
LWIG Working Group M. Kovatsch
Internet-Draft ETH Zurich
Intended status: Informational O. Bergmann
Expires: September 14, 2017 C. Bormann, Ed.
 Universitaet Bremen TZI
 March 13, 2017

CoAP Implementation Guidance
draft-ietf-lwig-coap-04

Abstract

 The Constrained Application Protocol (CoAP) is designed for resource-
 constrained nodes and networks such as sensor nodes in a low-power
 lossy network (LLN). Yet to implement this Internet protocol on
 Class 1 devices (as per RFC 7228, ~ 10 KiB of RAM and ~ 100 KiB of
 ROM) also lightweight implementation techniques are necessary. This
 document provides lessons learned from implementing CoAP for tiny,
 battery-operated networked embedded systems. In particular, it
 provides guidance on correct implementation of the CoAP specification

RFC 7252, memory optimizations, and customized protocol parameters.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 14, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Kovatsch, et al. Expires September 14, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft CoAP Implementation Guidance March 2017

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Protocol Implementation 4
2.1. Client/Server Model 4
2.2. Message Processing 5
2.2.1. On-the-fly Processing 5
2.2.2. Internal Data Structure 6

2.3. Message ID Usage . 6
2.3.1. Duplicate Rejection 6
2.3.2. MID Namespaces 7
2.3.3. Relaxation on the Server 8
2.3.4. Relaxation on the Client 9

2.4. Token Usage . 9
2.4.1. Tokens for Observe 10
2.4.2. Tokens for Blockwise Transfers 11

2.5. Transmission States 11
2.5.1. Request/Response Layer 12
2.5.2. Message Layer . 13

2.6. Out-of-band Information 14
2.7. Programming Model . 15
2.7.1. Client . 15
2.7.2. Server . 16

3. Optimizations . 17
3.1. Message Buffers . 17
3.2. Retransmissions . 17
3.3. Observable Resources 18
3.4. Blockwise Transfers 19
3.5. Deduplication with Sequential MIDs 19

4. Alternative Configurations 22
4.1. Transmission Parameters 22
4.2. CoAP over IPv4 . 23

5. Binding to specific lower-layer APIs 23
5.1. Berkeley Socket Interface 23
5.1.1. Responding from the right address 23

5.2. Java . 24
5.3. Multicast detection 25
5.4. DTLS . 25

6. CoAP on various transports 25
6.1. Translating between transports 25
6.1.1. Transport translation by proxies 26

Kovatsch, et al. Expires September 14, 2017 [Page 2]

Internet-Draft CoAP Implementation Guidance March 2017

6.1.2. One-to-one Transport translation 26
7. IANA considerations . 27
8. Security considerations 27
9. Acknowledgements . 27
10. References . 27
10.1. Normative References 27
10.2. Informative References 28

 Authors' Addresses . 29

1. Introduction

 The Constrained Application Protocol [RFC7252] has been designed
 specifically for machine-to-machine communication in networks with
 very constrained nodes. Typical application scenarios therefore
 include building automation, process optimization, and the Internet
 of Things. The major design objectives have been set on small
 protocol overhead, robustness against packet loss, and against high
 latency induced by small bandwidth shares or slow request processing
 in end nodes. To leverage integration of constrained nodes with the
 world-wide Internet, the protocol design was led by the REST
 architectural style that accounts for the scalability and robustness
 of the Hypertext Transfer Protocol [RFC7230].

 Lightweight implementations benefit from this design in many
 respects: First, the use of Uniform Resource Identifiers (URIs) for
 naming resources and the transparent forwarding of their
 representations in a server-stateless request/response protocol make
 protocol translation to HTTP a straightforward task. Second, the set
 of protocol elements that are unavoidable for the core protocol, and
 thus must be implemented on every node, has been kept very small,
 minimizing the unnecessary accumulation of "optional" features.
 Options that - when present - are critical for message processing are
 explicitly marked as such to force immediate rejection of messages
 with unknown critical options. Third, the syntax of protocol data
 units is easy to parse and is carefully defined to avoid creation of
 state in servers where possible.

 Although these features enable lightweight implementations of the
 Constrained Application Protocol, there is still a tradeoff between
 robustness and latency of constrained nodes on one hand and resource
 demands on the other. For constrained nodes of Class 1 or even
 Class 2 [RFC7228], the most limiting factors usually are dynamic
 memory needs, static code size, and energy. Most implementations
 therefore need to optimize internal buffer usage, omit idle protocol
 feature, and maximize sleeping cycles.

 The present document gives possible strategies to solve this tradeoff
 for very constrained nodes (i.e., Class 1). For this, it provides

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7228

Kovatsch, et al. Expires September 14, 2017 [Page 3]

Internet-Draft CoAP Implementation Guidance March 2017

 guidance on correct implementation of the CoAP specification
 [RFC7252], memory optimizations, and customized protocol parameters.

2. Protocol Implementation

 In the programming styles supported by very simple operating systems
 as found on constrained nodes, preemptive multi-threading is not an
 option. Instead, all operations are triggered by an event loop
 system, e.g., in a send-receive-dispatch cycle. It is also common
 practice to allocate memory statically to ensure stable behavior, as
 no memory management unit (MMU) or other abstractions are available.
 For a CoAP node, the two key parameters for memory usage are the
 number of (re)transmission buffers and the maximum message size that
 must be supported by each buffer. Often the maximum message size is
 set far below the 1280-byte MTU of 6LoWPAN to allow more than one
 open Confirmable transmission at a time (in particular for parallel
 observe notifications [RFC7641]). Note that implementations on
 constrained platforms often not even support the full MTU. Larger
 messages must then use blockwise transfers [RFC7959], while a good
 tradeoff between 6LoWPAN fragmentation and CoAP header overhead must
 be found. Usually the amount of available free RAM dominates this
 decision. For Class 1 devices, the maximum message size is typically
 128 or 256 bytes (blockwise) payload plus an estimate of the maximum
 header size for the worst case option setting.

2.1. Client/Server Model

 In general, CoAP servers can be implemented more efficiently than
 clients. REST allows them to keep the communication stateless and
 piggy-backed responses are not stored for retransmission, saving
 buffer space. The use of idempotent requests also allows to relax
 deduplication, which further decreases memory usage. It is also easy
 to estimate the required maximum size of message buffers, since URI
 paths, supported options, and maximum payload sizes of the
 application are known at compile time. Hence, when the application
 is distributed over constrained and unconstrained nodes, the
 constrained ones should preferably have the server role.

 HTTP-based applications have established an inverse model because of
 the need for simple push notifications: A constrained client uses
 POST requests to update resources on an unconstrained server whenever
 an event (e.g., a new sensor reading) is triggered. This requirement
 is solved by the Observe option [RFC7641] of CoAP. It allows servers
 to initiate communication and send push notifications to interested
 client nodes. This allows a more efficient and also more natural
 model for CoAP-based applications, where the information source is an
 origin server, which can also benefit from caching.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7641

Kovatsch, et al. Expires September 14, 2017 [Page 4]

Internet-Draft CoAP Implementation Guidance March 2017

2.2. Message Processing

 Apart from the required buffers, message processing is symmetric for
 clients and servers. First the 4-byte base header has to be parsed
 and thereby checked if it is a CoAP message. Since the encoding is
 very dense, only a wrong version or a datagram size smaller than four
 bytes identify non-CoAP datagrams. These need to be silently
 ignored. Other message format errors, such as an incomplete datagram
 or the usage of reserved values, may need to be rejected with a Reset
 (RST) message (see Section 4.2 and 4.3 of [RFC7252] for details).
 Next the Token is read based on the TKL field. For the options
 following, there are two alternatives: either process them on the fly
 when an option is accessed or initially parse all values into an
 internal data structure.

