the number of participating servers. The number of
signatures is not related to the number of participating servers but
rather to the number of entities that may be used to authenticate a
response or part of it.

In some circumstances, a client/server communication may be secured
only by lower layer transport mechanism, e.g. SSL/TLS.

A client MUST NOT trust a response that cannot be authenticated.
Archive clients and servers MUST always create requests and responses
that can be authenticated with the explicit exception of a global error
status, which may be returned as a non-signed response.

In order to be able to associate a possible error response with a
request, the requester SHOULD use the item 'transactionIdentifier'. The
requester SHOULD NOT make any assumption about the usage of message
header fields by the responding service, in particular the usage of
fields like Subject, Message-ID or References.

T0C

7. Credits

This document has been created using XML2RFC ([RFC2629] (Rose, M.,
“Writing I-Ds and RFCs using XML,” June 1999.)).

The ASN.1 and XSD modules have been automatically collected from the
definitions in the other paragraphs using a small tool written by Peter
Sylvester. This tool can also extract the modules from the xml source.
The XSD schema has been generated automatically using the asnixsd tool
from 0SS Nokalva. It has been manually

The ASN.1 has been validated using the asnlc compiler from 0SS Nokalva.

8. Security Considerations TOC

This section discusses addition security considerations of the
framework.

When designing an LTA service, the following considerations have been
identified that have an impact upon the validity or "trust" in the
ltans server responses.

An LTA is assumed to operate with best effort. Nevertheless, an
operation can fail or get totally lost. A client SHOULD be able to
recover from lost requests, i.e., avoid deleting data until an
attestation has been received.

It is possible for an LTA to report loss of integrity for archived
data, or simply non-existence of data which is equivalent to loss of
data. Depending on the value of the data, appropriate measures to
address these catastrophic scenarios need to be provided outside the
core service, e.g., by using redundant copies managed either by a
client of internally of a broker type service.

The validity of data should be checked by periodic execution of VERIFY
operations intended to ensure data with demonstratable integrity is
available throughout the lifetime of an archived data object. The rate
of refresh will be driven by a number of factors, some of which have a
direct impact of demonstration of integrity. For example, the
confidence in the strength of cryptographic algorithms or the quality
of storage devices are factors determining the verification intervals.
Depending on the lifetime and the quality of data, relying on
cryptographic protection of data object may not be a sufficient means
to determine authenticity in time, other means may be required, e.g.
physical protection of data storage material.

It is imperative that keys used to sign responses are guarded with
proper security and controls in order to minimize the possibility of
compromise. Nevertheless, in case the private key does become
compromised, an audit trail of all the response generated by the
service SHOULD be kept as a means to help discriminate between genuine
and false responses. An LTA MAY provide for a service to validate

responses created by this service or another one solely based on the
audit trail.

As already indicated, when confidentiality and server authentication is
required, requests and responses MAY be protected using appropriate
mechanisms (e.g., CMS encapsulation [RFC3852] (Housley, R.,
“Cryptographic Message Syntax (CMS),” July 2004.) or TLS [RFC5246
(Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” August 2008.)).

Server authentication is highly recommended for all service which
transfer data to a server.

Client identification and authentication MAY use services defined by
TLS ([RFC5246] (Dierks, T. and E. Rescorla, “The Transport Layer
Security (TLS) Protocol Version 1.2,” August 2008.)) instead of, or in
addition to, using a document or message protection format, e.g. CMS.
It is possible for an LTA to report loss of integrity for archived
data, or simply non-existence of data which is equivalent to loss of
data. Depending on the value of the data, appropriate measures to
address these catastrophic scenarios need to be provided outside the
core service, e.g., by using redundant copies managed either by a
client of internally of a broker type service.

9. IPR Patent Information TOC

The material presented in this document was initially drafted in 2005.
The following United States Patents related to data validation and
certification services, listed in chronological order, are known by the
authors to exist at this time. This may not be an exhaustive list.
Other patents may exist or be issued at any time. Implementers of this
protocol and applications using the protocol SHOULD perform their own
patent search and determine whether or not any encumberences exist on
their implementation. The list is intitially taken from [RFC3029]
(Adams, C., Sylvester, P., Zolotarev, M., and R. Zuccherato, “Internet
X.509 Public Key Infrastructure Data Validation and Certification
Server Protocols,” February 2001.).

