
Long-term Archive And Notary A. Jerman Blazic
Services (LTANS) SETCCE
Internet Draft S. Saljic
Intended status: Standards Track SETCCE
Expires: July 24, 2011 T. Gondrom
 January 24, 2011

Extensible Markup Language Evidence Record Syntax
draft-ietf-ltans-xmlers-11.txt

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79. This document may contain material
 from IETF Documents or IETF Contributions published or made publicly
 available before November 10, 2008. The person(s) controlling the
 copyright in some of this material may not have granted the IETF
 Trust the right to allow modifications of such material outside the
 IETF Standards Process. Without obtaining an adequate license from
 the person(s) controlling the copyright in such materials, this
 document may not be modified outside the IETF Standards Process, and
 derivative works of it may not be created outside the IETF Standards
 Process, except to format it for publication as an RFC or to
 translate it into languages other than English.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

Jerman Blazic, et. al. Expires July 24, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt

Internet-Draft XMLERS January 2011

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on March 18, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Abstract

 In many scenarios, users must be able to demonstrate the (time of)
 existence, integrity and validity of data including signed data for
 long or undetermined periods of time. This document specifies XML
 syntax and processing rules for creating evidence for long-term non-
 repudiation of existence and integrity of data. ERS-XML provides
 alternative syntax and processing rules to the ASN.1 (Abstract Syntax
 Notation One) ERS (Evidence Record Syntax) [RFC4998] syntax by using
 XML language.

Jerman Blazic, et. al. Expires July 24 2011 [Page 2]

http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc4998

Internet-Draft XMLERS January 2011

Table of Contents

1. Introduction...5
1.1. Motivation..5
1.2. General Overview and Requirements.........................7
1.3. Terminology...8
1.4. Conventions Used in This Document........................10

2. Evidence Record...11
2.1. Structure..11
2.2. Generation...16
2.3. Verification...17

3. Archive Time-Stamp..18
3.1. Structure..18

3.1.1. Hash Tree...18
3.1.2. Time-Stamp..20
3.1.3. Cryptographic Information List......................21

3.2. Generation...22
3.2.1. Generation of Hash Tree.............................23
3.2.2. Reduction of hash tree..............................27

3.3. Verification...29
4. Archive Time-Stamp Sequence and Archive Time-Stamp Chain......30

4.1. Structure..31
4.1.1. Digest Method.......................................32
4.1.2. Canonicalization Method.............................33

4.2. Generation...34
4.2.1. Time-Stamp Renewal..................................34
4.2.2. Hash Tree Renewal...................................35

4.3. Verification...37
5. Encryption..39
6. Version...40
7. Storage of policies...40
8. XSD Schema for the Evidence Record............................41
9. Security Considerations.......................................46

9.1. Secure Algorithms..46
9.2. Redundancy...47

Jerman Blazic, et. al. Expires July 24 2011 [Page 3]

Internet-Draft XMLERS January 2011

9.3. Secure Time-Stamps.......................................47
9.4. Time-Stamp verification..................................47

10. IANA Considerations..48
11. References...51

11.1. Normative References....................................51
11.2. Informative References..................................52

 APPENDIX A: Detailed verification process of an Evidence Record..55
 Author's Addresses...57

Jerman Blazic, et. al. Expires July 24 2011 [Page 4]

Internet-Draft XMLERS January 2011

1. Introduction

 The purpose of the document is to define XML Schema and processing
 rules for Evidence Record Syntax in XML (Extensible Markup Language)
 format. The document is related to initial ASN.1 (Abstract Syntax
 Notation One) syntax for Evidence Record Syntax as defined in
 [RFC4998].

1.1. Motivation

 The evolution of electronic commerce and electronic data exchange in
 general requires introduction of non-repudiable proof of data
 existence as well as data integrity and authenticity. Such data and
 non-repudiable proof of existence must endure for long periods of
 time, even when the initial information to prove its existence and
 integrity weakens or ceases to exist. Mechanisms such as digital
 signatures defined in [RFC5652], for example, do not provide absolute
 reliability on a long term basis. Algorithms and cryptographic
 material used to create a signature can become weak in the course of
 time and information needed to validate digital signatures may become
 compromised or simply cease to exist due to for example the
 disbanding of a certificate service provider. Providing a stable
 environment for electronic data on a long term basis requires the
 introduction of additional means to continually provide an
 appropriate level of trust in evidence on data existence, integrity
 and authenticity.

 All integrity and authenticity protecting techniques used today
 suffer from the problem of degrading reliability over time, including
 techniques for Time-Stamping, which are generally recognized as data
 existence and integrity proof mechanisms. Over long periods of time
 cryptographic algorithms used may become weak or encryption keys
 compromised. Some of the problems might not even be of technical
 nature like a Time-Stamping authority going out of business and

Jerman Blazic, et. al. Expires July 24 2011 [Page 5]

https://datatracker.ietf.org/doc/html/rfc4998
https://datatracker.ietf.org/doc/html/rfc5652

Internet-Draft XMLERS January 2011

 ceasing its service. To create a stable environment where proof of
 existence and integrity can endure well into the future a new
 technical approach must be used.

 Long term non-repudiation of data existence and demonstration of data
 integrity techniques have been already introduced, for example, by
 long term signature syntaxes like those defined in [RFC5126]. Long
 term signature syntaxes and processing rules address only the long
 term endurance of the digital signatures themselves, while Evidence
 Record Syntax broadens this approach for data of any type or format
 including digital signatures.

 The XMLERS (Extensible Markup Language Evidence Record Syntax)
 syntax is based on Evidence Record Syntax as defined in [RFC4998] and
 is addressing the same problem of long term non-repudiable proof of
 data existence and demonstration of data integrity on a long term
 basis. XMLERS does not supplement the [RFC4998] specification.
 Following extensible markup language standards and [RFC3470]
 guidelines it introduces the same approach but in a different format
 and with adapted processing rules.

 The use of eXtensible Markup Language (XML) format is already
 recognized by a wide range of applications and services and is being
 selected as the de-facto standard for many applications based on data
 exchange. The introduction of Evidence Record Syntax in XML format
 broadens the horizon of XML use and presents a harmonized syntax with
 a growing community of XML based standards including those related to
 security services such as [XMLDSig] or [XAdES].

 Due to the differences in XML processing rules and other
 characteristics of XML language, XMLERS does not present a direct
 transformation of ERS in ASN.1 syntax. The XMLERS syntax is based on
 different processing rules as defined in [RFC4998] and it does not
 support, for example, the import of ASN.1 values in XML tags.
 Creating Evidence Records in XML syntax must follow the steps as

Jerman Blazic, et. al. Expires July 24 2011 [Page 6]

https://datatracker.ietf.org/doc/html/rfc5126
https://datatracker.ietf.org/doc/html/rfc4998
https://datatracker.ietf.org/doc/html/rfc4998
https://datatracker.ietf.org/doc/html/rfc3470
https://datatracker.ietf.org/doc/html/rfc4998

Internet-Draft XMLERS January 2011

 defined in this draft. XMLERS is a standalone draft and is based on
 [RFC4998] conceptually only.

 Evidence Record Syntax in XML format is based on long term archive
 service requirements as defined in [RFC4810]. XMLERS syntax delivers
 the same (level of) non-repudiable proof of data existence as ASN.1
 ERS[RFC4998]. The XML syntax supports archive data grouping (and de-
 grouping) together with simple or complex Time-Stamp renewal
 processes. Evidence Records can be embedded in the data itself or
 stored separately as a standalone XML file.

1.2. General Overview and Requirements

 XMLERS specifies the XML syntax and processing rules for creating
 evidence for the long-term non-repudiation of existence and integrity
 of data in a unit called the "Evidence Record". The XMLERS syntax is
 defined to meet the requirements for data structures as set out in
 [RFC4810]. This document also refers to the ASN.1 ERS specification
 as defined in [RFC4998].

 An Evidence Record may be generated and maintained for a single data
 object or a group of data objects that form an archive object. A data
 object (binary chunk or a file) may represent any kind of document or
 part of it. Dependencies among data objects, their validation or any
 other relationship than "a data object is a part of particular
 archived object" are outside the scope of this draft.

 Evidence Record is closely related to Time-Stamping techniques.
 However, Time-Stamps as defined in [RFC3161], can cover only a single
 unit of data and do not provide processing rules for maintaining a
 long term stability of Time-Stamps applied over a data object.
 Evidence for an archive object is created by acquiring a Time-Stamp
 from a trustworthy authority for a specific value that is
 unambiguously related to a single or more data objects. Relationship
 between several data objects and a single time-stamped value is
 addressed using a hash tree, a technique first described by Merkle

Jerman Blazic, et. al. Expires July 24 2011 [Page 7]

https://datatracker.ietf.org/doc/html/rfc4998
https://datatracker.ietf.org/doc/html/rfc4810
https://datatracker.ietf.org/doc/html/rfc4810
https://datatracker.ietf.org/doc/html/rfc4998
https://datatracker.ietf.org/doc/html/rfc3161

Internet-Draft XMLERS January 2011

 [MER1980] and later in [RFC4998], with data structures and procedures
 as specified in this document. The Evidence Record Syntax enables
 processing of several archive objects within a single processing pass
 using a hash tree technique and acquiring only one Time-Stamp to
 protect all archive objects. The leaves of the hash tree are hash
 values of the data objects in a group. A timestamp is requested only
 for the root hash of the hash tree. The deletion of a data object in
 the tree does not influence the provability of others. For any
 particular data object, the hash tree can be reduced to a few sets of
 hash values, which are sufficient to prove the existence of a single
 data object. Similarly, the hash tree can be reduced to prove
 existence of a data group, provided all members of the data group
 have the same parent node in the hash tree. Archive Timestamps are
 comprised of an optional reduced hash tree and a timestamp.

 Besides a Time-Stamp other artifacts are also preserved in Evidence
 Record: data necessary to verify the relationship between a time-
 stamped value and a specific data object, packed into a structure
 called a "hash tree"; and long term proofs for the formal
 verification of included Time-Stamp(s).

 Due to the fact that digest algorithms or cryptographic methods used
 may become weak or that certificates used within a Time-Stamp (and
 signed data) may be revoked or expire, the collected evidence data
 must be monitored and renewed before such events occur. This document
 introduces XML based syntax and processing rules for the creation and
 continuous renewal of evidence data.

