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Abstract

This document describes a minimal implementation of the IP

Encapsulation Security Payload (ESP) defined in RFC 4303. Its

purpose is to enable implementation of ESP with a minimal set of

options to remain compatible with ESP as described in RFC 4303. A

minimal version of ESP is not intended to become a replacement of

the RFC 4303 ESP. Instead, a minimal implementation is expected to

be optimized for constrained environment while remaining

interoperable with implementations of RFC 4303 ESP. Some constraints

include limiting the number of flash writes, handling frequent

wakeup / sleep states, limiting wakeup time, or reducing the use of

random generation.

This document does not update or modify RFC 4303, but provides a

compact description of how to implement the minimal version of the

protocol. RFC 4303 remains the authoritative description.
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This Internet-Draft is submitted in full conformance with the
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months and may be updated, replaced, or obsoleted by other documents
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This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.
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1. Introduction

ESP [RFC4303] is part of the IPsec protocol suite [RFC4301]. IPsec

is used to provide confidentiality, data origin authentication,

connectionless integrity, an anti-replay service (a form of partial

sequence integrity) and limited traffic flow confidentiality (TFC)

padding.

Figure 1 describes an ESP Packet. Currently ESP is implemented in

the kernel of major multipurpose Operating Systems (OS). The ESP and

IPsec suite is usually implemented in a complete way to fit multiple

purpose usage of these OS. However, completeness of the IPsec suite

as well as multipurpose scope of these OS is often performed at the

expense of resources, or performance. As a result, constrained

devices are likely to have their own implementation of ESP optimized

and adapted to their specificities such as limiting the number of

flash writes (for each packet or across wake time), handling

frequent wakeup and sleep state, limiting wakeup time, or reducing

the use of random generation. With the adoption of IPsec by IoT

devices with minimal IKEv2 [RFC7815] and ESP Header Compression

(EHC) with [I-D.mglt-ipsecme-diet-esp] or [I-D.mglt-ipsecme-ikev2-
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diet-esp-extension], it becomes crucial that ESP implementation

designed for constrained devices remains inter-operable with the

standard ESP implementation to avoid a fragmented usage of ESP. This

document describes the minimal properties an ESP implementation

needs to meet to remain interoperable with [RFC4303] ESP. In

addition, this document also provides a set of options to implement

these properties under certain constrained environments. This

document does not update or modify RFC 4303, but provides a compact

description of how to implement the minimal version of the protocol.

RFC 4303 remains the authoritative description.

For each field of the ESP packet represented in Figure 1 this

document provides recommendations and guidance for minimal

implementations. The primary purpose of Minimal ESP is to remain

interoperable with other nodes implementing RFC 4303 ESP, while

limiting the standard complexity of the implementation.

Figure 1: ESP Packet Description

2. Security Parameter Index (SPI) (32 bit)

According to the [RFC4303], the SPI is a mandatory 32 bits field and

is not allowed to be removed.

The SPI has a local significance to index the Security Association

(SA). From [RFC4301] section 4.1, nodes supporting only unicast

communications can index their SA only using the SPI. On the other

hand, nodes supporting multicast communications must also use the IP
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addresses and thus SA lookup needs to be performed using the longest

match.

For nodes supporting only unicast communications, it is recommended

to index SA with the SPI only. The index may be based on the full 32

bits of SPI or a subset of these bits. Some other local constraints

on the node may require a combination of the SPI as well as other

parameters to index the SA.

Values 0-255 must not be used. As per section 2.1 of [RFC4303],

values 1-255 are reserved and 0 is only allowed to be used

internally and it must not be sent on the wire.

[RFC4303] does not require the SPI to be randomly generated over 32

bits. However, this is the recommended way to generate SPIs as it

provides some privacy benefits and avoids, for example, correlation

between ESP communications. To randomly generate a 32 bit SPI, the

node generates a random 32 bit valueand checks it does not fall in

the 0-255 range. If the SPI has an acceptable value, it is used to

index the inbound session, otherwise the SPI is re-generated until

an acceptable value is found.