4,309,569 Method of Providing Digital Signatures

(issued) January 5, 1982

(inventor) Ralph C. Merkle

(assignee) The Board of Trustees of the Leland Stanford Junior
University

5,001,752 Public/Key Date-Time Notary Facility
(issued) March 19, 1991
(inventor) Addison M. Fischer

5,022,080 Electronic Notary
(issued) June 4, 1991

(inventors) Robert T. Durst, Kevin D. Hunter

5,136,643 Public/Key Date-Time Notary Facility
(issued) August 4, 1992
(inventor) Addison M. Fischer

(Note: This is a continuation of patent # 5,001,752.)
5,136,646 Digital Document Time-Stamping with Catenate Certificate
(issued) August 4, 1992

(inventors) Stuart A. Haber, Wakefield S. Stornetta Jr.
(assignee) Bell Communications Research, Inc.

5,136,647 Method for Secure Time-Stamping of Digital Documents
(issued) August 4, 1992

(inventors) Stuart A. Haber, Wakefield S. Stornetta Jr.
(assignee) Bell Communications Research, Inc.

5,373,561 Method of Extending the Validity of a Cryptographic
Certificate

(issued) December 13, 1994

(inventors) Stuart A. Haber, Wakefield S. Stornetta Jr.
(assignee) Bell Communications Research, Inc.,

5,422,95 Personal Date/Time Notary Device
(issued) June 6, 1995
(inventor) Addison M. Fischer

5,781,629 Digital Document Authentication System
(issued) July 14, 1998

(inventor) Stuart A. Haber, Wakefield S. Stornetta Jr.
(assignee) Surety Technologies, Inc.

10. TIANA considerations TOC

LTAP request and response messages are identified using Object
Identifiers (0IDs), which are defined in an arc delegated by IANA to
the LTANS Working Group. This document also includes four MIME type
registrations in Section 6.3 (HTTP Bindings). No further action by IANA
is necessary for this document.

11. References TOC

11.1. Normative references
TOC
[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT,
HTML, XML).
[RFC3852] Housley, R., “Cryptographic Message Syntax (CMS),”
RFC 3852, July 2004 (TXT).
[RFC4998] Gondrom, T., Brandner, R., and U. Pordesch, “Evidence
Record Syntax (ERS),” RFC 4998, August 2007 (TXT).
[RFC5246] Dierks, T. and E. Rescorla, “The Transport Layer Security
(TLS) Protocol Version 1.2,” RFC 5246, August 2008 (TXT).

11.2. Informative references

TOC
[RFC2629] Rose, M., “Writing I-Ds and RFCs using XML,"”
RFC 2629, June 1999 (TXT, HTML, XML).
[RFC3029] Adams, C., Sylvester, P., Zolotarev, M., and R.

Zuccherato, “Internet X.509 Public Key
Infrastructure Data Validation and Certification
Server Protocols,” RFC 3029, February 2001 (TXT).

[RFC4810] wallace, C., Pordesch, U., and R. Brandner, “Long-
Term Archive Service Requirements,” RFC 4810,
March 2007 (TXT).

[RFC5055] Freeman, T., Housley, R., Malpani, A., Cooper, D.,
and W. Polk, “Server-Based Certificate Validation
Protocol (SCVP),” RFC 5055, December 2007 (TXT).

[W3C.xmldsig- Eastlake, D., Reagle , J., and D. Solo, “XML-

core] Signature Syntax and Processing,” W3C

Recommendation xmldsig-core, October 2000.
[W3C.xmlenc- Eastlake, D. and J. Reagle , “XML Encryption Syntax
core] and Processing,” W3C Candidate

Recommendation xmlenc-core, August 2002.

Appendix A. ASN.1 module TOC

The following ASN.1 module has been checked using the asnilc tool.

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc3852
http://www.rfc-editor.org/rfc/rfc3852.txt
http://tools.ietf.org/html/rfc4998
http://tools.ietf.org/html/rfc4998
http://www.rfc-editor.org/rfc/rfc4998.txt
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc5246.txt
mailto:mrose@not.invisible.net
http://tools.ietf.org/html/rfc2629
http://www.rfc-editor.org/rfc/rfc2629.txt
http://xml.resource.org/public/rfc/html/rfc2629.html
http://xml.resource.org/public/rfc/xml/rfc2629.xml
http://tools.ietf.org/html/rfc3029
http://tools.ietf.org/html/rfc3029
http://tools.ietf.org/html/rfc3029
http://www.rfc-editor.org/rfc/rfc3029.txt
http://tools.ietf.org/html/rfc4810
http://tools.ietf.org/html/rfc4810
http://www.rfc-editor.org/rfc/rfc4810.txt
http://tools.ietf.org/html/rfc5055
http://tools.ietf.org/html/rfc5055
http://www.rfc-editor.org/rfc/rfc5055.txt
mailto:dee3@torque.pothole.com
mailto:reagle@w3.org
mailto:dsolo@alum.mit.edu
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/
mailto:dee3@torque.pothole.com
mailto:reagle@w3.org
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlenc-core/

