
LWIG Working Group C. Bormann, Ed.
Internet-Draft Universitaet Bremen TZI
Intended status: Informational February 25, 2013
Expires: August 29, 2013

Guidance for Light-Weight Implementations of the Internet Protocol Suite
draft-ietf-lwig-guidance-03

Abstract

 Implementation of Internet protocols on small devices benefits from
 light-weight implementation techniques, which are often not
 documented in an accessible way.

 This document provides a first outline of and some initial content
 for the Light-Weight Implementation Guidance document planned by the
 IETF working group LWIG.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 29, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Bormann Expires August 29, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-lwig-guidance-03
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Guidance for Light-Weight Implementations February 2013

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Objectives . 4
1.2. Call for contributions 5
1.3. Terminology used in this document 5
1.4. Scope of the present document 6
1.5. Terminology boilerplate 6

2. Drawing the Landscape . 6
2.1. Design Objectives . 6
2.2. Implementation Styles 7
2.3. Roles of nodes . 8
2.4. Overview over the document 8

3. Data Plane Protocols . 8
3.1. Link Adaptation Layer 8

 3.1.1. Fragmentation in a 6LoWPAN Route-Over Configuration . 8
 3.1.1.1. Implementation Considerations for Not-So-
 Constrained Nodes 10

3.2. Network Layer . 10
3.3. Transport Layer . 10
3.3.1. TCP . 10

 3.3.1.1. Absolutely required TCP behaviors for proper
 functioning and interoperability 11
 3.3.1.2. Strongly encouraged, but non-essential, behaviors
 of TCP . 12
 3.3.1.3. Experimental extensions that are not yet standard
 practices . 13

3.3.1.4. Others . 13
3.4. Application Layer . 14

 3.4.1. General considerations about Application Programming
 Interfaces (APIs) 14

3.4.2. Constrained Application Protocol (CoAP) 14
3.4.2.1. Message Layer Processing 15
3.4.2.2. Message Parsing 16
3.4.2.3. Storing Used Message IDs 17

3.4.3. (Other Application Protocols...) 20
4. Control Plane Protocols 20
4.1. Link Layer Support 20
4.2. Network Layer . 20
4.3. Routing . 21
4.4. Host Configuration and Lookup Services 21
4.5. Network Management 21
4.5.1. SNMP . 21
4.5.1.1. Background 21

 4.5.1.2. Revisiting SNMP implementation for resource

Bormann Expires August 29, 2013 [Page 2]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 constrained devices 22
 4.5.1.3. Proposed approach for building an memory
 efficient SNMP agent 22

4.5.1.4. Example . 23
4.5.1.5. Further improvements 25
4.5.1.6. Conclusion 26

5. Security protocols . 26
5.1. Cryptography for Constrained Devices 26
5.2. Transport Layer Security 26
5.3. Network Layer Security 26
5.4. Network Access Control 26
5.4.1. PANA . 26
5.4.1.1. PANA AVPs . 27
5.4.1.2. PANA Phases 27
5.4.1.3. PANA session state parameters 29

6. Wire-Visible Constraints 31
7. Wire-Invisible Constraints 31
8. IANA Considerations . 32
9. Security Considerations 32
10. Acknowledgements . 32
10.1. Contributors . 32

11. References . 33
11.1. Normative References 33
11.2. Informative References 33

 Author's Address . 34

1. Introduction

 Today's Internet is experienced by users as a set of applications,
 such as email, instant messaging, and social networks. There are
 substantial differences in performance between the various end
 devices with these applications, but in general end devices
 participating in the Internet today are considered to have relatively
 high performance.

 More and more communications technology is being embedded into our
 environment. Different types of devices in our buildings, vehicles,
 equipment and other objects have a need to communicate. It is
 expected that most of these devices will employ the Internet Protocol
 suite. The term "Internet of Things" denotes a trend where a large
 number of devices directly benefit from communication services that
 use Internet protocols. Many of these devices are not primarily
 computing devices operated by humans, but exist as components in
 buildings, vehicles, and the environment. There will be a lot of
 variation in the computing power, available memory, communications
 bandwidth, and other capabilities between different types of these
 devices. With many low-cost, low-power and otherwise constrained
 devices, it is not always easy to embed all the necessary features.

Bormann Expires August 29, 2013 [Page 3]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 Historically, there has been a trend to invent special "light-weight"
 protocols to connect the most constrained devices. However, much
 of this development can simply run on existing Internet protocols,
 provided some attention is given to achieving light-weight
 implementations. In some cases the new, constrained environments
 can indeed benefit from protocol optimizations and additional
 protocols that help optimize Internet communications and lower the
 computational requirements. Examples of IETF standardization efforts
 targeted for these environments include the "IPv6 over Low power WPAN
 (6LoWPAN)", "Routing Over Low power and Lossy networks (ROLL)", and
 "Constrained RESTful Environments (CoRE)" working groups. More
 generally, however, techniques are required to implement both these
 optimized protocols as well as the other protocols of the Internet
 protocol suite in a way that makes them applicable to a wider range
 of devices.

1.1. Objectives

 The present document, a product of the IETF Light-Weight
 Implementation Guidance (LWIG) Working Group, focuses on helping the
 implementers of the smallest devices. The goal is to be able to
 build minimal yet interoperable IP-capable devices for the most
 constrained environments.

 Building a small implementation does not have to be hard. Many small
 devices use stripped down versions of general purpose operating
 systems and their TCP/IP stacks. However, there are implementations
 that go even further in minimization and can exist in as few as a
 couple of kilobytes of code, as on some devices this level of
 optimization is necessary. Technical and cost considerations may
 limit the computing power, battery capacity, available memory, or
 communications bandwidth that can be provided. To overcome these
 limitations the implementers have to employ the right hardware and
 software mechanisms. For instance, certain types of memory
 management or even fixed memory allocation may be required. It is
 also useful to understand what is necessary from the point of view of
 the communications protocols and the application employing them. For
 instance, a device that only acts as a client or only requires one
 connection can simplify its TCP implementation considerably.

 The purpose of this document is to collect experiences from
 implementers of IP stacks in constrained devices. The focus is on
 techniques that have been used in actual implementations and do not
 impact interoperability with other devices. The techniques shall
 also not affect conformance to the relevant specifications. We
 describe implementation techniques for reducing complexity, memory
 footprint, or power usage.

Bormann Expires August 29, 2013 [Page 4]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 The topics for this working group will be chosen from Internet
 protocols that are in wide use today, such as IPv4 and IPv6; UDP and
 TCP; ICMPv4/v6, MLD/IGMP and ND; DNS and DHCPv4/v6; TLS, DTLS and
 IPsec; as well as from the optimized protocols that result from the
 work of the 6LoWPAN, RPL, and CoRE working groups. This document
 will be helpful for the implementers of new devices or for the
 implementers of new general-purpose small IP stacks. It is also
 expected that the document will increase our knowledge of what
 existing small implementations do, and will help in the further
 optimization of the existing implementations. In areas where the
 considerations for small implementations have already been documented
 in an accessible way, we will refer to those documents instead of
 duplicating the material here.

 Generic hardware design advice and software implementation techniques
 are outside the scope of this document. Protocol implementation
 experience, however, is the focus. There is no intention to describe
 any new protocols or protocol behavior modifications beyond what is
 already allowed by existing RFCs, because it is important to ensure
 that different types of devices can work together. For example,
 implementation techniques relating to security mechanisms are within
 scope, but mere removal of security functionality from a protocol is
 rarely an acceptable approach.

1.2. Call for contributions

 The present draft of the document is an outline that will grow with
 the contributions received, which are expressly invited. As this
 document focuses on experience from existing implementations, this
 requires implementer input; in particular, participation is required
 from the implementers of existing small IP stacks. "Small" here is
 intended to be applicable approximately to what is described in

Section 2 -\u002D where it is more important that the technique
 described is grounded in actual experience than that the experience
 is actually from a (very) constrained system.

 Only a few subsections are fleshed out in this initial draft;
 additional subsections will quickly be integrated from additional
 contributors.