2.2.1. On-the-fly Processing

 The advantage of on-the-fly processing is that no additional memory
 needs to be allocated to store the option values, which are stored
 efficiently inline in the buffer for incoming messages. Once the
 message is accepted for further processing, the set of options
 contained in the received message must be decoded to check for
 unknown critical options. To avoid multiple passes through the
 option list, the option parser might maintain a bit-vector where each
 bit represents an option number that is present in the received
 request. With the wide and sparse range of option numbers, the
 number itself cannot be used to indicate the number of left-shift
 operations to mask the corresponding bit. Hence, an implementation-
 specific enum of supported options should be used to mask the present
 options of a message in the bitmap. In addition, the byte index of
 every option (a direct pointer) can be added to a sparse list (e.g.,
 a one-dimensional array) for fast retrieval.

 This particularly enables efficient handling of options that might
 occur more than once such as Uri-Path. In this implementation
 strategy, the delta is zero for any subsequent path segment, hence
 the stored byte index for this option (e.g., 11 for Uri-Path) would
 be overwritten to hold a pointer to only the last occurrence of that
 option. The Uri-Path can be resolved on the fly, though, and a
 pointer to the targeted resource stored directly in the sparse list.

 Once the option list has been processed, all known critical option
 and all elective options can be masked out in the bit-vector to
 determine if any unknown critical option was present. If this is the
 case, this information can be used to create a 4.02 response
 accordingly. Note that full processing must only be done up to the
 highest supported option number. Beyond that, only the least
 significant bit (Critical or Elective) needs to be checked.

https://datatracker.ietf.org/doc/html/rfc7252

Kovatsch, et al. Expires September 14, 2017 [Page 5]

Internet-Draft CoAP Implementation Guidance March 2017

 Otherwise, if all critical options are supported, the sparse list of
 option pointers is used for further handling of the message.

2.2.2. Internal Data Structure

 Using an internal data structure for all parsed options has an
 advantage when working on the option values, as they are already in a
 variable of corresponding type (e.g., an integer in host byte order).
 The incoming payload and byte strings of the header can be accessed
 directly in the buffer for incoming messages using pointers (similar
 to on-the-fly processing). This approach also benefits from a
 bitmap. Otherwise special values must be reserved to encode an unset
 option, which might require a larger type than required for the
 actual value range (e.g., a 32-bit integer instead of 16-bit).

 Many of the byte strings (e.g., the URI) are usually not required
 when generating the response. When all important values are copied
 (e.g., the Token, which needs to be mirrored), the internal data
 structure facilitates using the buffer for incoming messages also for
 the assembly of outgoing messages - which can be the shared IP buffer
 provided by the OS.

 Setting options for outgoing messages is also easier with an internal
 data structure. Application developers can set options independent
 from the option number and do not need to care about the order for
 the delta encoding. The CoAP encoding is applied in a serialization
 step before sending. In contrast, assembling outgoing messages with
 on-the-fly processing requires either extensive memmove operations to
 insert new options, or restrictions for developers to set options in
 their correct order.

2.3. Message ID Usage

 Many applications of CoAP use unreliable transports, in particular
 UDP, which can lose, reorder, and duplicate messages. Although
 DTLS's replay protection deals with duplication by the network,
 losses are addressed with DTLS retransmissions only for the handshake
 protocol and not for the application data protocol. Furthermore,
 CoAP implementations usually send CON retransmissions in new DTLS
 records, which are not considered duplicates at the DTLS layer.

2.3.1. Duplicate Rejection

 CoAP's messaging sub-layer has been designed with protocol
 functionality such that rejection of duplicate messages is always
 possible. It is realized through the Message IDs (MIDs) and their
 lifetimes with regard to the message type.

Kovatsch, et al. Expires September 14, 2017 [Page 6]

Internet-Draft CoAP Implementation Guidance March 2017

 Duplicate detection is under the discretion of the recipient (see
Section 4.5 of [RFC7252], Section 2.3.3, Section 2.3.4). Where it is

 desired, the receiver needs to keep track of MIDs to filter the
 duplicates for at least NON_LIFETIME (145 s). This time also holds
 for CON messages, since it equals the possible reception window of
 MAX_TRANSMIT_SPAN + MAX_LATENCY.

 On the sender side, MIDs of CON messages must not be re-used within
 the EXCHANGE_LIFETIME; MIDs of NONs respectively within the
 NON_LIFETIME. In typical scenarios, however, senders will re-use
 MIDs with intervals far larger than these lifetimes: with sequential
 assignment of MIDs, coming close to them would require 250 messages
 per second, much more than the bandwidth of constrained networks
 would usually allow for.

 In cases where senders might come closer to the maximum message rate,
 it is recommended to use more conservative timings for the re-use of
 MIDs. Otherwise, opposite inaccuracies in the clocks of sender and
 recipient may lead to obscure message loss. If needed, higher rates
 can be achieved by using multiple endpoints for sending requests and
 managing the local MID per remote endpoint instead of a single
 counter per system (essentially extending the 16-bit message ID by a
 16-bit port number and/or an 128-bit IP address). In controlled
 scenarios, such as real-time applications over industrial Ethernet,
 the protocol parameters can also be tweaked to achieve higher message
 rates (Section 4.1).

2.3.2. MID Namespaces

 MIDs are assigned under the control of the originator of CON and NON
 messages, and they do not mix with the MIDs assigned by the peer for
 CON and NON in the opposite direction. Hence, CoAP implementors need
 to make sure to manage different namespaces for the MIDs used for
 deduplication. MIDs of outgoing CONs and NONs belong to the local
 endpoint; so do the MIDs of incoming ACKs and RSTs. Accordingly,
 MIDs of incoming CONs and NONs and outgoing ACKs and RSTs belong to
 the corresponding remote endpoint. Figure 1 depicts a scenario where
 mixing the namespaces would cause erroneous filtering.

https://datatracker.ietf.org/doc/html/rfc7252#section-4.5

Kovatsch, et al. Expires September 14, 2017 [Page 7]

Internet-Draft CoAP Implementation Guidance March 2017

 Client Server
 | |
 | CON [0x1234] |
 +----------------->|
 | |
 | ACK [0x1234] |
 |<-----------------+
 | |
 | CON [0x4711] |
 |<-----------------+ Separate response
 | |
 | ACK [0x4711] |
 +----------------->|
 | |
 A request follows that uses the same MID as the last separate response
 | |
 | CON [0x4711] |
 +----------------->|
 Response is filtered | |
 because MID 0x4711 | ACK [0x4711] |
 is still in the X<-----------------+ Piggy-backed response
 deduplication list | |

 Figure 1: Deduplication must manage the MIDs in different namespace
 corresponding to their origin endpoints.

2.3.3. Relaxation on the Server

 Using the de-duplication functionality is at the discretion of the
 receiver: Processing of duplicate messages comes at a cost, but so
 does the management of the state associated with duplicate rejection.
 The number of remote endpoints that need to be managed might be vast.
 This can be costly in particular for less constrained nodes that have
 throughput in the order of hundreds of thousands requests per second
 (which needs about 16 GiB of RAM just for duplicate rejection).
 Deduplication is also heavy for servers on Class 1 devices, as also
 piggy-backed responses need to be stored for the case that the ACK
 message is lost. Hence, a receiver may have good reasons to decide
 not to perform deduplication. This behavior is possible when the
 application is designed with idempotent operations only and makes
 good use of the If-Match/If-None-Match options.

