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Abstract

   This document provides guidance on how to implement and use the
   Transmission Control Protocol (TCP) in Constrained-Node Networks
   (CNNs), which are a characterstic of the Internet of Things (IoT).
   Such environments require a lightweight TCP implementation and may
   not make use of optional functionality.  This document explains a
   number of known and deployed techniques to simplify a TCP stack as
   well as corresponding tradeoffs.  The objective is to help embedded
   developers with decisions on which TCP features to use.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 17, 2018.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
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   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   The Internet Protocol suite is being used for connecting Constrained-
   Node Networks (CNNs) to the Internet, enabling the so-called Internet
   of Things (IoT) [RFC7228].  In order to meet the requirements that
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   stem from CNNs, the IETF has produced a suite of new protocols
   specifically designed for such environments (see e.g.
   [I-D.ietf-lwig-energy-efficient]).

   At the application layer, the Constrained Application Protocol (CoAP)
   was developed over UDP [RFC7252].  However, the integration of some
   CoAP deployments with existing infrastructure is being challenged by
   middleboxes such as firewalls, which may limit and even block UDP-
   based communications.  This the main reason why a CoAP over TCP
   specification is being developed [I-D.ietf-core-coap-tcp-tls].

   Other application layer protocols not specifically designed for CNNs
   are also being considered for the IoT space.  Some examples include
   HTTP/2 and even HTTP/1.1, both of which run over TCP by default
   [RFC7540] [RFC2616], and the Extensible Messaging and Presence
   Protocol (XMPP) [RFC6120].  TCP is also used by non-IETF application-
   layer protocols in the IoT space such as the Message Queue Telemetry
   Transport (MQTT) and its lightweight variants.

   TCP is a sophisticated transport protocol that includes many optional
   functionality and TCP options that improve performance.  Many
   optional TCP extensions require complex logic inside the TCP stack
   and increase the codesize and the RAM requirements.  However, many
   TCP extensions are not required for interoperability with other
   standard-compliant TCP endpoints.  Given the limited resources on
   constrained devices, careful "tuning" of the TCP implementation can
   make an implementation more lightweight.

   This document provides guidance on how to implement and use TCP in
   CNNs.  The overarching goal is to offer simple measures to allow for
   lightweight TCP implementation and suitable operation in such
   environments.  A TCP implementation following the guidance in this
   document is intended to be compatible with a TCP endpoint that is
   compliant to the TCP standards, albeit possibly with a lower
   performance.  This implies that such a TCP client would always be
   able to connect with a standard-compliant TCP server, and a
   corresponding TCP server would always be able to connect with a
   standard-compliant TCP client.

   This document assumes that the reader is familiar with TCP.  A
   comprehensive survey of the TCP standards can be found in [RFC7414].
   Similar guidance regarding the use of TCP in special environments has
   been published before, e.g., for cellular wireless networks
   [RFC3481].

https://datatracker.ietf.org/doc/html/rfc7252
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2.  Conventions used in this document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL","SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

3.  Characteristics of CNNs relevant for TCP

3.1.  Network and link properties

   CNNs are defined in [RFC7228] as networks whose characteristics are
   influenced by being composed of a significant portion of constrained
   nodes.  The latter are characterized by significant limitations on
   processing, memory, and energy resources, among others [RFC7228].
   The first two dimensions pose constraints on the complexity and on
   the memory footprint of the protocols that constrained nodes can
   support.  The latter requires techniques to save energy, such as
   radio duty-cycling in wireless devices
   [I-D.ietf-lwig-energy-efficient], as well as minimization of the
   number of messages transmitted/received (and their size).

   [RFC7228] lists typical network constraints in CNN, including low
   achievable bitrate/throughput, high packet loss and high variability
   of packet loss, highly asymmetric link characteristics, severe
   penalties for using larger packets, limits on reachability over time,
   etc.  CNN may use wireless or wired technologies (e.g., Power Line
   Communication), and the transmission rates are typically low (e.g.
   below 1 Mbps).