1.3. Terminology used in this document

 The present document has originally also been used to develop
 pertinent terminology. This has been factored out into a separate
 document, [I-D.ietf-lwig-terminology], which is now a prerequisite to
 reading the present document.

Bormann Expires August 29, 2013 [Page 5]

Internet-Draft Guidance for Light-Weight Implementations February 2013

1.4. Scope of the present document

 Using this terminology, we can now more precisely define the scope of
 the present document:

 This document is about implementation techniques that enable
 constrained nodes to form constrained node networks.

 Delay-Tolerant Networks (DTNs) are out of scope. (See Section 1.1
 above for a further list of non-goals.)

1.5. Terminology boilerplate

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119. As this is
 an informational document, the [RFC2119] keywords will only be used
 to underscore requirements where similar key words apply in the
 context of the specifications the light-weight implementation of
 which is being discussed.

 The term "byte" is used in its now customary sense as a synonym for
 "octet".

2. Drawing the Landscape

 There is not a single kind of constrained, Internet-connected device.
 To the contrary, the trend is towards much more functional variety of
 such devices than is customary today in the Internet. The
 terminology document [I-D.ietf-lwig-terminology] introduces a number
 of terms that will be used here to locate some of the technique
 described in the following sections within certain areas of
 applications.

2.1. Design Objectives

 o Consideration for design or implementation approaches for
 implementation of IP stacks for constrained devices will be
 impacted by the RAM usage for these designs. Here the
 consideration is what is the best approach to minimize overhead.

 o In addition, the impact on throughput in terms of IP protocol
 implementation must take into consideration the methods that
 minimize overhead but balance performance requirements for the
 light-weight constrained devices.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Bormann Expires August 29, 2013 [Page 6]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 o Protocol implementation must consider its impact on CPU
 utilization. Here guidance will be provided on how to minimize
 tasks that require additional CPU execution time.

 How does the implementation of the IP stack effect the application
 both in terms of performance but also of those same attributes and
 requirements (RAM, CPU usage, etc.) that we are examining for the IP
 protocol stack?

 From performing a synthesis of implementation experiences we will be
 able to understand and document the benefits and consequences of
 varied approaches. Scaling code and selected approaches in terms of
 scaling from, say, a 8-bit micro to a 16-bit micro. Such scaling for
 the approach will aid in the development of single code base when
 possible.

2.2. Implementation Styles

 Compared to personal computing devices, constrained devices tend to
 make use of quite different classes of operating systems, if that
 term is even applicable.

 ...

 o Single-threaded/giant mainloop

 o Event-driven vs. threaded/blocking

 * The usual multi-threaded model blocks a thread on primitives
 such as connect(), accept() or read() until an external event
 takes place. This model is often thought to consume too much
 RAM and CPU processing.

 * The event driven model uses a non-blocking approach: E.g., when
 an application interface sends a message, the routine would
 return immediately (before the message is sent). A call-back
 facility notifies the application or calling code when the
 desired processing is completed. Here the benefit is that no
 thread context needs to be preserved for long periods of time.

 o Single/multiple processing elements

 o E.g., separate radio/network processor

 Introduce these briefly: Some techniques may be applicable only to
 some of these styles!

Bormann Expires August 29, 2013 [Page 7]

Internet-Draft Guidance for Light-Weight Implementations February 2013

2.3. Roles of nodes

 Constrained nodes are by necessity more specialized than general
 purpose computing devices; they may have a quite specific role. Some
 implementation techniques may also

 o Constrained nodes

 o Nodes talking to constrained nodes

 o Gateways/Proxies

 In all these cases, constrained nodes that are "sleepy" pose
 additional considerations. (Explain sleepy...) E.g., a node talking
 to a sleepy node may need to make special arrangements; this is even
 more true where a gateway or proxy interfaces the general Internet

 o Bandwidth/latency considerations

2.4. Overview over the document

 The following sections will first go through a number of specific
 protocol layers, starting from layers of the data plane (link
 adaptation, network, transport, application), followed by control
 plane protocol layers (link layer support, network layer and routing,
 host configuration and lookup services). We then look at security
 protocols (general cryptography considerations, transport layer
 security, network layer security, network access control). Finally,
 we discuss some specific, cross-layer concerns, some "wire-visible",
 some of concern within a specific implementation. Clearly, many
 topics could be discussed in more than one place in this structure.
 The objective is not to have something for each of the potential
 topics, but to document the most valuable experience that may be
 available.

3. Data Plane Protocols

3.1. Link Adaptation Layer

 6LoWPAN

3.1.1. Fragmentation in a 6LoWPAN Route-Over Configuration

 Author: Carsten Bormann

 6LoWPAN [RFC4944] is an adaptation layer that maps IPv6 with its
 minimum MTU of 1280 bytes to IEEE 802.15.4, which has a physical
 layer MTU of only 127 bytes (some of which are taken by MAC layer and

https://datatracker.ietf.org/doc/html/rfc4944

Bormann Expires August 29, 2013 [Page 8]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 adaptation layer headers). Therefore, the adaptation layer provides
 a fragmentation and reassembly scheme that can fragment a single IPv6
 packet of up to 1280 bytes into multiple adaptation layer fragments
 of up to 127 bytes each (including MAC and adaptation layer
 overhead).

 In a route-over configuration, implementing this adaptation layer
 fragmentation scheme straightforwardly means that reassembly and then
 fragmentation are performed at each forwarding hop. As fragments
 from several packets may be arriving interleaved with each other,
 this approach requires buffer space for multiple MTU-size IPv6
 packets.

 In a mesh-under configuration, adaptation layer fragments can be
 forwarded independently of each other. It would be preferable if
 something similar were possible for route-over. Complete
 independence in forwarding of adaptation layer fragments is not
 possible for route-over, however, as the layer-3 addresses needed for
 forwarding are in the initial bytes of the IPv6 header, which is
 present only in the first fragment of a larger packet.

 Instead of performing a full reassembly, implementations may be able
 to optimize this process by not keeping a full reassembly buffer, but
 just a runt buffer (called "virtual reassembly buffer" in [WEI]) for
 each IP packet. This buffer caches only the datagram_tag field (as
 usual combined with the sender's link layer address, the
 destination's link layer address and the datagram_size field) and the
 IPv6 header including the relevant addresses. Initial fragments are
 then forwarded independently (after header decompression/compression)
 and create a runt reassembly buffer. Non-initial fragments (which
 don't require header decompression/compression in 6LoWPAN) are
 matched against the runt buffers by datagram_tag etc. and forwarded
 if an IPv6 address is available. (This simple scheme may be
 complicated a bit if header decompression/compression of the initial
 fragment causes an overflow of the physical MTU; in this case some
 overflow data may need to be stored in the runt buffers to be
 combined with further fragments or may simply be forwarded as a
 separate additional fragment.)

 If non-initial fragments arrive out of order before the initial
 fragment, a route-over router may want to keep the contents of the
 non-initial fragments until the initial fragment is available, which
 does need some buffer space. If that is not available, a more
 constrained route-over router may simply discard out-of order non-
 initial fragments, possibly taking note that there is no point in
 forwarding any more fragments with the same combination of 6LoWPAN
 datagram_tag field, L2 addresses and datagram_size.

Bormann Expires August 29, 2013 [Page 9]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 Runt buffers should time out like full reassembly buffers, and may
 either keep a map of fragments forwarded or they may simply be
 removed upon forwarding the final fragment, assuming that no out-of-
 order fragments will follow.

3.1.1.1. Implementation Considerations for Not-So-Constrained Nodes

 [RFC4944] makes no explicit mandates about the order in which
 fragments should be sent. Because it is heavily favored by the above
 implementation techniques, it is highly advisable for all
 implementations to always send adaptation layer fragments in natural
 order, i.e., starting with the initial fragment, continuing with
 increasing datagram_offset.

3.2. Network Layer

 IPv4 and IPv6

3.3. Transport Layer

 TCP and UDP

 Both TCP and UDP employ 16-bit one's-complement checksums to protect
 against transmission errors. A number of RFCs discuss efficient
 implementation techniques for computing and updating Internet
 Checksums [RFC1071] [RFC1141] [RFC1624]. (Updating the Internet
 Checksum, as opposed to computing it from scratch, may be of interest
 where a pre-computed packet is provided, e.g., in Flash ROM, and a
 copy is made in RAM and updated with some current values, or when the
 actual transmitted packet is composed from pre-defined parts in ROM
 and new parts in RAM.)