 If duplicate rejection is indeed necessary (e.g., for non-idempotent
 requests) it is important to control the amount of state that needs
 to be stored. It can be reduced, for instance, by deduplication at
 resource level: Knowledge of the application and supported
 representations can minimize the amount of state that needs to be
 kept.

Kovatsch, et al. Expires September 14, 2017 [Page 8]

Internet-Draft CoAP Implementation Guidance March 2017

2.3.4. Relaxation on the Client

 Duplicate rejection on the client side can be simplified by choosing
 clever Tokens that are virtually not re-used (e.g., through an
 obfuscated sequence number in the Token value) and only filter based
 on the list of open Tokens. If a client wants to re-use Tokens
 (e.g., the empty Token for optimizations), it requires strict
 duplicate rejection based on MIDs to avoid the scenario outlined in
 Figure 2.

 Client Server
 | |
 | CON [0x7a10] |
 | GET /temp |
 | (Token 0x23) |
 +----------------->|
 | |
 | ACK [0x7a10] |
 |<-----------------+
 | |
 ... Time Passes ...
 | |
 | CON [0x23bb] |
 | 4.04 Not Found |
 | (Token 0x23) |
 |<-----------------+
 | |
 | ACK [0x23bb] |
 +--------X |
 | |
 | CON [0x7a11] |
 | GET /resource |
 | (Token 0x23) |
 +----------------->|
 | |
 | CON [0x23bb] |
 Causing an implicit | 4.04 Not Found |
 acknowledgement if | (Token 0x23) |
 not filtered through X<-----------------+ Retransmission
 duplicate rejection | |

 Figure 2: Re-using Tokens requires strict duplicate rejection.

2.4. Token Usage

 Tokens are chosen by the client and help to identify request/response
 pairs that span several message exchanges (e.g., a separate response,
 which has a new MID). Servers do not generate Tokens and only mirror

Kovatsch, et al. Expires September 14, 2017 [Page 9]

Internet-Draft CoAP Implementation Guidance March 2017

 what they receive from the clients. Tokens must be unique within the
 namespace of a client throughout their lifetime. This begins when
 being assigned to a request and ends when the open request is closed
 by receiving and matching the final response. Neither empty ACKs nor
 notifications (i.e., responses carrying the Observe option) terminate
 the lifetime of a Token.

 As already mentioned, a clever assignment of Tokens can help to
 simplify duplicate rejection. Yet this is also important for coping
 with client crashes. When a client restarts during an open request
 and (unknowingly) re-uses the same Token, it might match the response
 from the previous request to the current one. Hence, when only the
 Token is used for matching, which is always the case for separate
 responses, randomized Tokens with enough entropy should be used. The
 8-byte range for Tokens can even allow for one-time usage throughout
 the lifetime of a client node. When DTLS is used, client crashes/
 restarts will lead to a new security handshake, thereby solving the
 problem of mismatching responses and/or notifications.

2.4.1. Tokens for Observe

 In the case of Observe [RFC7641], a request will be answered with
 multiple notifications and it is important to continue keeping track
 of the Token that was used for the request - its lifetime will end
 much later. Upon establishing an Observe relationship, the Token is
 registered at the server. Hence, the client's use of that specific
 Token is now limited to controlling the Observation relationship. A
 client can use it to cancel the relationship, which frees the Token
 upon success (i.e., the message with an Observe Option with the value
 set to 'deregister' (1) is confirmed with a response; see [RFC7641]
 section 3.6). However, the client might never receive the response
 due to a temporary network outage or worse, a server crash. Although
 a network outage will also affect notifications so that the Observe
 garbage collection could apply, the server might simply happen not to
 send CON notifications during that time. Alternative Observe
 lifetime models such as Stubbornness(tm) might also keep
 relationships alive for longer periods.

 Thus, it is best to carefully choose the Token value used with
 Observe requests. (The empty value will rarely be applicable.) One
 option is to assign and re-use dedicated Tokens for each Observe
 relationship the client will establish. The choice of Token values
 also is critical in NoSec mode, to limit the effectiveness of
 spoofing attacks. Here, the recommendation is to use randomized
 Tokens with a length of at least four bytes (see Section 5.3.1 of
 [RFC7252]). Thus, dedicated ranges within the 8-byte Token space
 should be used when in NoSec mode. This also solves the problem of
 mismatching notifications after a client crash/restart.

https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7641#section-3.6
https://datatracker.ietf.org/doc/html/rfc7641#section-3.6
https://datatracker.ietf.org/doc/html/rfc7252#section-5.3.1
https://datatracker.ietf.org/doc/html/rfc7252#section-5.3.1

Kovatsch, et al. Expires September 14, 2017 [Page 10]

Internet-Draft CoAP Implementation Guidance March 2017

 When the client wishes to reinforce its interest in a resource, maybe
 not really being sure whether the server has forgotten it or not, the
 Token value allocated to the Observe relationship is used to re-
 register that observation (see Section 3.3.1 of [RFC7641] for
 details): If the server is still aware of the relationship (an entry
 with a matching endpoint and token is already present in its list of
 observers for the resource), it will not add a new relationship but
 will replace or update the existing one (Section 4.1 of [RFC7641]).
 If not, it will simply establish a new registration which of course
 also uses the Token value.

 If the client sends an Observe request for the same resource with a
 new Token, this is not a protocol violation, because the
 specification allows the client to observe the same resource in a
 different Observe relationship if the cache-key is different (e.g.,
 requesting a different Content-Format). If the cache-key is not
 different, though, an additional Observe relationship just wastes the
 server's resources, and is therefore not allowed; the server might
 rely on this for its housekeeping.

2.4.2. Tokens for Blockwise Transfers

 In general, blockwise transfers are independent from the Token and
 are correlated through client endpoint address and server address and
 resource path (destination URI). Thus, each block may be transferred
 using a different Token. Still it can be beneficial to use the same
 Token (it is freed upon reception of a response block) for all
 blocks, e.g., to easily route received blocks to the same response
 handler.

 When Block2 is combined with Observe, notifications only carry the
 first block and it is up to the client to retrieve the remaining
 ones. These GET requests do not carry the Observe option and need to
 use a different Token, since the Token from the notification is still
 in use.

2.5. Transmission States

 CoAP endpoints must keep transmission state to manage open requests,
 to handle the different response modes, and to implement reliable
 delivery at the message layer. The following finite state machines
 (FSMs) model the transmissions of a CoAP exchange at the request/
 response layer and the message layer. These layers are linked
 through actions. The M_CMD() action triggers a corresponding
 transition at the message layer and the RR_EVT() action triggers a
 transition at the request/response layer. The FSMs also use guard
 conditions to distinguish between information that is only available

https://datatracker.ietf.org/doc/html/rfc7641#section-3.3.1
https://datatracker.ietf.org/doc/html/rfc7641#section-4.1

Kovatsch, et al. Expires September 14, 2017 [Page 11]

Internet-Draft CoAP Implementation Guidance March 2017

 through the other layer (e.g., whether a request was sent using a CON
 or NON message).

2.5.1. Request/Response Layer

 Figure 3 depicts the two states at the request/response layer of a
 CoAP client. When a request is issued, a "reliable_send" or
 "unreliable_send" is triggered at the message layer. The WAITING
 state can be left through three transitions: Either the client
 cancels the request and triggers cancellation of a CON transmission
 at the message layer, the client receives a failure event from the
 message layer, or a receive event containing a response.