LTAP {iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5)
ltans(11) id-mod(@) id-mod-ltap(4) 0}

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- EXPORTS ALL
IMPORTS

PolicyInformation, GeneralNames

FROM PKIX1Implicit-2009
{iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-pkix1-implicit-02(59)}

CONTENT-TYPE, ContentInfo

FROM CryptographicMessageSyntax2004
{ iso(1) member-body(2) us(840) rsadsi(113549)
pkcs(1) pkcs-9(9) smime(16) modules(0)
id-mod-cms-2004-02(41) }

FROM PKCS7
{iso(1) member-body(2) us(840) rsadsi(113549)
pkcs(1) pkcs-7(7) modules(@) pkcs-7(1)}

MessageImprint ::= SEQUENCE {
digestAlgorithm DigestMethodType,
digestvalue DigestValueType

}

DigestMethodType ::= OBJECT IDENTIFIER

DigestValueType ::= OCTET STRING

Artifact = PrintableString

MetaData ::= SEQUENCE OF MetaItem

MetaItem SEQUENCE {

type CHOICE {
0id OBJECT IDENTIFIER,
attribute UTF8String,
uri TIA5String

3

values SEQUENCE OF value CHOICE {
oidvalue OBJECT IDENTIFIER,
stringvalue UTF8String,
urivalue IA5String,

integerValue INTEGER,
opaqueValue OCTET STRING,
composedValue MetalItem

}

}

Nonce ::= OCTET STRING

RawData ::= CHOICE {
binary OCTET STRING,
text UTF8String,
structured MetaData

}

DataOrTransaction ::= CHOICE {
data RawData,
transaction Artifact,
dataref IA5String

}

ArchiveData ::= SEQUENCE OF element SEQUENCE{
dataSpecifier DataOrTransaction ,
metaData MetaData OPTIONAL ,

dataImprint [0] MessageImprint OPTIONAL

SerialNumber ::= INTEGER
LtapTime ::= GeneralizedTime

Version ::= ENUMERATED {
Vo,
vl

EntityIdentifiers ::= GeneralNames

ServiceType ::= CHOICE {

core ENUMERATED {
archive,
delete,
export,
status,
verify,
listids

s

ltapextendedservice OBJECT IDENTIFIER

StatusInformation ::= ENUMERATED {

granted,
grantedwithMods,
rejection,
waiting,
more
}
RequestInformation ::= SEQUENCE {
version Version DEFAULT v1i,
servicePolicyInfo PolicyInformation,
serviceType ServiceType,
requestorID EntityIdentifier,
servicelD EntityIdentifier,
returnID EntityIdentifier OPTIONAL,
serial SerialNumber OPTIONAL,
nonce Nonce OPTIONAL,
requestTime LtapTime OPTIONAL,
startTime [0] LtapTime OPTIONAL,
nextTime [1] LtapTime OPTIONAL,
bindingInfo [2] MetaData OPTIONAL
}
Request ::= SEQUENCE {
information RequestInformation,
data ArchiveData OPTIONAL,
transactionIdentifier IA5String OPTIONAL
}
StatusNotice ::= SEQUENCE {
status StatusInformation,
errorInformation UTF8String (SIZE(©0..8192)),
lastvalid LtapTime OPTIONAL,
transactionIdentifier IA5String OPTIONAL
}
OperationResponse ::= SEQUENCE {
information RequestInformation,
status StatusNotice,
data ArchiveData
}
Response ::= CHOICE {

operationResponse OperationResponse,
errorNotice [0] StatusNotice

id-1ltans-ct OBJECT IDENTIFIER ::= {

iso(1) identified-organization(3)

dod(6) internet(1) security(5) mechanisms(5)

ltans(11) 1 }

id-ct-LTAPRequest OBJECT IDENTIFIER ::=

{ id-1ltans-ct 4 }
id-ct-LTAPResponse OBJECT IDENTIFIER
{ id-1ltans-ct 5 }

ltap-Request CONTENT-TYPE ::= {Request
IDENTIFIED BY id-ct-LTAPRequest }
ltap-Response CONTENT-TYPE ::= {Response