3.3.1. TCP

 Ed. Note:

 The following outline of a section is an attempt to provide
 substructure for a future discussion of TCP-related issues based on
 the TCP Roadmap, [RFC4614]. The indented text, as well as the RFC
 citations, are copied (and redacted) from there; this certainly needs
 to be refined in a future version. (Some additional adaptation of
 the material may also be required as RFC 2581 was since obsoleted by

RFC 5681, and RFC 3782 was obsoleted by RFC 6582.)

 Author: Yuanchen Ma

 In [RFC4614], the TCP related RFCs are summarized. Some RFCs
 describe absolutely required TCP behaviors for proper functioning and

https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1141
https://datatracker.ietf.org/doc/html/rfc1624
https://datatracker.ietf.org/doc/html/rfc4614
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3782
https://datatracker.ietf.org/doc/html/rfc6582
https://datatracker.ietf.org/doc/html/rfc4614

Bormann Expires August 29, 2013 [Page 10]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 interoperability. Further RFCs describe strongly encouraged, but
 non-essential, behaviors. There are also experimental extensions
 that are not yet standard practices, but that potentially could be in
 the future.

 In this subsection, the influence of resource constrained nodes on
 TCP implementations are summarized according to the lists of
 [RFC4614].

3.3.1.1. Absolutely required TCP behaviors for proper functioning and
 interoperability

RFC 793 S: "Transmission Control Protocol", STD 7 (September 1981)

 In RFC793, the TCP state machine and event processing, and TCP's
 semantics for data transmission, reliability, flow control,
 multiplexing, and acknowledgment. For this part, the constraint of
 memory will limit the multiplexing capability of TCP. /_text needed
 for RFC793_/

RFC 1122 S: "Requirements for Internet Hosts - Communication Layers"
 (October 1989)

RFC 2460 S: "Internet Protocol, Version 6 (IPv6) Specification
 (December 1998)

RFC 2873 S: "TCP Processing of the IPv4 Precedence Field" (June 2000)

 This document [RFC2873] removes from the TCP specification all
 processing of the precedence bits of the TOS byte of the IP
 header.

 These three RFCs mandate the support for IPv6 and TOS in IP header,
 which are a must for resource constrained node to implement.

RFC 2581 S: "TCP Congestion Control" (April 1999)

 Although RFC 793 did not contain any congestion control
 mechanisms, today congestion control is a required component of
 TCP implementations. This document [RFC2581] defines the current
 versions of Van Jacobson's congestion avoidance and control
 mechanisms for TCP, based on his 1988 SIGCOMM paper [Jac88]. RFC

2001 was a conceptual precursor that was obsoleted by RFC 2581.

 A number of behaviors that together constitute what the community
 refers to as "Reno TCP" are described in RFC 2581.

https://datatracker.ietf.org/doc/html/rfc4614
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2873
https://datatracker.ietf.org/doc/html/rfc2873
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2001
https://datatracker.ietf.org/doc/html/rfc2001
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581

Bormann Expires August 29, 2013 [Page 11]

Internet-Draft Guidance for Light-Weight Implementations February 2013

RFC 1122 mandates the implementation of a congestion control
 mechanism, and RFC 2581 details the currently accepted mechanism.

RFC 2581 differs slightly from the other documents listed in this
 section, as it does not affect the ability of two TCP endpoints to
 communicate; however, congestion control remains a critical
 component of any widely deployed TCP implementation and is
 required for the avoidance of congestion collapse and to ensure
 fairness among competing flows.

RFC 2988 S: "Computing TCP's Retransmission Timer" (November 2000)

 Abstract: "This document defines the standard algorithm that
 Transmission Control Protocol (TCP) senders are required to use to
 compute and manage their retransmission timer.

3.3.1.2. Strongly encouraged, but non-essential, behaviors of TCP

RFC 1323 S: "TCP Extensions for High Performance" (May 1992)

 This document [RFC1323] defines TCP extensions for window scaling,
 timestamps, and protection against wrapped sequence numbers, for
 efficient and safe operation over paths with large bandwidth-delay
 products.

RFC 2675 S: "IPv6 Jumbograms" (August 1999)

 IPv6 supports longer datagrams than were allowed in IPv4.

RFC 3168 S: "The Addition of Explicit Congestion Notification (ECN)
 to IP" (September 2001)

3.3.1.2.1. Congestion Control and Loss Recovery Extensions

RFC 3042 S: "Enhancing TCP's Loss Recovery Using Limited Transmit"
 (January 2001)

 Abstract: "This document proposes Limited Transmit, a new
 Transmission Control Protocol (TCP) mechanism that can be used to
 more effectively recover lost segments when a connection's
 congestion window is small

RFC 3390 S: "Increasing TCP's Initial Window" (October 2002)

 This document [RFC3390] updates RFC 2581 to permit an initial TCP
 window of three or four segments during the slow-start phase,
 depending on the segment size.

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2675
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc2581

Bormann Expires August 29, 2013 [Page 12]

Internet-Draft Guidance for Light-Weight Implementations February 2013

RFC 3782 S: "The NewReno Modification to TCP's Fast Recovery
 Algorithm" (April 2004)

 This document [RFC3782] specifies a modification to the standard
 Reno fast recovery algorithm, whereby a TCP sender can use partial
 acknowledgments to make inferences determining the next segment to
 send in situations where SACK would be helpful but isn't
 available.

3.3.1.2.2. SACK-Based Loss Recovery and Congestion Control

RFC 2018 S: "TCP Selective Acknowledgment Options" (October 1996)

 This document [RFC2018] defines the basic selective acknowledgment
 (SACK) mechanism for TCP.

RFC 2883 S: "An Extension to the Selective Acknowledgement (SACK)
 Option for TCP" (July 2000)

 This document [RFC2883] extends RFC 2018 to cover the case of
 acknowledging duplicate segments.

RFC 3517 S: "A Conservative Selective Acknowledgment (SACK)-based
 Loss Recovery Algorithm for TCP" (April 2003)

3.3.1.2.3. Dealing with Forged Segments

RFC 1948 I: "Defending Against Sequence Number Attacks" (May 1996)

RFC 2385 S: "Protection of BGP Sessions via the TCP MD5 Signature
 Option" (August 1998)

3.3.1.3. Experimental extensions that are not yet standard practices

 The experimental extensions are not mature yet. The contents need to
 be validated to be safe and logical behavior. It is not recommended
 for the resource constrained node to implement.

3.3.1.4. Others

RFC 2923 I: "TCP Problems with Path MTU Discovery" (September 2000)

 From abstract: "This memo catalogs several known Transmission
 Control Protocol (TCP) implementation problems dealing with Path
 Maximum Transmission Unit Discovery (PMTUD), including the long-
 standing black hole problem, stretch acknowlegements (ACKs) due to
 confusion between Maximum Segment Size (MSS) and segment size, and
 MSS advertisement based on PMTU." [RFC2923]

https://datatracker.ietf.org/doc/html/rfc3782
https://datatracker.ietf.org/doc/html/rfc3782
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc1948
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc2923

Bormann Expires August 29, 2013 [Page 13]

Internet-Draft Guidance for Light-Weight Implementations February 2013

3.4. Application Layer

3.4.1. General considerations about Application Programming Interfaces
 (APIs)

 Author: Carl Williams

 Constrained devices are not necessarily in a position to use APIs
 that would be considered "standard" for less constrained environments
 (e.g., Berkeley sockets or those defined by POSIX).

 When an API implements a protocol, this can be based on proxy methods
 for remote invocations that underneath rely on the communication
 protocol. One of the roles of the API can be exactly to hide the
 detail of the transport protocol.

 Changes to the lower layers will be made to implement light-weight
 stacks so this impacts that implementation and inter-workings with
 the API. Similar considerations such as RAM, CPU utilization and
 performance requirements apply to the API and its use of the lower
 layer resources (i.e., buffers).

