
Workgroup: LWIG Working Group

Internet-Draft:

draft-ietf-lwig-security-protocol-

comparison-07

Published: 24 January 2023

Intended Status: Informational

Expires: 28 July 2023

Authors: J. Preuß Mattsson

Ericsson

F. Palombini

Ericsson

M. Vučinić

INRIA

Comparison of CoAP Security Protocols

Abstract

This document analyzes and compares the sizes of key exchange

flights and the per-packet message size overheads when using

different security protocols to secure CoAP. Small message sizes are

very important for reducing energy consumption, latency, and time to

completion in constrained radio network such as Low-Power Wide Area

Networks (LPWANs). The analyzed security protocols are DTLS 1.2,

DTLS 1.3, TLS 1.2, TLS 1.3, cTLS, EDHOC, OSCORE, and Group OSCORE.

The DTLS and TLS record layers are analyzed with and without

6LoWPAN-GHC compression. DTLS is analyzed with and without

Connection ID.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 July 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Overhead of Key Exchange Protocols

2.1. Summary

2.2. DTLS 1.3

2.2.1. Message Sizes RPK + ECDHE

2.2.2. Message Sizes PSK + ECDHE

2.2.3. Message Sizes PSK

2.2.4. Cached Information

2.2.5. Resumption

2.2.6. DTLS Without Connection ID

2.2.7. Raw Public Keys

2.3. TLS 1.3

2.3.1. Message Sizes RPK + ECDHE

2.3.2. Message Sizes PSK + ECDHE

2.3.3. Message Sizes PSK

2.4. TLS 1.2 and DTLS 1.2

2.5. cTLS

2.6. EDHOC

2.6.1. Message Sizes RPK

2.6.2. Summary

2.7. Conclusion

3. Overhead for Protection of Application Data

3.1. Summary

3.2. DTLS 1.2

3.2.1. DTLS 1.2

3.2.2. DTLS 1.2 with 6LoWPAN-GHC

3.2.3. DTLS 1.2 with Connection ID

3.2.4. DTLS 1.2 with Connection ID and 6LoWPAN-GHC

3.3. DTLS 1.3

3.3.1. DTLS 1.3

3.3.2. DTLS 1.3 with 6LoWPAN-GHC

3.3.3. DTLS 1.3 with Connection ID

3.3.4. DTLS 1.3 with Connection ID and 6LoWPAN-GHC

3.4. TLS 1.2

3.4.1. TLS 1.2

3.4.2. TLS 1.2 with 6LoWPAN-GHC

3.5. TLS 1.3

3.5.1. TLS 1.3

3.5.2. TLS 1.3 with 6LoWPAN-GHC

3.6. OSCORE

¶

3.7. Group OSCORE

3.8. Conclusion

4. Security Considerations

5. IANA Considerations

6. Informative References

Acknowledgments

Authors' Addresses

1. Introduction

Small message sizes are very important for reducing energy

consumption, latency, and time to completion in constrained radio

network such as Low-Power Personal Area Networks (LPPANs) and Low-

Power Wide Area Networks (LPWANs). Constrained radio networks are

not only characterized by very small frame sizes on the order of

tens of bytes transmitted a few times per day at ultra-low speeds,

but also high latency, and severe duty cycles constraints. Some

constrained radio networks are also multi-hop where the already

small frame sizes are additionally reduced for each additional hop.

Too large payload sizes can easily lead to unacceptable completion

times due to fragmentation into a large number of frames and long

waiting times between frames can be sent (or resent in the case of

transmission errors). In constrained radio networks, the processing

energy costs are typically almost negligible compared to the energy

costs for radio and the energy costs for sensor measurement. Keeping

the number of bytes or frames low is also essential for low latency

and time to completion as well as efficient use of spectrum to

support a large number of devices. For an overview of LPWANs and

their limitations, see [RFC8376].

To reduce overhead, processing, and energy consumption in

constrained radio networks, IETF has created several working groups

and technologies for constrained networks, e.g., (here technologies

in parenthesis when the name is different from the working group):

6lo, 6LoWPAN, 6TiSCH, ACE, CBOR, CoRE (CoAP, OSCORE), COSE, LAKE

(EDHOC), LPWAN (SCHC), ROLL (RPL), and TLS (cTLS). Compact formats

and protocol have also been suggested as a way to decrease the

energy consumption of Internet Applications and Systems in general

[E-impact].

This document analyzes and compares the sizes of key exchange

flights and the per-packet message size overheads when using

different security protocols to secure CoAP over UPD [RFC7252] and

TCP [RFC8323]. The analyzed security protocols are DTLS 1.2

[RFC6347], DTLS 1.3 [RFC9147], TLS 1.2 [RFC5246], TLS 1.3 [RFC8446],

cTLS [I-D.ietf-tls-ctls], EDHOC [I-D.ietf-lake-edhoc]

[I-D.ietf-core-oscore-edhoc], OSCORE [RFC8613], and Group OSCORE

[I-D.ietf-core-oscore-groupcomm].

¶

¶

¶

The protocols are analyzed with different algorithms and options.

The DTLS and TLS record layers are analyzed with and without

6LoWPAN-GHC compression [RFC7400]. DTLS is analyzed with and without

Connection ID [RFC9146]. Readers are expected to be familiar with

some of the terms described in RFC 7925 [RFC7925], such as Integrity

Check Value (ICV). Section 2 compares the overhead of mutually

authenticated key exchange, while Section 3 covers the overhead for

protection of application data.

Readers of this document also might be interested in the following

documents: [Illustrated-TLS12], [Illustrated-TLS13],

[Illustrated-DTLS13], and [I-D.ietf-lake-traces] gives an

explanation of every byte in example TLS 1.2, TLS 1.3, DTLS 1.3, and

EDHOC instances. [RFC9191] looks at potential tools available for

overcoming the deployment challenges induced by large certificates

and long certificate chains and discusses solutions available to

overcome these challenges. [I-D.ietf-cose-cbor-encoded-cert] gives

examples of IoT and Web certificates as well as examples on how

effective C509 an TLS certificate compression [RFC8879] is at

compressing example certificate and certificate chains.

[I-D.mattsson-tls-compact-ecc] proposes new optimized encodings for

key exchange and signatures with P-256 in TLS 1.3.

2. Overhead of Key Exchange Protocols

This section analyzes and compares the sizes of key exchange flights

for different protocols.

To enable a fair comparison between protocols, the following

assumptions are made:

The overhead calculations in this section use an 8 bytes ICV

(e.g., AES_128_CCM_8 or AES-CCM-16-64-128) or 16 bytes (e.g.,

AES-CCM, AES-GCM, or ChaCha20-Poly1305).

A minimum number of algorithms and cipher suites is offered. The

algorithm used/offered are P-256 or Curve25519, ECDSA with P-256

and SHA-256 or Ed25519, AES-CCM_8, and SHA-256.

The length of key identifiers are 1 byte.

The length of connection identifiers are 1 byte.

DTLS handshake message fragmentation is not considered.

As many (D)TLS handshake messages as possible are sent in a

single record.

Only mandatory (D)TLS extensions are included.

¶

¶

¶

¶

*

¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

The choices of algorithms are based on the profiles in [RFC7925],

[I-D.ietf-uta-tls13-iot-profile], and [I-D.ietf-core-oscore-edhoc].

Section 2.1 gives a short summary of the message overhead based on

different parameters and some assumptions. The following sections

detail the assumptions and the calculations.

2.1. Summary

The DTLS and cTLS overhead is dependent on the parameter Connection

ID. The following overheads apply for all Connection IDs of the same

length, when Connection ID is used.

The TLS, DTLS, and cTLS overhead is dependent on the group used for

key exchange and the signature algorithm. secp256r1 and

ecdsa_secp256r1_sha256 have less optimized encoding than x25519,

ed25519, and [I-D.mattsson-tls-compact-ecc].

The EDHOC overhead is dependent on the key identifiers included. The

following overheads apply for Sender IDs of the same length.

All the overhead are dependent on the tag length. The following

overheads apply for tags of the same length.

Figure 1 compares the message sizes of DTLS 1.3, cTLS, and EDHOC

handshakes with connection ID and the mandatory to implement

algorithms CCM_8, P-256, and ECDSA [I-D.ietf-uta-tls13-iot-profile]

[I-D.ietf-core-oscore-edhoc]. EDHOC is typically sent over CoAP

which would add 4 bytes to flight #1 and #2 and 5 or 20 bytes to

flight #3 depending on if OSCORE is used

[I-D.ietf-core-oscore-edhoc].

Flight #1 #2 #3 Total

DTLS 1.3 - RPKs, ECDHE 185 454 255 894
DTLS 1.3 - Compressed RPKs, ECDHE 185 422 223 830
DTLS 1.3 - Cached RPK, PRK, ECDHE 224 402 255 881
DTLS 1.3 - Cached X.509, RPK, ECDHE 218 396 255 869
DTLS 1.3 - PSK, ECDHE 219 226 56 501
DTLS 1.3 - PSK 136 153 56 345

EDHOC - X.509s, Signature, x5t, ECDHE 37 115 90 242
EDHOC - RPKs, Signature, kid, ECDHE 37 102 77 216
EDHOC - X.509s, Static DH, x5t, ECDHE 37 58 33 128
EDHOC - RPKs, Static DH, kid, ECDHE 37 45 19 101

¶

¶

¶

¶

¶

¶

¶

¶

Figure 1: Comparison of message sizes in bytes with CCM_8, P-256, and

ECDSA and with Connection ID

Figure 2 compares of message sizes of DTLS 1.3 [RFC9147] and TLS 1.3

[RFC8446] handshakes without connection ID but with the same

algorithms CCM_8, P-256, and ECDSA. DTLS is typically sent over 8

bytes UDP datagram headers while TLS is typically sent over 20 bytes

TCP segment headers. TCP also uses some more bytes for additional

messages used in TCP internally.