However, some constrained nodes may be less concerned by the privacy

properties associated to SPIs randomly generated. Examples of such

nodes might include sensors looking to reduce their code complexity,

in which case the use of a predictive function to generate the SPI

might be preferred over the generation and handling of random

values. An example of such predictable function may consider the

combination of a fixed value and the memory address of the SAD

structure. For every incoming packet, the node will be able to point

the SAD structure directly from the SPI value. This avoids having a

separate and additional binding between SPI and SAD entries that is

involved for every incoming packet.

2.1. Considerations over SPI generation

SPI that are not randomly generated over 32 bits may lead to privacy

and security concerns. As a result, the use of alternative designs

requires careful security and privacy reviews. This section provides

some considerations upon the adoption of alternative designs.

Note that SPI value is used only for inbound traffic, as such the

SPI negotiated with IKEv2 [RFC7296] or [RFC7815] by a peer, is the

value used by the remote peer when it sends traffic. As SPI is only

used for inbound traffic by the peer, this allows each peer to

manage the set of SPIs used for its inbound traffic. Similarly, the

privacy concerns associated with the generation of nonrandom SPI is

also limited to the incoming traffic.
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When alternate designs are considered, it is likely that the number

of possible SPIs will be limited. This limit should both consider

the number of inbound SAs - possibly per IP addresses - as well as

the ability for the node to rekey. SPI can typically be used to

implement a key update with the SPI indicating the key is being

used. For example, a SPI might be encoded with the Security

Association Database (SAD) entry on a subset of bytes (for example 3

bytes), while the remaining byte indicates the rekey index.

The use of a smaller number of SPIs across communications comes with

privacy and security concerns. Typically some specific values or

subset of SPI values may reveal the models or manufacturer of the

node implementing ESP. This may raise some privacy issues as an

observer is likely to be able to determine the constrained devices

of the network. In some cases, these nodes may host a very limited

number of applications - typically a single application - in which

case the SPI would provide some information related to the

application of the user. In addition, the device or application may

be associated with some vulnerabilities, in which case specific SPI

values may be used by an attacker to discover vulnerabilities.

While the use of randomly generated SPIs may reduce the leakage or

privacy of security related information by ESP itself, these

information may also be leaked otherwise and a privacy analysis

should consider at least the type of information as well the traffic

pattern. Typically, temperature sensors, wind sensors, used outdoors

do not leak privacy sensitive information and mosty of its traffic

is expected to be outbound traffic. When used indoors, a sensor that

reports every minute an encrypted status of the door (closed or

opened) leaks truly little privacy sensitive information outside the

local network.

3. Sequence Number(SN) (32 bit)

According to [RFC4303], the Sequence Number (SN) is a mandatory 32

bits field in the packet.

The SN is set by the sender so the receiver can implement anti-

replay protection. The SN is derived from any strictly increasing

function that guarantees: if packet B is sent after packet A, then

SN of packet B is strictly greater than the SN of packet A.

Some constrained devices may establish communication with specific

devices, like a specific gateway, or nodes similar to them. As a

result, the sender may know whereas the receiver implements anti-

replay protection or not. Even though the sender may know the

receiver does not implement anti-replay protection, the sender must

implement an always increasing function to generate the SN.
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Usually, SN is generated by incrementing a counter for each packet