 Considerations for the proper approach for a developer to request
 services from an application program need to be explored and
 documented. Such considerations will allow the progression of a
 common consistent networking paradigm without inventing a new way of
 programming these devices.

 In addition, such considerations will take into account the inter-
 working of the API with the protocols. Protocols are more complex to
 use as they are less direct and take a lot of serializing, de-
 serializing and dispatching type logic.

 So the connection of the API and the protocols on a constrained
 device becomes even more important to balance the requirements of
 RAM, CPU and performance.

 _** Here we will proceed to collect and document ... insert
 experiences from existing API on constrained devices (TBD) **_

3.4.2. Constrained Application Protocol (CoAP)

 Author: Olaf Bergmann

 The Constrained Application Protocol [I-D.ietf-core-coap] has been
 designed specifically for machine-to-machine communication in
 networks with very constrained nodes. Typical application scenarios
 therefore include building automation and the Internet of Things.

Bormann Expires August 29, 2013 [Page 14]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 The major design objectives have been set on small protocol overhead,
 robustness against packet loss, and high latency induced by small
 bandwidth shares or slow request processing in end nodes. To
 leverage integration of constrained nodes with the world-wide
 Internet, the protocol design was led by the architectural style that
 accounts for the scalability and robustness of the Hypertext Transfer
 Protocol [RFC2616].

 Lightweight implementations benefit from this design in many
 respects: First, the use of Uniform Resource Identifiers (URIs) for
 naming resources and the transparent forwarding of their
 representations in a server-stateless request/response protocol make
 protocol-translation to HTTP a straightforward task. Second, the set
 of protocol elements that are inevitable for the core protocol and
 thus must be implemented on every node has been kept very small to
 avoid unnecessary accumulation of optional features. Options that
 -\u002D when present -\u002D are critical for message processing are
 explicitly marked as such to force immediate rejection of messages
 with unknown critical options. Third, the syntax of protocol data
 units is easy to parse and is carefully defined to avoid creation of
 state in servers where possible.

 Although these features enable lightweight implementations of the
 Constrained Application Protocol, there is still a trade-off between
 robustness and latency of constrained nodes on one hand and resource
 demands (such as battery consumption, dynamic memory needs and static
 code-size) on the other. This section gives some guidance on
 possible strategies to solve this trade-off for very constrained
 nodes (Class 1 in [I-D.ietf-lwig-terminology]). The main focus is on
 servers as this is deemed the predominant case where CoAP
 applications are faced with tight resource constraints.

 Additional considerations for the implementation of CoAP on tiny
 sensors are given in [I-D.arkko-core-sleepy-sensors].

3.4.2.1. Message Layer Processing

 For constrained nodes of Class 1 or even Class 2, limiting factors
 for (wireless) network communication usually are RAM size and battery
 lifetime. Most applications therefore try to avoid dealing with
 fragmented packets on the network layer and minimize internal buffer
 space for both transmit and receive operations. One of the most
 expensive operations hence is the retransmission of messages as it
 implies additional energy consumption for the (radio) network
 interface and occupied RAM storage for the send buffer.

 Where multi-threading is not an option at all because no full-fledged
 operating system is present, all operations are triggered by a big

https://datatracker.ietf.org/doc/html/rfc2616

Bormann Expires August 29, 2013 [Page 15]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 main loop in a send-receive-dispatch cycle. To implement the packet
 retransmission, CoAP implementations at least need a separate send
 buffer and a decent notion of time, e.g. as a strictly monotonic
 increasing tick counter. For platforms that disable clock tick
 interrupts in sleep states, the application must take into
 consideration the clock deviation that occurs during sleep (or ensure
 to remain in idle state until the message has been acknowledged or
 the maximum number of retransmissions is reached). Since CoAP allows
 up to four retransmissions with a binary exponential back-off it
 could take up to 45 seconds until the send operation is complete.
 Even in idle state, this means substantial energy consumption for
 low-power nodes. Implementers therefore might choose a two-step
 strategy: First, do one or two retransmissions and then, in the later
 phases of back-off, go to sleep until the next retransmission is due.
 In the meantime, the node could check for new messages including the
 acknowledgement for any confirmable message to send.

 A similar strategy holds for confirmable messages with separate
 responses. This concept entitles CoAP servers to return an empty
 acknowledgement to indicate that a confirmable request has been
 understood and is being processed. Once a proper response has been
 generate to fulfill the request, it is sent back as a confirmable
 message as well. The server implementation in this case must be able
 to map retransmissions of the original request to the ongoing
 operation and provide the client-selected Token to map between
 original request and the separate response.

 Depending on the number of requests that can be handled in parallel,
 an implementation might create a stub response filled with any option
 that has to be copied from the original request to the separate
 response, especially the Token option. The drawback of this
 technique is that the server must be prepared to receive
 retransmissions of the previous (confirmable) request to which a new
 acknowledgement must be generated. If memory is an issue, a single
 buffer can be used for both tasks: Only the message type and code
 must be updated, changing the message id is optional. Once the
 resource representation is known, it is added as new payload at the
 end of the stub response. Acknowledgements still can be sent as
 described before as long as no additional options are required to
 describe the payload.

3.4.2.2. Message Parsing

 Both CoAP clients and servers must construct outgoing CoAP PDUs and
 parse incoming messages. The basic message header consists of only
 four octets and thus can be mapped easily to an internal data
 structure, considering the actual byte order of the host. Once the
 message is accepted for further processing, the set of options

Bormann Expires August 29, 2013 [Page 16]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 contained in the received message must be decoded to check for
 unknown critical options. To avoid multiple passes through the
 option list, the option parser might maintain a bit-vector where each
 bit represents an option number that is present in the received
 request. The delta-encoded option number indicates the number of
 left-shift operations to apply on a bit mask to set the corresponding
 bit.

 In addition, the byte index of every option is added to a sparse list
 (e.g. a one-dimensional array) for fast retrieval. This
 particularly enables efficient reduced-function handling of options
 that might occur more than once such as Uri-Path. In this
 implementation strategy, the delta is zero for any subsequent path
 segment, hence the stored byte index for option 9 (Uri-Path) will be
 overwritten to hold a pointer to the last occurrence of that option,
 i.e., only the last path component actually matters. (Of course,
 this requires choosing resource names where the combination of (final
 Uri-Path component, final Uri-Query component) is server-wide unique.

 Note: Where skipping all but the last path segment is not feasible
 for some reason, resource identification could be ensured by some
 hash value calculated over the path segments. For each segment
 encountered, the stored hash value is updated by the current
 option value. This works if a cheap _perfect hashing_ scheme can
 be found for the resource names.

 Once the option list has been processed at least up to the highest
 option number that is supported by the application, any known
 critical option and all elective options can be masked out to
 determine if any unknown critical option was present. If this is the
 case, this information can be used to create a 4.02 response
 accordingly. (Note that the remaining options also must be processed
 to add further critical options included in the original request.)

3.4.2.3. Storing Used Message IDs

 If CoAP is used directly on top of UDP (i.e., in NoSec mode), it
 needs to cope with the fact that the UDP datagram transport can
 reorder and duplicate messages. (In contrast to UDP, DTLS has its
 own duplicate detection.) CoAP has been designed with protocol
 functionality such that rejection of duplicate messages is always
 possible. It is at the discretion of the receiver if it actually
 wants to make use of this functionality. Processing of duplicate
 messages comes at a cost, but so does the management of the state
 associated with duplicate rejection. Hence, a receiver may have good
 reasons to decide not to do the duplicate rejection. If duplicate
 rejection is indeed necessary, e.g., for non-idempotent requests, it
 is important to control the amount of state that needs to be stored.

Bormann Expires August 29, 2013 [Page 17]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 Author: Esko Dijk

 CoAP's duplicate rejection functionality can be straightforwardly
 implemented in a CoAP end-point by storing, for each remote CoAP end-
 point ("peer") that it communicates with, a list of recently received
 CoAP Message IDs (MIDs) along with some timing information. A CoAP
 message from a peer with a MID that is in the list for that peer can
 simply be discarded.