1.3. Terminology

 Archive data object: Data unit that is archived and has to be
 preserved for a long time by the Long-term Archive Service.

 Archive data object group: A set of archive data objects, which for
 some reason (logically) belong together, e.g. a group of document

Jerman Blazic, et. al. Expires July 24 2011 [Page 8]

https://datatracker.ietf.org/doc/html/rfc4998

Internet-Draft XMLERS January 2011

 files or a document file and a signature file could represent an
 archive data object group.

 Archive object: an archive data object or an archive data object
 group.

 Archive Time-Stamp (ATS): An Archive Time-Stamp contains a Time-Stamp
 Token, useful data for validation and optionally a set of ordered
 lists of hash values (a hash tree). An Archive Time-Stamp relates to
 a data object, if the hash value of this data object is part of the
 first hash value list of the Archive Time-Stamp or its hash value
 matches the time-stamped value. An Archive Time-Stamp relates to a
 data object group, if it relates to every data object of the group
 and no other data object (i.e. the hash values of all but no other
 data objects of the group are part of the first hash value list of
 the Archive Time-Stamp) (see section 3.).

 Archive Time-Stamp Chain (ATSC): holds a sequence of Archive Time-
 Stamps generated during the preservation period.

 Archive Time-Stamp Sequence (ATSSeq): is a sequence of Archive Time-
 Stamp Chains.

 Canonicalization: Processing rules for transforming an XML document
 into its canonical form. Two XML documents may have different
 physical representations, but they may have the same canonical form.
 For example a sort order of attributes does not change the meaning of
 the document as defined in [XMLC14N].

 Cryptographic Information: Data or part of data related to the
 validation process of signed data, e.g. digital certificates, digital
 certificate chains, certificate revocation lists, etc.

 Digest Method: Digest method is a digest algorithm, which is a strong
 one-way function, for which it is computationally infeasible to find
 an input that corresponds to a given output or to find two different

Jerman Blazic, et. al. Expires July 24 2011 [Page 9]

Internet-Draft XMLERS January 2011

 input values that correspond to the same output. A digest algorithm
 transforms input data into a short value of fixed length. The output
 is called digest value, hash value or data fingerprint.

 Evidence: Information that may be used to resolve a dispute about
 various aspects of authenticity, validity and existence of archived
 data objects.

 Evidence Record: Collection of evidence compiled for a given archive
 object over time. An Evidence Record includes ordered collection of
 ATSs, which are grouped into ATSCs and ATSSeqs.

 Long-term Archive Service (LTA): A service responsible for
 generation, collection and maintenance (renewal) of evidence data. A
 LTA service may also preserve data for long periods of time, e.g.
 storage of archive data and associated evidences.

 Hash Tree: Collection of hash values of protected objects (input data
 objects and generated evidence within archival period) that are
 unambiguously related to the time-stamped value within an Archive
 Time-Stamp.

 Time-Stamp Token (TS): A cryptographically secure confirmation
 generated by a Time-Stamping Authority (TSA) e.g. [RFC3161] which
 specifies a structure for Time-Stamps and a protocol for
 communicating with a Time-Stamp Authority. Besides this, other data
 structures and protocols may also be appropriate, such as defined in
 [ISO-18014-1.2002], [ISO-18014-2.2002], [ISO-18014-3.2004], and
 [ANSI.X9-95.2005].

1.4. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Jerman Blazic, et. al. Expires July 24 2011 [Page 10]

https://datatracker.ietf.org/doc/html/rfc3161
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft XMLERS January 2011

2. Evidence Record

 An Evidence Record is a unit of data that is to be used to prove the
 existence of an archive object (a single archive data object or a
 archive data object group) at a certain time. Through the lifetime of
 an archive object, an Evidence Record also demonstrates the data
 objects' integrity and non-repudiability. To achieve this,
 cryptographic means are used, i.e. the LTA obtains Time-Stamp Tokens
 from the Time-Stamping Authority (TSA). It is possible to store the
 Evidence Record separately from the archive object or to integrate it
 into the data itself.

 As cryptographic means are used to support Evidence Records, such
 records may lose their value over time. Time-Stamps obtained from
 Time-Stamping Authorities may become invalid for a number of reasons,
 usually due to time constraints of Time-Stamp validity or when
 cryptographic algorithms lose their security properties. Before the
 used Time-Stamp Tokens become unreliable, the Evidence Record has to
 be renewed. This may result in a series of Time-Stamp Tokens, which
 are linked between themselves according to the cryptographic methods
 and algorithms used.

 Evidence Records can be supported with additional information, which
 can be used to ease the processes of Evidence Record validation and
 renewal. Information such as digital certificates and certificate
 revocation lists as defined in [RFC5280] or other cryptographic
 material can be collected, enclosed and processed together with
 archive object data (i.e. time-stamped).

2.1. Structure

 The Evidence Record contains one or several Archive Time-Stamps
 (ATS). An ATS contains a Time-Stamp Token and optionally other useful
 data for Time-Stamp validation, e.g. certificates, CRLs (certificate
 revocation list) or OCSP (Online Certificate Status Protocol)
 responses and also specific attributes such as service policies.

Jerman Blazic, et. al. Expires July 24 2011 [Page 11]

https://datatracker.ietf.org/doc/html/rfc5280

Internet-Draft XMLERS January 2011

 Initially, an ATS is acquired and later, before it expires or becomes
 invalid a new ATS is acquired, which prolongs the validity of the
 archived object (its data objects together with all previously
 generated Archive Time-Stamps). This process MUST continue during the
 desired archiving period of the archive data object(s). A series of
 successive Archive Time-Stamps is collected in Archive Time-Stamp
 Chains and a series of chains in Archive Time-Stamp Sequence.

 In XML syntax the Evidence Record is represented by the
 <EvidenceRecord> root element, which has the following structure
 described in Pseudo-XML with the full XML schema defined in section

8. (where "?" denotes zero or one occurrences, "+" denotes one or
 more occurrences and "*" denotes zero or more occurrences):

 <EvidenceRecord Version>

 <EncryptionInformation>
 <EncryptionInformationType>
 <EncryptionInformationValue>
 </EncryptionInformation> ?
 <SupportingInformationList>
 <SupportingInformation Type /> +
 </ SupportingInformation> ?
 <ArchiveTimeStampSequence>
 <ArchiveTimeStampChain Order>
 <DigestMethod Algorithm />
 <CanonicalizationMethod Algorithm />
 <ArchiveTimeStamp Order>
 <HashTree /> ?
 <TimeStamp>
 <TimeStampToken Type />
 <CryptographicInformationList>
 <CryptographicInformation Order Type /> +
 </CryptographicInformationList> ?
 </TimeStamp>
 <Attributes>

Jerman Blazic, et. al. Expires July 24 2011 [Page 12]

Internet-Draft XMLERS January 2011

 <Attribute Order Type /> +
 </Attributes> ?
 </ArchiveTimeStamp> +
 </ArchiveTimeStampChain> +
 </ArchiveTimeStampSequence>
 </EvidenceRecord>

 The syntax of an evidence record is defined as an XML schema
 [XMLSchema], see Section 8. The schema uses the following XML
 namespace [XMLName] urn:ietf:params:xml:ns:ers as default namespace
 with a detailed xml schema header listed in section 8.

 The XML elements and attributes have the following meanings:

 The "Version" attribute MUST be included and indicates the syntax
 version, for compatibility with future revisions of this
 specification and to distinguish it from earlier non-conformant or
 proprietary versions of the XMLERS. Current version of the XMLERS
 syntax is 1.0. The used versioning scheme is described in detail in

section 6. <EncryptionInformation> element is OPTIONAL and holds
 information on cryptographic algorithms and cryptographic material
 used to encrypt archive data (in case archive data is encrypted
 e.g. for privacy purposes). This optional information is needed to
 unambiguously re-encrypt data objects when processing Evidence
 Records. When omitted, data objects are not encrypted or non-
 repudiation proof is not needed for the unencrypted data. Details
 on how to process encrypted archive data and generate Evidence
 Record(s) are described in Section 5.

 <SupportingInformationList> element is OPTIONAL and can hold
 information to support processing of Evidence Records. An example
 of this supporting information may be a processing policy, like a
 cryptographic policy (e.g. [RFC5698]) or archiving policies, which
 can provide input about preservation and evidence validation. Each
 data object is put into a separate child element
 <SupportingInformation>, with an OPTIONAL Type attribute to

Jerman Blazic, et. al. Expires July 24 2011 [Page 13]

https://datatracker.ietf.org/doc/html/rfc5698

Internet-Draft XMLERS January 2011

 indicate its type for processing directions. As outlined, Types to
 be used must be defined in the specification of the information
 structure to be stored or in this standard. As outlined in section

9.4 Cryptographic information may also be stored in the
 SupportingInformation element, in which case its in section 3.1.3
 defined type MUST be used. Or as defined in section 7 cryptographic
 policies [RFC5698] MAY be stored, in which case the used type is
 defined in the relevant RFC. Note that if supporting information
 and policies are relevant for and already available at or before
 the time of individual renewal steps (e.g. to indicate the DSSC
 crypto policy [RFC5698]) that was used at the time of the
 individual renewal) they SHOULD be stored in the <Attributes>
 element of the individual Archive Time-Stamp (see below) as this is
 integrity protected by the Archive Time-Stamps. Supporting
 information that is relevant for the whole Evidence Record (like
 the LTA's current Cryptographic Algorithms Security Suitability
 policy (DSSC, [RFC5698]) or that was not available at the time of
 renewal (and therefore could not later be stored in the protected
 <Attributes> element, can be stored in this <SupportingInformation>
 element.

 <ArchiveTimeStampSequence> is REQUIRED and contains a sequence of
 one or more <ArchiveTimeStampChain>.

 <ArchiveTimeStampChain> is a REQUIRED element that holds a sequence
 of Archive Time-Stamps generated during the preservation period.
 Details on Archive Time-Stamp Chains and Archive Time-Stamp
 Sequences are described in section 4. The sequences of Archive
 Time-Stamp Chains and Archive Time-Stamps MUST be ordered and the
 order MUST be indicated with "Order" attribute of the
 <ArchiveTimeStampChain> and <ArchiveTimeStamp> element.