   For use of TCP, one challenge is that not all technologies in CNN may
   be aligned with typical Internet subnetwork design principles
   [RFC3819].  For instance, constrained nodes often use physical/link
   layer technologies that have been characterized as 'lossy', i.e.,
   exhibit a relatively high bit error rate.  Dealing with corruption
   loss is one of the open issues in the Internet [RFC6077].

3.2.  Usage scenarios

   There are different deployment and usage scenarios for CNNs.  Some
   CNNs follow the star topology, whereby one or several hosts are
   linked to a central device that acts as a router connecting the CNN
   to the Internet.  CNNs may also follow the multihop topology
   [RFC6606].  One key use case for the use of TCP is a model where
   constrained devices connect to unconstrained servers in the Internet.
   But it is also possible that both TCP endpoints run on constrained
   devices.

https://datatracker.ietf.org/doc/html/rfc2119
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   In constrained environments, there can be different types of devices
   [RFC7228].  For example, there can be devices with single combined
   send/receive buffer, devices with a separate send and receive buffer,
   or devices with a pool of multiple send/receive buffers.  In the
   latter case, it is possible that buffers also be shared for other
   protocols.

   When a CNN comprising one or more constrained devices and an
   unconstrained device communicate over the Internet using TCP, the
   communication possibly has to traverse a middlebox (e.g. a firewall,
   NAT, etc.).  Figure 1 illustrates such scenario.  Note that the
   scenario is asymmetric, as the unconstrained device will typically
   not suffer the severe constraints of the constrained device.  The
   unconstrained device is expected to be mains-powered, to have high
   amount of memory and processing power, and to be connected to a
   resource-rich network.

   Assuming that a majority of constrained devices will correspond to
   sensor nodes, the amount of data traffic sent by constrained devices
   (e.g. sensor node measurements) is expected to be higher than the
   amount of data traffic in the opposite direction.  Nevertheless,
   constrained devices may receive requests (to which they may respond),
   commands (for configuration purposes and for constrained devices
   including actuators) and relatively infrequent firmware/software
   updates.

                                                      +---------------+
           o     o <-------- TCP communication -----> |               |
          o     o                                     |               |
             o     o                                  | Unconstrained |
       o        o              +-----------+          |    device     |
           o     o   o  ------ | Middlebox |  ------- |               |
            o   o              +-----------+          |  (e.g. cloud) |
          o    o  o                                   |               |
                                                      +---------------+
      constrained devices

      Figure 1: TCP communication between a constrained device and an
               unconstrained device, traversing a middlebox.

3.3.  Communication and traffic patterns

   IoT applications are characterized by a number of different
   communication patterns.  The following non-comprehensive list
   explains some typical examples:

https://datatracker.ietf.org/doc/html/rfc7228
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   o  Unidirectional transfers: An IoT device (e.g. a sensor) can send
      (repeatedly) updates to the other endpoint.  Not in every case
      there is a need for an application response back to the IoT
      device.

   o  Request-response patterns: An IoT device receiving a request from
      the other endpoint, which triggers a response from the IoT device.

   o  Bulk data transfers: A typical example for a long file transfer
      would be an IoT device firmware update.

   A typical communication pattern is that a constrained device
   communicates with an unconstrained device (cf.  Figure 1).  But it is
   also possible that constrained devices communicate amongst
   themselves.

4.  TCP over CNNs

4.1.  TCP connection initiation

   In the constrained device to unconstrained device scenario
   illustrated above, a TCP connection is typically initiated by the
   constrained device, in order for this device to support possible
   sleep periods to save energy.

4.2.  Maximum Segment Size (MSS)

   Some link layer technologies in the CNN space are characterized by a
   short data unit payload size, e.g. up to a few tens or hundreds of
   bytes.  For example, the maximum frame size in IEEE 802.15.4 is 127
   bytes.  6LoWPAN defined an adaptation layer to support IPv6 over IEEE
   802.15.4 networks.  The adaptation layer includes a fragmentation
   mechanism, since IPv6 requires the layer below to support an MTU of
   1280 bytes [RFC2460], while IEEE 802.15.4 lacked fragmentation
   mechanisms.  6LoWPAN defines an IEEE 802.15.4 link MTU of 1280 bytes
   [RFC4944].  Other technologies, such as Bluetooth LE [RFC7668], ITU-T
   G.9959 [RFC7428] or DECT-ULE [RFC8105], also use 6LoWPAN-based
   adaptation layers in order to enable IPv6 support.  These
   technologies do support link layer fragmentation.  By exploiting this
   functionality, the adaptation layers that enable IPv6 over such
   technologies also define an MTU of 1280 bytes.