 The timing information in the list can then be used to time out
 entries that are older than the _expected extent of the re-ordering_,
 an upper bound for which can be estimated by adding the _potential
 retransmission window_ ([I-D.ietf-core-coap] section "Reliable
 Messages") and the time packets can stay alive in the network.

 Such a straightforward implementation is suitable in case other CoAP
 end-points generate random MIDs. However, this storage method may
 consume substantial RAM in specific cases, such as:

 o many clients are making periodic, non-idempotent requests to a
 single CoAP server;

 o one client makes periodic requests to a large number of CoAP
 servers and/or requests a large number of resources; where servers
 happen to mostly generate separate CoAP responses (not piggy-
 backed);

 For example, consider the first case where the expected extent of re-
 ordering is 50 seconds, and N clients are sending periodic POST
 requests to a single CoAP server during a period of high system
 activity, each on average sending one client request per second. The
 server would need 100 * N bytes of RAM to store the MIDs only. This
 amount of RAM may be significant on a RAM-constrained platform. On a
 number of platforms, it may be easier to allocate some extra program
 memory (e.g. Flash or ROM) to the CoAP protocol handler process than
 to allocate extra RAM. Therefore, one may try to reduce RAM usage of
 a CoAP implementation at the cost of some additional program memory
 usage and implementation complexity.

 Some CoAP clients generate MID values by a using a Message ID
 variable [I-D.ietf-core-coap] that is incremented by one each time a
 new MID needs to be generated. (After the maximum value 65535 it
 wraps back to 0.) We call this behavior "sequential" MIDs. One
 approach to reduce RAM use exploits the redundancy in sequential MIDs
 for a more efficient MID storage in CoAP servers.

 Naturally such an approach requires, in order to actually reduce RAM
 usage in an implementation, that a large part of the peers follow the

Bormann Expires August 29, 2013 [Page 18]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 sequential MID behavior. To realize this optimization, the authors
 therefore RECOMMEND that CoAP end-point implementers employ the
 "sequential MID" scheme if there are no reasons to prefer another
 scheme, such as randomly generated MID values.

 Security considerations might call for a choice for
 (pseudo)randomized MIDs. Note however that with truly randomly
 generated MIDs the probability of MID collision is rather high in use
 cases as mentioned before, following from the Birthday Paradox. For
 example, in a sequence of 52 randomly drawn 16-bit values the
 probability of finding at least two identical values is about 2
 percent.

 From here on we consider efficient storage implementations for MIDs
 in CoAP end-points, that are optimized to store "sequential" MIDs.
 Because CoAP messages may be lost or arrive out-of-order, a solution
 has to take into account that received MIDs of CoAP messages are not
 actually arriving in a sequential fashion, due to lost or reordered
 messages. Also a peer might reset and lose its MID counter(s) state.
 In addition, a peer may have a single Message ID variable used in
 messages to many CoAP end-points it communicates with, which partly
 breaks sequentiality from the receiving CoAP end-point's perspective.
 Finally, some peers might use a randomly generated MID values
 approach. Due to these specific conditions, existing sliding window
 bitfield implementations for storing received sequence numbers are
 typically not directly suitable for efficiently storing MIDs.

 Table 1 shows one example for a per-peer MID storage design: a table
 with a bitfield of a defined length _K_ per entry to store received
 MIDs (one per bit) that have a value in the range [MID_i + 1 , MID_i
 + K].

 +----------+----------------+-----------------+
 | MID base | K-bit bitfield | base time value |
 +----------+----------------+-----------------+
 | MID_0 | 010010101001 | t_0 |
 | | | |
 | MID_1 | 111101110111 | t_1 |
 | | | |
 | ... etc. | | |
 +----------+----------------+-----------------+

 Table 1: A per-peer table for storing MIDs based on MID_i

 The presence of a table row with base MID_i (regardless of the
 bitfield values) indicates that a value MID_i has been received at a
 time t_i. Subsequently, each bitfield bit k (0...K-1) in a row i
 corresponds to a received MID value of MID_i + k + 1. If a bit k is

Bormann Expires August 29, 2013 [Page 19]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 0, it means a message with corresponding MID has not yet been
 received. A bit 1 indicates such a message has been received already
 at approximately time t_i. This storage structure allows e.g. with
 k=64 to store in best case up to 130 MID values using 20 bytes, as
 opposed to 260 bytes that would be needed for a non-sequential
 storage scheme.

 The time values t_i are used for removing rows from the table after a
 preset timeout period, to keep the MID store small in size and enable
 these MIDs to be safely re-used in future communications. (Note that
 the table only stores one time value per row, which therefore needs
 to be updated on receipt of another MID that is stored as a single
 bit in this row. As a consequence of only storing one time value per
 row, older MID entries typically time out later than with a simple
 per-MID time value storage scheme. The end-point therefore needs to
 ensure that this additional delay before MID entries are removed from
 the table is much smaller than the time period after which a peer
 starts to re-use MID values due to wrap-around of a peer's MID
 variable. One solution is to check that a value t_i in a table row
 is still recent enough, before using the row and updating the value
 t_i to current time. If not recent enough, e.g. older than N
 seconds, a new row with an empty bitfield is created.) [Clearly,
 these optimizations would benefit if the peer were much more
 conservative about re-using MIDs than currently required in the
 protocol specification.]

 The optimization described is less efficient for storing randomized
 MIDs that a CoAP end-point may encounter from certain peers. To
 solve this, a storage algorithm may start in a simple MID storage
 mode, first assuming that the peer produces non-sequential MIDs.
 While storing MIDs, a heuristic is then applied based on monitoring
 some "hit rate", for example, the number of MIDs received that have a
 Most Significant Byte equal to that of the previous MID divided by
 the total number of MIDs received. If the hit rate tends towards 1
 over a period of time, the MID store may decide that this particular
 CoAP end-point uses sequential MIDs and in response improve
 efficiency by switching its mode to the bitfield based storage.

3.4.3. (Other Application Protocols...)

4. Control Plane Protocols

4.1. Link Layer Support

 ARP, ND; 6LoWPAN-ND

4.2. Network Layer

Bormann Expires August 29, 2013 [Page 20]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 ICMP, ICMPv6, IGMP/MLD

4.3. Routing

 RPL, AODV/DYMO, OLSRv2

4.4. Host Configuration and Lookup Services

 DNS, DHCPv4, DHCPv6

4.5. Network Management

 SNMP, netconf?

4.5.1. SNMP

 Author: Brinda M C

 This section describes an approach for developing a light-weight SNMP
 agent for resource constrained devices running the 6LoWPAN/RPL
 protocol stack. The motivation for the work is driven by two major
 factors:

 o SNMP plays a vital role in monitoring and managing any operational
 network; 6LoWPAN based WSN is no exception to this.

 o There is a need for building a light-weight SNMP agent which
 consumes less memory and less computational resources.

 The following subsections are organized as follows:

 o Section 4.5.1.1 provides some background.

 o In Section 4.5.1.2, we revisit existing SNMP implementation in the
 context of memory constrained devices.

 o In Section 4.5.1.3, we present our approach for building a memory
 efficient SNMP agent.

 o Using a realistic example, in Section 4.5.1.4, we illustrate how
 the proposed method can be implemented.

 o In Section 4.5.1.5, we explore a few ideas which can further help
 in improving the memory utilization.

4.5.1.1. Background

Bormann Expires August 29, 2013 [Page 21]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 Our initial SNMP agent implementation was completely based on Net-
 SNMP, well-known open-source network monitoring and management
 software. After porting the agent on to the TelosB mote, we observed
 that it occupies a text program memory of more than 8 KiB on TinyOS
 and Contiki OS platforms. (Note that both these platforms already
 use compiler optimizations to minimize the memory footprint.) 8 KiB
 is already non-negligible given the 48 KiB program memory limit of
 TelosB. Added to this, the memory taken up by 6LoWPAN and the
 related protocol stacks are ever growing, causing serious memory
 crunch in the resource constrained devices. We reached a situation
 where we could not build an image on the TinyOS/Contiki OS platforms
 with our SNMP agent.

 We came across SNMPv1 agent implementations elsewhere in the
 literature which also report similar memory consumption. This
 motivated us to have a re-look at the existing SNMP agent
 implementation, and explore the possibility of an alternate
 implementation using altogether a different approach.