IDENTIFIED BY id-ct-LTAPResponse }

LTAPRequest ::= ContentInfo
LTAPResponse ::= ContentInfo
END

TOC

Appendix B. XML schema for LTAP

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:enc="http://www.w3.0rg/2001/04/xmlenc#"
targetNamespace="http://www.setcce.org/schemas/1ltap"
elementFormbefault="qualified"
attributeFormDefault="unqualified">

<annotation><documentation xml:lang="en">
XML Schema for LTAP

</documentation></annotation>

<xsd:complexType name="Name'>
<xsd:choice>
<xsd:element name="rdnSequence" type="RDNSequence"/>
</xsd:choice>
</xsd:complexType>

<xsd:complexType name="RDNSequence'>
<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:element name="RelativeDistinguishedName"
type="RelativeDistinguishedName" />
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="RelativeDistinguishedName">
<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:element name="AttributeTypeAndDistinguishedValue"
type="AttributeTypeAndDistinguishedvalue"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="AttributeTypeAndDistinguishedvalue">
<xsd:sequence>
<xsd:element name="type'">
<xsd:simpleType>
<xsd:restriction base="OBJECT_IDENTIFIER"/>
</xsd:simpleType>
</xsd:element>
<xsd:element name="value">
<xsd:complexType mixed="true">
<xsd:choice>
<xsd:any processContents="lax"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="PolicyInformation'">
<xsd:sequence>
<xsd:element name="policyIdentifier"
type="CertPolicyId"/>
<xsd:element name="policyQualifiers" minOccurs="0">
<xsd:complexType>
<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:element name="PolicyQualifierInfo"
type="PolicyQualifierInfo"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="PolicyQualifierInfo">
<xsd:sequence>
<xsd:element name="policyQualifierId">
<xsd:simpleType>
<xsd:restriction base="OBJECT_IDENTIFIER"/>
</xsd:simpleType>
</xsd:element>
<xsd:element name="qualifier" minOccurs="0">
<xsd:complexType mixed="true">
<xsd:choice>
<xsd:any processContents="lax"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>

<xsd:simpleType name="CertPolicyId">
<xsd:restriction base="OBJECT_IDENTIFIER"/>
</xsd:simpleType>

<xsd:complexType name="MessageImprint'">
<xsd:sequence>
<xsd:element name="digestAlgorithm"
type="DigestMethodType"/>
<xsd:element name="digestValue"
type="DigestValueType"/>
</xsd:sequence>
</xsd:complexType>

<xsd:simpleType name="DigestValueType'">
<xsd:restriction base="OCTET_STRING"/>
</xsd:simpleType>

<xsd:simpleType name="DigestMethodType'">
<xsd:restriction base="OBJECT_IDENTIFIER"/>
</xsd:simpleType>

<xsd:simpleType name="Artifact">
<xsd:restriction base="PrintableString"/>
</xsd:simpleType>

<xsd:complexType name="MetaData'>
<xsd:sequence minOccurs="0"
max0ccurs="unbounded">
<xsd:element name="MetaItem"
type="MetaItem"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="MetaItem">
<xsd:sequence>
<xsd:element name="type">
<xsd:complexType>
<xsd:choice>
<xsd:element name="oid"
type="0BJECT_IDENTIFIER"/>
<xsd:element name="attribute"
type="UTF8String"/>
<xsd:element name="uri"
type="IA5String"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="values'">
<xsd:complexType>
<xsd:sequence minOccurs="0"
max0ccurs="unbounded">
<xsd:choice>
<xsd:element name="oidValue"
type="0OBJECT_IDENTIFIER"/>
<xsd:element name="stringVvalue"
type="UTF8String"/>
<xsd:element name="uriValue"
type="IA5String"/>
<xsd:element name="integerValue"
type="INTEGER"/>
<xsd:element name="opaqueValue"
type="0OCTET_STRING"/>
<xsd:element name="composedValue"
type="MetaItem"/>
</xsd:choice>