 <DigestMethod> is a REQUIRED element and contains an attribute
 "Algorithm" that identifies the digest algorithm used within one
 Archive Time-Stamp chain to calculate digest values from archive

Jerman Blazic, et. al. Expires July 24 2011 [Page 14]

https://datatracker.ietf.org/doc/html/rfc5698
https://datatracker.ietf.org/doc/html/rfc5698
https://datatracker.ietf.org/doc/html/rfc5698

Internet-Draft XMLERS January 2011

 data object(s), previous Archive Time-Stamp sequence, Time-Stamps
 and within a Time-Stamp Token.

 <CanonicalizationMethod> is a REQUIRED element that specifies which
 canonicalization algorithm is applied to the archive data for XML
 data objects, <ArchiveTimeStampSequence> or <TimeStamp> elements
 prior to performing digest value calculations.

 <HashTree> is an OPTIONAL element that holds a structure as
 described in section 3.1.1.

 <TimeStamp> is REQUIRED and holds a <TimeStampToken> element with a
 Time-Stamp Token (as defined in section 3.1.2.) provided by the
 Time-Stamping Authority and an OPTIONAL element
 <CryptographicInformationList>.

 <CryptographicInformationList> is an OPTIONAL element that allows
 the storage of data needed in the process of Time-Stamp Token
 validation in case when such data is not provided by the Time-Stamp
 Token itself. This could include possible trust anchors,
 certificates, revocation information or the current definition of
 the suitability of cryptographic algorithms, past and present. Each
 data object is put into a separate child element
 <CryptographicInformation>, with a REQUIRED Order attribute to
 indicate the order within its parent element. These items may be
 added based on the policy used. This data is protected by
 successive Time-Stamps in the sequence of the Archive Time-Stamps.

 <Attributes> element is OPTIONAL and contains additional
 information that may be provided by an LTA used to support
 processing of Evidence Records. An example of this supporting
 information may be a processing policy, like a renewal, a
 cryptographic (e.g. [RFC5698]) or an archiving policy. Such
 policies can provide inputs, which are relevant for data object(s)
 preservation and evidence validation at a later stage. Each data
 object is put into a separate child element <Attribute>, with a

Jerman Blazic, et. al. Expires July 24 2011 [Page 15]

https://datatracker.ietf.org/doc/html/rfc5698

Internet-Draft XMLERS January 2011

 REQUIRED Order attribute to indicate the order within the parent
 element and an OPTIONAL Type attribute to indicate processing
 directions. The Type to be used must be defined in the
 specification of the information structure. For example, the type
 to be used when storing a cryptographic policy [RFC5698] is defined
 in [RFC5698, section A.2].

 The Order attribute is REQUIRED in all cases when one or more XML
 elements with the same name occur on the same level in the XMLERS'
 <ArchiveTimeStampSequence> structure. Although most of the XML
 parsers will preserve the order of the sibling elements having the
 same name, within XML structure there is no definition how to
 unambiguously define such order. Preserving the correct order in
 such cases is of significant importance for digest value
 calculations over XML structures.

2.2. Generation

 The generation of an <EvidenceRecord> element MUST be as follows:

 1. Select an archive object (a data object or a data object group) to
 archive.

 2. Create the initial <ArchiveTimeStamp>. This is the first ATS
 within the initial <ArchiveTimeStampChain> element of the
 <ArchiveTimeStampSequence> element.

 3. Refresh the <ArchiveTimeStamp> when necessary by Time-Stamp
 Renewal or Hash Tree Renewal (see Section 4.).

 The Time-Stamping service may be, for a large number of archived
 objects, expensive and time-demanding, so the LTA may benefit from
 acquiring one Time-Stamp Token for many archived objects, which are
 not otherwise related to each other. It is possible to collect many
 archive objects, build a hash tree to generate a single value to be
 time-stamped, and respectively reduce that hash tree to small subsets

Jerman Blazic, et. al. Expires July 24 2011 [Page 16]

https://datatracker.ietf.org/doc/html/rfc5698

Internet-Draft XMLERS January 2011

 that for each archive object provide necessary binding with the time-
 stamped hash value (see Section 3.2.1).

 For performance reasons or in case of local Time-Stamp generation,
 building a hash tree (<HashTree> element) can be omitted. It is also
 possible to convert existing Time-Stamps into an ATS for renewal.

 The case when only essential parts of documents or objects shall be
 protected is out of scope for this standard, and an application that
 is not defined in this draft must ensure that the correct unambiguous
 extraction of binary data is made for the generation of Evidence
 Record.

 An application may also provide evidence such as certificates,
 revocation lists etc., needed to verify and validate signed data
 objects or a data object group. This evidence may be added to the
 archived object data group and will be protected within initial (and
 successive) Time-Stamp(s).

 Note that the <CryptographicInformationList> element of Evidence
 Record is not to be used to store and protect cryptographic material
 related to signed archive data. The use of this element is limited to
 cryptographic material related to TS(s).

2.3. Verification

 The overall verification of an Evidence Record MUST be as follows:

 1. Select an archive object (a data object or a data object group)

 2. Re-encrypt data object or data object group, if encryption field
 is used (for details, see Section 5.).

 3. Verify Archive Timestamp Sequence (details in Section 3.3. and
Section 4.3.).

Jerman Blazic, et. al. Expires July 24 2011 [Page 17]

Internet-Draft XMLERS January 2011

3. Archive Time-Stamp

 An Archive Time-Stamp is a timestamp with additional artifacts that
 allow the verification of the existence of several data objects at a
 certain time.

 The process of construction of an ATS must support evidence on a long
 term basis and prove that the archive object existed and was
 identical, at the time of the Time-Stamp, to the currently present
 archive object (at the time of verification). To achieve this, an ATS
 MUST be renewed before it becomes invalid (which may happen for
 several reasons such as e.g. weakening used cryptographic algorithms,
 invalidation of digital certificate or a TSA terminating its business
 or ceasing its service).

3.1. Structure

 An Archive Time-Stamp contains a Time-Stamp Token, with useful data
 for its validation (cryptographic information), such as the
 certificate chain or certificate revocation lists, an optional
 ordered set of ordered lists of hash values (a hash tree) that were
 protected with the Time-Stamp Token and optional information
 describing the renewal steps (<Attributes> element). A hash tree may
 be used to store data needed to bind the time-stamped value with
 protected objects by the Archive Time-Stamp. If a hash tree is not
 present, the ATS simply refers to a single object; either input data
 object or a previous TS.

3.1.1. Hash Tree

 Hash tree structure is an optional container for significant values,
 needed to unambiguously relate a time-stamped value to protected data
 objects, and is represented by the <HashTree> element. The root hash

Jerman Blazic, et. al. Expires July 24 2011 [Page 18]

Internet-Draft XMLERS January 2011

 value that is generated from the values of the hash tree MUST be the
 same as the time-stamped value.

 <HashTree>
 <Sequence Order>
 <DigestValue>base64 encoded hash value</DigestValue> +
 </Sequence> +
 </HashTree>

 The algorithm by which a root hash value is generated from the
 <HashTree> element is as follows: the content of each <DigestValue>
 element within the first <Sequence> element is base64 ([RFC4648],
 using the base64 alphabet not the base64url alphabet) decoded to
 obtain a binary value (representing the hash value). All collected
 hash values from the sequence are ordered in binary ascending order,
 concatenated and a new hash value is generated from that string. With
 one exception from this rule: when the first <Sequence> element has
 only one <DigestValue> element, then its binary value is added to the
 next list obtained from the next <Sequence> element.

 The newly calculated hash value is added to the next list of hashes
 obtained from the next <Sequence> element and the previous step is
 repeated until there is only one hash value left, i.e. when there are
 no <Sequence> elements left. The last calculated hash value is the
 root hash value. When an archive object is a group and composed of
 more than one data object, the first hash list MUST contain the hash
 values of all its data objects.

 When a single Time-Stamp is obtained for a set of archive objects,
 the LTA MUST construct a hash tree to generate a single hash value to
 bind all archive objects from that group and then a reduced hash tree
 MUST be calculated from the hash tree for each archive object
 respectively (see Section 3.2.1).

 For example: A SHA-1 digest value is a 160-bit string. The text value
 of the <DigestValue> element shall be the base64 encoding of this bit

Jerman Blazic, et. al. Expires July 24 2011 [Page 19]

https://datatracker.ietf.org/doc/html/rfc4648

Internet-Draft XMLERS January 2011

 string viewed as a 20-octet octet stream. And to continue the
 example, using an example message digest value of
 A9993E364706816ABA3E25717850C26C9CD0D89D (note this is a HEX encoded
 value of the 160-bit message digest). Its base64 representation would
 be: <DigestValue>qZk+NkcGgWq6PiVxeFDCbJzQ2J0=</DigestValue>

3.1.2. Time-Stamp

 Time-Stamp Token is an attestation generated by a TSA that a data
 item existed at a certain time. The Time-Stamp Token is a signed data
 object that contains the hash value, the identity of the TSA, and the
 exact time (obtained from trusted time source) of Time-Stamping. This
 proves that the given data existed before the time of Time-Stamping.
 For example, [RFC3161] specifies a structure for signed Time-Stamp
 Tokens in ASN.1 format. Since at the time being there is no standard
 for an XML Time-Stamp, the following structure example is provided
 [TS-ENTRUST], which is a digital signature compliant to [XMLDSig]
 specification containing Time-Stamp specific data, such as time-
 stamped value and time within <Object> element of a signature.

 <element name="TimeStampInfo">
 <complexType>
 <sequence>
 <element ref="Policy" />
 <element ref="Digest" />
 <element ref="SerialNumber" minOccurs="0" />
 <element ref="CreationTime" />
 <element ref="Accuracy" minOccurs="0" />
 <element ref="Ordering" minOccurs="0" />
 <element ref="Nonce" minOccurs="0" />
 <element ref="Extensions" minOccurs="0" />
 </sequence>
 </complexType>
 </element>

Jerman Blazic, et. al. Expires July 24 2011 [Page 20]

https://datatracker.ietf.org/doc/html/rfc3161

Internet-Draft XMLERS January 2011

 A <TimeStamp> element of ATS holds a complete structure of Time-Stamp
 Token as provided by a TSA. Time-Stamp Token may be in XML or ASN.1
 format. The Attribute type MUST be used to indicate the format for
 processing purposes, with values "XMLENTRUST" or "RFC3161"
 respectively. For an RFC3161 type Time-Stamp Token, the <TimeStamp>
 element MUST contain base64 encoding of a DER-encoded ASN1 data.
 These type values are registered by IANA (see Section 10). For
 support of future types of timestamps (in particular for future XML
 time-stamp standards), these need to be registered there as well.