Flight #1 #2 #3 Total

DTLS 1.3 - RPKs, ECDHE 179 447 254 880
DTLS 1.3 - PSK, ECDHE 213 219 55 487
DTLS 1.3 - PSK 130 146 55 331

TLS 1.3 - RPKs, ECDHE 162 394 233 789
TLS 1.3 - PSK, ECDHE 196 190 50 436
TLS 1.3 - PSK 113 117 50 280

cTLS - X.509s by reference, ECDHE 104 195 96 395
cTLS - PSK, ECDHE 105 119 20 226
cTLS - PSK 40 58 20 118

Figure 2: Comparison of message sizes in bytes with CCM_8, secp256r1,

and ecdsa_secp256r1_sha256 or PSK and without Connection ID

Figure 3 is the same as Figure 2 but with more efficiently encoded

key shares and signatures such as x25519 and ed25519. The algorithms

in [I-D.mattsson-tls-compact-ecc] with point compressed secp256r1

RPKs would add 15 bytes to #2 and #3 in the rows with RPKs.

¶

¶

¶

Flight #1 #2 #3 Total

DTLS 1.3 - RPKs, ECDHE 146 360 200 706
DTLS 1.3 - PSK, ECDHE 180 186 55 421
DTLS 1.3 - PSK 130 146 55 331

TLS 1.3 - RPKs, ECDHE 129 307 179 615
TLS 1.3 - PSK, ECDHE 163 157 50 370
TLS 1.3 - PSK 113 117 50 280

cTLS - X.509s by reference, ECDHE 71 155 89 315
cTLS - PSK, ECDHE 72 86 20 178
cTLS - PSK 40 58 20 118

Figure 3: Comparison of message sizes in bytes with CCM_8, x25519, and

ed25519 or PSK and without Connection ID

The numbers in Figure 2, Figure 2, and Figure 3 were calculated with

8 bytes tags which is the mandatory to implement in

[I-D.ietf-uta-tls13-iot-profile] and [I-D.ietf-core-oscore-edhoc].

If 16 bytes tag are used, the numbers in the #2 and #3 columns

increases with 8 and the numbers in the Total column increases with

16.

2.2. DTLS 1.3

This section gives an estimate of the message sizes of DTLS 1.3 with

different authentication methods. Note that the examples in this

section are not test vectors, the cryptographic parts are just

replaced with byte strings of the same length, while other fixed

length fields are replaced with arbitrary strings or omitted, in

which case their length is indicated. Values that are not arbitrary

are given in hexadecimal.

2.2.1. Message Sizes RPK + ECDHE

In this section, CCM_8, P-256, and ECDSA and a Connection ID of 1

byte are used.

¶

¶

¶

¶

2.2.1.1. Flight #1

Record Header - DTLSPlaintext (13 bytes):

16 fe fd EE EE SS SS SS SS SS SS LL LL

 Handshake Header - Client Hello (12 bytes):

 01 LL LL LL SS SS 00 00 00 LL LL LL

 Legacy Version (2 bytes):

 fe fd

 Client Random (32 bytes):

 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13

 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

 Legacy Session ID (1 bytes):

 00

 Legacy Cookie (1 bytes):

 00

 Cipher Suites (TLS_AES_128_CCM_8_SHA256) (4 bytes):

 00 02 13 05

 Compression Methods (null) (2 bytes):

 01 00

 Extensions Length (2 bytes):

 LL LL

 Extension - Supported Groups (secp256r1) (8 bytes):

 00 0a 00 04 00 02 00 17

 Extension - Signature Algorithms (ecdsa_secp256r1_sha256)

 (8 bytes):

 00 0d 00 04 00 02 04 03

 Extension - Key Share (secp256r1) (75 bytes):

 00 33 00 27 00 25 00 1d 00 41

 04 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12

 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 00 01 02 03 04 05 06

 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a

 1b 1c 1d 1e 1f

 Extension - Supported Versions (1.3) (7 bytes):

 00 2b 00 03 02 03 04

 Extension - Client Certificate Type (Raw Public Key) (6 bytes):

 00 13 00 02 01 02

 Extension - Server Certificate Type (Raw Public Key) (6 bytes):

 00 14 00 02 01 02

 Extension - Connection Identifier (42) (6 bytes):

 00 36 00 02 01 42

13 + 12 + 2 + 32 + 1 + 1 + 4 + 2 + 2 + 8 + 8 + 75 + 7 + 6 + 6 + 6

= 185 bytes

¶

DTLS 1.3 RPK + ECDHE flight #1 gives 185 bytes of overhead. With

efficiently encoded key share such as x25519 or

[I-D.mattsson-tls-compact-ecc] the overhead is 185 - 33 = 152 bytes.¶

2.2.1.2. Flight #2

Record Header - DTLSPlaintext (13 bytes):

16 fe fd EE EE SS SS SS SS SS SS LL LL

 Handshake Header - Server Hello (12 bytes):

 02 LL LL LL SS SS 00 00 00 LL LL LL

 Legacy Version (2 bytes):

 fe fd

 Server Random (32 bytes):

 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13

 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

 Legacy Session ID (1 bytes):

 00

 Cipher Suite (TLS_AES_128_CCM_8_SHA256) (2 bytes):

 13 05

 Compression Method (null) (1 bytes):

 00

 Extensions Length (2 bytes):

 LL LL

 Extension - Key Share (secp256r1) (73 bytes):

 00 33 00 45 00 1d 00 41

 04 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12

 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 00 01 02 03 04 05 06

 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a

 1b 1c 1d 1e 1f

 Extension - Supported Versions (1.3) (6 bytes):

 00 2b 00 02 03 04

 Extension - Connection Identifier (43) (6 bytes):

 00 36 00 02 01 43

Record Header - DTLSCiphertext (3 bytes):

HH 42 SS

 Handshake Header - Encrypted Extensions (12 bytes):

 08 LL LL LL SS SS 00 00 00 LL LL LL

 Extensions Length (2 bytes):

 LL LL

 Extension - Client Certificate Type (Raw Public Key) (6 bytes):

 00 13 00 01 01 02

 Extension - Server Certificate Type (Raw Public Key) (6 bytes):

 00 14 00 01 01 02

 Handshake Header - Certificate Request (12 bytes):

 0d LL LL LL SS SS 00 00 00 LL LL LL

 Request Context (1 bytes):

 00

 Extensions Length (2 bytes):

 LL LL

 Extension - Signature Algorithms (ecdsa_secp256r1_sha256)

 (8 bytes):

 00 0d 00 04 00 02 08 07

 Handshake Header - Certificate (12 bytes):

 0b LL LL LL SS SS 00 00 00 LL LL LL

 Request Context (1 bytes):

 00

 Certificate List Length (3 bytes):

 LL LL LL

 Certificate Length (3 bytes):

 LL LL LL

 Certificate (Uncompressed secp256r1 RPK) (91 bytes):

 30 59 30 13 ... // DER encoded RPK, See Section 2.2.7.

 Certificate Extensions (2 bytes):

 00 00

 Handshake Header - Certificate Verify (12 bytes):

 0f LL LL LL SS SS 00 00 00 LL LL LL

 Signature (ecdsa_secp256r1_sha256) (average 75 bytes):

 04 03 LL LL

 30 LL 02 LL ... 02 LL ... // DER encoded signature

 Handshake Header - Finished (12 bytes):

 14 LL LL LL SS SS 00 00 00 LL LL LL

 Verify Data (32 bytes):

 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13

 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

 Record Type (1 byte):

 16

Auth Tag (8 bytes):

e0 8b 0e 45 5a 35 0a e5

13 + 137 + 3 + 26 + 23 + 112 + 87 + 44 + 1 + 8 = 454 bytes

¶

DTLS 1.3 RPK + ECDHE flight #2 gives 454 bytes of overhead. With a

point compressed secp256r1 RPK the overhead is 454 - 32 = 422 bytes,

see Section 2.2.7. With an ed25519 RPK and signature the overhead is

454 - 47 - 7 = 400 bytes. With an efficiently encoded key share such

as x25519 or [I-D.mattsson-tls-compact-ecc] the overhead is 454 - 33

= 421 bytes. With an efficiently encoded signature such

[I-D.mattsson-tls-compact-ecc] the overhead is 454 - 7 = 447 bytes.

With x25519 and ed25519 he overhead is 454 - 47 - 33 - 7 = 367

bytes.¶

2.2.1.3. Flight #3

DTLS 1.3 RPK + ECDHE flight #3 gives 255 bytes of overhead. With a

point compressed secp256r1 RPK the overhead is 255 - 32 = 223 bytes,

see Section 2.2.7. With an ed25519 RPK and signature the overhead is

255 - 47 - 7 = 201 bytes. With an efficiently encoded signature such

Record Header (3 bytes): // DTLSCiphertext

ZZ 43 SS

 Handshake Header - Certificate (12 bytes):

 0b LL LL LL SS SS XX XX XX LL LL LL

 Request Context (1 bytes):

 00

 Certificate List Length (3 bytes):

 LL LL LL

 Certificate Length (3 bytes):

 LL LL LL

 Certificate (Uncompressed secp256r1 RPK) (91 bytes):

 30 59 30 13 ... // DER encoded RPK, See Section 2.2.7.