 +------------CANCEL-------------------------------+
 | / M_CMD(cancel) |
 | V
 | +------+
 +-------+ -------RR_EVT(fail)--------------------> | |
 |WAITING| | IDLE |
 +-------+ -------RR_EVT(rx)[is Response]---------> | |
 ^ / M_CMD(accept) +------+
 | |
 +--------------------REQUEST----------------------+
 / M_CMD((un)reliable_send)

 Figure 3: CoAP Client Request/Response Layer FSM

 A server resource can decide at the request/response layer whether to
 respond with a piggy-backed or a separate response. Thus, there are
 two busy states in Figure 4, SERVING and SEPARATE. An incoming
 receive event with a NON request directly triggers the transition to
 the SEPARATE state.

Kovatsch, et al. Expires September 14, 2017 [Page 12]

Internet-Draft CoAP Implementation Guidance March 2017

 +--------+ <----------RR_EVT(rx)[is NON]---------- +------+
 |SEPARATE| | |
 +--------+ ----------------RESPONSE--------------> | IDLE |
 ^ / M_CMD((un)reliable_send) | |
 | +---> +------+
 |EMPTY_ACK | |
 |/M_CMD(accept) | |
 | | |
 | | |
 +--------+ | |
 |SERVING | --------------RESPONSE------------+ |
 +--------+ / M_CMD(accept) |
 ^ |
 +------------------------RR_EVT(rx)[is CON]--------+

 Figure 4: CoAP Server Request/Response Layer FSM

2.5.2. Message Layer

 Figure 5 shows the different states of a CoAP endpoint per message
 exchange. Besides the linking action RR_EVT(), the message layer has
 a TX action to send a message. For sending and receiving NONs, the
 endpoint remains in its CLOSED state. When sending a CON, the
 endpoint remains in RELIABLE_TX and keeps retransmitting until the
 transmission times out, it receives a matching RST, the request/
 response layer cancels the transmission, or the endpoint receives an
 implicit acknowledgement through a matching NON or CON. Whenever the
 endpoint receives a CON, it transitions into the ACK_PENDING state,
 which can be left by sending the corresponding ACK.

Kovatsch, et al. Expires September 14, 2017 [Page 13]

Internet-Draft CoAP Implementation Guidance March 2017

 +-----------+ <-------M_CMD(reliable_send)-----+
 | | / TX(con) \
 | | +--------------+
 | | ---TIMEOUT(RETX_WINDOW)------> | |
 |RELIABLE_TX| / RR_EVT(fail) | |
 | | ---------------------RX_RST--> | | <----+
 | | / RR_EVT(fail) | | |
 +-----------+ ----M_CMD(cancel)------------> | CLOSED | |
 ^ | | \ \ | | --+ |
 | | | \ +-------------------RX_ACK---> | | | |
 +*1+ | \ / RR_EVT(rx) | | | |
 | +----RX_NON-------------------> +--------------+ | | | | | | | | | |
 | / RR_EVT(rx) ^ ^ ^ ^ | | | | | |
 | | | | | | | | | | |
 | | | | +*2+ | | | | |
 | | | +--*3--+ | | | |
 | | +----*4----+ | | |
 | +------*5------+ | |
 | +---------------+ | |
 | | ACK_PENDING | <--RX_CON-------------+ |
 +----RX_CON----> | | / RR_EVT(rx) |
 / RR_EVT(rx) +---------------+ ---------M_CMD(accept)---+
 / TX(ack)

 *1: TIMEOUT(RETX_TIMEOUT) / TX(con)
 *2: M_CMD(unreliable_send) / TX(non)
 *3: RX_NON / RR_EVT(rx)
 *4: RX_RST / REMOVE_OBSERVER
 *5: RX_ACK

 Figure 5: CoAP Message Layer FSM

 T.B.D.: (i) Rejecting messages (can be triggered at message and
 request/response layer). (ii) ACKs can also be triggered at both
 layers.

2.6. Out-of-band Information

 The CoAP implementation can also leverage out-of-band information,
 that might also trigger some of the transitions shown in Section 2.5.
 In particular ICMP messages can inform about unreachable remote
 endpoints or whole network outages. This information can be used to
 pause or cancel ongoing transmission to conserve energy. Providing
 ICMP information to the CoAP implementation is easier in constrained
 environments, where developers usually can adapt the underlying OS
 (or firmware). This is not the case on general purpose platforms
 that have full-fledged OSes and make use of high-level programming
 frameworks.

Kovatsch, et al. Expires September 14, 2017 [Page 14]

Internet-Draft CoAP Implementation Guidance March 2017

 The most important ICMP messages are host, network, port, or protocol
 unreachable errors. After appropriate vetting (cf. [RFC5927]), they
 should cause the cancellation of ongoing CON transmissions and
 clearing (or deferral) of Observe relationships. Requests to this
 destination should be paused for a sensible interval. In addition,
 the device could indicate of this error through a notification to a
 management endpoint or external status indicator, since the cause
 could be a misconfiguration or general unavailability of the required
 service. Problems reported through the Parameter Problem message are
 usually caused through a similar fundamental problem.

 The CoAP specification recommends to ignore Source Quench and Time
 Exceeded ICMP messages, though. Source Quench messages were
 originally intended to inform the sender to reduce the rate of
 packets. However, this mechanism is deprecated through [RFC6633].
 CoAP also comes with its own congestion control mechanism, which is
 already designed conservatively. One advanced mechanism that can be
 employed for better network utilization is CoCoA,
 [I-D.ietf-core-cocoa]. Time Exceeded messages often occur during
 transient routing loops (unless they are caused by a too small
 initial Hop Limit value).

2.7. Programming Model

 The event-driven approach, which is common in event-loop-based
 firmware, has also proven very efficient for embedded operating
 systems [TinyOS], [Contiki]. Note that an OS is not necessarily
 required and a traditional firmware approach can suffice for Class 1
 devices. Event-driven systems use split-phase operations (i.e.,
 there are no blocking functions, but functions return and an event
 handler is called once a long-lasting operation completes) to enable
 cooperative multi-threading with a single stack.

 Bringing a Web transfer protocol to constrained environments does not
 only change the networking of the corresponding systems, but also the
 programming model. The complexity of event-driven systems can be
 hidden through APIs that resemble classic RESTful Web service
 implementations.

2.7.1. Client

 An API for asynchronous requests with response handler functions goes
 hand-in-hand with the event-driven approach. Synchronous requests
 with a blocking send function can facilitate applications that
 require strictly ordered, sequential request execution (e.g., to
 control a physical process) or other checkpointing (e.g., starting
 operation only after registration with the resource directory was
 successful). However, this can also be solved by triggering the next

https://datatracker.ietf.org/doc/html/rfc5927
https://datatracker.ietf.org/doc/html/rfc6633

Kovatsch, et al. Expires September 14, 2017 [Page 15]

Internet-Draft CoAP Implementation Guidance March 2017

 operation in the response handlers. Furthermore, as mentioned in
Section 2.1, it is more like that complex control flow is done by

 more powerful devices and Class 1 devices predominantly run a CoAP
 server (which might include a minimal client to communicate with a
 resource directory).

2.7.2. Server

 On CoAP servers, the event-driven nature can be hidden through
 resource handler abstractions as known from traditional REST
 frameworks. The following types of RESTful resources have proven
 useful to provide an intuitive API on constrained event-driven
 systems:

 NORMAL A normal resource defined by a static Uri-Path and an
 associated resource handler function. Allowed methods could
 already be filtered by the implementation based on flags. This is
 the basis for all other resource types.