</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>

<xsd:simpleType name="Nonce'">
<xsd:restriction base="OCTET_STRING"/>
</xsd:simpleType>

<xsd:complexType name="RawData">
<xsd:choice>
<xsd:element name="binary" type="OCTET_STRING"/>
<xsd:element name="text" type="UTF8String"/>
<xsd:element name="structured" type="MetaData"/>
</xsd:choice>

</xsd:complexType>

<xsd:complexType name="DataOrTransaction'">
<xsd:choice>
<xsd:element name="data" type="RawData'"/>
<xsd:element name="transaction" type="Artifact"/>
<xsd:element name="dataref" type="IA5String"/>
</xsd:choice>

</xsd:complexType>

<xsd:complexType name="ArchiveData">
<xsd:sequence minOccurs="0" max0ccurs="unbounded">
<xsd:element name="element">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="data"
type="DataOrTransaction"/>
<xsd:element name="metaData"
type="MetabData" minOccurs="0"/>
<xsd:element name="dataImprint"
type="MessageImprint" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>

<xsd:simpleType name="SerialNumber'">
<xsd:restriction base="INTEGER"/>
</xsd:simpleType>

<xsd:simpleType name="LtapTime">
<xsd:restriction base="GeneralizedTime"/>

</xsd:simpleType>

<xsd:complexType name="Version">

<xsd:choice>
<xsd:element
<xsd:element

</xsd:choice>

name="vO" type="NULL"/>
name="v1" type="NULL"/>

</xsd:complexType>

<xsd:complexType name="EntityIdentifiers">
<xsd:sequence minOccurs="0" maxOccurs="unbounded">

<xsd:choice>
<xsd:element
<xsd:element
<xsd:element
<xsd:element

<xsd:element
<xsd:element

name="rfc822Name" type="IA5String"/>
name="dNSName" type="IA5String"/>
name="directoryName" type="Name'"/>
name="uniformResourceIdentifier"
type="IA5String"/>

name="1iPAddress" type="OCTET_STRING"/>
name="registeredID"
type="0OBJECT_IDENTIFIER"/>

</xsd:choice>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ServiceType'">

<xsd:choice>
<xsd:element

name="core">

<xsd:complexType>
<xsd:choice>
<xsd:element name="archive" type="NULL"/>
<xsd:element name="delete" type="NULL"/>
<xsd:element name="export" type="NULL"/>
<xsd:element name="status" type="NULL"/>
<xsd:element name="verify" type="NULL"/>
<xsd:element name="listids" type="NULL"/>
</xsd:choice>
</xsd:complexType>

</xsd:element
<xsd:element

</xsd:choice>

>
name="1ltapextendedservice"
type="0BJECT_IDENTIFIER"/>

</xsd:complexType>

<xsd:complexType name="StatusInformation'">

<xsd:choice>
<xsd:element
<xsd:element
<xsd:element
<xsd:element

name="granted" type="NULL"/>
name="grantedwithMods" type="NULL"/>
name="rejection" type="NULL"/>
name="waiting" type="NULL"/>

<xsd:element name="more" type="NULL"/>
</xsd:choice>
</xsd:complexType>

<xsd:complexType name="RequestInformation">
<xsd:sequence>
<xsd:element name="version"
type="Version" minOccurs="0"/>
<xsd:element name="servicePolicyInfo"
type="PolicyInformation"/>
<xsd:element name="serviceType"
type="ServiceType'"/>
<xsd:element name="requestorID"
type="EntityIdentifier"/>
<xsd:element name="serviceID"
type="EntityIdentifier"/>
<xsd:element name="returnID"
type="EntityIdentifier" minOccurs="0"/>
<xsd:element name="serial"
type="SerialNumber" minOccurs="0"/>
<xsd:element name="nonce"
type="Nonce" minOccurs="0"/>
<xsd:element name="requestTime"
type="LtapTime" minOccurs="0"/>
<xsd:element name="startTime"
type="LtapTime" minOccurs="0"/>
<xsd:element name='"nextTime"
type="LtapTime" minOccurs="0"/>
<xsd:element name="bindingInfo"
type="MetabData" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Request">
<xsd:sequence>
<xsd:element name="information"
type="RequestInformation"/>
<xsd:element name="data"
type="ArchiveData" minOccurs="0"/>
<xsd:element name="transactionIdentifier"
type="IA5String" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="StatusNotice'">
<xsd:sequence>
<xsd:element name="status"
type="StatusInformation"/>