sent. A constrained device may avoid maintaining this context and

use another source that is known to always increase. Typically,

constrained nodes using 802.15.4 Time Slotted Channel Hopping

(TSCH), whose communication is heavily dependent on time, can take

advantage of their clock to generate the SN. A lot of IoT devices

are in a sleep state most of the time wake up and are only awake to

perform a specific operation before going back to sleep. They do

have separate hardware that allows them to wake up after a certain

timeout, and most likely also timers that start running when the

device was booted up, so they might have a concept of time with

certain granularity. This requires to store any information in a

stable storage - such as flash memory - that can be restored across

sleeps. Storing information associated with the SA such as SN

requires some read and writing operation on a stable storage after

each packet is sent as opposed to SPI or keys that are only written

at the creation of the SA. Such operations are likely to wear out

the flash, and slow down the system greatly, as writing to flash is

not as fast as reading. Their internal clocks/timers might not be

very accurate, but they should be enough to know that each time they

wake up their time is greater than what it was last time they woke

up. Using time for SN would guarantee a strictly increasing function

and avoid storing any additional values or context related to the

SN. When the use of a clock is considered, one should take care that

packets associated with a given SA are not sent with the same time

value. Note however that standard receivers are generally configured

with incrementing counters and, if not appropriately configured, the

use of a significantly larger SN may result in the packet out of the

receiver's windows and that packet being discarded.

For inbound traffic, it is recommended that any receiver provides

anti-replay protection, and the size of the window depends on the

ability of the network to deliver packets out of order. As a result,

in an environment where out of order packets is not possible the

window size can be set to one. However, while recommended, there are

no requirements to implement an anti-replay protection mechanism

implemented by IPsec. Similarly to the SN the implementation of anti

replay protection may require the device to write the received SN

for every packet, which may in some cases come with the same

drawbacks as those exposed for SN. As a result, some implementations

may drop a non required anti replay protection especially when the

necessary resource involved overcomes the benefit of the mechanism.

These resources need also to balance that absence of anti-replay

mechanism, may lead to unnecessary integrity check operations that

might be significantly more expensive as well. A typical example

might consider an IoT device such as a temperature sensor that is

sending a temperature every 60 seconds, and that receives an

acknowledgment from the receiver. In such cases, the ability to

spoof and replay an acknowledgement is of limited interest and may
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not justify the implementation of an anti replay mechanism.

Receiving peers may also implement their own anti-replay mechanism.

Typically, when the sending peer is using SN based on time, anti-

replay may be implemented by discarding any packets that present a

SN whose value is too much in the past. Note that such mechanisms

may consider clock drifting in various ways in addition to

acceptable delay induced by the network to avoid the anti replay

windows rejecting legitimate packets. When a packet is received at a

regular time interval, some variant of time based mechanisms may not

even use the value of the SN, but instead only consider the

receiving time of the packet.

SN can be encoded over 32 bits or 64 bits - known as Extended

Sequence Number (ESN). As per [RFC4303], the support of ESN is not

mandatory. The determination of the use of ESN is based on the

largest possible value a SN can take over a session. When SN is

incremented for each packet, the number of packets sent over the

lifetime of a session may be considered. However, when the SN is

incremented differently - such as when time is used - the maximum

value SN needs to be considered instead. Note that the limit of

messages being sent is primarily determined by the security

associated with the key rather than the SN. The security of all data

protected under a given key decreases slightly with each message and

a node must ensure the limit is not reached - even though the SN

would permit it. Estimation of the maximum number of packets to be

sent by a node is always challenging and as such should be

considered cautiously as nodes could be online for much more time

than expected. Even for constrained devices, it is recommended to

implement some rekey mechanisms (see Section 9).

4. Padding

The purpose of padding is to respect the 32 bit alignment of ESP or

block size expected by an encryption transform - such as AES-CBC for

example. ESP must have at least one padding byte Pad Length that

indicates the padding length. ESP padding bytes are generated by a

succession of unsigned bytes starting with 1, 2, 3 with the last

byte set to Pad Length, where Pad Length designates the length of

the padding bytes.

Checking the padding structure is not mandatory, so the constrained

device may not proceed to such checks, however, in order to

interoperate with existing ESP implementations, it must build the

padding bytes as recommended by ESP.