 PARENT A parent resource manages several sub-resources under a given
 base path by programmatically evaluating the Uri-Path. Defining a
 URI template (see [RFC6570]) would be a convenient way to pre-
 parse arguments given in the Uri-Path.

 PERIODIC A resource that has an additional handler function that is
 triggered periodically by the CoAP implementation with a resource-
 specific interval. It can be used to sample a sensor or perform
 similar periodic updates of its state. Usually, a periodic
 resource is observable and sends the notifications by triggering
 its normal resource handler from the periodic handler. These
 periodic tasks are quite common for sensor nodes, thus it makes
 sense to provide this functionality in the CoAP implementation and
 avoid redundant code in every resource.

 EVENT An event resource is similar to an periodic resource, only
 that the second handler is called by an irregular event such as a
 button.

 SEPARATE Separate responses are usually used when handling a request
 takes more time, e.g., due to a slow sensor or UART-based
 subsystems. To not fully block the system during this time, the
 handler should also employ split-phase execution: The resource
 handler returns as soon as possible and an event handler resumes
 responding when the result is ready. The separate resource type
 can abstract from the split-phase operation and take care of
 temporarily storing the request information that is required later
 in the result handler to send the response (e.g., source address
 and Token).

https://datatracker.ietf.org/doc/html/rfc6570

Kovatsch, et al. Expires September 14, 2017 [Page 16]

Internet-Draft CoAP Implementation Guidance March 2017

3. Optimizations

3.1. Message Buffers

 The cooperative multi-threading of an event loop system allows to
 optimize memory usage through in-place processing and reuse of
 buffers, in particular the IP buffer provided by the OS or firmware.

 CoAP servers can significantly benefit from in-place processing, as
 they can create responses directly in the incoming IP buffer. Note
 that an embedded OS usually only has a single buffer for incoming and
 outgoing IP packets. The first few bytes of the basic header are
 usually parsed into an internal data structure and can be overwritten
 without harm. Thus, empty ACKs and RST messages can promptly be
 assembled and sent using the IP buffer. Also when a CoAP server only
 sends piggy-backed or Non-confirmable responses, no additional buffer
 is required at the application layer. This, however, requires
 careful timing so that no incoming data is overwritten before it was
 processed. Because of cooperative multi-threading, this requirement
 is relaxed, though. Once the message is sent, the IP buffer can
 accept new messages again. This does not work for Confirmable
 messages, however. They need to be stored for retransmission and
 would block any further IP communication.

 Depending on the number of requests that can be handled in parallel,
 an implementation might create a stub response filled with any option
 that has to be copied from the original request to the separate
 response, especially the Token option. The drawback of this
 technique is that the server must be prepared to receive
 retransmissions of the previous (Confirmable) request to which a new
 acknowledgement must be generated. If memory is an issue, a single
 buffer can be used for both tasks: Only the message type and code
 must be updated, changing the message id is optional. Once the
 resource representation is known, it is added as new payload at the
 end of the stub response. Acknowledgements still can be sent as
 described before as long as no additional options are required to
 describe the payload.

3.2. Retransmissions

 CoAP's reliable transmissions require the before-mentioned
 retransmission buffers. Messages, such as the requests of a client,
 should be stored in serialized form. For servers, retransmissions
 apply for Confirmable separate responses and Confirmable
 notifications [RFC7641]. As separate responses stem from long-
 lasting resource handlers, the response should be stored for
 retransmission instead of re-dispatching a stored request (which
 would allow for updating the representation). For Confirmable

https://datatracker.ietf.org/doc/html/rfc7641

Kovatsch, et al. Expires September 14, 2017 [Page 17]

Internet-Draft CoAP Implementation Guidance March 2017

 notifications, please see Section 2.6, as simply storing the response
 can break the concept of eventual consistency.

 String payloads such as JSON require a buffer to print to. By
 splitting the retransmission buffer into header and payload part, it
 can be reused. First to generate the payload and then storing the
 CoAP message by serializing into the same memory. Thus, providing a
 retransmission for any message type can save the need for a separate
 application buffer. This, however, requires an estimation about the
 maximum expected header size to split the buffer and a memmove to
 concatenate the two parts.

 For platforms that disable clock tick interrupts in sleep states, the
 application must take into consideration the clock deviation that
 occurs during sleep (or ensure to remain in idle state until the
 message has been acknowledged or the maximum number of
 retransmissions is reached). Since CoAP allows up to four
 retransmissions with a binary exponential back-off it could take up
 to 45 seconds until the send operation is complete. Even in idle
 state, this means substantial energy consumption for low-power nodes.
 Implementers therefore might choose a two-step strategy: First, do
 one or two retransmissions and then, in the later phases of back-off,
 go to sleep until the next retransmission is due. In the meantime,
 the node could check for new messages including the acknowledgement
 for any Confirmable message to send.

3.3. Observable Resources

 For each observer, the server needs to store at least address, port,
 token, and the last outgoing message ID. The latter is needed to
 match incoming RST messages and cancel the observe relationship.

 It is favorable to have one retransmission buffer per observable
 resource that is shared among all observers. Each notification is
 serialized once into this buffer and only address, port, and token
 are changed when iterating over the observer list (note that
 different token lengths might require realignment). The advantage
 becomes clear for Confirmable notifications: Instead of one
 retransmission buffer per observer, only one buffer and only
 individual retransmission counters and timers in the list entry need
 to be stored. When the notifications can be sent fast enough, even a
 single timer would suffice. Furthermore, per-resource buffers
 simplify the update with a new resource state during open deliveries.

Kovatsch, et al. Expires September 14, 2017 [Page 18]

Internet-Draft CoAP Implementation Guidance March 2017

3.4. Blockwise Transfers

 Blockwise transfers have the main purpose of providing fragmentation
 at the application layer, where partial information can be processed.
 This is not possible at lower layers such as 6LoWPAN, as only
 assembled packets can be passed up the stack. While [RFC7959] also
 anticipates atomic handling of blocks, i.e., only fully received CoAP
 messages, this is not possible on Class 1 devices.

 When receiving a blockwise transfer, each block is usually passed to
 a handler function that for instance performs stream processing or
 writes the blocks to external memory such as flash. Although there
 are no restrictions in [RFC7959], it is beneficial for Class 1
 devices to only allow ordered transmission of blocks. Otherwise on-
 the-fly processing would not be possible.

 When sending a blockwise transfer out of dynamically generated
 information, Class 1 devices usually do not have sufficient memory to
 print the full message into a buffer, and slice and send it in a
 second step. For instance, if the CoRE Link Format at /.well-known/
 core is dynamically generated, a generator function is required that
 generates slices of a large string with a specific offset length (a
 'sonprintf()'). This functionality is required recurrently and
 should be included in a library.

3.5. Deduplication with Sequential MIDs

 CoAP's duplicate rejection functionality can be straightforwardly
 implemented in a CoAP endpoint by storing, for each remote CoAP
 endpoint ("peer") that it communicates with, a list of recently
 received CoAP Message IDs (MIDs) along with some timing information.
 A CoAP message from a peer with a MID that is in the list for that
 peer can simply be discarded.

 The timing information in the list can then be used to time out
 entries that are older than the _expected extent of the re-ordering_,
 an upper bound for which can be estimated by adding the _potential
 retransmission window_ ([RFC7252] section "Reliable Messages") and
 the time packets can stay alive in the network.