 For example:

 <TimeStamp Type="RFC3161">MIAGCSqGSIb3DQEH...</TimeStamp>

 or

 <TimeStamp Type="XMLENTRUST"><dsig:Signature>...</dsig:Signature>
 </TimeStamp>.

3.1.3. Cryptographic Information List

 Digital certificates, CRLs (Certificate Revocation List), SCVP
 (Server-based Certificate Validation Protocol) or OCSP-Responses
 (Online Certificate Status Protocol) needed to verify the Time-Stamp
 Token SHOULD be stored in the Time-Stamp Token itself. When this is
 not possible, such data MAY be stored in the
 <CryptographicInformationList> element, each data object is stored
 into a separate <CryptographicInformation> element, with a REQUIRED
 Order attribute.

 The attribute Type is REQUIRED and is used to store processing
 information about the type of stored cryptographic information. The
 Type attribute MUST use a value registered with IANA, as identifiers:
 CRL, OCSP, SCVP or CERT, and for each type the content MUST be
 encoded respectively:

Jerman Blazic, et. al. Expires July 24 2011 [Page 21]

https://datatracker.ietf.org/doc/html/rfc3161
https://datatracker.ietf.org/doc/html/rfc3161
https://datatracker.ietf.org/doc/html/rfc3161

Internet-Draft XMLERS January 2011

 o for type CRL, a base64 encoding of a DER-encoded X.509 CRL
 [RFC5280];

 o for type OCSP, a base64 encoding of a DER-encoded OCSPResponse
 [RFC2560];

 o for type SCVP, a base64 encoding of a DER-encoded CVResponse;
 [RFC5055];

 o for type CERT, a base64 encoding of a DER-encoded X.509
 certificate [RFC5280];.

 The supported type identifiers are registered by IANA (see Section
10). Future supported types can be registered there (for example to

 support future validation standards).

3.2. Generation

 An initial ATS relates to a data object or a data object group that
 represents an archive object. The generation of the initial ATS
 element can be done in a single process pass for one or for many
 archived objects. It MUST be done as described in the following
 steps:

 1. Collect one or more archive objects to be time-stamped.

 2. Select a canonicalization method C to be used for obtaining binary
 representation of archive data and for Archive Time-Stamp at a
 later stage in the renewing process (see section 4). Note that the
 selected canonicalization method MUST be used also for archive
 data when data is represented in XML format.

 3. Select a valid digest algorithm H. The selected secure hash
 algorithm MUST be the same as the hash algorithm used in the Time-
 Stamp Token and for the hash tree computations.

Jerman Blazic, et. al. Expires July 24 2011 [Page 22]

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc2560
https://datatracker.ietf.org/doc/html/rfc5055
https://datatracker.ietf.org/doc/html/rfc5280

Internet-Draft XMLERS January 2011

 4. Generate a hash tree for selected archive object (see 3.2.1).

 The hash tree may be omitted in the initial ATS, when an archive
 object has a single data object; then the time-stamped value MUST
 match the digest value of that single data object.

 5. Acquire Time-Stamp token from TSA for root hash value of a hash
 tree (see 3.1.1). If the Time-Stamp token is valid, the initial
 Archive Time-Stamp may be generated.

3.2.1. Generation of Hash Tree

 The <DigestValue> elements within the <Sequence> element MUST be
 ordered in binary ascending order to ensure the correct calculation
 of digest values at the time of renewal and later for verification
 purposes. Note, that the text value of <DigestValue> element is
 base64 encoded, so it MUST be base64 decoded in order to obtain a
 binary representation of the hash value.

 A hash tree MUST be generated when the time-stamped value is not
 equal to the hash value of the input data object. This is the case
 when either of the following is true:

 1. When an archive object has more than one data object (i.e. is an
 archive data object group), its digest value is the digest value
 of binary ascending ordered and concatenated digest values of all
 its containing data objects. Note that in this case the first list
 of the hash tree MUST contain hash values of all data objects and
 only those values.

 2. When for more than one archive object a single Time-Stamp Token is
 generated, then the hash tree is a reduced hash tree extracted
 from the hash tree for that archive object (see Section 3.2.2).

 The hash tree for a set of archive objects is built from the leaves
 to the root. First the leaves of the tree are collected, each leaf

Jerman Blazic, et. al. Expires July 24 2011 [Page 23]

Internet-Draft XMLERS January 2011

 representing the digest value of an archive object. You MUST use the
 following procedure to calculate the hash tree:

 1. Collect archive objects and for each archive object its
 corresponding data objects.

 2. Choose a secure hash algorithm H and calculate the digest values
 for the data objects and put them into the input list for the hash
 tree as follows: a digest value of an archive object is the digest
 value of its data object, if there is only one data object in the
 archive object; if there are more than one data objects in the
 archive object (i.e. it is an archive data object group) the
 digest value is the digest value of binary sorted, concatenated
 digest values of all its containing data objects.

 Note that for an archive object group (having more than one data
 object), lists of their sub-digest values are stored and later,
 when creating a reduced hash tree for that archive object, they
 will become members of the first hash list.

 3. Group together items in the input list by the order of N (e.g. for
 a binary tree group in pairs, for a tertiary tree group in
 triplets and so forth) and for each group: binary ascending sort,
 concatenate and calculate the hash value. The result is a new
 input for the next list. For improved processing it is RECOMMENDED
 to have the same number of children for each node. For this
 purpose you MAY extend the tree with arbitrary values to make
 every node have the same number of children.

 4. Repeat step 3, until only one digest value is left; this is the
 root value of the hash tree, which is time-stamped.

 Note that the selected secure hash algorithm MUST be the same as the
 one defined in the <DigestMethod> element of the ATSChain.

Jerman Blazic, et. al. Expires July 24 2011 [Page 24]

Internet-Draft XMLERS January 2011

 Example: An input list with 18 hash values, where the h'1 is
 generated for a group of data objects (d4, d5, d6 and d7) and has
 been grouped by 3. The group could be of any size (2, 3...). Note,
 the addition of the arbitrary values h''6 and h'''3 are OPTIONAL and
 can be used for improved processing as outlined in step 3 above.

Jerman Blazic, et. al. Expires July 24 2011 [Page 25]

Internet-Draft XMLERS January 2011

 d1 -> h1 \
 \
 G1 d2 -> h2 |-> h''1
 +--------+ / \
 |d4 -> h4|\ d3 -> h3 / \
d5 -> h5	\ ----------	
		-> h'1\
d6 -> h6	/ \	
d7 -> h7	/ d8 -> h8	-> h''2
 +--------+ / | \
 d9 -> h9 / | \
 ---------- | |
 d10 -> h10\ / |
 \ / |
 d11 -> h11 |-> h''3 |
 / |
 d12 -> h12/ |-> root hash value
 ---------- |
 d13 -> h13\ |
 \ |
 d14 -> h14 |-> h''4 |
 / \ |
 d15 -> h15/ \ |
 ---------- |-> h'''2 |
 d16 -> h16\ | |
 \ | |
 d17 -> h17 |-> h''5 | |
 / | |
 d18 -> h18/ | |
 ---------- / |
 / /
 (any arbitrary) h''6 /
 (any arbitrary) h'''3

 Figure 1 Generation of the Merkle Hash Tree.

Jerman Blazic, et. al. Expires July 24 2011 [Page 26]

Internet-Draft XMLERS January 2011

 Note that there are no restrictions on the quantity of hash value
 lists and of their length. Also note that it is beneficial but not
 required to build hash trees and reduce hash trees. An Archive Time-
 Stamp may consist only of one list of hash values and a Time-Stamp or
 in an extreme case only a Time-Stamp with no hash value lists.

3.2.2. Reduction of hash tree

 The generated Merkle hash tree can be reduced to lists of hash
 values, necessary as a proof of existence for a single archive object
 as follows:

 1. For a selected archive object (AO) select its hash value h within
 the leaves of the hash tree.

 2. Put h as base64 encoded text value of a new <DigestValue> element
 within a first <Sequence> element. If the selected archive object
 AO is a data object group (i.e. has more than one data object),
 the first <Sequence> element MUST in this case be formed from the
 hash values of all AO's data objects, each within a separate
 <DigestValue> element.

 3. Select all hash values, which have the same father node as hash
 value h. Place these hash values each as a base64 encoded text
 value of a new <DigestValue> element within a new <Sequence>
 element, increasing its Order attribute value by 1.

 4. Repeat step 3 for the parent node until the root hash value is
 reached, with each step create a new <Sequence> element and
 increase its Order attribute by one. Note that node values are not
 saved as they are computable.

 The order of <DigestValue> elements within each <Sequence> element
 MUST be binary ascending (by base64 decoded values).

Jerman Blazic, et. al. Expires July 24 2011 [Page 27]

Internet-Draft XMLERS January 2011

 Reduced hash tree for data object d4 (from the previous example,
 presented in Figure 1):

 <HashTree>
 <Sequence Order='1'>
 <DigestValue>base64 encoded h4</DigestValue>
 <DigestValue>base64 encoded h5</DigestValue>
 <DigestValue>base64 encoded h6</DigestValue>
 <DigestValue>base64 encoded h7</DigestValue>
 </Sequence>
 <Sequence Order='2'>
 <DigestValue>base64 encoded h8</DigestValue>
 <DigestValue>base64 encoded h9</DigestValue>
 </Sequence>
 <Sequence Order='3'>
 <DigestValue>base64 encoded h''1</DigestValue>
 <DigestValue>base64 encoded h''3</DigestValue>
 </Sequence>
 <Sequence Order='4'>
 <DigestValue>base64 encoded h'''2</DigestValue>
 </Sequence>
 </HashTree>

 Reduced Hash tree for data object d2 (from the previous example,
 presented in Figure 1):

 <HashTree>
 <Sequence Order='1'>
 <DigestValue>base64 encoded h2</DigestValue>
 </Sequence>
 <Sequence Order='2'>
 <DigestValue>base64 encoded h1</DigestValue>
 <DigestValue>base64 encoded h3</DigestValue>
 </Sequence>
 <Sequence Order='3'>
 <DigestValue>base64 encoded h''2</DigestValue>

Jerman Blazic, et. al. Expires July 24 2011 [Page 28]

Internet-Draft XMLERS January 2011

 <DigestValue>base64 encoded h''3</DigestValue>
 </Sequence>
 <Sequence Order='4'>
 <DigestValue>base64 encoded h'''2</DigestValue>
 </Sequence>
 </HashTree>

3.3. Verification

 The initial Archive Timestamp shall prove that an archive object
 existed at a certain time, indicated by its Time-Stamp token. The
 verification procedure MUST be as follows:

 1. Identify hash algorithm H (from <DigestMethod> element) and
 calculate the hash value for each data object of the archive
 object.