<xsd:element name="errorInformation'">
<xsd:complexType mixed="true">
<xsd:complexContent mixed="true">
<xsd:extension base="UTF8String"/>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="lastValid"
type="LtapTime" minOccurs="0"/>
<xsd:element name="transactionIdentifier"
type="IA5String" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="OperationResponse'>
<xsd:sequence>
<xsd:element name="information"

type="RequestInformation"/>

<xsd:element name="status" type="StatusNotice"/>
<xsd:element name="data" type="ArchiveData"/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="Response'>
<xsd:choice>
<xsd:element name="operationResponse"
type="OperationResponse"/>
<xsd:element name="errorNotice"
type="StatusNotice"/>
</xsd:choice>
</xsd:complexType>

<xsd:element name="Request" type="Request"/>
<xsd:element name="Response" type="Response'"/>
<xsd:element name="LTAPRequest" type="LTAPRequest"/>
<xsd:element name="LTAPResponse" type="LTAPResponse"/>

<xsd:complexType name="LTAPResponse'>
<xsd:choice>
<xsd:element name="response" type="Response'"/>
<xsd:element name="signedResponse" type="ds:Signature"/>
<xsd:element name="encryptedResponse" type="enc:EncryptedData"/>
</xsd:choice>

</xsd:complexType>

<xsd:complexType name="LTAPRequest">
<xsd:choice>
<xsd:element name="request" type="Request'"/>
<xsd:element name="signedRequest" type="xd:Signature"/>

<xsd:element name="encryptedRequest" type="enc:EncryptedData'"/>
</xsd:choice>
</xsd:complexType>

Authors' Addresses
TOC

Aleksej Jerman Blazic
SETCCE
Jamova 39
Ljubljana SI-1000
SLOVENIA
Fax: +386 1 4773861
Email: aljosa@setcce.org

Peter Sylvester
Groupe ON-X - EdelWeb Project
15 quai de Dion-Bouton
Puteaux F-92816
FRANCE
Fax: +33 1 40 99 14 14
Email: Peter.Sylvester@edelweb.fr

Carl wallace
Cygnacom Solutions
Suite 5200
7925 Jones Branch Drive
McLean, VA 22102

Email: cwallace@cygnacom.com

mailto:aljosa@setcce.org
mailto:Peter.Sylvester@edelweb.fr
mailto:cwallace@cygnacom.com

	Long-term Archive Protocol (LTAP)draft-ietf-ltans-ltap-08
	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1. Introduction and Rationale
	1.1. Requirements notation
	2. Framework
	2.1. Functional Overview
	2.2. Service functions of an LTA
	2.3. Transactions
	2.4. Life cycles of objects
	2.4.1. Transaction Level Life Cycle
	2.4.2. Long term life cycle.
	2.5. Roles, Service Types, Policies and Configurations
	2.6. Identification
	2.7. External definitions
	2.8. Entities
	2.8.1. Entity Identifiers
	2.8.2. Attributes
	2.9. Data Model
	2.9.1. Data objects
	2.9.2. Collections of objects
	2.9.3. MetaData
	2.9.4. Binding Information
	2.9.5. Evidence Data
	3. Common Data Types
	3.1. MessageImprint
	3.2. Artifact
	3.3. MetaData
	3.4. Nonce
	3.5. RawData
	3.6. DataOrTransaction
	3.7. ArchiveData
	3.8. SerialNumber
	3.9. LtapTime
	3.10. Version
	3.11. EntityIdentifiers
	3.12. ServiceType
	3.13. StatusInformation
	3.14. RequestInformation
	4. Top level protocol elements
	4.1. Request
	4.2. StatusNotice
	4.3. OperationResponse
	4.4. Response
	5. Service Operations
	5.1. ARCHIVE operation
	5.2. EXPORT operation
	5.3. DELETE operation
	5.4. VERIFY operation
	5.5. STATUS operation
	5.6. LISTIDS operation
	6. Presentation and Bindings
	6.1. Common parameters and encoding requirements
	6.2. e-mail bindings
	6.3. HTTP Bindings
	6.4. Security
	7. Credits
	8. Security Considerations
	9. IPR Patent Information
	10. IANA considerations
	11. References
	11.1. Normative references
	11.2. Informative references
	Appendix A. ASN.1 module
	Appendix B. XML schema for LTAP
	Authors' Addresses