 Such a straightforward implementation is suitable in case other CoAP
 endpoints generate random MIDs. However, this storage method may
 consume substantial RAM in specific cases, such as:

 o many clients are making periodic, non-idempotent requests to a
 single CoAP server;

https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7252

Kovatsch, et al. Expires September 14, 2017 [Page 19]

Internet-Draft CoAP Implementation Guidance March 2017

 o one client makes periodic requests to a large number of CoAP
 servers and/or requests a large number of resources; where servers
 happen to mostly generate separate CoAP responses (not piggy-
 backed);

 For example, consider the first case where the expected extent of re-
 ordering is 50 seconds, and N clients are sending periodic POST
 requests to a single CoAP server during a period of high system
 activity, each on average sending one client request per second. The
 server would need 100 * N bytes of RAM to store the MIDs only. This
 amount of RAM may be significant on a RAM-constrained platform. On a
 number of platforms, it may be easier to allocate some extra program
 memory (e.g. Flash or ROM) to the CoAP protocol handler process than
 to allocate extra RAM. Therefore, one may try to reduce RAM usage of
 a CoAP implementation at the cost of some additional program memory
 usage and implementation complexity.

 Some CoAP clients generate MID values by a using a Message ID
 variable [RFC7252] that is incremented by one each time a new MID
 needs to be generated. (After the maximum value 65535 it wraps back
 to 0.) We call this behavior "sequential" MIDs. One approach to
 reduce RAM use exploits the redundancy in sequential MIDs for a more
 efficient MID storage in CoAP servers.

 Naturally such an approach requires, in order to actually reduce RAM
 usage in an implementation, that a large part of the peers follow the
 sequential MID behavior. To realize this optimization, the authors
 therefore RECOMMEND that CoAP endpoint implementers employ the
 "sequential MID" scheme if there are no reasons to prefer another
 scheme, such as randomly generated MID values.

 Security considerations might call for a choice for
 (pseudo)randomized MIDs. Note however that with truly randomly
 generated MIDs the probability of MID collision is rather high in use
 cases as mentioned before, following from the Birthday Paradox. For
 example, in a sequence of 52 randomly drawn 16-bit values the
 probability of finding at least two identical values is about 2
 percent.

 From here on we consider efficient storage implementations for MIDs
 in CoAP endpoints, that are optimized to store "sequential" MIDs.
 Because CoAP messages may be lost or arrive out-of-order, a solution
 has to take into account that received MIDs of CoAP messages are not
 actually arriving in a sequential fashion, due to lost or reordered
 messages. Also a peer might reset and lose its MID counter(s) state.
 In addition, a peer may have a single Message ID variable used in
 messages to many CoAP endpoints it communicates with, which partly
 breaks sequentiality from the receiving CoAP endpoint's perspective.

https://datatracker.ietf.org/doc/html/rfc7252

Kovatsch, et al. Expires September 14, 2017 [Page 20]

Internet-Draft CoAP Implementation Guidance March 2017

 Finally, some peers might use a randomly generated MID values
 approach. Due to these specific conditions, existing sliding window
 bitfield implementations for storing received sequence numbers are
 typically not directly suitable for efficiently storing MIDs.

 Table 1 shows one example for a per-peer MID storage design: a table
 with a bitfield of a defined length _K_ per entry to store received
 MIDs (one per bit) that have a value in the range [MID_i + 1 , MID_i
 + K].

 +----------+----------------+-----------------+
 | MID base | K-bit bitfield | base time value |
 +----------+----------------+-----------------+
 | MID_0 | 010010101001 | t_0 |
 | | | |
 | MID_1 | 111101110111 | t_1 |
 | | | |
 | ... etc. | | |
 +----------+----------------+-----------------+

 Table 1: A per-peer table for storing MIDs based on MID_i

 The presence of a table row with base MID_i (regardless of the
 bitfield values) indicates that a value MID_i has been received at a
 time t_i. Subsequently, each bitfield bit k (0...K-1) in a row i
 corresponds to a received MID value of MID_i + k + 1. If a bit k is
 0, it means a message with corresponding MID has not yet been
 received. A bit 1 indicates such a message has been received already
 at approximately time t_i. This storage structure allows e.g. with
 k=64 to store in best case up to 130 MID values using 20 bytes, as
 opposed to 260 bytes that would be needed for a non-sequential
 storage scheme.

 The time values t_i are used for removing rows from the table after a
 preset timeout period, to keep the MID store small in size and enable
 these MIDs to be safely re-used in future communications. (Note that
 the table only stores one time value per row, which therefore needs
 to be updated on receipt of another MID that is stored as a single
 bit in this row. As a consequence of only storing one time value per
 row, older MID entries typically time out later than with a simple
 per-MID time value storage scheme. The endpoint therefore needs to
 ensure that this additional delay before MID entries are removed from
 the table is much smaller than the time period after which a peer
 starts to re-use MID values due to wrap-around of a peer's MID
 variable. One solution is to check that a value t_i in a table row
 is still recent enough, before using the row and updating the value
 t_i to current time. If not recent enough, e.g. older than N
 seconds, a new row with an empty bitfield is created.) [Clearly,

Kovatsch, et al. Expires September 14, 2017 [Page 21]

Internet-Draft CoAP Implementation Guidance March 2017

 these optimizations would benefit if the peer were much more
 conservative about re-using MIDs than currently required in the
 protocol specification.]

 The optimization described is less efficient for storing randomized
 MIDs that a CoAP endpoint may encounter from certain peers. To solve
 this, a storage algorithm may start in a simple MID storage mode,
 first assuming that the peer produces non-sequential MIDs. While
 storing MIDs, a heuristic is then applied based on monitoring some
 "hit rate", for example, the number of MIDs received that have a Most
 Significant Byte equal to that of the previous MID divided by the
 total number of MIDs received. If the hit rate tends towards 1 over
 a period of time, the MID store may decide that this particular CoAP
 endpoint uses sequential MIDs and in response improve efficiency by
 switching its mode to the bitfield based storage.

4. Alternative Configurations

4.1. Transmission Parameters

 When a constrained network of CoAP nodes is not communicating over
 the Internet, for instance because it is shielded by a proxy or a
 closed deployment, alternative transmission parameters can be used.
 Consequently, the derived time values provided in [RFC7252] section

4.8.2 will also need to be adjusted, since most implementations will
 encode their absolute values.

 Static adjustments require a fixed deployment with a constant number
 or upper bound for the number of nodes, number of hops, and expected
 concurrent transmissions. Furthermore, the stability of the wireless
 links should be evaluated. ACK_TIMEOUT should be chosen above the
 xx% percentile of the round-trip time distribution.
 ACK_RANDOM_FACTOR depends on the number of nodes on the network.
 MAX_RETRANSMIT should be chosen suitable for the targeted
 application. A lower bound for LEISURE can be calculated as

 lb_Leisure = S * G / R

 where S is the estimated response size, G the group size, and R the
 target data transfer rate (see [RFC7252] section 8.2). NSTART and
 PROBING_RATE depend on estimated network utilization. If the main
 cause for loss are weak links, higher values can be chosen.

 Dynamic adjustments will be performed by advanced congestion control
 mechanisms such as [I-D.ietf-core-cocoa]. They are required if the
 main cause for message loss is network or endpoint congestion. Semi-
 dynamic adjustments could be implemented by disseminating new static
 transmission parameters to all nodes when the network configuration

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-8.2

Kovatsch, et al. Expires September 14, 2017 [Page 22]

Internet-Draft CoAP Implementation Guidance March 2017

 changes (e.g., new nodes are added or long-lasting interference is
 detected).