In some situation the padding bytes may take a fixed value. This

would typically be the case when the Data Payload is of fix size.
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ESP [RFC4303] also provides Traffic Flow Confidentiality (TFC) as a

way to perform padding to hide traffic characteristics, which

differs from respecting a 32 bit alignment. TFC is not mandatory and

must be negotiated with the SA management protocol. TFC has not yet

being widely adopted for standard ESP traffic. One possible reason

is that it requires to shape the traffic according to one traffic

pattern that needs to be maintained. This is likely to require extra

processing as well as providing a "well recognized" traffic shape

which could end up being counterproductive. As such, it is NOT

recommended that minimal ESP implementation supports TFC.

As a result, TFC cannot be enabled with minimal ESP, and

communication protection that were relying on TFC will be more

sensitive to traffic shaping. This could expose the application as

well as the devices used to a passive monitoring attacker. Such

information could be used by the attacker in case a vulnerability is

disclosed on the specific device. In addition, some application use

- such as health applications - may also reveal important privacy

oriented information.

Some constrained nodes that have limited battery lifetime may also

prefer avoiding sending extra padding bytes. However, the same nodes

may also be very specific to an application and device. As a result,

they are also likely to be the main target for traffic shaping. In

most cases, the payload carried by these nodes is quite small, and

the standard padding mechanism may also be used as an alternative to

TFC, with a sufficient tradeoff between the require energy to send

additional payload and the exposure to traffic shaping attacks. In

addition, the information leaked by the traffic shaping may also be

addressed by the application level. For example, it is preferred to

have a sensor sending some information at regular time interval,

rather than when a specific event is happening. Typically, a sensor

monitoring the temperature, or a door is expected to send regularly

the information - i.e. the temperature of the room or whether the

door is closed or open) instead of only sending the information when

the temperature has raised or when the door is being opened.

5. Next Header (8 bit)

According to [RFC4303], the Next Header is a mandatory 8 bits field

in the packet. Next header specifies the data contained in the

payload as well as dummy packet, i.e. packets with the Next Header

with a value 59 meaning "no next header". In addition, the Next

Header may also carry an indication on how to process the packet [I-

D.nikander-esp-beet-mode].

The ability to generate and receive dummy packets is required by 

[RFC4303]. For interoperability, a minimal ESP implementation must

discard dummy packets without indicating an error. Note that such

¶

¶

¶

¶



recommendation only applies for nodes receiving packets, and that

nodes designed to only send data may not implement this capability.

As the generation of dummy packets is subject to local management

and based on a per-SA basis, a minimal ESP implementation may not

generate such dummy packet. More especially, in constrained

environment sending dummy packets may have too much impact on the

device lifetime, and so may be avoided. On the other hand,

constrained nodes may be dedicated to specific applications, in

which case, traffic pattern may expose the application or the type

of node. For these nodes, not sending dummy packet may have some

privacy implication that needs to be measured. However, for the same

reasons exposed in Section 4 traffic shaping at the IPsec layer may

also introduce some traffic pattern, and on constrained devices the

application is probably the most appropriated layer to limit the

risk of leaking information by traffic shaping.

In some cases, devices are dedicated to a single application or a

single transport protocol, in which case, the Next Header has a

fixed value.

Specific processing indications have not been standardized yet [I-

D.nikander-esp-beet-mode] and is expected to result from an

agreement between the peers. As a result, it should not be part of a

minimal implementation of ESP.

6. ICV

The ICV depends on the cryptographic suite used. Currently [RFC8221]

only recommends cryptographic suites with an ICV which makes the ICV

a mandatory field.

As detailed in [RFC8221] authentication or authenticated encryption

are recommended and as such the ICV field must be present with a

size different from zero. It length is defined by the security

recommendations only.

7. Cryptographic Suites

The cryptographic suites implemented are an important component of

ESP. The recommended algorithms to use are expected to evolve over

time and implementers should follow the recommendations provided by 

[RFC8221] and updates.

This section lists some of the criteria that may be considered. The

list is not expected to be exhaustive and may also evolve overtime.