 Certificate Extensions (2 bytes):

 00 00

 Handshake Header - Certificate Verify (12 bytes):

 0f LL LL LL SS SS 00 00 00 LL LL LL

 Signature (ecdsa_secp256r1_sha256) (average 75 bytes):

 04 03 LL LL

 30 LL 02 LL ... 02 LL ... // // DER encoded signature

 Handshake Header - Finished (12 bytes):

 14 LL LL LL SS SS 00 00 00 LL LL LL

 Verify Data (32 bytes) // SHA-256:

 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13

 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

 Record Type (1 byte):

 16

Auth Tag (8 bytes) // AES-CCM_8:

00 01 02 03 04 05 06 07

3 + 112 + 87 + 44 + 1 + 8 = 255 bytes

¶

as [I-D.mattsson-tls-compact-ecc] the overhead is 255 - 7 = 248

bytes.

2.2.2. Message Sizes PSK + ECDHE

2.2.2.1. Flight #1

The differences in overhead compared to Section 2.2.1.1 are:

The following is added:

The following is removed:

In total:

DTLS 1.3 PSK + ECDHE flight #1 gives 219 bytes of overhead.

2.2.2.2. Flight #2

The differences in overhead compared to Section 2.2.1.2 are:

The following is added:

The following is removed:

¶

¶

¶

+ Extension - PSK Key Exchange Modes (6 bytes):

 00 2d 00 02 01 01

+ Extension - Pre-Shared Key (48 bytes):

 00 29 00 2F

 00 0a 00 01 ID 00 00 00 00

 00 21 20 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10

 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

¶

¶

- Extension - Signature Algorithms (ecdsa_secp256r1_sha256) (8 bytes)

- Extension - Client Certificate Type (Raw Public Key) (6 bytes)

- Extension - Server Certificate Type (Raw Public Key) (6 bytes)

¶

¶

185 + 6 + 48 - 8 - 6 - 6 = 219 bytes¶

¶

¶

¶

+ Extension - Pre-Shared Key (6 bytes)

 00 29 00 02 00 00

¶

¶

In total:

DTLS 1.3 PSK + ECDHE flight #2 gives 226 bytes of overhead.

2.2.2.3. Flight #3

The differences in overhead compared to Section 2.2.1.3 are:

The following is removed:

In total:

DTLS 1.3 PSK + ECDHE flight #3 gives 56 bytes of overhead.

2.2.3. Message Sizes PSK

2.2.3.1. Flight #1

The differences in overhead compared to Section 2.2.2.1 are:

The following is removed:

In total:

DTLS 1.3 PSK flight #1 gives 136 bytes of overhead.

- Handshake Message Certificate (112 bytes)

- Handshake Message CertificateVerify (87 bytes)

- Handshake Message CertificateRequest (23 bytes)

- Extension - Client Certificate Type (Raw Public Key) (6 bytes)

- Extension - Server Certificate Type (Raw Public Key) (6 bytes)

¶

¶

454 + 6 - 112 - 87 - 23 - 6 - 6 = 226 bytes¶

¶

¶

¶

- Handshake Message Certificate (112 bytes)

- Handshake Message Certificate Verify (87 bytes)

¶

¶

255 - 112 - 87 = 56 bytes¶

¶

¶

¶

- Extension - Supported Groups (x25519) (8 bytes)

- Extension - Key Share (75 bytes)

¶

¶

219 - 8 - 75 = 136 bytes¶

¶

2.2.3.2. Flight #2

The differences in overhead compared to Section 2.2.2.2 are:

The following is removed:

In total:

DTLS 1.3 PSK flight #2 gives 153 bytes of overhead.

2.2.3.3. Flight #3

There are no differences in overhead compared to Section 2.2.2.3.

DTLS 1.3 PSK flight #3 gives 56 bytes of overhead.

2.2.4. Cached Information

In this section, we consider the effect of [RFC7924] on the message

size overhead.

Cached information can be used to use a cached server certificate

from a previous connection and move bytes from flight #2 to flight

#1. The cached certificate can be a RPK or X.509.

The differences compared to Section 2.2.1 are the following.

2.2.4.1. Flight #1

For the flight #1, the following is added:

Giving a total of:

In the case the cached certificate is X.509 the following is

removed:

Giving a total of:

¶

¶

- Extension - Key Share (73 bytes)¶

¶

226 - 73 = 153 bytes¶

¶

¶

¶

¶

¶

¶

¶

+ Extension - Client Cashed Information (39 bytes):

 00 19 LL LL LL LL

 01 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11

 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

¶

¶

185 + 39 = 224 bytes¶

¶

- Extension - Server Certificate Type (Raw Public Key) (6 bytes)¶

¶

2.2.4.2. Flight #2

For the flight #2, the following is added:

And the following is reduced:

Giving a total of:

In the case the cached certificate is X.509 the following is

removed:

Giving a total of:

2.2.5. Resumption

To enable resumption, a 4th flight with the handshake message New

Session Ticket is added to the DTLS handshake.

224 - 6 = 218 bytes¶

¶

+ Extension - Server Cashed Information (7 bytes):

 00 19 LL LL LL LL 01

¶

¶

- Server Certificate (91 bytes -> 32 bytes)¶

¶

454 + 7 - 59 = 402 bytes¶

¶

- Extension - Server Certificate Type (Raw Public Key) (6 bytes)¶

¶

402 - 6 = 396 bytes¶

¶

Enabling resumption adds 41 bytes to the initial DTLS handshake. The

resumption handshake is an ordinary PSK handshake with our without

ECDHE.

2.2.6. DTLS Without Connection ID

Without a Connection ID the DTLS 1.3 flight sizes changes as

follows.

2.2.7. Raw Public Keys

This sections illustrates the format of P-256 (secp256r1)

SubjectPublicKeyInfo [RFC5480] with and without point compression as

well as an ed25519 SubjectPublicKeyInfo. Point compression in

SubjectPublicKeyInfo is standardized in [RFC5480] and is therefore

theoretically possible to use in PRKs and X.509 certificates used in

(D)TLS but does not seems to be supported by (D)TLS implementations.

Record Header - DTLSCiphertext (3 bytes):

HH 42 SS

 Handshake Header - New Session Ticket (12 bytes):

 04 LL LL LL SS SS 00 00 00 LL LL LL

 Ticket Lifetime (4 bytes):

 00 01 02 03

 Ticket Age Add (4 bytes):

 00 01 02 03

 Ticket Nonce (2 bytes):

 01 00

 Ticket (6 bytes):

 00 04 ID ID ID ID

 Extensions (2 bytes):

 00 00

Auth Tag (8 bytes) // AES-CCM_8:

00 01 02 03 04 05 06 07

3 + 12 + 4 + 4 + 2 + 6 + 2 + 8 = 41 bytes

¶

¶

¶

DTLS 1.3 flight #1: -6 bytes

DTLS 1.3 flight #2: -7 bytes

DTLS 1.3 flight #3: -1 byte

¶

¶

2.2.7.1. secp256r1 SubjectPublicKeyInfo Without Point Compression

2.2.7.2. secp256r1 SubjectPublicKeyInfo With Point Compression

0x30 // Sequence

0x59 // Size 89

0x30 // Sequence

0x13 // Size 19

0x06 0x07 0x2A 0x86 0x48 0xCE 0x3D 0x02 0x01

 // OID 1.2.840.10045.2.1 (ecPublicKey)

0x06 0x08 0x2A 0x86 0x48 0xCE 0x3D 0x03 0x01 0x07

 // OID 1.2.840.10045.3.1.7 (secp256r1)

0x03 // Bit string

0x42 // Size 66

0x00 // Unused bits 0

0x04 // Uncompressed

...... 64 bytes X and Y

Total of 91 bytes

¶

0x30 // Sequence

0x39 // Size 57

0x30 // Sequence

0x13 // Size 19

0x06 0x07 0x2A 0x86 0x48 0xCE 0x3D 0x02 0x01

 // OID 1.2.840.10045.2.1 (ecPublicKey)

0x06 0x08 0x2A 0x86 0x48 0xCE 0x3D 0x03 0x01 0x07

 // OID 1.2.840.10045.3.1.7 (secp256r1)

0x03 // Bit string

0x22 // Size 34

0x00 // Unused bits 0

0x03 // Compressed

...... 32 bytes X

Total of 59 bytes

¶

2.2.7.3. ed25519 SubjectPublicKeyInfo

2.3. TLS 1.3

In this section, the message sizes are calculated for TLS 1.3. The

major changes compared to DTLS 1.3 are a different record header,

the handshake headers is smaller, and that Connection ID is not

supported. Recently, additional work has taken shape with the goal

to further reduce overhead for TLS 1.3 (see [I-D.ietf-tls-ctls]).

2.3.1. Message Sizes RPK + ECDHE

In this section, CCM_8, x25519, and ed25519 are used.