   On the other hand, there exist technologies also used in the CNN
   space, such as Master Slave / Token Passing (TP) [RFC8163],
   Narrowband IoT (NB-IoT) [I-D.ietf-lpwan-overview] or IEEE 802.11ah
   [I-D.delcarpio-6lo-wlanah], that do not suffer the same degree of
   frame size limitations as the technologies mentioned above.  The MTU
   for MS/TP is recommended to be 1500 bytes [RFC8163], the MTU in NB-

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc7668
https://datatracker.ietf.org/doc/html/rfc7428
https://datatracker.ietf.org/doc/html/rfc8105
https://datatracker.ietf.org/doc/html/rfc8163
https://datatracker.ietf.org/doc/html/rfc8163
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   IoT is 1600 bytes, and the maximum frame payload size for IEEE
   802.11ah is 7991 bytes.

   For the sake of lightweight implementation and operation, unless
   applications require handling large data units (i.e. leading to an
   IPv6 datagram size greater than 1280 bytes), it may be desirable to
   limit the MTU to 1280 bytes in order to avoid the need to support
   Path MTU Discovery [RFC1981].

   An IPv6 datagram size exceeding 1280 bytes can be avoided by setting
   the TCP MSS not larger than 1220 bytes.  (Note: IP version 6 is
   assumed.)

4.3.  Window Size

   A TCP stack can reduce the RAM requirements by advertising a TCP
   window size of one MSS, and also transmit at most one MSS of
   unacknowledged data.  In that case, both congestion and flow control
   implementation is quite simple.  Such a small receive and send window
   may be sufficient for simple message exchanges in the CNN space.
   However, only using a window of one MSS can significantly affect
   performance.  A stop-and-wait operation results in low throughput for
   transfers that exceed the lengths of one MSS, e.g., a firmware
   download.  In addition, there can be interactions with the delayed
   acknowledgements (see Section 4.8).

   Devices that have enough memory to allow larger TCP window size can
   leverage a more efficient error recovery using Fast Retransmit and
   Fast Recovery [RFC5681].  These algorithms work efficiently for
   window sizes of at least 5 MSS: If in a given TCP transmission of
   segments 1,2,3,4,5, and 6 the segment 2 gets lost, the sender should
   get an acknowledgement for segment 1 when 3 arrives and duplicate
   acknowledgements when 4, 5, and 6 arrive.  It will retransmit segment
   2 when the third duplicate ack arrives.  In order to have segment 2,
   3, 4, 5, and 6 sent, the window has to be at least five.  With an MSS
   of 1220 byte, a buffer of the size of 5 MSS would require 6100 byte.

   For bulk data transfers further TCP improvements may also be useful,
   such as limited transmit [RFC3402].

   If CoAP is used over TCP with the default setting for NSTART in
   [RFC7252], a CoAP endpoint is not allowed to send a new message to a
   destination until a response for the previous message sent to that
   destination has been received.  This is equivalent to an application-
   layer window size of 1.  For this use of CoAP, a maximum TCP window
   of one MSS will be sufficient.

https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3402
https://datatracker.ietf.org/doc/html/rfc7252
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4.4.  RTO estimation

   The Retransmission Timeout (RTO) estimation is one of the fundamental
   TCP algorithms.  There is a fundamental trade-off: A short,
   aggressive RTO behavior reduces wait time before retransmissions, but
   it also increases the probability of spurious timeouts.  The latter
   lead to unnecessary waste of potentially scarce resources in CNNs
   such as energy and bandwidth.  In contrast, a conservative timeout
   can result in long error recovery times and thus needlessly delay
   data delivery.