4.5.1.2. Revisiting SNMP implementation for resource constrained
 devices

 If we look at a typical SNMP agent implementation, we can see that
 much of the memory consuming code is pertaining to ASN.1 related SNMP
 PDU parsing and SNMP PDU build operations. The SNMP parsing mainly
 recovers various fields from the incoming PDU, such as the OIDs,
 whereas the SNMP PDU build is the reverse operation of building the
 response PDU from the OIDs.

 The key observation is that, for a given MIB definition, an OID of
 interest contained in the incoming SNMP PDU is already available,
 albeit in an encoded form. This enables identifying the OID from the
 packet in its "raw" form, simplifying parser operation.

 We also can make use of this observation while building the response
 SNMP PDU. For a given MIB definition, we can think of statically
 having a pre-composed ASN.1 encoded version of OIDs, and use them
 while constructing the response SNMP PDU.

4.5.1.3. Proposed approach for building an memory efficient SNMP agent

 As noted in the previous section, since an SNMP OID is already
 contained in the incoming network PDU, we came up with a simple OID
 signature identification method performed directly on the network PDU
 through simple memory comparisons and table look-ups. Once the OID
 has been identified from the packet "in situ", the corresponding per-
 OID processing is carried out. Through this scheme we completely
 eliminated expensive SNMP parse operations.

Bormann Expires August 29, 2013 [Page 22]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 For the SNMP PDU build, we use _pre-encoded_ OID variables which can
 simply be plugged into the network SNMP response packet directly
 depending on the request OID. Now that the expensive build operation
 is taken care, what remains is the construction of the overall SNMP
 pdu which can be built through simple logic. Through this scheme we
 completely eliminated expensive SNMP build operations.

 Based on these ideas, we have re-architected our original SNMP agent
 implementation and with our new implementation we were able to bring
 down its text memory usage all the way down to 4 KiB from the native
 SNMP agent implementation which occupied 8 KiB.

4.5.1.3.1. Discussion on memory usage

 With respect to the memory usage, while we have achieved major
 reduction in terms of text program memory, which occupies a major
 chunk of memory, a question might come to mind with regard to the
 static memory allocation for maintaining the tables. We found that
 this is not very significant to start with. Through an efficient
 table representation, we further optimized the memory consumption.
 We could do so because a typical OID description is mainly dominated
 by a fixed part of the hierarchy. This enables us to define few
 static prefixes, each corresponding to a particular hierarchy level
 of the OID. In the context of 6LoWPAN, it can be expected that the
 number of hierarchy levels will be small.

4.5.1.4. Example

 This section illustrates the simplicity and practicality of our
 approach with an example. Let us consider the fragment of a
 representative MIB definition depicted in Figure 1

 iso
 |
 org
 |
 dod
 |
 internet
 |
 mgmt.mib-2
 |
 lowpanMIB
 |
 +--lowpanPrimaryStatistics(10)
 |
 +--PrimeStatsEntry(1)
 |

Bormann Expires August 29, 2013 [Page 23]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 +-- -R-- INTEGER lowpanMoteBatteryVoltageP(1)
 +-- -R-- Counter lowpanFramesReceivedP(2)
 +-- -R-- Counter lowpanFramesSentP(3)
 +-- -R-- Counter ipv6ForwardedMsgP(4)
 +-- -R-- Counter OUTSolicitationP(5)
 +-- -R-- Counter OUTAdvertisementP(6)

 Figure 1: A fragment of a MIB hierarchy

4.5.1.4.1. Optimized SNMP Parsing

 Let us consider a GET request for the OIDs lowpanMoteBatteryVoltageP
 and lowpanFramesSentP. Corresponding to these OIDs, a C array dump
 of the network PDU of SNMP packet with two OIDs in a variable binding
 would look as in Figure 2.

 char snmp_get_req_pkt[] = {
 0x30, 0x81, 0x3d, 0x02, 0x01, 0x00, 0x04, 0x06,
 0x70, 0x75, 0x62, 0x6c, 0x69, 0x63, 0xa0, 0x30,
 0x02, 0x04, 0x28, 0x29, 0xe4, 0x5d, 0x02, 0x01,
 0x00, 0x02, 0x01, 0x00, 0x30, 0x22, 0x30, 0x0f,
 0x06, 0x0b, 0x2b, 0x06, 0x01, 0x02, 0x01, 0x83,
 0x90, 0x12, 0x0a, 0x01, 0x01, 0x05, 0x00, 0x30,
 0x0f, 0x06, 0x0b, 0x2b, 0x06, 0x01, 0x02, 0x01,
 0x83, 0x90, 0x12, 0x0a, 0x01, 0x03, 0x05, 0x00 };

 Figure 2: An SNMP packet, represented in C

 Inspecting the above packet, we see that the main components of the
 PDU are:

 1. Version (SNMPv1): [0x02, 0x01, 0x00]

 2. Community Name ("public"): [0x04, 0x06, 0x70, 0x75, 0x62, 0x6c,
 0x69, 0x63]

 3. ASN.1 encoded OIDs for lowpanMoteBatteryVoltageP, and
 lowpanFramesReceivedP:

 * [0x30, 0x0f, 0x06, 0x0b, 0x2b, 0x06, 0x01, 0x02, 0x01, 0x83,
 0x90, 0x12, 0x0a, 0x01, 0x01, 0x05, 0x00]

 * [0x30, 0x0f, 0x06, 0x0b, 0x2b, 0x06, 0x01, 0x02, 0x01, 0x83,
 0x90, 0x12, 0x0a, 0x01, 0x03, 0x05, 0x00]

 There is a significant overlap between the two OIDs, which can be
 used to simplify the parsing process. We can, for instance, define
 one statically initialized array containing elements common between

Bormann Expires August 29, 2013 [Page 24]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 these OIDs. Using this notion of common prefix idea, we can come up
 with an optimized table and the OID identification then boils down to
 simple memory comparisons within this table. The optimized table
 construction will also result in scalability.

4.5.1.4.2. Optimized SNMP Build

 Extending the same approach as described above, we can build the GET
 response by plugging in pre-encoded OIDs into the response packets.
 So, corresponding to the GET request for the OIDs as given in section

4.1, we can define C arrays containing pre-encoded OIDs which can go
 into the response packet as in Figure 3.

 pdu_batt_volt[] = {
 0x30, 0x11, 0x06, 0x0b, 0x2b, 0x06, 0x01, 0x02,
 0x01, 0x83, 0x90, 0x12, 0x0a, 0x01, 0x01, 0x02,
 0x02, 0x00, 0x00 };

 pdu_frames_sent[] = {
 0x30, 0x11, 0x06, 0x0b, 0x2b, 0x06, 0x01, 0x02,
 0x01, 0x83, 0x90, 0x12, 0x0a, 0x01, 0x03, 0x41,
 0x02, 0x00, 0x00 };

 Figure 3: Pre-encoded OIDs

 Since the ASN.1 basic encoding rules are in TLV format, the offset
 within the encoded OID where the value needs to be filled-in can be
 obtained from the length field.

 The table size optimization discussed in the previous section can be
 applied here, too.

 Note: Though we have taken a simple example to illustrate the
 efficacy of the proposed approach, the ideas presented here can
 easily be extended to other scenarios as well.

4.5.1.5. Further improvements

 A few simple methods can reduce the code size as well as generate
 computationally inexpensive code. These methods might sound obvious
 and trivial but are important for constrained devices.

 o If possible, avoid using memory consuming data types such as
 floating point while representing a monitored variable when an
 equivalent representation of the same that occupies less memory is
 adequate. For example, while a battery voltage indication could
 take a fractional value between 0 and 3 V, opt for an 8-bit
 quantized value.

Bormann Expires August 29, 2013 [Page 25]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 o Using meta data in the MIB definition instead of absolute numbers
 can bring down the memory and processing significantly and can
 improve scalability too especially for a large scale WSN
 deployments. Using the same example of battery voltage, one might
 think of an OID which represents fewer levels of the battery
 voltage signifying high, medium, low, very low.

 o While a multi-level hierarchy for MIB definition might improve OID
 segregation the flip side is that it increases the overall length
 of the OID and results in extra memory and processing overhead.
 One may have to make a judicious choice while coming up with the
 MIB.