0x30 // Sequence

0x2A // Size 42

0x30 // Sequence

0x05 // Size 5

0x06 0x03 0x2B 0x65 0x70

 // OID 1.3.101.112 (ed25519)

0x03 // Bit string

0x21 // Size 33

0x00 // Unused bits 0

...... 32 bytes

Total of 44 bytes

¶

¶

¶

2.3.1.1. Flight #1

Record Header - TLSPlaintext (5 bytes):

16 03 03 LL LL

 Handshake Header - Client Hello (4 bytes):

 01 LL LL LL

 Legacy Version (2 bytes):

 03 03

 Client Random (32 bytes):

 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13

 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

 Legacy Session ID (1 bytes):

 00

 Cipher Suites (TLS_AES_128_CCM_8_SHA256) (4 bytes):

 00 02 13 05

 Compression Methods (null) (2 bytes):

 01 00

 Extensions Length (2 bytes):

 LL LL

 Extension - Supported Groups (x25519) (8 bytes):

 00 0a 00 04 00 02 00 1d

 Extension - Signature Algorithms (ed25519)

 (8 bytes):

 00 0d 00 04 00 02 08 07

 Extension - Key Share (x25519) (42 bytes):

 00 33 00 26 00 24 00 1d 00 20

 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13

 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

 Extension - Supported Versions (1.3) (7 bytes):

 00 2b 00 03 02 03 04

 Extension - Client Certificate Type (Raw Public Key) (6 bytes):

 00 13 00 01 01 02

 Extension - Server Certificate Type (Raw Public Key) (6 bytes):

 00 14 00 01 01 02

5 + 4 + 2 + 32 + 1 + 4 + 2 + 2 + 8 + 8 + 42 + 7 + 6 + 6 = 129 bytes

¶

TLS 1.3 RPK + ECDHE flight #1 gives 129 bytes of overhead.¶

2.3.1.2. Flight #2

Record Header - TLSPlaintext (5 bytes):

16 03 03 LL LL

 Handshake Header - Server Hello (4 bytes):

 02 LL LL LL

 Legacy Version (2 bytes):

 fe fd

 Server Random (32 bytes):

 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13

 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

 Legacy Session ID (1 bytes):

 00

 Cipher Suite (TLS_AES_128_CCM_8_SHA256) (2 bytes):

 13 05

 Compression Method (null) (1 bytes):

 00

 Extensions Length (2 bytes):

 LL LL

 Extension - Key Share (x25519) (40 bytes):

 00 33 00 24 00 1d 00 20

 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13

 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

 Extension - Supported Versions (1.3) (6 bytes):

 00 2b 00 02 03 04

Record Header - TLSCiphertext (5 bytes):

17 03 03 LL LL

 Handshake Header - Encrypted Extensions (4 bytes):

 08 LL LL LL

 Extensions Length (2 bytes):

 LL LL

 Extension - Client Certificate Type (Raw Public Key) (6 bytes):

 00 13 00 01 01 02

 Extension - Server Certificate Type (Raw Public Key) (6 bytes):

 00 14 00 01 01 02

 Handshake Header - Certificate Request (4 bytes):

 0d LL LL LL

 Request Context (1 bytes):

 00

 Extensions Length (2 bytes):

 LL LL

 Extension - Signature Algorithms (ed25519)

 (8 bytes):

 00 0d 00 04 00 02 08 07

 Handshake Header - Certificate (4 bytes):

 0b LL LL LL

 Request Context (1 bytes):

 00

 Certificate List Length (3 bytes):

 LL LL LL

 Certificate Length (3 bytes):

 LL LL LL

 Certificate (ed25519 RPK) (44 bytes):

 30 2A 30 05 ... // DER encoded RPK, see Section 2.2.7.

 Certificate Extensions (2 bytes):

 00 00

 Handshake Header - Certificate Verify (4 bytes):

 0f LL LL LL

 Signature (ed25519) (68 bytes):

 08 07 LL LL

 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13

 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

 Handshake Header - Finished (4 bytes):

 14 LL LL LL

 Verify Data (32 bytes):

 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13

 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

 Record Type (1 byte):

 16

Auth Tag (8 bytes):

e0 8b 0e 45 5a 35 0a e5

5 + 90 + 5 + 18 + 15 + 57 + 72 + 36 + 1 + 8 = 307 bytes
¶

TLS 1.3 RPK + ECDHE flight #2 gives 307 bytes of overhead.

2.3.1.3. Flight #3

TLS 1.3 RPK + ECDHE flight #3 gives 179 bytes of overhead.

¶

Record Header - TLSCiphertext (5 bytes):

17 03 03 LL LL

 Handshake Header - Certificate (4 bytes):

 0b LL LL LL

 Request Context (1 bytes):

 00

 Certificate List Length (3 bytes):

 LL LL LL

 Certificate Length (3 bytes):

 LL LL LL

 Certificate (ed25519 RPK) (44 bytes):

 30 2A 30 05 ... // DER encoded RPK, see Section 2.2.7.

 Certificate Extensions (2 bytes):

 00 00

 Handshake Header - Certificate Verify (4 bytes):

 0f LL LL LL

 Signature (ed25519) (68 bytes):

 08 07 LL LL

 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13

 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

 Handshake Header - Finished (4 bytes):

 14 LL LL LL

 Verify Data (32 bytes) // SHA-256:

 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13

 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

 Record Type (1 byte)

 16

Auth Tag (8 bytes) // AES-CCM_8:

00 01 02 03 04 05 06 07

5 + 57 + 72 + 36 + 1 + 8 = 179 bytes

¶

¶

2.3.2. Message Sizes PSK + ECDHE

2.3.2.1. Flight #1

The differences in overhead compared to Section 2.3.1.3 are:

The following is added:

The following is removed:

In total:

TLS 1.3 PSK + ECDHE flight #1 gives 163 bytes of overhead.

2.3.2.2. Flight #2

The differences in overhead compared to Section 2.3.1.2 are:

The following is added:

The following is removed:

¶

¶

+ Extension - PSK Key Exchange Modes (6 bytes):

 00 2d 00 02 01 01

+ Extension - Pre-Shared Key (48 bytes):

 00 29 00 2F

 00 0a 00 01 ID 00 00 00 00

 00 21 20 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10

 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

¶

¶

- Extension - Signature Algorithms (ecdsa_secp256r1_sha256) (8 bytes)

- Extension - Client Certificate Type (Raw Public Key) (6 bytes)

- Extension - Server Certificate Type (Raw Public Key) (6 bytes)

¶

¶

129 + 6 + 48 - 8 - 6 - 6 = 163 bytes¶

¶

¶

¶

+ Extension - Pre-Shared Key (6 bytes)

 00 29 00 02 00 00

¶

¶

- Handshake Message Certificate (57 bytes)

- Handshake Message CertificateVerify (72 bytes)

- Handshake Message CertificateRequest (15 bytes)

- Extension - Client Certificate Type (Raw Public Key) (6 bytes)

- Extension - Server Certificate Type (Raw Public Key) (6 bytes)

¶

In total:

TLS 1.3 PSK + ECDHE flight #2 gives 157 bytes of overhead.

2.3.2.3. Flight #3

The differences in overhead compared to Section 2.3.1.3 are:

The following is removed:

In total:

TLS 1.3 PSK + ECDHE flight #3 gives 50 bytes of overhead.

2.3.3. Message Sizes PSK

2.3.3.1. Flight #1

The differences in overhead compared to Section 2.3.2.1 are:

The following is removed:

In total:

TLS 1.3 PSK flight #1 gives 113 bytes of overhead.

2.3.3.2. Flight #2

The differences in overhead compared to Section 2.3.2.2 are:

The following is removed:

In total:

¶

307 - 57 - 72 - 15 - 6 - 6 + 6 = 157 bytes¶

¶

¶

¶

- Handshake Message Certificate (57 bytes)

- Handshake Message Certificate Verify (72 bytes)

¶

¶

179 - 57 - 72 = 50 bytes¶

¶

¶

¶

- Extension - Supported Groups (x25519) (8 bytes)

- Extension - Key Share (42 bytes)

¶

¶

163 - 8 - 42 = 113 bytes¶

¶

¶

¶

- Extension - Key Share (40 bytes)¶

¶

157 - 40 = 117 bytes¶

TLS 1.3 PSK flight #2 gives 117 bytes of overhead.

2.3.3.3. Flight #3

There are no differences in overhead compared to Section 2.3.2.3.

TLS 1.3 PSK flight #3 gives 50 bytes of overhead.

2.4. TLS 1.2 and DTLS 1.2

The TLS 1.2 and DTLS 1.2 handshakes are not analyzed in detail in

this document. One rough comparison on expected size between the TLS

1.2 and TLS 1.3 handshakes can be found by counting the number of

bytes in the example handshakes of [Illustrated-TLS12] and

[Illustrated-TLS13]. In these examples the server authenticates with

a certificate and the client is not authenticated.

In TLS 1.2 the number of bytes in the four flights are 170, 1188,

117, and 75 for a total of 1550 bytes. In TLS 1.3 the number of

bytes in the three flights are 253, 1367, and 79 for a total of 1699

bytes. In general, the (D)TLS 1.2 and (D)TLS 1.3 handshakes can be

expected to have similar number of bytes.

2.5. cTLS

The cTLS specification [I-D.ietf-tls-ctls] has a single example in

Appendix A. The numbers given are correct for the algorithms CCM_8,

x25519, and ed25519 but are missing overhead from CTLSCiphertext

which adds 11 bytes to flight #2 and #3. The sizes for flights are

therefore 71, 155 (66 + 79 + 11), and 89 (78 + 11) bytes for a total

of 315 bytes.

Using secp256r1 instead x25519 add 33 bytes to flight #1 and flight

#2.

Using ecdsa_secp256r1_sha256 instead ed25519 add an average of 7

bytes to flight #2 and flight #3.

Using PSK authentication instead of ed25519 add 1 byte (psk

identifier) to flight #1 and removes 69 bytes from flight #2 and #3.

Using Connection ID adds 1 byte to flight #1 and #3, and 2 bytes to

flight #2.

2.6. EDHOC

This section gives an estimate of the message sizes of EDHOC

[I-D.ietf-lake-edhoc] authenticated with static Diffie-Hellman keys

and where the static Diffie-Hellman are identified with a key

identifier (kid). All examples are given in CBOR diagnostic notation

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

and hexadecimal, and are based on the test vectors in Section 4 of

[I-D.ietf-lake-traces].

2.6.1. Message Sizes RPK

2.6.1.1. message_1

2.6.1.2. message_2

2.6.1.3. message_3

2.6.2. Summary

Based on the example above it is relatively easy to calculate

numbers also for EDHOC authenticated with signature keys and for

authentication keys identified with a SHA-256/64 hash (x5t).