   [RFC6298] describes the standard TCP RTO algorithm.  If a TCP sender
   uses very small window size and cannot use Fast Retransmit/Fast
   Recovery or SACK, the Retransmission Timeout (RTO) algorithm has a
   larger impact on performance than for a more powerful TCP stack.  In
   that case, RTO algorithm tuning may be considered, although careful
   assessment of possible drawbacks is recommended.

   As an example, an adaptive RTO algorithm for CoAP over UDP has been
   defined [I-D.ietf-core-cocoa] that has been found to perform well in
   CNN scenarios [Commag].

4.5.  TCP connection lifetime

   [[Note: future revisions will better separate what a TCP stack should
   support, or not, and how the TCP stack should be used by
   applications, e.g., whether to close connections or not.]]

4.5.1.  Long TCP connection lifetime

   In CNNs, in order to minimize message overhead, a TCP connection
   should be kept open as long as the two TCP endpoints have more data
   to exchange or it is envisaged that further segment exchanges will
   take place within an interval of two hours since the last segment has
   been sent.  A greater interval may be used in scenarios where
   applications exchange data infrequently.

   TCP keep-alive messages [RFC1122] may be supported by a server, to
   check whether a TCP connection is active, in order to release state
   of inactive connections.  This may be useful for servers running on
   memory-constrained devices.

   Since the keep-alive timer may not be set to a value lower than two
   hours [RFC1122], TCP keep-alive messages are not useful to guarantee
   that filter state records in middleboxes such as firewalls will not
   be deleted after an inactivity interval typically in the order of a
   few minutes [RFC6092].  In scenarios where such middleboxes are
   present, alternative measures to avoid early deletion of filter state

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc6092
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   records (which might lead to frequent establishment of new TCP
   connections between the two involved endpoints) include increasing
   the initial value for the filter state inactivity timers (if
   possible), and using application layer heartbeat messages.

4.5.2.  Short TCP connection lifetime

   A different approach to addressing the problem of traversing
   middleboxes that perform early filter state record deletion relies on
   using TCP Fast Open (TFO) [RFC7413].  In this case, instead of trying
   to maintain a TCP connection for long time, possibly short-lived
   connections can be opened between two endpoints while incurring low
   overhead.  In fact, TFO allows data to be carried in SYN (and SYN-
   ACK) packets, and to be consumed immediately by the receceiving
   endpoint, thus reducing overhead compared with the traditional three-
   way handshake required to establish a TCP connection.

   For security reasons, TFO requires the TCP endpoint that will open
   the TCP connection (which in CNNs will typically be the constrained
   device) to request a cookie from the other endpoint.  The cookie,
   with a size of 4 or 16 bytes, is then included in SYN packets of
   subsequent connections.  The cookie needs to be refreshed (and
   obtained by the client) after a certain amount of time.
   Nevertheless, TFO is more efficient than frequently opening new TCP
   connections (by using the traditional three-way handshake) for
   transmitting new data, as long as the cookie update rate is well
   below the data new connection rate.

4.6.  Explicit congestion notification

   Explicit Congestion Notification (ECN) [RFC3168] may be used in CNNs.
   ECN allows a router to signal in the IP header of a packet that
   congestion is arising, for example when queue size reaches a certain
   threshold.  If such a packet encapsulates a TCP data packet, an ECN-
   enabled TCP receiver will echo back the congestion signal to the TCP
   sender by setting a flag in its next TCP ACK.  The sender triggers
   congestion control measures as if a packet loss had happened.  In
   that case, when the congestion window of a TCP sender has a size of
   one segment, the TCP sender resets the retransmit timer, and will
   only be able to send a new packet when the retransmit timer expires
   [RFC3168].  Effectively, the TCP sender reduces at that moment its
   sending rate from 1 segment per Round Trip Time (RTT) to 1 segment
   per default RTO.

   ECN can reduce packet losses, since congestion control measures can
   be applied earlier than after the reception of three duplicate ACKs
   (if the TCP sender window is large enough) or upon TCP sender RTO
   expiration [RFC2884].  Therefore, the number of retries decreases,

https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc2884
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   which is particularly beneficial in CNNs, where energy and bandwidth
   resources are typically limited.  Furthermore, latency and jitter are
   also reduced.