4.2. CoAP over IPv4

 CoAP was designed for the properties of IPv6, which is dominating in
 constrained environments because of the 6LoWPAN adaption layer
 [RFC6282]. In particular, the size limitations of CoAP are tailored
 to the minimal MTU of 1280 bytes. Until the transition towards IPv6
 converges, CoAP nodes might also communicate over IPv4, though.
 Sections 4.2 and 4.6 of the base specification [RFC7252] already
 provide guidance and implementation notes to handle the smaller
 minimal MTUs of IPv4.

 Another deployment issue in legacy IPv4 deployments is caused by
 Network Address Translators (NATs). The session timeouts are
 unpredictable and NATs may close UDP sessions with timeout as short
 as 60 seconds. This makes CoAP endpoints behind NATs practically
 unreachable, even when they contact the remote endpoint with a public
 IP address first. Incorrect behavior may also arise when the NAT
 session heuristic changes the external port between two successive
 CoAP messages. For the remote endpoint, this will look like two
 different CoAP endpoints on the same IP address. Such behavior can
 be fatal for the resource directory registration interface. Where
 more resources are available on a node, CoAP over TCP and TLS
 [I-D.ietf-core-coap-tcp-tls] can be used to obtain more civil
 behavior from NATs [HomeGateway] with IPv4.

5. Binding to specific lower-layer APIs

 Implementing CoAP on specific lower-layer APIs appears to
 consistently bring up certain less-known aspects of these APIs. This
 section is intended to alert implementers to such aspects.

5.1. Berkeley Socket Interface

5.1.1. Responding from the right address

 In order for a client to recognize a reply (response or
 acknowledgement) as coming from the endpoint to which the initiating
 packet was addressed, the source IPv6 address of the reply needs to
 match the destination address of the initiating packet.

 Implementers that have previously written TCP-based applications are
 used to binding their server sockets to INADDR_ANY. Any TCP
 connection received over such a socket is then more specifically
 bound to the source address from which the TCP connection setup was
 received; no programmer action is needed for this.

https://datatracker.ietf.org/doc/html/rfc6282
https://datatracker.ietf.org/doc/html/rfc7252

Kovatsch, et al. Expires September 14, 2017 [Page 23]

Internet-Draft CoAP Implementation Guidance March 2017

 For stateless UDP sockets, more manual work is required. Simply
 receiving a packet from a UDP socket bound to INADDR_ANY loses the
 information about the destination address; replying to it through the
 same socket will use the default address established by the kernel.
 Two strategies are available:

 o Only use sockets bound to a specific address (not INADDR_ANY). A
 system with multiple interfaces (or addresses) will thus need to
 bind multiple sockets and send replies back on the same socket the
 initiating packet was received on.

 o Use IPV6_RECVPKTINFO [RFC3542] to configure the socket, and mirror
 back the IPV6_PKTINFO information for the reply (see also

Section 5.1.1.1).

5.1.1.1. Managing interfaces

 For some applications, it may further be relevant what interface is
 chosen to send to an endpoint, beyond the kernel choosing one that
 has a routing table entry for the destination address. E.g., it may
 be natural to send out a response or acknowledgment on the same
 interface that the packet prompting it was received. The end of the
 introduction to section 6 of [RFC3542] describes a simple technique
 for this, where that RFC's API (IPV6_PKTINFO) is available. The same
 data structure can be used for indicating an interface to send a
 packet that is initiating an exchange. (Choosing that interface is
 too application-specific to be in scope for the present document.)

5.2. Java

 Java provides a wildcard address (0.0.0.0) to bind a socket to all
 network interface. This is useful when a server is supposed to
 listen on any available interface including the lookback address.
 For UDP, and hence CoAP this poses a problem, however, because the
 DatagramPacket class does not provide the information to which
 address it was sent. When replying through the wildcard socket, the
 JVM will pick the default address, which can break the correlation of
 messages when the remote endpoint did not send the message to the
 default address. This is in particular precarious for IPv6 where it
 is common to have multiple IP addresses per network interface. Thus,
 it is recommended to bind to all adresses explicitly and manage the
 destination address of incoming messages within the CoAP
 implementation.

https://datatracker.ietf.org/doc/html/rfc3542
https://datatracker.ietf.org/doc/html/rfc3542#section-6

Kovatsch, et al. Expires September 14, 2017 [Page 24]

Internet-Draft CoAP Implementation Guidance March 2017

5.3. Multicast detection

 Similar to the considerations above, Section 8 of [RFC7252] requires
 a node to detect whether a packet that it is going to reply to was
 sent to a unicast or to a multicast address. On most platforms,
 binding a UDP socket to a unicast address ensures that it only
 receives packets addressed to that address. Programmers relying on
 this property should ensure that it indeed applies to the platform
 they are using. If it does not, IPV6_PKTINFO may, again, help for
 Berkeley Socket Interfaces. For Java, explicit management of
 different sockets (in this case a MulticastSocket) is required.

5.4. DTLS

 CoAPS implementations require access to the authenticated user/device
 prinicipal to realize access control for resources. How this
 information can be accessed heavily depends on the DTLS
 implementation used. Generic and portable CoAP implementations might
 want to provide an abstraction layer that can be used by application
 developers that implement resource handlers. It is recommended to
 keep the API of such an application layer close to popular HTTPS
 solutions that are available for the targeted platform, for instance,
 mod_ssl or the Java Servlet API.

6. CoAP on various transports

 As originally specified in [RFC7252], CoAP is defined for two
 underlying transports: UDP and DTLS. These transports are relatively
 similar in terms of the properties they expose to their users. (The
 main difference, apart from the increased security, is that DTLS
 provides an abstraction of a connection, into which the endpoint
 abstraction is placed; in contrast, the UDP endpoint abstraction is
 based on four-tuples of IP addresses and ports.)

 Recently, the need to carry CoAP over other transports
 [I-D.silverajan-core-coap-alternative-transports] has led to
 specifications such as CoAP over TCP, TLS or WebSockets
 [I-D.ietf-core-coap-tcp-tls], or even over non-IP transports such as
 SMS [I-D.becker-core-coap-sms-gprs] or local serial lines
 [I-D.bormann-t2trg-slipmux]. This section discusses considerations
 that arise when handling these different transports in an
 implementation.

6.1. Translating between transports

 One obvious way to convey CoAP exchanges between different transports
 is to run a CoAP proxy that supports both transports. The usual

https://datatracker.ietf.org/doc/html/rfc7252#section-8
https://datatracker.ietf.org/doc/html/rfc7252

Kovatsch, et al. Expires September 14, 2017 [Page 25]

Internet-Draft CoAP Implementation Guidance March 2017

 considerations for proxies apply. Section 6.1.1 discusses some
 additional considerations.

 Where not much of the functionality of CoAP proxies (such as caching)
 is required, a simpler 1:1 translation may be possible, as discussed
 in Section 6.1.2.

6.1.1. Transport translation by proxies

 (TBD. In particular, point out the obvious: fan-in/fan-out means
 that separate message ID and token spaces need to be maintained at
 the ends of the proxy.)

 One more CoAP specific function of a transport translator proxy may
 be to convert between different block sizes, e.g. between a TCP
 connection that can tolerate large blocks and UDP over a constrained
 node network.