Signatures increase the size of flight #2 and #3 with (64 - 8 + 1)

bytes while x5t increases the size with 13-14 bytes. The typical

message sizes for the previous example and for the other

combinations are summarized in Figure 4. Note that EDHOC treats

¶

message_1 = (

 3,

 2,

 h'8af6f430ebe18d34184017a9a11bf511c8dff8f834730b96c1b7c8dbca2f

 c3b6',

 -24

)

¶

message_1 (37 bytes):

03 02 58 20 8a f6 f4 30 eb e1 8d 34 18 40 17 a9 a1 1b f5 11 c8

df f8 f8 34 73 0b 96 c1 b7 c8 db ca 2f c3 b6 37

¶

message_2 = (

 h'419701D7F00A26C2DC587A36DD752549F33763C893422C8EA0F955A13A4F

 F5D5042459E2DA6C75143F35',

 -8

)

¶

message_2 (45 bytes):

 58 2a 41 97 01 d7 f0 0a 26 c2 dc 58 7a 36 dd 75 25 49 f3 37

 63 c8 93 42 2c 8e a0 f9 55 a1 3a 4f f5 d5 04 24 59 e2 da 6c

 75 14 3f 35 27

¶

message_3 = (

 h'C2B62835DC9B1F53419C1D3A2261EEED3505'

)

¶

message_3 (19 bytes):

52 c2 b6 28 35 dc 9b 1f 53 41 9c 1d 3a 22 61 ee ed 35 05

¶

authentication keys stored in RPK and X.509 in the same way. More

detailed examples can be found in [I-D.ietf-lake-traces].

Static DH Keys Signature Keys

kid x5t kid x5t

message_1 37 37 37 37
message_2 45 58 102 115
message_3 19 33 77 90

Total 101 128 216 242

Figure 4: Typical message sizes in bytes

2.7. Conclusion

To do a fair comparison, one has to choose a specific deployment and

look at the topology, the whole protocol stack, frame sizes (e.g.,

51 or 128 bytes), how and where in the protocol stack fragmentation

is done, and the expected packet loss. Note that the number of bytes

in each frame that is available for the key exchange protocol may

depend on the underlying protocol layers as well as on the number of

hops in multi-hop networks. The packet loss may depend on how many

other devices are transmitting at the same time, and may increase

during network formation. The total overhead will be larger due to

mechanisms for fragmentation, retransmission, and packet ordering.

The overhead of fragmentation is roughly proportional to the number

of fragments, while the expected overhead due to retransmission in

noisy environments is a superlinear function of the flight sizes.

3. Overhead for Protection of Application Data

To enable comparison, all the overhead calculations in this section

use an 8 bytes ICV (e.g., AES_128_CCM_8 or AES-CCM-16-64-128) or 16

bytes (e.g., AES-CCM, AES-GCM, or ChaCha20-Poly1305), a plaintext of

6 bytes, and the sequence number ‘05’. This follows the example in

[RFC7400], Figure 16.

Note that the compressed overhead calculations for DLTS 1.2, DTLS

1.3, TLS 1.2 and TLS 1.3 are dependent on the parameters epoch,

sequence number, and length (where applicable), and all the overhead

calculations are dependent on the parameter Connection ID when used.

Note that the OSCORE overhead calculations are dependent on the CoAP

option numbers, as well as the length of the OSCORE parameters

Sender ID, ID Context, and Sequence Number (where applicable). cTLS

¶

¶

¶

¶

uses the DTLS 1.3 record layer. The following calculations are only

examples.

Section 3.1 gives a short summary of the message overhead based on

different parameters and some assumptions. The following sections

detail the assumptions and the calculations.

3.1. Summary

The DTLS overhead is dependent on the parameter Connection ID. The

following overheads apply for all Connection IDs with the same

length.

The compression overhead (GHC) is dependent on the parameters epoch,

sequence number, Connection ID, and length (where applicable). The

following overheads should be representative for sequence numbers

and Connection IDs with the same length.

The OSCORE overhead is dependent on the included CoAP Option numbers

as well as the length of the OSCORE parameters Sender ID and

sequence number. The following overheads apply for all sequence

numbers and Sender IDs with the same length.

Sequence Number '05' '1005' '100005'

DTLS 1.2 29 29 29
DTLS 1.3 11 11 11

DTLS 1.2 (GHC) 16 16 16
DTLS 1.3 (GHC) 12 12 12

TLS 1.2 21 21 21
TLS 1.3 14 14 14

TLS 1.2 (GHC) 17 18 19
TLS 1.3 (GHC) 15 16 17

OSCORE request 13 14 15
OSCORE response 11 11 11

Group OSCORE pairwise request 14 15 16
Group OSCORE pairwise response 11 11 11

Figure 5: Overhead (8 bytes ICV) in bytes as a function of sequence

number (Connection/Sender ID = '')

¶

¶

¶

¶

¶

¶

Connection/Sender ID '' '42' '4002'

DTLS 1.2 29 30 31
DTLS 1.3 11 12 13

DTLS 1.2 (GHC) 16 17 18
DTLS 1.3 (GHC) 12 13 14

OSCORE request 13 14 15
OSCORE response 11 11 11

Group OSCORE pairwise request 14 15 16
Group OSCORE pairwise response 11 13 14

Figure 6: Overhead (8 bytes ICV) in bytes as a function of Connection/

Sender ID (Sequence Number = '05')

Protocol Overhead Overhead (GHC)

DTLS 1.2 21 8
DTLS 1.3 3 4

TLS 1.2 13 9
TLS 1.3 6 7

OSCORE request 5
OSCORE response 3

Group OSCORE pairwise request 7
Group OSCORE pairwise response 4

Figure 7: Overhead (excluding ICV) in bytes (Connection/Sender ID = '',

Sequence Number = '05')

The numbers in Figure 5, Figure 6, and {fig-overhead3} do not

consider the different Token processing requirements for clients

[RFC9175] required for secure operation as motivated by

[I-D.ietf-core-attacks-on-coap]. As reuse of Tokens is easier in

OSCORE than DTLS, OSCORE might have slightly lower overhead than

DTLS 1.3 for long connection even if DTLS 1.3 has slightly lower

overhead than OSCORE for short connections.

The numbers in Figure 5, Figure 6, and {fig-overhead3} do not

consider underlying layers. DTLS is typically sent over 8 bytes UDP

datagram headers while TLS is typically sent over 20 bytes TCP

segment headers. TCP also uses some more bytes for additional

¶

¶

¶

messages used in TCP internally. The total overhead for DTLS 1.3

over UDP is significantly less than TLS 1.3 over TCP.

The numbers in Figure 5 and Figure 6 were calculated with 8 bytes

ICV which is the mandatory to implement in

[I-D.ietf-uta-tls13-iot-profile], and [I-D.ietf-core-oscore-edhoc].

If 16 bytes tag are used, all numbers increases with 8.

3.2. DTLS 1.2

3.2.1. DTLS 1.2

This section analyzes the overhead of DTLS 1.2 [RFC6347]. The nonce

follow the strict profiling given in [RFC7925]. This example is

taken directly from [RFC7400], Figure 16.

DTLS 1.2 gives 29 bytes overhead.

3.2.2. DTLS 1.2 with 6LoWPAN-GHC

This section analyzes the overhead of DTLS 1.2 [RFC6347] when

compressed with 6LoWPAN-GHC [RFC7400]. The compression was done

with [OlegHahm-ghc].

Note that the sequence number ‘01’ used in [RFC7400], Figure 15

gives an exceptionally small overhead that is not representative.

¶

¶

¶

DTLS 1.2 record layer (35 bytes, 29 bytes overhead):

17 fe fd 00 01 00 00 00 00 00 05 00 16 00 01 00

00 00 00 00 05 ae a0 15 56 67 92 4d ff 8a 24 e4

cb 35 b9

Content type:

17

Version:

fe fd

Epoch:

00 01

Sequence number:

00 00 00 00 00 05

Length:

00 16

Nonce:

00 01 00 00 00 00 00 05

Ciphertext:

ae a0 15 56 67 92

ICV:

4d ff 8a 24 e4 cb 35 b9

¶

¶

¶

¶

Note that this header compression is not available when DTLS is used

over transports that do not use 6LoWPAN together with 6LoWPAN-GHC.

When compressed with 6LoWPAN-GHC, DTLS 1.2 with the above parameters

(epoch, sequence number, length) gives 16 bytes overhead.

3.2.3. DTLS 1.2 with Connection ID

This section analyzes the overhead of DTLS 1.2 [RFC6347] with

Connection ID [RFC9146]. The overhead calculations in this section

uses Connection ID = '42'. DTLS record layer with a Connection ID =

'' (the empty string) is equal to DTLS without Connection ID.

DTLS 1.2 with Connection ID gives 30 bytes overhead.

¶

Compressed DTLS 1.2 record layer (22 bytes, 16 bytes overhead):

b0 c3 03 05 00 16 f2 0e ae a0 15 56 67 92 4d ff

8a 24 e4 cb 35 b9

Compressed DTLS 1.2 record layer header and nonce:

b0 c3 03 05 00 16 f2 0e

Ciphertext:

ae a0 15 56 67 92

ICV:

4d ff 8a 24 e4 cb 35 b9

¶

¶

¶

DTLS 1.2 record layer (36 bytes, 30 bytes overhead):

17 fe fd 00 01 00 00 00 00 00 05 42 00 16 00 01

00 00 00 00 00 05 ae a0 15 56 67 92 4d ff 8a 24

e4 cb 35 b9

Content type:

17

Version:

fe fd

Epoch:

00 01

Sequence number:

00 00 00 00 00 05

Connection ID:

42

Length:

00 16

Nonce:

00 01 00 00 00 00 00 05

Ciphertext:

ae a0 15 56 67 92

ICV:

4d ff 8a 24 e4 cb 35 b9

¶

¶

3.2.4. DTLS 1.2 with Connection ID and 6LoWPAN-GHC

This section analyzes the overhead of DTLS 1.2 [RFC6347] with

Connection ID [RFC9146] when compressed with 6LoWPAN-GHC [RFC7400]

[OlegHahm-ghc].