4.5.1.6. Conclusion

 This subsection proposes a simple SNMP packet processing based
 approach for building a light-weight SNMP agent. While there is
 scope for further improvement, we believe that the proposed method
 can be a reasonably good starting point for resource constrained
 6LoWPAN based networks.

5. Security protocols

5.1. Cryptography for Constrained Devices

5.2. Transport Layer Security

 TLS, DTLS, ciphersuites, certificates

5.3. Network Layer Security

 IPsec, IKEv2, transforms

 Advice for a minimal implementation of IKEv2 can be found in
 [I-D.kivinen-ipsecme-ikev2-minimal].

5.4. Network Access Control

 (PANA, EAP, EAP methods)

5.4.1. PANA

 Author: Mitsuru Kanda

 PANA [RFC5191] provides network access authentication between clients
 and access networks. The PANA protocol runs between a PANA Client
 (PaC) and a PANA Authentication Agent (PAA). PANA carries UDP
 encapsulated EAP [RFC3748] and includes various operational options.

https://datatracker.ietf.org/doc/html/rfc5191
https://datatracker.ietf.org/doc/html/rfc3748

Bormann Expires August 29, 2013 [Page 26]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 From the point of view of minimal implementation, some of these are
 not necessary for constrained devices. This section describes a
 minimal PANA implementation for these devices.

 The minimization objective for this implementation mainly targets
 PaCs because constrained devices often are installed as network
 clients, such as sensors, metering devices, etc.

5.4.1.1. PANA AVPs

 Each PANA message can carry zero or more AVPs (Attribute-Value Pairs)
 within its payload. [RFC5191] specifies nine types of AVPs (AUTH,
 EAP-Payload, Integrity-Algorithm, Key-Id, Nonce, PRF-Algorithm,
 Result-Code, Session-Lifetime, and Termination-Cause). All of them
 are required by all minimal implementations. But there are some
 notes.

 Integrity-Algorithm AVP and PRF-Algorithm AVP:

 All PANA implementations MUST support AUTH_HMAC_SHA1_160 for PANA
 message integrity protection and PRF_HMAC_SHA1 for pseudo-random
 function (PRF) specified in [RFC5191]. Both of these are based on
 SHA-1, which therefore needs to be implemented in a minimal
 implementation.

 Nonce AVP:

 As the basic hash function is SHA-1, including a nonce of 20 bytes in
 the Nonce AVP is appropriate ([RFC5191], section 8.5).

5.4.1.2. PANA Phases

 A PANA session consists of four phases -\u002D Authentication and
 authorization phase, Access phase, Re-Authentication phase, and
 Termination phase.

 Authentication and authorization phase:

 There are two types of PANA session initiation, PaC-initiated session
 and PAA-initiated session. The minimal implementation must support
 PaC-initiated session and does not need to support PAA-initiated
 session. Because a PaC (a constrained device) which may be a
 sleeping device, can not receive an unsolicited PANA-Auth-Request
 message from a PAA (PAA-initiated session).

 EAP messages can be carried in PANA-Auth-Request and PANA-Auth-Answer
 messages. In order to reduce the number of messages, "Piggybacking
 EAP" is useful. Both the PaC and PAA should include EAP-Payload AVP

https://datatracker.ietf.org/doc/html/rfc5191
https://datatracker.ietf.org/doc/html/rfc5191
https://datatracker.ietf.org/doc/html/rfc5191#section-8.5

Bormann Expires August 29, 2013 [Page 27]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 in each of PANA-Auth-Request and PANA-Auth-Answer messages as much as
 possible. Figure 4 shows an example "Piggybacking EAP" sequence of
 the Authentication and authorization phase.

 PaC PAA Message(sequence number)[AVPs]

 -----> PANA-Client-Initiation(0)
 <----- PANA-Auth-Request(x)[PRF-Algorithm,Integrity-Algorithm]
 // The 'S' (Start) bit set
 -----> PANA-Auth-Answer(x)[PRF-Algorithm, Integrity-Algorithm]
 // The 'S' (Start) bit set
 <----- PANA-Auth-Request(x+1)[Nonce, EAP-Payload]
 -----> PANA-Auth-Answer(x+1)[Nonce, EAP-Payload]
 <----- PANA-Auth-Request(x+2)[EAP-Payload]
 -----> PANA-Auth-Answer(x+2)[EAP-Payload]
 <----- PANA-Auth-Request(x+3)[Result-Code, EAP-Payload,
 Key-Id, Session-Lifetime, AUTH]
 // The 'C' (Complete) bit set
 -----> PANA-Auth-Answer(x+3)[Key-Id, AUTH]
 // The 'C' (Complete) bit set

 Figure 4: Example sequence of the Authentication and authorization
 phase for a PaC-initiated session (using "Piggybacking EAP")

 Note: It is possible to include an EAP-Payload in both the PANA-Auth-
 Request and PANA-Auth-Answer messages with the 'S' bit set. But the
 PAA should not include an EAP-Payload in the PANA-Auth-Request
 message with the 'S' bit set in order to stay stateless in response
 to a PANA-Client-Initiation message.

 Access phase:

 After Authentication and authorization phase completion, the PaC and
 PAA share a PANA Security Association (SA) and move Access phase.
 During Access phase, [RFC5191] describes both the PaC and PAA can
 send a PANA-Notification-Request message with the 'P' (Ping) bit set
 for the peer's PANA session liveness check (a.k.a "PANA ping"). From
 the minimal implementation point of view, the PAA should not send a
 PANA-Notification-Request message with the 'P' (Ping) bit set to
 initiate PANA ping since the PaC may be sleeping. The PaC does not
 need to send a PANA-Notification-Request message with the 'P' (Ping)
 bit set for PANA ping to the PAA periodically and may omit the PANA
 ping feature itself if the PaC can detect the PANA session failure by
 other methods, for example, network communication failure. In
 conclusion, the PaC does not need to implement the periodic liveness
 check feature sending PANA ping but a PaC that is awake should
 respond to a incoming PANA-Notification-Request message with the 'P'
 (Ping) bit set for PANA ping as possible.

https://datatracker.ietf.org/doc/html/rfc5191

Bormann Expires August 29, 2013 [Page 28]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 Re-Authentication phase:

 Before PANA session lifetime expiration, the PaC and PAA MUST re-
 negotiate to keep the PANA session. This means that the PaC and PAA
 enter Re-Authentication phase. Also in the Authentication and
 authorization phase, there are two types of re-authentication. The
 minimal implementation must support PaC-initiated re-authentication
 and does not need to support PAA-initiated re-authentication (again
 because the PaC may be a sleeping device). "Piggybacking EAP" is
 also useful here and should be used as well. Figure 5 shows an
 example "Piggybacking EAP" sequence of the Re-Authentication phase.

 PaC PAA Message(sequence number)[AVPs]

 -----> PANA-Notification-Request(q)[AUTH]
 // The 'A' (re-Authentication) bit set
 <----- PANA-Notification-Answer(q)[AUTH]
 // The 'A' (re-Authentication) bit set
 <----- PANA-Auth-Request(p)[EAP-Payload, Nonce, AUTH]
 -----> PANA-Auth-Answer(p)[EAP-Payload, Nonce, AUTH]
 <----- PANA-Auth-Request(p+1)[EAP-Payload, AUTH]
 -----> PANA-Auth-Answer(p+1)[EAP-Payload, AUTH]
 <----- PANA-Auth-Request(p+2)[Result-Code, EAP-Payload,
 Key-Id, Session-Lifetime, AUTH]
 // The 'C' (Complete) bit set
 -----> PANA-Auth-Answer(p+2)[Key-Id, AUTH]
 // The 'C' (Complete) bit set

 Figure 5: Example sequence of the Re-Authentication phase for a PaC-
 initiated session (using "Piggybacking EAP")

 Termination Phase:

 The PaC and PAA should not send a PANA-Termination-Request message
 except for explicitly terminating a PANA session within the lifetime.
 Both the PaC and PAA know their own PANA session lifetime expiration.
 This means the PaC and PAA should not send a PANA-Termination-Request
 message when the PANA session lifetime expired because of reducing
 message processing cost.