 2. If the hash tree is present, search for hash values in the first
 <Sequence> element. If hash values are not present, terminate
 verification process with negative result. If the verifying party
 also seeks additional proof that the Archive Time-Stamp relates to
 a data object group (e.g. a document and all its digital
 signatures), it SHOULD also be verified that only the hash values
 of the data objects that are members of the given data object
 group are in the first hash value list.

 3. If the hash tree is present, calculate its root hash value.
 Compare the root hash value with the time-stamped value. If they
 are not equal, terminate the verification process with negative
 result.

 4. If the hash tree is omitted, compare the hash value of the single
 data object with the time-stamped value. If they are not equal,
 terminate the verification process with negative result. If an

Jerman Blazic, et. al. Expires July 24 2011 [Page 29]

Internet-Draft XMLERS January 2011

 archive object is having more data objects and the hash tree is
 omitted, also exit with negative result.

 5. Check the validity of the Time-Stamp token. If the needed
 information to verify formal validity of the Time-Stamp token is
 not available or found within the <TimeStampToken> element or
 within <CryptographicInformationList> element or in
 <SupportingInformationList> (see section 9.4), exit with a
 negative result.

 Information for formal verification of the Time-Stamp token includes
 digital certificates, Certificate Revocation Lists, Online
 Certificate Status Protocol responses, etc. This information needs to
 be collected prior to the Time-Stamp renewal process and protected
 with the succeeding Time-Stamp, i.e. included in the <TimeStampToken>
 or <CryptographicInformation> element (see section 9.4 for additional
 information and section 4.2.1 for details on Time-Stamp renewal
 process). For the current (latest) Time-Stamp), information for
 formal verification of the (latest) Time-Stamp should be provided by
 the Time-Stamping Authority. This information can also be provided
 with the Evidence Record within <SupportingInformation> element,
 which is not protected by any Time-Stamp.

4. Archive Time-Stamp Sequence and Archive Time-Stamp Chain

 An Archive Time-Stamp proves the existence of single data objects or
 a data object group at a certain time. However, the initial Evidence
 Record created can become invalid due to loosing the validity of the
 Time-Stamp Token for a number of reasons: hash algorithms or public
 key algorithms used in its hash tree or the Time-Stamp may become
 weak or the validity period of the timestamp authority certificate
 expires or is revoked.

 To preserve the validity of an Evidence Record before such events
 occur, the Evidence Record has to be renewed. This can be done by
 creating a new ATS. Depending on the reason for renewing the Evidence

Jerman Blazic, et. al. Expires July 24 2011 [Page 30]

Internet-Draft XMLERS January 2011

 Record (the Time-Stamp becomes invalid or the hash algorithm of the
 hash tree becomes weak) two types of renewal processes are possible:

 o Time-Stamp renewal: For this process a new Archive Time-Stamp is
 generated, which is applied over the last Time-Stamp created. The
 process results in a series of Archive Time-Stamps which are
 contained within a single Archive Time-Stamp Chain (ATSC).

 o Hash Tree renewal: For this process a new Archive Time-Stamp is
 generated, which is applied to all existing Time-Stamps and data
 objects. The newly generated Archive Time-Stamp is placed in a new
 Archive Time-Stamp Chain. The process results in a series of
 Archive Time-Stamp Chains which are contained within a single
 Archive Time-Stamp Sequence (ATSS).

 After the renewal process, only the most recent (i.e. the last
 generated) Archive Time-Stamp has to be monitored for expiration or
 validity loss.

4.1. Structure

 Archive Time-Stamp Chain and Archive Time-Stamp Sequence are
 containers for sequences of archive Time-Stamp(s) which are generated
 through renewal processes. The renewal process results in a series of
 Evidence Record elements: <ArchiveTimeStampSequence> element contains
 an ordered sequence of <ArchiveTimeStampChain> elements and
 <ArchiveTimeStampChain> element contains an ordered sequence of
 <ArchiveTimeStamp> elements. Both elements MUST be sorted by time of
 the Time-Stamp in ascending order. Order is indicated by the Order
 attribute.

 When an Archive Time-Stamp must be renewed, a new <ArchiveTimeStamp>
 element is generated and depending on the generation process, it is
 either placed:

Jerman Blazic, et. al. Expires July 24 2011 [Page 31]

Internet-Draft XMLERS January 2011

 o as the last <ArchiveTimeStamp> child element in a sequence of the
 last <ArchiveTimeStampChain> element in case of Time-Stamp renewal
 or

 o as the first <ArchiveTimeStamp> child element in a sequence of the
 newly created <ArchiveTimeStampChain> element in case of hash tree
 renewal.

 The ATS with the largest Order attribute value within the ATSC with
 the largest Order attribute value is the latest ATS and MUST be valid
 at the present time.

4.1.1. Digest Method

 Digest method is a required element that identifies the digest
 algorithm used to calculate hash values of archive data (and node
 values of hash tree). The digest method is specified in the
 <ArchiveTimeStampChain> element by the required <DigestMethod>
 element and indicates the digest algorithm that MUST be used for all
 hash value calculations related to the Archive Time-Stamps within the
 Archive Time-Stamp chain.

 The Algorithm attribute contains URIs [RFC3986] for identifiers which
 MUST be used as defined in [RFC3275] and [RFC4051]. For example when
 the SHA-1 algorithm is used, the algorithm identifier is:

 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 Within a single ATSC the digest algorithms used for the hash trees of
 its Archive Time-Stamps and the Time-Stamp Token(s) MUST be the same.
 When algorithms used by a TSA are changed (e.g. upgraded) a new ATSC
 MUST be started using an equal or stronger digest algorithm.

Jerman Blazic, et. al. Expires July 24 2011 [Page 32]

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3275
https://datatracker.ietf.org/doc/html/rfc4051

Internet-Draft XMLERS January 2011

4.1.2. Canonicalization Method

 Prior to hash value calculations of an XML element, a proper binary
 representation must be extracted from its (abstract) XML data
 presentation. The binary representation is determined by UTF-8
 [RFC3629] encoding and canonicalization of the XML element. The XML
 element includes the entire text of the start and end tags as well as
 all descendant markup and character data (i.e. the text and sub-
 elements) between those tags.

 <CanonicalizationMethod> is a required element that identifies the
 canonicalization algorithm used to obtain binary representation of an
 XML element(s). Algorithm identifiers (URIs) MUST be used as defined
 in [RFC3275] and [RFC4051]. For example when Canonical XML 1.0 (omits
 comments) is used, algorithm identifier is

 <CanonicalizationMethod Algorithm=" http://www.w3.org/TR/2001/REC-
 xml-c14n-20010315"/>.

 Canonicalization MUST be applied over XML structured archive data and
 MUST be applied over elements of Evidence Record (namely ATS and ATSC
 in the renewing process).

 The canonicalization method is specified in the <Algorithm> attribute
 of the <CanonicalizationMethod> element within the
 <ArchiveTimeStampChain> element and indicates the canonicalization
 method that MUST be used for all binary representations of the
 Archive Time-Stamps within that Archive Time-Stamp chain. In case of
 succeeding ATSC the canonicalization method indicated within the ATSC
 must also be used for the calculation of the digest value of the
 preceding ATSC. Note that the canonicalization method is unlikely to
 change over time as it does not impose the same constrains as the
 digest method. In theory, the same canonicalization method can be
 used for a whole Archive Time-Stamp Sequence. Although alternative
 canonicalization methods may be used, it is recommended to use c14n-
 20010315 [XMLC14N].

Jerman Blazic, et. al. Expires July 24 2011 [Page 33]

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3275
https://datatracker.ietf.org/doc/html/rfc4051
http://www.w3.org/TR/2001/REC-

Internet-Draft XMLERS January 2011

4.2. Generation

 Before the cryptographic algorithms used within the most recent
 Archive Time-Stamp become weak or the Time-Stamp certificates are
 invalidated, the LTA has to renew the Archive Time-Stamps by
 generating a new Archive Time-Stamp using one of two procedures:
 time-stamp renewal or hash tree renewal.

4.2.1. Time-Stamp Renewal

 In case of Time-Stamp renewal, i.e. if the digest algorithm (H) to be
 used in the renewal process is the same as digest algorithm (H') used
 in the last Archive Time-Stamp, the complete content of the last
 <TimeStamp> element MUST be time-stamped and new <ArchiveTimeStamp>
 element created as follows:

 1. If the current <ArchiveTimeStamp> element does not contain needed
 proof for long-term formal validation of its Time-Stamp Token
 within the <TimeStamp> element, collect needed data such as root
 certificates, certificate revocation lists, etc., and include them
 in <CryptographicInformationList> element of the last Archive
 Time-Stamp (each data object into a separate
 <CryptographicInformation> element).

 2. Select canonicalization method from <CanonicalizationMethod>
 element and select digest algorithm from <DigestMethod> element.
 Calculate hash value from binary representation of the <TimeStamp>
 element of the last <ArchiveTimeStamp> element including added
 cryptographic information. Acquire the Time-Stamp for the
 calculated hash value. If the Time-Stamp is valid, the new Archive
 Time-Stamp may be generated.

 3. Increase the value order of the new ATS by one and place the new
 ATS into the last <ArchiveTimeStampChain> element.

Jerman Blazic, et. al. Expires July 24 2011 [Page 34]

Internet-Draft XMLERS January 2011

 The new ATS and its hash tree MUST use the same digest algorithm as
 the preceding one, which is specified in the <DigestMethod> element
 within <ArchiveTimeStampChain> element. Note that the new ATS MAY not
 contain a hash tree. However, Time-Stamp Renewal process may be
 optimized to acquire one Time-Stamp for many Archive Time-Stamps
 using a hash tree. Note that each hash of the <TimeStamp> element is
 treated as the document hash in Section 3.2.1.