Note that the sequence number ‘01’ used in [RFC7400], Figure 15

gives an exceptionally small overhead that is not representative.

Note that this header compression is not available when DTLS is used

over transports that do not use 6LoWPAN together with 6LoWPAN-GHC.

When compressed with 6LoWPAN-GHC, DTLS 1.2 with the above parameters

(epoch, sequence number, Connection ID, length) gives 17 bytes

overhead.

3.3. DTLS 1.3

3.3.1. DTLS 1.3

This section analyzes the overhead of DTLS 1.3 [RFC9147]. The

changes compared to DTLS 1.2 are: omission of version number,

merging of epoch into the first byte containing signaling bits,

optional omission of length, reduction of sequence number into a 1

or 2-bytes field.

DTLS 1.3 is only analyzed with an omitted length field and with an

8-bit sequence number (see Figure 4 of [RFC9147]).

¶

¶

¶

Compressed DTLS 1.2 record layer (23 bytes, 17 bytes overhead):

b0 c3 04 05 42 00 16 f2 0e ae a0 15 56 67 92 4d

ff 8a 24 e4 cb 35 b9

Compressed DTLS 1.2 record layer header and nonce:

b0 c3 04 05 42 00 16 f2 0e

Ciphertext:

ae a0 15 56 67 92

ICV:

4d ff 8a 24 e4 cb 35 b9

¶

¶

¶

¶

DTLS 1.3 gives 11 bytes overhead.

3.3.2. DTLS 1.3 with 6LoWPAN-GHC

This section analyzes the overhead of DTLS 1.3 [RFC9147] when

compressed with 6LoWPAN-GHC [RFC7400] [OlegHahm-ghc].

Note that this header compression is not available when DTLS is used

over transports that do not use 6LoWPAN together with 6LoWPAN-GHC.

When compressed with 6LoWPAN-GHC, DTLS 1.3 with the above parameters

(epoch, sequence number, no length) gives 12 bytes overhead.

3.3.3. DTLS 1.3 with Connection ID

This section analyzes the overhead of DTLS 1.3 [RFC9147] with

Connection ID [RFC9146].

In this example, the length field is omitted, and the 1-byte field

is used for the sequence number. The minimal DTLSCiphertext

structure is used (see Figure 4 of [RFC9147]), with the addition of

the Connection ID field.

DTLS 1.3 record layer (17 bytes, 11 bytes overhead):

21 05 ae a0 15 56 67 92 ec 4d ff 8a 24 e4 cb 35 b9

First byte (including epoch):

21

Sequence number:

05

Ciphertext (including encrypted content type):

ae a0 15 56 67 92 ec

ICV:

4d ff 8a 24 e4 cb 35 b9

¶

¶

¶

¶

Compressed DTLS 1.3 record layer (18 bytes, 12 bytes overhead):

11 21 05 ae a0 15 56 67 92 ec 4d ff 8a 24 e4 cb

35 b9

Compressed DTLS 1.3 record layer header and nonce:

11 21 05

Ciphertext (including encrypted content type):

ae a0 15 56 67 92 ec

ICV:

4d ff 8a 24 e4 cb 35 b9

¶

¶

¶

¶

DTLS 1.3 with Connection ID gives 12 bytes overhead.

3.3.4. DTLS 1.3 with Connection ID and 6LoWPAN-GHC

This section analyzes the overhead of DTLS 1.3 [RFC9147] with

Connection ID [RFC9146] when compressed with 6LoWPAN-GHC [RFC7400]

[OlegHahm-ghc].

Note that this header compression is not available when DTLS is used

over transports that do not use 6LoWPAN together with 6LoWPAN-GHC.

When compressed with 6LoWPAN-GHC, DTLS 1.3 with the above parameters

(epoch, sequence number, Connection ID, no length) gives 13 bytes

overhead.

3.4. TLS 1.2

3.4.1. TLS 1.2

This section analyzes the overhead of TLS 1.2 [RFC5246]. The changes

compared to DTLS 1.2 is that the TLS 1.2 record layer does not have

epoch and sequence number, and that the version is different.

DTLS 1.3 record layer (18 bytes, 12 bytes overhead):

31 42 05 ae a0 15 56 67 92 ec 4d ff 8a 24 e4 cb 35 b9

First byte (including epoch):

31

Connection ID:

42

Sequence number:

05

Ciphertext (including encrypted content type):

ae a0 15 56 67 92 ec

ICV:

4d ff 8a 24 e4 cb 35 b9

¶

¶

¶

¶

Compressed DTLS 1.3 record layer (19 bytes, 13 bytes overhead):

12 31 05 42 ae a0 15 56 67 92 ec 4d ff 8a 24 e4

cb 35 b9

Compressed DTLS 1.3 record layer header and nonce:

12 31 05 42

Ciphertext (including encrypted content type):

ae a0 15 56 67 92 ec

ICV:

4d ff 8a 24 e4 cb 35 b9

¶

¶

¶

TLS 1.2 gives 21 bytes overhead.

3.4.2. TLS 1.2 with 6LoWPAN-GHC

This section analyzes the overhead of TLS 1.2 [RFC5246] when

compressed with 6LoWPAN-GHC [RFC7400] [OlegHahm-ghc].

Note that this header compression is not available when TLS is used

over transports that do not use 6LoWPAN together with 6LoWPAN-GHC.

When compressed with 6LoWPAN-GHC, TLS 1.2 with the above parameters

(epoch, sequence number, length) gives 17 bytes overhead.

3.5. TLS 1.3

3.5.1. TLS 1.3

This section analyzes the overhead of TLS 1.3 [RFC8446]. The change

compared to TLS 1.2 is that the TLS 1.3 record layer uses a

different version.

TLS 1.2 Record Layer (27 bytes, 21 bytes overhead):

17 03 03 00 16 00 00 00 00 00 00 00 05 ae a0 15

56 67 92 4d ff 8a 24 e4 cb 35 b9

Content type:

17

Version:

03 03

Length:

00 16

Nonce:

00 00 00 00 00 00 00 05

Ciphertext:

ae a0 15 56 67 92

ICV:

4d ff 8a 24 e4 cb 35 b9

¶

¶

¶

¶

Compressed TLS 1.2 record layer (23 bytes, 17 bytes overhead):

05 17 03 03 00 16 85 0f 05 ae a0 15 56 67 92 4d

ff 8a 24 e4 cb 35 b9

Compressed TLS 1.2 record layer header and nonce:

05 17 03 03 00 16 85 0f 05

Ciphertext:

ae a0 15 56 67 92

ICV:

4d ff 8a 24 e4 cb 35 b9

¶

¶

¶

TLS 1.3 gives 14 bytes overhead.

3.5.2. TLS 1.3 with 6LoWPAN-GHC

This section analyzes the overhead of TLS 1.3 [RFC8446] when

compressed with 6LoWPAN-GHC [RFC7400] [OlegHahm-ghc].

Note that this header compression is not available when TLS is used

over transports that do not use 6LoWPAN together with 6LoWPAN-GHC.

When compressed with 6LoWPAN-GHC, TLS 1.3 with the above parameters

(epoch, sequence number, length) gives 15 bytes overhead.

3.6. OSCORE

This section analyzes the overhead of OSCORE [RFC8613].

The below calculation Option Delta = ‘9’, Sender ID = ‘’ (empty

string), and Sequence Number = ‘05’ and is only an example. Note

that Sender ID = ‘’ (empty string) can only be used by one client

per server.

TLS 1.3 Record Layer (20 bytes, 14 bytes overhead):

17 03 03 00 16 ae a0 15 56 67 92 ec 4d ff 8a 24

e4 cb 35 b9

Content type:

17

Legacy version:

03 03

Length:

00 0f

Ciphertext (including encrypted content type):

ae a0 15 56 67 92 ec

ICV:

4d ff 8a 24 e4 cb 35 b9

¶

¶

¶

¶

Compressed TLS 1.3 record layer (21 bytes, 15 bytes overhead):

14 17 03 03 00 0f ae a0 15 56 67 92 ec 4d ff 8a

24 e4 cb 35 b9

Compressed TLS 1.3 record layer header and nonce:

14 17 03 03 00 0f

Ciphertext (including encrypted content type):

ae a0 15 56 67 92 ec

ICV:

4d ff 8a 24 e4 cb 35 b9

¶

¶

¶

¶

The below calculation Option Delta = ‘9’, Sender ID = ‘42’, and

Sequence Number = ‘05’, and is only an example.

The below calculation uses Option Delta = ‘9’.

OSCORE request (19 bytes, 13 bytes overhead):

92 09 05

ff ec ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9

CoAP option delta and length:

92

Option value (flag byte and sequence number):

09 05

Payload marker:

ff

Ciphertext (including encrypted code):

ec ae a0 15 56 67 92

ICV:

4d ff 8a 24 e4 cb 35 b9

¶

¶

OSCORE request (20 bytes, 14 bytes overhead):

93 09 05 42

ff ec ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9

CoAP option delta and length:

93

Option Value (flag byte, sequence number, and Sender ID):

09 05 42

Payload marker:

ff

Ciphertext (including encrypted code):

ec ae a0 15 56 67 92

ICV:

4d ff 8a 24 e4 cb 35 b9

¶

¶

OSCORE response (17 bytes, 11 bytes overhead):

90

ff ec ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9

CoAP delta and option length:

90

Option value:

-

Payload marker:

ff

Ciphertext (including encrypted code):

ec ae a0 15 56 67 92

ICV:

4d ff 8a 24 e4 cb 35 b9

¶

OSCORE with the above parameters gives 13-14 bytes overhead for

requests and 11 bytes overhead for responses.