   ECN is particularly appropriate in CNNs, since in these environments
   transactional type interactions are a dominant traffic pattern.  As
   transactional data size decreases, the probability of detecting
   congestion by the presence of three duplicate ACKs decreases.  In
   contrast, ECN can still activate congestion control measures without
   requiring three duplicate ACKs.

4.7.  TCP options

   A TCP implementation needs to support options 0, 1 and 2 [RFC0793].
   These options are sufficient for interoperability with a standard-
   compliant TCP endpoint, albeit many TCP stacks support additional
   options and can negotiate their use.

   A TCP implementation for a constrained device that uses a single-MSS
   TCP receive or transmit window size may not benefit from supporting
   the following TCP options: Window scale [RFC1323], TCP Timestamps
   [RFC1323], Selective Acknowledgements (SACK) and SACK-Permitted
   [RFC2018].  Also other TCP options may not be required on a
   constrained device with a very lightweight implementation.

   If a device with less severe memory and processing constraints can
   afford advertising a TCP window size of several MSSs, it makes sense
   to support the SACK option to improve performance.  SACK allows a
   data receiver to inform the data sender of non-contiguous data blocks
   received, thus a sender (having previously sent the SACK-Permitted
   option) can avoid performing unnecessary retransmissions, saving
   energy and bandwidth, as well as reducing latency.  SACK is
   particularly useful for bulk data transfers.  The receiver supporting
   SACK will need to manage the reception of possible out-of-order
   received segments, requiring sufficient buffer space.  SACK adds
   8*n+2 bytes to the TCP header, where n denotes the number of data
   blocks received, up to 4 blocks.  For a low number of out-of- order
   segments, the header overhead penalty of SACK is compensated by
   avoiding unnecessary retransmissions.

   Another potentially relevant TCP option in the context of CNNs is
   (TFO) [RFC7413].  As described in Section 4.5.2, TFO can be used to
   address the problem of traversing middleboxes that perform early
   filter state record deletion.

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc1323
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4.8.  Delayed Acknowledgments

   TCP Delayed Acknowledgements reduce the number of transferred bytes
   within a TCP connection, but they may increase the time until a
   sender may receive an ACK.  For certain traffic patterns Delayed
   Acknowledgements may have a detrimental effect.  Advanced TCP stacks
   may use heuristics to determine the maximum delay for an ACK.  For
   CNNs, the recommendation depends on the expected communication
   patterns.

   A device that advertises a single-MSS receive window should avoid use
   of delayed ACKs in order to avoid contributing unnecessary delay (of
   up to 500 ms) to the RTT [RFC5681], which limits the throughput and
   can increase the data delivery time.

   A device that can send at most one MSS of data is significantly
   affected if the receiver uses delayed ACKs, e.g., if a TCP server or
   receiver is outside the CNN.  One known workaround is to split the
   data to be sent into two segments of smaller size.  A standard
   compliant TCP receiver will then immediately acknowledge the second
   segment, which can improve throughput.  This "split hack" works if
   the TCP receiver uses Delayed Acks, but the downside is the overhead
   of sending two IP packets instead of one.

   Also for larger windows, it may make sense to use a small timeout or
   disable delayed ACKs when traffic over a CNN is expected to mostly be
   small messages with a size typically below one MSS.  For request-
   response traffic between a constrained device and a peer (e.g.
   backend infrastructure) that uses delayed ACKs, the maximum ACK rate
   of the peer will be typically of one ACK every 200 ms (or even
   lower).  If in such conditions the peer device is administered by the
   same entity managing the constrained device, it is recommended to
   disable delayed ACKs at the peer side.

   In contrast, delayed ACKs allow to reduce the number of ACKs in bulk
   transfer type of traffic, e.g. for firmware/software updates or for
   transferring larger data units containing a batch of sensor readings.