5.4.1.3. PANA session state parameters

 All PANA implementations internally keep PANA session state
 information for each peer. At least, all minimal implementations
 need to keep PANA session state parameters below (in the second
 column storage sizes are given in bytes):

 +----------------------+------------+-------------------------------+

Bormann Expires August 29, 2013 [Page 29]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 | State Parameter | Size | Comment |
 +----------------------+------------+-------------------------------+
PANA Phase	1	Used for recording the
Information		current PANA phase.
PANA Session	4	
Identifier		
PaC's IP address and	6 or 18	IP Address length (4 bytes
UDP port number		for IPv4 and 16 bytes for
		IPv6) plus 2 bytes for UDP
		port number.
PAA's IP address and	6 or 18	IP Address length (4 bytes
UDP port number		for IPv4 and 16 bytes for
		IPv6) plus 2 bytes for UDP
		port number.
Outgoing message	4	Next outgoing request message
sequence number		sequence number.
Incoming message	4	Next expected incoming
sequence number		request message sequence
		number.
A copy of the last	variable	Necessary to be able to
sent message payload		retransmit the message
		(unless it can be
		reconstructed on the fly).
Retransmission	4	
interval		
PANA Session	4	
lifetime		
PaC nonce	20	Generated by PaC and carried
		in the Nonce AVP.
PAA nonce	20	Generated by PAA and carried
		in the Nonce AVP.
EAP MSK Identifier	4	
EAP MSK value	*)	Generated by EAP method and
		used for generating
		PANA_AUTH_KEY.

Bormann Expires August 29, 2013 [Page 30]

Internet-Draft Guidance for Light-Weight Implementations February 2013

PANA_AUTH_KEY	20	Necessary for PANA message
		protection.
PANA PRF algorithm	4	Used for generating
number		PANA_AUTH_KEY.
PANA Integrity	4	Necessary for PANA message
algorithm number		protection.
 +----------------------+------------+-------------------------------+

 *) (Storage size depends on the key derivation algorithm.)

 Note: EAP parameters except for MSK have not been listed here. These
 EAP parameters are not used by PANA and depend on what EAP method you
 choose.

6. Wire-Visible Constraints

 o Checksum

 o MTU

 o Fragmentation and reassembly

 o Options -\u002D implications of leaving some out

 o Simplified TCP optimized for LLNs

 o Out-of-order packets

7. Wire-Invisible Constraints

 o Buffering

 o Memory management

 o Timers

 o Energy efficiency

 o API

 o Data structures

 o Table sizes (somewhat wire-visible)

 o Improved error handling due to resource overconsumption

Bormann Expires August 29, 2013 [Page 31]

Internet-Draft Guidance for Light-Weight Implementations February 2013

8. IANA Considerations

 This document makes no requirements on IANA. (This section to be
 removed by RFC editor.)

9. Security Considerations

 (TBD.)

10. Acknowledgements

 Much of the text of the introduction is taken from the charter of the
 LWIG working group and the invitation to the IAB workshop on
 Interconnecting Smart Objects with the Internet. Thanks to the
 numerous contributors. Angelo Castellani provided comments that led
 to improved text.

10.1. Contributors

 The RFC guidelines no longer allow RFCs to be published with a large
 number of authors. As there are many authors that have contributed
 to the sections of this document, their names are listed in the
 individual section headings as well as alphabetically listed with
 their affiliations below.

 +------------+--------------------+---------------------------------+
 | Name | Affiliation | Contact |
 +------------+--------------------+---------------------------------+
Brinda M C	Indian Institute	brinda@ece.iisc.ernet.in
	of Science	
Carl	MCSR Labs	carlw@mcsr-labs.org
Williams		
Carsten	Universitaet	cabo@tzi.org
Bormann	Bremen TZI	
Esko Dijk	Philips Research	esko.dijk@philips.com
Mitsuru	Toshiba	mitsuru.kanda@toshiba.co.jp
Kanda		
Olaf	Universitaet	bergmann@tzi.org
Bergmann	Bremen TZI	
Yuanchen	Hitachi (China)	ycma@hitachi.cn
Ma	R&D Corporation	

Bormann Expires August 29, 2013 [Page 32]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 | ... | ... | |
 +------------+--------------------+---------------------------------+

11. References

11.1. Normative References

 [I-D.ietf-lwig-terminology]
 Bormann, C. and M. Ersue, "Terminology for Constrained
 Node Networks", draft-ietf-lwig-terminology-00 (work in
 progress), February 2013.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, September 2007.

11.2. Informative References

 [I-D.arkko-core-sleepy-sensors]
 Arkko, J., Rissanen, H., Loreto, S., Turanyi, Z., and O.
 Novo, "Implementing Tiny COAP Sensors", draft-arkko-core-

sleepy-sensors-01 (work in progress), July 2011.

 [I-D.ietf-6lowpan-btle]
 Nieminen, J., Savolainen, T., Isomaki, M., Patil, B.,
 Shelby, Z., and C. Gomez, "Transmission of IPv6 Packets
 over BLUETOOTH Low Energy", draft-ietf-6lowpan-btle-12
 (work in progress), February 2013.

 [I-D.ietf-core-coap]
 Shelby, Z., Hartke, K., Bormann, C., and B. Frank,
 "Constrained Application Protocol (CoAP)", draft-ietf-

core-coap-13 (work in progress), December 2012.

 [I-D.kivinen-ipsecme-ikev2-minimal]
 Kivinen, T., "Minimal IKEv2", draft-kivinen-ipsecme-

ikev2-minimal-01 (work in progress), October 2012.

 [I-D.mariager-6lowpan-v6over-dect-ule]
 Mariager, P. and J. Petersen, "Transmission of IPv6
 Packets over DECT Ultra Low Energy", draft-mariager-

6lowpan-v6over-dect-ule-02 (work in progress), May 2012.

https://datatracker.ietf.org/doc/html/draft-ietf-lwig-terminology-00
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/draft-arkko-core-sleepy-sensors-01
https://datatracker.ietf.org/doc/html/draft-arkko-core-sleepy-sensors-01
https://datatracker.ietf.org/doc/html/draft-ietf-6lowpan-btle-12
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-13
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-13
https://datatracker.ietf.org/doc/html/draft-kivinen-ipsecme-ikev2-minimal-01
https://datatracker.ietf.org/doc/html/draft-kivinen-ipsecme-ikev2-minimal-01
https://datatracker.ietf.org/doc/html/draft-mariager-6lowpan-v6over-dect-ule-02
https://datatracker.ietf.org/doc/html/draft-mariager-6lowpan-v6over-dect-ule-02

Bormann Expires August 29, 2013 [Page 33]

Internet-Draft Guidance for Light-Weight Implementations February 2013

 [RFC1071] Braden, R., Borman, D., Partridge, C., and W. Plummer,
 "Computing the Internet checksum", RFC 1071, September
 1988.

 [RFC1141] Mallory, T. and A. Kullberg, "Incremental updating of the
 Internet checksum", RFC 1141, January 1990.

 [RFC1624] Rijsinghani, A., "Computation of the Internet Checksum via
 Incremental Update", RFC 1624, May 1994.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, "Extensible Authentication Protocol (EAP)", RFC

3748, June 2004.

 [RFC4614] Duke, M., Braden, R., Eddy, W., and E. Blanton, "A Roadmap
 for Transmission Control Protocol (TCP) Specification
 Documents", RFC 4614, September 2006.

 [RFC5191] Forsberg, D., Ohba, Y., Patil, B., Tschofenig, H., and A.
 Yegin, "Protocol for Carrying Authentication for Network
 Access (PANA)", RFC 5191, May 2008.

 [WEI] Shelby, Z. and C. Bormann, "6LoWPAN: the Wireless Embedded
 Internet", ISBN 9780470747995, 2009.

Author's Address

 Carsten Bormann (editor)
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1141
https://datatracker.ietf.org/doc/html/rfc1624
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc4614
https://datatracker.ietf.org/doc/html/rfc5191

Bormann Expires August 29, 2013 [Page 34]