6.1.2. One-to-one Transport translation

 A translator with reduced requirements for state maintenance can be
 constructed when no fan-in or fan-out is required, and when the
 namespace lifetimes of the two sides can be made to coincide. For
 this one-to-one translation, there is no need to manage message-ID
 and Token value spaces for both sides separately. If the message
 layer on both sides is similar enough, little message layer
 processing is necessary. So, a simple UDP-to-UDP one-to-one
 translator could simply copy the messages (among other applications,
 this might be useful for translation between IPv4 and IPv6 spaces).
 Similarly, a WebSockets-to-TCP translator could be built that runs
 the WebSockets protocol and framing on one side, and repackages the
 CoAP header (add/zero out the length information) between the
 WebSockets and the TCP side.

 By definition, such a simple one-to-one translator needs to shut down
 the connection on one side when the connection on the other side
 terminates. However, a UDP-to-TCP one-to-one translator cannot
 simply shut down the UDP endpoint when the TCP endpoint vanishes
 because the TCP connection closes, so some additional management of
 state will be necessary (in particular with respect to token values).
 Also, a UDP-to-TCP one-to-one translator needs to run a full message
 layer (retransmission, deduplication) on the UDP side. In summary, a
 UDP-to-TCP translator will look enough like a proxy that it may be
 more appropriate to construct it as one.

Kovatsch, et al. Expires September 14, 2017 [Page 26]

Internet-Draft CoAP Implementation Guidance March 2017

7. IANA considerations

 This document has no actions for IANA.

8. Security considerations

 TBD

9. Acknowledgements

 Esko Dijk contributed the sequential MID optimization. Xuan He
 provided help creating and improved the state machine charts.

10. References

10.1. Normative References

 [I-D.ietf-core-cocoa]
 Bormann, C., Betzler, A., Gomez, C., and I. Demirkol,
 "CoAP Simple Congestion Control/Advanced", draft-ietf-

core-cocoa-00 (work in progress), October 2016.

 [RFC6282] Hui, J., Ed. and P. Thubert, "Compression Format for IPv6
 Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
 DOI 10.17487/RFC6282, September 2011,
 <http://www.rfc-editor.org/info/rfc6282>.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570,
 DOI 10.17487/RFC6570, March 2012,
 <http://www.rfc-editor.org/info/rfc6570>.

 [RFC6633] Gont, F., "Deprecation of ICMP Source Quench Messages",
RFC 6633, DOI 10.17487/RFC6633, May 2012,

 <http://www.rfc-editor.org/info/rfc6633>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

https://datatracker.ietf.org/doc/html/draft-ietf-core-cocoa-00
https://datatracker.ietf.org/doc/html/draft-ietf-core-cocoa-00
https://datatracker.ietf.org/doc/html/rfc6282
http://www.rfc-editor.org/info/rfc6282
https://datatracker.ietf.org/doc/html/rfc6570
http://www.rfc-editor.org/info/rfc6570
https://datatracker.ietf.org/doc/html/rfc6633
http://www.rfc-editor.org/info/rfc6633
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7252
http://www.rfc-editor.org/info/rfc7252

Kovatsch, et al. Expires September 14, 2017 [Page 27]

Internet-Draft CoAP Implementation Guidance March 2017

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <http://www.rfc-editor.org/info/rfc7641>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <http://www.rfc-editor.org/info/rfc7959>.

10.2. Informative References

 [Contiki] Dunkels, A., Groenvall, B., and T. Voigt, "Contiki - a
 Lightweight and Flexible Operating System for Tiny
 Networked Sensors", Proceedings of the First IEEE
 Workshop on Embedded Networked Sensors, November 2004.

 [HomeGateway]
 Eggert, L., "An experimental study of home gateway
 characteristics", Proceedings of the 10th annual
 conference on Internet measurement, 2010.

 [I-D.becker-core-coap-sms-gprs]
 Kuladinithi, K., Becker, M., Li, K., and T. Poetsch,
 "Transport of CoAP over SMS", draft-becker-core-coap-sms-

gprs-06 (work in progress), February 2017.

 [I-D.bormann-t2trg-slipmux]
 Bormann, C. and T. Kaupat, "Slipmux: Using an UART
 interface for diagnostics, configuration, and packet
 transfer", draft-bormann-t2trg-slipmux-00 (work in
 progress), January 2017.

 [I-D.ietf-core-coap-tcp-tls]
 Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,
 Silverajan, B., and B. Raymor, "CoAP (Constrained
 Application Protocol) over TCP, TLS, and WebSockets",

draft-ietf-core-coap-tcp-tls-07 (work in progress), March
 2017.

 [I-D.silverajan-core-coap-alternative-transports]
 Silverajan, B. and T. Savolainen, "CoAP Communication with
 Alternative Transports", draft-silverajan-core-coap-

alternative-transports-09 (work in progress), December
 2015.

https://datatracker.ietf.org/doc/html/rfc7641
http://www.rfc-editor.org/info/rfc7641
https://datatracker.ietf.org/doc/html/rfc7959
http://www.rfc-editor.org/info/rfc7959
https://datatracker.ietf.org/doc/html/draft-becker-core-coap-sms-gprs-06
https://datatracker.ietf.org/doc/html/draft-becker-core-coap-sms-gprs-06
https://datatracker.ietf.org/doc/html/draft-bormann-t2trg-slipmux-00
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-tcp-tls-07
https://datatracker.ietf.org/doc/html/draft-silverajan-core-coap-alternative-transports-09
https://datatracker.ietf.org/doc/html/draft-silverajan-core-coap-alternative-transports-09

Kovatsch, et al. Expires September 14, 2017 [Page 28]

Internet-Draft CoAP Implementation Guidance March 2017

 [RFC3542] Stevens, W., Thomas, M., Nordmark, E., and T. Jinmei,
 "Advanced Sockets Application Program Interface (API) for
 IPv6", RFC 3542, DOI 10.17487/RFC3542, May 2003,
 <http://www.rfc-editor.org/info/rfc3542>.

 [RFC5927] Gont, F., "ICMP Attacks against TCP", RFC 5927,
 DOI 10.17487/RFC5927, July 2010,
 <http://www.rfc-editor.org/info/rfc5927>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <http://www.rfc-editor.org/info/rfc7228>.

 [TinyOS] Levis, P., Madden, S., Polastre, J., Szewczyk, R.,
 Whitehouse, K., Woo, A., Gay, D., Woo, A., Hill, J.,
 Welsh, M., Brewer, E., and D. Culler, "TinyOS: An
 Operating System for Sensor Networks", Ambient
 intelligence, Springer (Berlin Heidelberg),
 ISBN 978-3-540-27139-0, 2005.

Authors' Addresses

 Matthias Kovatsch
 ETH Zurich
 Universitaetstrasse 6
 CH-8092 Zurich
 Switzerland

 Email: kovatsch@inf.ethz.ch

 Olaf Bergmann
 Universitaet Bremen TZI
 Postfach 330440
 D-28359 Bremen
 Germany

 Email: bergmann@tzi.org

https://datatracker.ietf.org/doc/html/rfc3542
http://www.rfc-editor.org/info/rfc3542
https://datatracker.ietf.org/doc/html/rfc5927
http://www.rfc-editor.org/info/rfc5927
https://datatracker.ietf.org/doc/html/rfc7228
http://www.rfc-editor.org/info/rfc7228

Kovatsch, et al. Expires September 14, 2017 [Page 29]

Internet-Draft CoAP Implementation Guidance March 2017

 Carsten Bormann (editor)
 Universitaet Bremen TZI
 Postfach 330440
 D-28359 Bremen
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

Kovatsch, et al. Expires September 14, 2017 [Page 30]