4.2.2. Hash Tree Renewal

 The process of hash tree renewal occurs when the new digest algorithm
 is different to the one used in the last Archive Time-Stamp (H <>
 H'). In this case the complete Archive Time-Stamp Sequence and the
 archive data objects covered by existing Archive Time-stamp must be
 time-stamped as follows:

 1. Select one or more archive objects to be renewed and their current
 <ArchiveTimeStamp> elements.

 2. For each archive object check the current <ArchiveTimeStamp>
 element. If it does not contain the proof needed for long-term
 formal validation of its Time-Stamp Token within the Time-Stamp
 Token, collect the needed data such as root certificates,
 certificate revocation lists, etc., and include them in the
 <CryptographicInformationList> element of the last Archive Time-
 Stamp (each data object into a separate <CryptographicInformation>
 element).

 3. Select a canonicalization method C and select a new secure hash
 algorithm H.

 4. For each archive object select its data objects d(i). Generate
 hash values h(i) = H(d(i)), for example: h(1), h(2).., h(n).

Jerman Blazic, et. al. Expires July 24 2011 [Page 35]

Internet-Draft XMLERS January 2011

 5. For each archive object calculate a hash hseq=H(ATSSeq) from
 binary representation of the <ArchiveTimeStampSequence> element,
 corresponding to that archive object. Note that Archive Time-Stamp
 Chains and Archive Time-Stamps MUST be chronologically ordered,
 each respectively to its Order attribute, and that the
 canonicalization method C MUST be applied.

 6. For each archive object sort in binary ascending order and
 concatenate all h(i) and the hseq. Generate a new digest value
 h(j)=H(h(1)..h(n),hseq).

 7. Build a new Archive Time-Stamp for each h(j) (hash tree generation
 and reduction is defined in sections 3.2.1. and 3.2.2.). Note that
 each h(j) is treated as the document hash in section 3.2.1. The
 first hash value list in the reduced hash tree should only contain
 h(i) and hseq.

 8. Create the new <ArchiveTimeStampChain> containing the new
 <ArchiveTimeStamp> element (with order number 1), and place it
 into the existing <ArchiveTimeStampSequence> as a last child with
 the order number increased by one.

 Example for an archive object with 3 data objects: Select a new hash
 algorithm and canonicalization method. Collect all 3 data objects and
 currently generated Archive Time-Stamp sequence.

 AO

 / | \

 d1 d2 d3

 ATSSeq

Jerman Blazic, et. al. Expires July 24 2011 [Page 36]

Internet-Draft XMLERS January 2011

 ATSChain1: ATS0, ATS1

 ATSChain2: ATS0, ATS1, ATS2

 The hash values MUST be calculated with the new hash algorithm H for
 all data objects and for the whole ATSSeq. Note, that ATSSeq MUST be
 chronologically ordered and canonicalized before retrieving its
 binary representation.

 When generating the hash tree for the new ATS, the first sequence
 become values: H(d1), H(d2),..., H(dn), H(ATSSeq). Note: hash values
 MUST be sorted in binary ascending order.

 <HashTree>
 <Sequence Order='1'>
 <DigestValue>H(d1)</DigestValue>
 <DigestValue>H(d2)</DigestValue>
 <DigestValue>H(d3)</DigestValue>
 <DigestValue>H(ATSSeq)</DigestValue>
 </Sequence>
 </HashTree>

 Note that if the group processing is being performed, the hash value
 of the concatenation of the first sequence is an input hash value
 into the hash tree.

4.3. Verification

 An Evidence Record shall prove that an archive object existed and has
 not been changed from the time of the initial Time-Stamp Token within
 the first ATS. In order to complete the non-repudiation proof for an
 archive object, the last ATS has to be valid and ATSCs and their
 relations to each other have to be proved:

Jerman Blazic, et. al. Expires July 24 2011 [Page 37]

Internet-Draft XMLERS January 2011

 1. Select archive object and re-encrypt its data object or data
 object group, if <EncryptionInformation> field is used. Select the
 initial digest algorithm specified within the first Archive Time-
 Stamp Chain and calculate hash value of the archive object. Verify
 that the initial Archive Time-Stamp contains (identical) hash
 value of the AO's data object (or hash values of AO's data object
 group). Note that when the hash tree is omitted, calculated AO's
 value MUST match the time-stamped value.

 2. Verify each Archive Time-Stamp Chain and each Archive Time-Stamp
 within. If the hash tree is present within the second and the next
 Archive Time-Stamps of an Archive Time-Stamp Chain, the first
 <Sequence> MUST contain the hash value of the <TimeStamp> element
 before. Each Archive Time-Stamp MUST be valid relative to the time
 of the succeeding Archive Time-Stamp. All Archive Time-Stamps with
 the Archive Time-Stamp Chain MUST use the same hash algorithm,
 which was secure at the time of the first Archive Time-Stamp of
 the succeeding Archive Time-Stamp Chain.

 3. Verify that the first hash value list of the first Archive Time-
 Stamp of all succeeding Archive Time-Stamp Chains contains hash
 values of data object and the hash value of Archive Time-Stamp
 Sequence of the preceding Archive Time-Stamp Chains. Verify that
 Archive Time-Stamp was created when the last Archive Time-Stamp of
 the preceding Archive Time-Stamp Chain was valid.

 4. To prove the Archive Time-Stamp Sequence relates to a data object
 group, verify that the first Archive Time-Stamp of the first
 Archive Time-Stamp Chain does not contain other hash values in its
 first hash value list than the hash values of those data objects.

 For non-repudiation proof for the data object, the last Archive Time-
 Stamp MUST be valid at the time of verification process.

Jerman Blazic, et. al. Expires July 24 2011 [Page 38]

Internet-Draft XMLERS January 2011

5. Encryption

 In some archive services scenarios it may be required that clients
 send encrypted data only, preventing information disclosure to third
 parties, such as archive service providers. In such scenarios it must
 be clear that Evidence Records generated refer to encrypted data
 objects. Evidence Records in general protect the bit-stream (or
 binary representation of XML data) which freezes the bit structure at
 the time of archiving. Encryption schemes in such scenarios cannot be
 changed afterwards without losing the integrity proof. Therefore, an
 ERS record must hold and preserve encryption information in a
 consistent manner. To avoid problems when using the evidence records
 in the future, additional special precautions have to be taken.

 Encryption is a two way process, whose result depends on the
 cryptographic material used, e.g. encryption keys and encryption
 algorithms. Encryption and decryption keys as well as algorithms must
 match in order to reconstruct the original message or data that was
 encrypted. Evidence generated to prove the existence of encrypted
 data cannot always be relied upon to prove the existence of
 unencrypted data. It may be possible to choose different
 cryptographic material, i.e. an algorithm or a key for decryption
 that is not the algorithm or key used for encryption. In this case,
 the evidence record would not be a non-repudiation proof for the
 unencrypted data. Therefore, only encryption methods should be used
 that make it possible to prove that archive-time-stamped encrypted
 data objects unambiguously represent unencrypted data objects. In
 cases when evidence was generated to prove the existence of encrypted
 data the corresponding algorithm and decryption keys used for
 encryption must become a part of the Evidence Record and is used to
 unambiguously represent original (unencrypted) data that was
 encrypted. (Note: In addition, the long-term security of the
 encryption schemes should be analyzed to determine if it could be
 used to create collision attacks.)Cryptographic material may also be
 used in scenarios when a client submits encrypted data to the archive
 service provider for preservation but stores himself the data only in

Jerman Blazic, et. al. Expires July 24 2011 [Page 39]

Internet-Draft XMLERS January 2011

 an unencrypted form. In such scenarios cryptographic material is used
 to re-encrypt the unencrypted data kept by a client for the purpose
 of performing validation of Evidence Record, which is related to the
 encrypted form of client's data.An OPTIONAL extensible structure
 <EncryptionInformation> is defined to store the necessary parameters
 of the encryption methods. Its <EncryptionInformationType> element is
 used to store the type of stored encryption information, e.g. whether
 it is an encryption algorithm or encryption key. The
 <EncryptionInformationValue> element then contains the relevant
 encryption information itself. The use of encryption elements heavily
 depends on the cryptographic mechanism and has to be defined by other
 specifications.

6. Version

 The numbering scheme for XMLERS versions is "<major>.<minor>". The
 major and minor numbers MUST be treated as separate integers and each
 number MAY be incremented higher than a single digit. Thus, "2.4"
 would be a lower version than "2.13", which in turn would be lower
 than "12.3". Leading zeros (e.g., "6.01") MUST be ignored by
 recipients and MUST NOT be sent.

 The major version number will be incremented only if the data format
 has changed so dramatically that an older version entity would not be
 able to interoperate with a newer version entity if it simply ignored
 the elements and attributes it did not understand and took the
 actions defined in the older specification.

 The minor version number will be incremented if significant new
 capabilities have been added to the core format (e.g. new optional
 elements).

7. Storage of policies

 As explained above policies can be stored in the Evidence Record in
 the <Attribute> or the <SupportingInformation> element. In the case

Jerman Blazic, et. al. Expires July 24 2011 [Page 40]

Internet-Draft XMLERS January 2011

 of storing DSSC policies [RFC5698], the types to be used in the
 <Attribute> or <SupportingInformation> element are defined in
 [RFC5698, section A.2] for both ASN.1 and XML representation.