Unlike DTLS and TLS, OSCORE has much smaller overhead for responses

than requests.

3.7. Group OSCORE

This section analyzes the overhead of Group OSCORE

[I-D.ietf-core-oscore-groupcomm]. Group OSCORE defines a pairwise

mode where each member of the group can efficiently derive a

symmetric pairwise key with any other member of the group for

pairwise OSCORE communication. Additional requirements compared to

[RFC8613] is that ID Context is always included in requests and that

Sender ID is always included in responses. Assuming 1 byte ID

Context and Sender ID this adds 2 bytes to requests and 1 byte to

responses.

The below calculation Option Delta = ‘9’, ID Context = ‘’, Sender ID

= ‘42’, and Sequence Number = ‘05’, and is only an example. ID

Context = ‘’ would be the standard for local deployments only having

a single group.

The below calculation uses Option Delta = ‘9’ and Sender ID = ‘69’,

and is only an example.

¶

¶

¶

¶

OSCORE request (21 bytes, 15 bytes overhead):

93 09 05 42

ff ec ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9

CoAP option delta and length:

93

Option Value (flag byte, ID Context length, sequence nr, Sender ID):

19 00 05 42

Payload marker:

ff

Ciphertext (including encrypted code):

ec ae a0 15 56 67 92

ICV:

4d ff 8a 24 e4 cb 35 b9

¶

¶

The pairwise mode OSCORE with the above parameters gives 15 bytes

overhead for requests and 12 bytes overhead for responses.

3.8. Conclusion

DTLS 1.2 has quite a large overhead as it uses an explicit sequence

number and an explicit nonce. TLS 1.2 has significantly less (but

not small) overhead. TLS 1.3 has quite a small overhead. OSCORE and

DTLS 1.3 (using the minimal structure) format have very small

overhead.

The Generic Header Compression (6LoWPAN-GHC) can in addition to DTLS

1.2 handle TLS 1.2, and DTLS 1.2 with Connection ID. The Generic

Header Compression (6LoWPAN-GHC) works very well for Connection ID

and the overhead seems to increase exactly with the length of the

Connection ID (which is optimal). The compression of TLS 1.2 is not

as good as the compression of DTLS 1.2 (as the static dictionary

only contains the DTLS 1.2 version number). Similar compression

levels as for DTLS could be achieved also for TLS 1.2, but this

would require different static dictionaries. For TLS 1.3 and DTLS

1.3, GHC increases the overhead. The 6LoWPAN-GHC header compression

is not available when (D)TLS is used over transports that do not use

6LoWPAN together with 6LoWPAN-GHC.

New security protocols like OSCORE, TLS 1.3, and DTLS 1.3 have much

lower overhead than DTLS 1.2 and TLS 1.2. The overhead is even

smaller than DTLS 1.2 and TLS 1.2 over 6LoWPAN with compression, and

therefore the small overhead is achieved even on deployments without

6LoWPAN or 6LoWPAN without compression. OSCORE is lightweight

because it makes use of CoAP, CBOR, and COSE, which were designed to

have as low overhead as possible. As can be seen in Figure 7, Group

OSCORE for pairwise communication increases the overhead of OSCORE

requests with 20% and OSCORE responses with 33%.

OSCORE response (18 bytes, 12 bytes overhead):

90

ff ec ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9

CoAP delta and option length:

90

Option value (flag byte, Sender ID):

08 69

Payload marker:

ff

Ciphertext (including encrypted code):

ec ae a0 15 56 67 92

ICV:

4d ff 8a 24 e4 cb 35 b9

¶

¶

¶

¶

¶

[E-impact]

[I-D.ietf-core-attacks-on-coap]

[I-D.ietf-core-oscore-edhoc]

[I-D.ietf-core-oscore-groupcomm]

[I-D.ietf-cose-cbor-encoded-cert]

Note that the compared protocols have slightly different use cases.

TLS and DTLS are designed for the transport layer and are terminated

in CoAP proxies. OSCORE is designed for the application layer and

protects information end-to-end between the CoAP client and the CoAP

server. Group OSCORE is designed for communication in a group.

4. Security Considerations

This document is purely informational.

5. IANA Considerations

This document has no actions for IANA.

6. Informative References

Internet Architecture Board, "Workshop on Environmental

Impact of Internet Applications and Systems", December

2022, <https://www.iab.org/activities/workshops/e-impact/

>.

Mattsson, J. P., Fornehed, J., Selander, G., Palombini,

F., and C. Amsüss, "Attacks on the Constrained

Application Protocol (CoAP)", Work in Progress, Internet-

Draft, draft-ietf-core-attacks-on-coap-02, 22 December

2022, <https://www.ietf.org/archive/id/draft-ietf-core-

attacks-on-coap-02.txt>.

Palombini, F., Tiloca, M., Höglund, R.,

Hristozov, S., and G. Selander, "Profiling EDHOC for CoAP

and OSCORE", Work in Progress, Internet-Draft, draft-

ietf-core-oscore-edhoc-06, 23 November 2022, <https://

www.ietf.org/archive/id/draft-ietf-core-oscore-

edhoc-06.txt>.

Tiloca, M., Selander, G., Palombini, F., Mattsson, J. P.,

and J. Park, "Group OSCORE - Secure Group Communication

for CoAP", Work in Progress, Internet-Draft, draft-ietf-

core-oscore-groupcomm-17, 20 December 2022, <https://

www.ietf.org/archive/id/draft-ietf-core-oscore-

groupcomm-17.txt>.

Mattsson, J. P., Selander, G., Raza, S., Höglund, J.,

and M. Furuhed, "CBOR Encoded X.509 Certificates (C509

Certificates)", Work in Progress, Internet-Draft, draft-

ietf-cose-cbor-encoded-cert-05, 10 January 2023,

¶

¶

¶

https://www.iab.org/activities/workshops/e-impact/
https://www.ietf.org/archive/id/draft-ietf-core-attacks-on-coap-02.txt
https://www.ietf.org/archive/id/draft-ietf-core-attacks-on-coap-02.txt
https://www.ietf.org/archive/id/draft-ietf-core-oscore-edhoc-06.txt
https://www.ietf.org/archive/id/draft-ietf-core-oscore-edhoc-06.txt
https://www.ietf.org/archive/id/draft-ietf-core-oscore-edhoc-06.txt
https://www.ietf.org/archive/id/draft-ietf-core-oscore-groupcomm-17.txt
https://www.ietf.org/archive/id/draft-ietf-core-oscore-groupcomm-17.txt
https://www.ietf.org/archive/id/draft-ietf-core-oscore-groupcomm-17.txt

[I-D.ietf-lake-edhoc]

[I-D.ietf-lake-traces]

[I-D.ietf-tls-ctls]

[I-D.ietf-uta-tls13-iot-profile]

[I-D.mattsson-tls-compact-ecc]

[Illustrated-DTLS13]

[Illustrated-TLS12]

[Illustrated-TLS13]

[IoT-Cert]

[OlegHahm-ghc]

<https://www.ietf.org/archive/id/draft-ietf-cose-cbor-

encoded-cert-05.txt>.

Selander, G., Mattsson, J. P., and F.

Palombini, "Ephemeral Diffie-Hellman Over COSE (EDHOC)",

Work in Progress, Internet-Draft, draft-ietf-lake-

edhoc-18, 28 November 2022, <https://www.ietf.org/

archive/id/draft-ietf-lake-edhoc-18.txt>.

Selander, G., Mattsson, J. P., Serafin, M.,

and M. Tiloca, "Traces of EDHOC", Work in Progress,

Internet-Draft, draft-ietf-lake-traces-03, 24 October

2022, <https://www.ietf.org/archive/id/draft-ietf-lake-

traces-03.txt>.

Rescorla, E., Barnes, R., Tschofenig, H., and B.

M. Schwartz, "Compact TLS 1.3", Work in Progress,

Internet-Draft, draft-ietf-tls-ctls-07, 3 January 2023,

<https://www.ietf.org/archive/id/draft-ietf-tls-

ctls-07.txt>.

Tschofenig, H. and T. Fossati,

"TLS/DTLS 1.3 Profiles for the Internet of Things", Work

in Progress, Internet-Draft, draft-ietf-uta-tls13-iot-

profile-05, 6 July 2022, <https://www.ietf.org/archive/

id/draft-ietf-uta-tls13-iot-profile-05.txt>.

Mattsson, J. P., "Compact ECDHE and ECDSA Encodings for

TLS 1.3", Work in Progress, Internet-Draft, draft-

mattsson-tls-compact-ecc-03, 18 January 2023, <https://

www.ietf.org/archive/id/draft-mattsson-tls-compact-

ecc-03.txt>.

Driscoll, M., "The Illustrated DTLS 1.3

Connection", n.d., <https://dtls.xargs.org/>.

Driscoll, M., "The Illustrated TLS 1.2

Connection", n.d., <https://tls12.xargs.org/>.

Driscoll, M., "The Illustrated TLS 1.3

Connection", n.d., <https://tls13.xargs.org/>.

Forsby, F., "Digital Certificates for the Internet of

Things", June 2017, <https://kth.diva-portal.org/smash/

get/diva2:1153958/FULLTEXT01.pdf>.