As a result, the list is provided as informational:

Security: Security is the criteria that should be considered

first for the selection of encryption algorithm transform. The
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security of encryption algorithm transforms is expected to

evolve over time, and it is of primary importance to follow up-

to-date security guidance and recommendations. The chosen

encryption algorithm must not be known vulnerable or weak (see 

[RFC8221] for outdated ciphers). ESP can be used to

authenticate only or to encrypt the communication. In the

latter case, authenticated encryption must always be considered

[RFC8221].

Resilience to nonce re-use: Some transforms -including AES-GCM

- are very sensitive to nonce collision with a given key. While

the generation of the nonce may prevent such collision during a

session, the mechanisms are unlikely to provide such protection

across reboot. This causes an issue for devices that are

configured with a key. When the key is likely to be re-used

across reboots, it is recommended to consider algorithms that

are nonce misuse resistant such as, for example, AES-SIV 

[RFC5297], AES-GCM-SIV [RFC8452] or Deoxys-II [DeoxysII]. Note

however that currently none of them has yet been defined for

ESP.

Interoperability: Interoperability considers the encryption

algorithm transforms shared with the other nodes. Note that it

is not because an encryption algorithm transform is widely

deployed that it is secured. As a result, security should not

be weakened for interoperability. [RFC8221] and successors

consider the life cycle of encryption algorithm transforms

sufficiently long to provide interoperability. Constrained

devices may have limited interoperability requirements which

makes possible to reduces the number of encryption algorithm

transforms to implement.

Power Consumption and Cipher Suite Complexity: Complexity of

the encryption algorithm transform or the energy associated

with it are especially considered when devices have limited

resources or are using some batteries, in which case the

battery determines the life of the device. The choice of a

cryptographic function may consider re-using specific libraries

or to take advantage of hardware acceleration provided by the

device. For example, if the device benefits from AES hardware

modules and uses AES-CTR, it may prefer AUTH_AES-XCBC for its

authentication. In addition, some devices may also embed radio

modules with hardware acceleration for AES-CCM, in which case,

this mode may be preferred.

Power Consumption and Bandwidth Consumption: Similarly to the

encryption algorithm transform complexity, reducing the payload

sent, may significantly reduce the energy consumption of the

device. As a result, encryption algorithm transforms with low
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overhead may be considered. To reduce the overall payload size

one may, for example:

Use of counter-based ciphers without fixed block length

(e.g. AES-CTR, or ChaCha20-Poly1305).

Use of ciphers with capability of using implicit IVs 

[RFC8750].

Use of ciphers recommended for IoT [RFC8221].

Avoid Padding by sending payload data which are aligned to

the cipher block length - 2 for the ESP trailer.

8. IANA Considerations

There are no IANA consideration for this document.

9. Security Considerations

Security considerations are those of [RFC4303]. In addition, this

document provided security recommendations and guidance over the

implementation choices for each field.

The security of a communication provided by ESP is closely related

to the security associated with the management of that key. This

usually includes mechanisms to prevent a nonce from repeating, for

example. When a node is provisioned with a session key that is used

across reboot, the implementer must ensure that the mechanisms put

in place remain valid across reboot as well.

It is recommended to use ESP in conjunction with key management

protocols such as for example IKEv2 [RFC7296] or minimal IKEv2 

[RFC7815]. Such mechanisms are responsible for negotiating fresh

session keys as well as prevent a session key being use beyond its

lifetime. When such mechanisms cannot be implemented and the session

key is, for example, provisioned, the nodes must ensure that keys

are not used beyond their lifetime and that the appropriate use of

the key remains across reboots - e.g. conditions on counters and

nonces remains valid.

When a node generates its key or when random value such as nonces

are generated, the random generation must follow [RFC4086]. In

addition [SP-800-90A-Rev-1] provides appropriated guidance to build

random generators based on deterministic random functions.
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