8. XSD Schema for the Evidence Record

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:ietf:params:xml:ns:ers"
 targetNamespace="urn:ietf:params:xml:ns:ers"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:element name="EvidenceRecord" type="EvidenceRecordType"/>

 <!-- TYPE DEFINITIONS-->

 <xs:complexType name="EvidenceRecordType">
 <xs:sequence>
 <xs:element name="EncryptionInformation"
 type="EncryptionInfo" minOccurs="0"/>
 <xs:element name="SupportingInformationList"
 type="SupportingInformationType" minOccurs="0"/>
 <xs:element name="ArchiveTimeStampSequence"
 type="ArchiveTimeStampSequenceType"/>
 </xs:sequence>
 <xs:attribute name="Version" type="xs:decimal" use="required"
 fixed="1.0"/>
 </xs:complexType>

 <xs:complexType name="EncryptionInfo">
 <xs:sequence>
 <xs:element name="EncryptionInformationType"
 type="ObjectIdentifier"/>
 <xs:element name="EncryptionInformationValue">

Jerman Blazic, et. al. Expires July 24 2011 [Page 41]

https://datatracker.ietf.org/doc/html/rfc5698

Internet-Draft XMLERS January 2011

 <xs:complexType mixed="true">
 <xs:sequence>
 <xs:any minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="ArchiveTimeStampSequenceType">
 <xs:sequence>
 <xs:element name="ArchiveTimeStampChain" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="DigestMethod"
 type="DigestMethodType"/>
 <xs:element name="CanonicalizationMethod"
 type="CanonicalizationMethodType"/>
 <xs:element name="ArchiveTimeStamp"
 type="ArchiveTimeStampType"
 maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="Order" type="OrderType"
 use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="ArchiveTimeStampType">
 <xs:sequence>
 <xs:element name="HashTree" type="HashTreeType" minOccurs="0"/>
 <xs:element name="TimeStamp" type="TimeStampType"/>
 <xs:element name="Attributes" type="Attributes" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="Order" type="OrderType" use="required"/>

Jerman Blazic, et. al. Expires July 24 2011 [Page 42]

Internet-Draft XMLERS January 2011

 </xs:complexType>

 <xs:complexType name="DigestMethodType" mixed="true">
 <xs:sequence>
 <xs:any namespace="##other" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="Algorithm" type="xs:anyURI" use="required"/>
 </xs:complexType>

 <xs:complexType name="CanonicalizationMethodType" mixed="true">
 <xs:sequence minOccurs="0">
 <xs:any namespace="##any" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="Algorithm" type="xs:anyURI" use="required"/>
 </xs:complexType>

 <xs:complexType name="TimeStampType">
 <xs:sequence>
 <xs:element name="TimeStampToken">
 <xs:complexType mixed="true">
 <xs:complexContent mixed="true">
 <xs:restriction base="xs:anyType">
 <xs:sequence>
 <xs:any processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="Type" type="xs:NMTOKEN"
 use="required"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="CryptographicInformationList"
 type="CryptographicInformationType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

Jerman Blazic, et. al. Expires July 24 2011 [Page 43]

Internet-Draft XMLERS January 2011

 <xs:complexType name="HashTreeType">
 <xs:sequence>
 <xs:element name="Sequence" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="DigestValue" type="xs:base64Binary"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="Order" type="OrderType"
 use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="Attributes">
 <xs:sequence>
 <xs:element name="Attribute" maxOccurs="unbounded">
 <xs:complexType mixed="true">
 <xs:complexContent mixed="true">
 <xs:restriction base="xs:anyType">
 <xs:sequence>
 <xs:any processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="Order" type="OrderType"
 use="required"/>
 <xs:attribute name="Type" type="xs:string"
 use="optional"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

Jerman Blazic, et. al. Expires July 24 2011 [Page 44]

Internet-Draft XMLERS January 2011

 <xs:complexType name="CryptographicInformationType">
 <xs:sequence>
 <xs:element name="CryptographicInformation"
 maxOccurs="unbounded">
 <xs:complexType mixed="true">
 <xs:complexContent mixed="true">
 <xs:restriction base="xs:anyType">
 <xs:sequence>
 <xs:any processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="Order" type="OrderType"
 use="required"/>
 <xs:attribute name="Type" type="xs:NMTOKEN"
 use="required"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="SupportingInformationType">
 <xs:sequence>
 <xs:element name="SupportingInformation"
 maxOccurs="unbounded">
 <xs:complexType mixed="true">
 <xs:complexContent mixed="true">
 <xs:restriction base="xs:anyType">
 <xs:sequence>
 <xs:any processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="Type" type="xs:string"
 use="required"/>

Jerman Blazic, et. al. Expires July 24 2011 [Page 45]

Internet-Draft XMLERS January 2011

 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

 <xs:simpleType name="ObjectIdentifier">
 <xs:restriction base="xs:token">
 <xs:pattern value="[0-2](\.[1-3]?[0-9]?(\.\d+)*)?"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="OrderType">
 <xs:restriction base="xs:int">
 <xs:minInclusive value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:schema>

9. Security Considerations

9.1. Secure Algorithms

 Cryptographic algorithms and parameters that are used within Archive
 Time-Stamps must always be secure at the time of generation. This
 concerns the hash algorithm used in the hash lists of Archive
 Timestamp as well as hash algorithms and public key algorithms of the
 timestamps. Publications regarding security suitability of
 cryptographic algorithms ([NIST.800-57-Part1.2006] and [ETSI TS 102
 176-1 V2.0.0]) have to be considered during the verification. A
 generic solution for automatic interpretation of security suitability
 policies in electronic form is not the subject of this specification.

Jerman Blazic, et. al. Expires July 24 2011 [Page 46]

Internet-Draft XMLERS January 2011

9.2. Redundancy

 Evidence Records may become affected by weakening cryptographic
 algorithms even before this is publicly known. Retrospectively this
 has an impact on Archive Time-Stamps generated and renewed during
 the archival period. In this case the validity of Evidence Records
 created may end without any options for retroactive action.

 Many TSAs are using the same cryptographic algorithms. While
 compromise of a private key of a TSA may compromise the security of
 only one TSA (and only on Archive Time-Stamp for example), weakening
 cryptographic algorithms used to generate Time-Stamp Tokens would
 affect many TSAs at the same time.

 To manage such risks and to avoid the loss of Evidence Record
 validity due to weakening cryptographic algorithms used, it is
 RECOMMENDED to generate and manage at least two redundant Evidence
 Records for a single data object. In such scenarios redundant
 Evidence Records SHOULD use different hash algorithms within Archive
 Time-Stamp Sequences and different TSAs using different
 cryptographic algorithms for Time-Stamp Tokens.

9.3. Secure Time-Stamps

 Archive Time-Stamps depend upon the security of normal Time-Stamping
 provided by TSA and stated in security policies. Renewed Archive
 Time-Stamps MUST have the same or higher quality as the initial
 Archive Time-Stamp of archive data. Archive Time-Stamps used for
 signed archive data SHOULD have the same or higher quality than the
 maximum quality of the signatures.

9.4. Time-Stamp verification

 It is important to consider for renewal and verification that when a
 new Time-Stamp is applied, it MUST be ascertained that prior the
 time of renewal (i.e. when the new Time-Stamp is applied) the

Jerman Blazic, et. al. Expires July 24 2011 [Page 47]

Internet-Draft XMLERS January 2011

 certificate of the before current Time-Stamp was not revoked due to
 a key compromise. Otherwise, in the case of a key compromise, there
 is the risk that the authenticity of the used Time-Stamp and
 therefore its security in the chain of evidence cannot be
 guaranteed. Other revocation reasons like the revocation for
 cessation of activity do not necessarily pose this risk as in that
 case the private key of the Time-Stamp unit would have been
 previously destroyed and thus cannot be used nor compromised.

 Both elements <CryptographicInformationList> and <Attribute> are
 protected by future Archive Time_Stamp renewals and can store
 information as outlined in section 2.1. that is available at or
 before the time of the renewal of the specific Archive Time-Stamp. At
 the time of renewal all previous Archive Time-Stamp data structures
 become protected by the new Archive Time-Stamp and frozen by it, i.e.
 no data MUST be added or modified in these elements afterwards. If
 however, some supporting information is relevant for the overall
 Evidence Record or information that only becomes available later,
 this can be provided in the Evidence Record in the
 <SupportingInformationList> element. Data in the
 <SupportingInformatonList> can be added later to an Evidence Record,
 but it must rely on its own authenticity and integrity protection
 mechanism, like for example signed by current strong cryptographic
 means and/or provided by a trusted source (for example this could be
 the LTA providing its current system DSSC policy, signed with current
 strong cryptographic means).

10. IANA Considerations

 For all IANA registrations related to this document the
 "Specification Required" [RFC5226] allocation policies MUST be used.

Jerman Blazic, et. al. Expires July 24 2011 [Page 48]

https://datatracker.ietf.org/doc/html/rfc5226

Internet-Draft XMLERS January 2011

 This document defines the XML namespace "urn:ietf:params:xml:ns:ers"
 according to the guidelines in [RFC3688]. This namespace has been
 registered in the IANA XML Registry.

 This document defines an XML schema (see Section 8) according to the
 guidelines in [RFC3688]. This XML schema has been registered in the
 IANA XML Registry and can be identified with the URN
 "urn:ietf:params:xml:schema:ers".

 This specification defines a new IANA registry entitled "XML Evidence
 Record Syntax (ERSXML)". This registry contains two sub-registries
 entitled "Time-Stamp Token Type" and "Cryptographic Information
 Type". The policy for future assignments to both sub-registries is
 "RFC Required".

 The sub-registry "Time-Stamp Token Type" contains textual names and
 description, which should refer to the specification or standard
 defining that type. It serves as assistance when validating a time-
 stamp token.

 When registering a new Time-Stamp Token type, the following
 information MUST be provided:

 o The textual name of the Time-Stamp Token type (value)
 The value MUST be conform to the XML datatype "xs:NMTOKEN".

 o A reference to a publicly available specification that defines the
 Time-Stamp Token type (description)

 The initial values for the "Time-Stamp Token Type" sub-registry are:

 Value Description Reference

 ----- ------------- ------------------------

RFC3161 RFC3161 Time-Stamp RFC 3161

Jerman Blazic, et. al. Expires July 24 2011 [Page 49]

https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc3161
https://datatracker.ietf.org/doc/html/rfc3161
https://datatracker.ietf.org/doc/html/rfc3161

Internet-Draft XMLERS January 2011

 Token

 XMLENTRUST EnTrust XML Schema http://www.entrust.com

 /schemas/timestamp

 19protocol-20020207

 The sub-registry "Cryptographic Information Type" contains textual
 names and description, which should refer to specification or
 standard defining that type. It serves as assistance when validating
 cryptographic information such as digital certificates, CRLs or OCSP-
 Responses.