Hahm, O., "Generic Header Compression", July 2016,

<https://github.com/OlegHahm/ghc>.

https://www.ietf.org/archive/id/draft-ietf-cose-cbor-encoded-cert-05.txt
https://www.ietf.org/archive/id/draft-ietf-cose-cbor-encoded-cert-05.txt
https://www.ietf.org/archive/id/draft-ietf-lake-edhoc-18.txt
https://www.ietf.org/archive/id/draft-ietf-lake-edhoc-18.txt
https://www.ietf.org/archive/id/draft-ietf-lake-traces-03.txt
https://www.ietf.org/archive/id/draft-ietf-lake-traces-03.txt
https://www.ietf.org/archive/id/draft-ietf-tls-ctls-07.txt
https://www.ietf.org/archive/id/draft-ietf-tls-ctls-07.txt
https://www.ietf.org/archive/id/draft-ietf-uta-tls13-iot-profile-05.txt
https://www.ietf.org/archive/id/draft-ietf-uta-tls13-iot-profile-05.txt
https://www.ietf.org/archive/id/draft-mattsson-tls-compact-ecc-03.txt
https://www.ietf.org/archive/id/draft-mattsson-tls-compact-ecc-03.txt
https://www.ietf.org/archive/id/draft-mattsson-tls-compact-ecc-03.txt
https://dtls.xargs.org/
https://tls12.xargs.org/
https://tls13.xargs.org/
https://kth.diva-portal.org/smash/get/diva2:1153958/FULLTEXT01.pdf
https://kth.diva-portal.org/smash/get/diva2:1153958/FULLTEXT01.pdf
https://github.com/OlegHahm/ghc

[RFC5246]

[RFC5480]

[RFC6347]

[RFC7252]

[RFC7400]

[RFC7924]

[RFC7925]

[RFC8323]

[RFC8376]

[RFC8446]

Dierks, T. and E. Rescorla, "The Transport Layer Security

(TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/

RFC5246, August 2008, <https://www.rfc-editor.org/info/

rfc5246>.

Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,

"Elliptic Curve Cryptography Subject Public Key

Information", RFC 5480, DOI 10.17487/RFC5480, March 2009,

<https://www.rfc-editor.org/info/rfc5480>.

Rescorla, E. and N. Modadugu, "Datagram Transport Layer

Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,

January 2012, <https://www.rfc-editor.org/info/rfc6347>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Bormann, C., "6LoWPAN-GHC: Generic Header Compression for

IPv6 over Low-Power Wireless Personal Area Networks

(6LoWPANs)", RFC 7400, DOI 10.17487/RFC7400, November

2014, <https://www.rfc-editor.org/info/rfc7400>.

Santesson, S. and H. Tschofenig, "Transport Layer

Security (TLS) Cached Information Extension", RFC 7924,

DOI 10.17487/RFC7924, July 2016, <https://www.rfc-

editor.org/info/rfc7924>.

Tschofenig, H., Ed. and T. Fossati, "Transport Layer

Security (TLS) / Datagram Transport Layer Security (DTLS)

Profiles for the Internet of Things", RFC 7925, DOI

10.17487/RFC7925, July 2016, <https://www.rfc-editor.org/

info/rfc7925>.

Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,

Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained

Application Protocol) over TCP, TLS, and WebSockets", RFC

8323, DOI 10.17487/RFC8323, February 2018, <https://

www.rfc-editor.org/info/rfc8323>.

Farrell, S., Ed., "Low-Power Wide Area Network (LPWAN)

Overview", RFC 8376, DOI 10.17487/RFC8376, May 2018,

<https://www.rfc-editor.org/info/rfc8376>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5480
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7400
https://www.rfc-editor.org/info/rfc7924
https://www.rfc-editor.org/info/rfc7924
https://www.rfc-editor.org/info/rfc7925
https://www.rfc-editor.org/info/rfc7925
https://www.rfc-editor.org/info/rfc8323
https://www.rfc-editor.org/info/rfc8323
https://www.rfc-editor.org/info/rfc8376
https://www.rfc-editor.org/info/rfc8446

[RFC8613]

[RFC8879]

[RFC9146]

[RFC9147]

[RFC9175]

[RFC9191]

Selander, G., Mattsson, J., Palombini, F., and L. Seitz,

"Object Security for Constrained RESTful Environments

(OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,

<https://www.rfc-editor.org/info/rfc8613>.

Ghedini, A. and V. Vasiliev, "TLS Certificate

Compression", RFC 8879, DOI 10.17487/RFC8879, December

2020, <https://www.rfc-editor.org/info/rfc8879>.

Rescorla, E., Ed., Tschofenig, H., Ed., Fossati, T., and

A. Kraus, "Connection Identifier for DTLS 1.2", RFC 9146,

DOI 10.17487/RFC9146, March 2022, <https://www.rfc-

editor.org/info/rfc9146>.

Rescorla, E., Tschofenig, H., and N. Modadugu, "The

Datagram Transport Layer Security (DTLS) Protocol Version

1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,

<https://www.rfc-editor.org/info/rfc9147>.

Amsüss, C., Preuß Mattsson, J., and G. Selander,

"Constrained Application Protocol (CoAP): Echo, Request-

Tag, and Token Processing", RFC 9175, DOI 10.17487/

RFC9175, February 2022, <https://www.rfc-editor.org/info/

rfc9175>.

Sethi, M., Preuß Mattsson, J., and S. Turner, "Handling

Large Certificates and Long Certificate Chains in TLS-

Based EAP Methods", RFC 9191, DOI 10.17487/RFC9191,

February 2022, <https://www.rfc-editor.org/info/rfc9191>.

Acknowledgments

The authors want to thank Carsten Bormann, Ari Keränen, Stephan

Koch, Achim Kraus, Göran Selander, and Hannes Tschofenig for

comments and suggestions on previous versions of the draft.

All 6LoWPAN-GHC compression was done with [OlegHahm-ghc].

[Illustrated-TLS13] as a was a useful resource for the TLS handshake

content and formatting and [IoT-Cert] was a useful resource for

SubjectPublicKeyInfo formatting.

Authors' Addresses

John Preuß Mattsson

Ericsson AB

Email: john.mattsson@ericsson.com

Francesca Palombini

¶

¶

https://www.rfc-editor.org/info/rfc8613
https://www.rfc-editor.org/info/rfc8879
https://www.rfc-editor.org/info/rfc9146
https://www.rfc-editor.org/info/rfc9146
https://www.rfc-editor.org/info/rfc9147
https://www.rfc-editor.org/info/rfc9175
https://www.rfc-editor.org/info/rfc9175
https://www.rfc-editor.org/info/rfc9191
mailto:john.mattsson@ericsson.com

Ericsson AB

Email: francesca.palombini@ericsson.com

Mališa Vučinić

INRIA

Email: malisa.vucinic@inria.fr

mailto:francesca.palombini@ericsson.com
mailto:malisa.vucinic@inria.fr

	Comparison of CoAP Security Protocols
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Overhead of Key Exchange Protocols
	2.1. Summary
	2.2. DTLS 1.3
	2.2.1. Message Sizes RPK + ECDHE
	2.2.1.1. Flight #1
	2.2.1.2. Flight #2
	2.2.1.3. Flight #3

	2.2.2. Message Sizes PSK + ECDHE
	2.2.2.1. Flight #1
	2.2.2.2. Flight #2
	2.2.2.3. Flight #3

	2.2.3. Message Sizes PSK
	2.2.3.1. Flight #1
	2.2.3.2. Flight #2
	2.2.3.3. Flight #3

	2.2.4. Cached Information
	2.2.4.1. Flight #1
	2.2.4.2. Flight #2

	2.2.5. Resumption
	2.2.6. DTLS Without Connection ID
	2.2.7. Raw Public Keys
	2.2.7.1. secp256r1 SubjectPublicKeyInfo Without Point Compression
	2.2.7.2. secp256r1 SubjectPublicKeyInfo With Point Compression
	2.2.7.3. ed25519 SubjectPublicKeyInfo

	2.3. TLS 1.3
	2.3.1. Message Sizes RPK + ECDHE
	2.3.1.1. Flight #1
	2.3.1.2. Flight #2
	2.3.1.3. Flight #3

	2.3.2. Message Sizes PSK + ECDHE
	2.3.2.1. Flight #1
	2.3.2.2. Flight #2
	2.3.2.3. Flight #3

	2.3.3. Message Sizes PSK
	2.3.3.1. Flight #1
	2.3.3.2. Flight #2
	2.3.3.3. Flight #3

	2.4. TLS 1.2 and DTLS 1.2
	2.5. cTLS
	2.6. EDHOC
	2.6.1. Message Sizes RPK
	2.6.1.1. message_1
	2.6.1.2. message_2
	2.6.1.3. message_3

	2.6.2. Summary

	2.7. Conclusion

	3. Overhead for Protection of Application Data
	3.1. Summary
	3.2. DTLS 1.2
	3.2.1. DTLS 1.2
	3.2.2. DTLS 1.2 with 6LoWPAN-GHC
	3.2.3. DTLS 1.2 with Connection ID
	3.2.4. DTLS 1.2 with Connection ID and 6LoWPAN-GHC

	3.3. DTLS 1.3
	3.3.1. DTLS 1.3
	3.3.2. DTLS 1.3 with 6LoWPAN-GHC
	3.3.3. DTLS 1.3 with Connection ID
	3.3.4. DTLS 1.3 with Connection ID and 6LoWPAN-GHC

	3.4. TLS 1.2
	3.4.1. TLS 1.2
	3.4.2. TLS 1.2 with 6LoWPAN-GHC

	3.5. TLS 1.3
	3.5.1. TLS 1.3
	3.5.2. TLS 1.3 with 6LoWPAN-GHC

	3.6. OSCORE
	3.7. Group OSCORE
	3.8. Conclusion

	4. Security Considerations
	5. IANA Considerations
	6. Informative References
	Acknowledgments
	Authors' Addresses