 When registering a new cryptographic information type, the following
 information MUST be provided:

 o The textual name of the cryptographic information type (value)
 The value MUST be conform to the XML datatype "xs:NMTOKEN".

 o A reference to a publicly available specification that defines the
 cryptographic information type (description)

 The initial values for the "Cryptographic Information Type" sub-
 registry are:

 Value Description Reference

 ----- ------------------ -----------------

 CERT DER-encoded X.509 Certificate RFC 5280

 CRL DER-encoded X.509 RFC 5280

 Certificate Revocation List

Jerman Blazic, et. al. Expires July 24 2011 [Page 50]

http://www.entrust.com
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280

Internet-Draft XMLERS January 2011

 OCSP DER-encoded OCSPResponse RFC 2560

 SCVP DER-encoded SCVP response RFC 5055

 (CVResponse)

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BPC 14, RFC 2119, March 1997.

 [RFC2560] Myers, M., Ankney, R., Malpani, A., Galperin, S., and C.
 Adams, "X.509 Internet Public Key Infrastructure Online
 Certificate Status Protocol - OCSP", RFC 2560, June 1999.

 [RFC3161] Adams, C., Cain, P., Pinkas, D., and R. Zuccherato,
 "Internet X.509 Public Key Infrastructure Time-Stamp
 Protocol (TSP)", RFC 3161, August 2001.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC3275] Eastlake, D., Reagle, J., Solo, D., "XML-Signature Syntax
 and Processing", RFC 3275, March 2002.

 [RFC4051] Eastlake, D., "Additional XML Security Uniform Resource
 Identifiers", RFC 4051, April 2005.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC4998] Gondrom, T., Brandner, R., Pordesch, U., "Evidence Record
 Syntax (ERS)", RFC 4998, August 2007.

Jerman Blazic, et. al. Expires July 24 2011 [Page 51]

https://datatracker.ietf.org/doc/html/rfc2560
https://datatracker.ietf.org/doc/html/rfc5055
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2560
https://datatracker.ietf.org/doc/html/rfc3161
https://datatracker.ietf.org/doc/html/bcp81
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc3275
https://datatracker.ietf.org/doc/html/rfc4051
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4998

Internet-Draft XMLERS January 2011

 [RFC5055] Freeman, T., Housley, R., Malpani, A., Cooper, D. and Polk,
 W., "Server-Based Certificate Validation Protocol (SCVP)",

RFC 5055, December 2007

 [RFC5280] Cooper, D., Santesson, S., Farell, S., Boyen, S., Housley,
 R.,Polk, W., "Internet X.509 Public Key Infrastructure
 Certificate and Certificate Revocation List (CRL) Profile",

RFC 5280, May 2008.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226, May
 2008.

 [XMLC14N] Boyer, J., "Canonical XML", W3C Recommendation, March 2001.

 [XMLDSig] Eastlake, D., Reagle, J., Solo, D., Hirsch, F., Roessler,
 T., "XML-Signature Syntax and Processing", XMLDSig, W3C
 Recommendation, July 2006.

 [XMLName] Layman, A., Hollander, D., Tobin, R., and T. Bray,
 "Namespaces in XML 1.0 (Second Edition)", W3C
 Recommendation, August 2006.

 [XMLSchema] Thompson, H., Beech, D., Mendelsohn, N., and M. Maloney,
 "XML Schema Part 1: Structures Second Edition", W3C
 Recommendation, October 2004.

11.2. Informative References

 [ANSI.X9-95.2005] American National Standard for Financial Services,
 "Trusted Timestamp Management and Security", ANSI X9.95,
 June 2005.

Jerman Blazic, et. al. Expires July 24 2011 [Page 52]

https://datatracker.ietf.org/doc/html/rfc5055
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226

Internet-Draft XMLERS January 2011

 [ETSI TS 102 176-1 V2.0.0] ETSI, "Electronic Signatures and
 Infrastructures (ESI); Algorithms and Parameters for Secure
 Electronic Signatures; Part 1: Hash functions and
 asymmetric algorithms", ETSI TS 102 176-1 V2.0.0 (2007-11),
 November 2007.

 [ISO-18014-1.2002] ISO/IEC JTC 1/SC 27, "Time stamping services -
 Part 1: Framework", ISO ISO-18014-1, February 2002.

 [ISO-18014-2.2002] ISO/IEC JTC 1/SC 27, "Time stamping services -
 Part 2: Mechanisms producing independent tokens", ISO ISO-
 18014-2, December 2002.

 [ISO-18014-3.2004] ISO/IEC JTC 1/SC 27, "Time stamping services -
 Part 3: Mechanisms producing linked tokens", ISO ISO-18014-
 3, February 2004.

 [MER1980] Merkle, R., "Protocols for Public Key Cryptosystems,
 Proceedings of the 1980 IEEE Symposium on Security and
 Privacy (Oakland, CA, USA)", pages 122-134, April 1980.

 [RFC3470] Hollenbeck, S., Rose, M., Masinter, L., "Guidelines for the
 Use of Extensible Markup Language (XML) within IETF
 Protocols", RFC 3470, January 2003.

 [RFC4810] Wallace, C., Pordesch, U., Brandner, R., "Long-Term Archive
 Service Requirements", RFC 4810, March 2007.

 [RFC5126] Pinkas, D., Popoe, N., Ross, J., "CMS Advanced Electronic
 Signatures (CAdES)", RFC 5126, February 2008.

 [TS-ENTRUST] Entrust XML Schema for Time-Stamp http://www.si-
tsa.gov.si/dokumenti/timestamp-protocol-20020207.xsd

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO 10646",
 STD 63, RFC 3629, November 2003.

Jerman Blazic, et. al. Expires July 24 2011 [Page 53]

https://datatracker.ietf.org/doc/html/rfc3470
https://datatracker.ietf.org/doc/html/rfc4810
https://datatracker.ietf.org/doc/html/rfc5126
http://www.si-tsa.gov.si/dokumenti/timestamp-protocol-20020207.xsd
http://www.si-tsa.gov.si/dokumenti/timestamp-protocol-20020207.xsd
https://datatracker.ietf.org/doc/html/rfc3629

Internet-Draft XMLERS January 2011

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, January 2005.

 [XAdES] Cruellas, J. C., Karlinger, G., Pinkas, D., Ross, J., "XML
 Advanced Electronic Signatures", XAdES, W3C Note, February
 2003.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", RFC
5652, September 2009.

 [RFC5698] Kunz, T., Okunick, S., Pordesch, U., "Data Structure for
 the Security Suitability of Cryptographic Algorithms
 (DSSC)", RFC 5698, November 2009

Jerman Blazic, et. al. Expires July 24 2011 [Page 54]

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5698

Internet-Draft XMLERS January 2011

APPENDIX A: Detailed verification process of an Evidence Record

 To verify the validity of an Evidence Record start with the first ATS
 till the last ATS (ordered by attribute Order) and perform
 verification for each ATS, as follows:

 1. Select corresponding archive object and its data object or a group
 of data objects.

 2. Re-encrypt data object or data object group, if
 <EncryptionInformation> field is used (see section 5. for more
 details)

 3. Get a canonicalization method C and a digest method H from the
 <DigestMethod> element of the current chain.

 4. Make a new list L of digest values of (binary representation of)
 objects (data, ATS or sequence) that MUST be protected with this
 ATS as follows:

 a. If this ATS is the first in the Archive Time-Stamp Chain:

 i. If this is the first ATS of the first ATSC (the initial
 ATS) in the ATSSeq, calculate digest values of data
 objects with H and add each digest value to the list L.

 ii. If this ATS is not the initial ATS, calculate a digest
 value with H of ordered ATSSeq without this and
 successive chains. Add value H and digest values of data
 objects to the list L.

 b. If this ATS is not the first in the ATSC:

 i. Calculate the digest value with H of the previous
 <TimeSatmp> element and add this digest value to the list
 L.

Jerman Blazic, et. al. Expires July 24 2011 [Page 55]

Internet-Draft XMLERS January 2011

 5. Verify the ATS's time-stamped value as follows. Get the first
 sequence of the hash tree for this ATS.

 a. If this ATS has no hash tree elements then:

 ii. If this ATS is not the first in the ATSSeq(the initial
 ATS), then the time-stamped value must be equal to digest
 value of previous Time-Stamp element. If not, exit with a
 negative result.

 iii. If this ATS is the initial ATS in ATSC, there must be
 only one data object of the archive object. The digest
 value of that data object must be the same as its time-
 stamped value. If not, exit with a negative result.

 b. If this ATS has a hash tree then: If there is a digest value
 in the list L of digest values of protected objects, which
 cannot be found in the first sequence of the hash tree or if
 there is a hash value in the first sequence of the hash tree
 which is not in the list L of digest values of protected
 objects, exit with a negative result.

 i. Get the hash tree from the current ATS and use H to
 calculate the root hash value (see sections 3.2.1. and
 3.2.2.)

 ii. Get time-stamped value from the Time-Stamp Token. If
 calculated root hash value from the hash tree does not
 match the time-stamped value, exit with a negative
 result.

 6. Verify Time-Stamp cryptographically and formally (validate the
 used certificate and its chain which may be available within the
 Time-Stamp Token itself or <CryptographicInformation> element).

Jerman Blazic, et. al. Expires July 24 2011 [Page 56]

Internet-Draft XMLERS January 2011

 7. If this ATS is the last ATS, check formal validity for the current
 time (now), or get "valid from" time of the next ATS and verify
 formal validity at that specific time.

 8. If the needed information to verify formal validity is not found
 within the Time-Stamp or within its Cryptographic Information
 section of ATS, exit with a negative result.

Author's Addresses

 Aleksej Jerman Blazic
 SETCCE
 Tehnoloski park 21
 1000 Ljubljana
 Slovenia

 Phone: +386 (0) 1 620 4500
 Fax: +386 (0) 1 620 4509
 Email: aljosa@setcce.si

 Svetlana Saljic
 SETCCE
 Tehnoloski park 21
 1000 Ljubljana
 Slovenia

 Phone: +386 (0) 1 620 4506
 Fax: +386 (0) 1 620 4509
 Email: svetlana.saljic@setcce.si

Jerman Blazic, et. al. Expires July 24 2011 [Page 57]

Internet-Draft XMLERS January 2011

 Tobias Gondrom
 Kruegerstr. 5A
 85716 Unterschleissheim
 Germany

 Phone: +49 (0) 89 320 5330
 Email: tobias.gondrom@gondrom.org

Jerman Blazic, et. al. Expires July 24 2011 [Page 58]