4.9.  Explicit loss notifications

   There has been a significant body of research on solutions capable of
   explicitly indicating whether a TCP segment loss is due to
   corruption, in order to avoid activation of congestion control
   mechanisms [ETEN] [RFC2757].  While such solutions may provide
   significant improvement, they have not been widely deployed and
   remain as experimental work.  In fact, as of today, the IETF has not
   standardized any such solution.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc2757
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5.  Security Considerations

   Best current practise for securing TCP and TCP-based communication
   also applies to CNN.  As example, use of Transport Layer Security
   (TLS) is strongly recommended if it is applicable.

   There are also TCP options which can improve TCP security.  Examples
   include the TCP MD5 signature option [RFC2385] and the TCP
   Authentication Option (TCP-AO) [RFC5925].  However, both options add
   overhead and complexity.  The TCP MD5 signature option adds 18 bytes
   to every segment of a connection.  TCP-AO typically has a size of
   16-20 bytes.

   For the mechanisms discussed in this document, the corresponding
   considerations apply.  For instance, if TFO is used, the security
   considerations of [RFC7413] apply.
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7.  Annex.  TCP implementations for constrained devices

   This section overviews the main features of TCP implementations for
   constrained devices.

7.1.  uIP

   uIP is a TCP/IP stack, targetted for 8 and 16-bit microcontrollers.
   uIP has been deployed with Contiki and the Arduino Ethernet shield.
   A code size of ~5 kB (which comprises checksumming, IP, ICMP and TCP)
   has been reported for uIP [Dunk].
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   uIP uses same buffer both incoming and outgoing traffic, with has a
   size of a single packet.  In case of a retransmission, an application
   must be able to reproduce the same user data that had been
   transmitted.

   The MSS is announced via the MSS option on connection establishment
   and the receive window size (of one MSS) is not modified during a
   connection.  Stop-and-wait operation is used for sending data.  Among
   other optimizations, this allows to avoid sliding window operations,
   which use 32-bit arithmetic extensively and are expensive on 8-bit
   CPUs.

   Contiki uses the "split hack" technique (see Section 4.8) to avoid
   delayed ACKs for senders using a single MSS.

7.2.  lwIP

   lwIP is a TCP/IP stack, targetted for 8- and 16-bit microcontrollers.
   lwIP has a total code size of ~14 kB to ~22 kB (which comprises
   memory management, checksumming, network interfaces, IP, ICMP and
   TCP), and a TCP code size of ~9 kB to ~14 kB [Dunk].

   In contrast with uIP, lwIP decouples applications from the network
   stack. lwIP supports a TCP transmission window greater than a single
   segment, as well as buffering of incoming and outcoming data.  Other
   implemented mechanisms comprise slow start, congestion avoidance,
   fast retransmit and fast recovery.  SACK and Window Scale have been
   recently added to lwIP.

7.3.  RIOT

   The RIOT TCP implementation (called GNRC TCP) has been designed for
   Class 1 devices [RFC 7228].  The main target platforms are 8- and
   16-bit microcontrollers.  GNRC TCP offers a similar function set as
   uIP, but it provides and maintains an independent receive buffer for
   each connection.  In contrast to uIP, retransmission is also handled
   by GNRC TCP.  GNRC TCP uses a single-MSS window size, which
   simplifies the implementation.  The application programmer does not
   need to know anything about the TCP internals, therefore GNRC TCP can
   be seen as a user-friendly uIP TCP implementation.

   The MSS is set on connections establishment and cannot be changed
   during connection lifetime.  GNRC TCP allows multiple connections in
   parallel, but each TCB must be allocated somewhere in the system.  By
   default there is only enough memory allocated for a single TCP
   connection, but it can be increased at compile time if the user needs
   multiple parallel connections.

https://datatracker.ietf.org/doc/html/rfc7228
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7.4.  OpenWSN

   The TCP implementation in OpenWSN is mostly equivalent to the uIP TCP
   implementation.  OpenWSN TCP implementation only supports the minimum
   state machine functionality required.  For example, it does not
   perform retransmissions.

7.5.  TinyOS

   TODO: To be verified

   TinyOS has an experimental TCP stack that uses a simple nonblocking
   library-based implementation of TCP.  The application is responsible
   for buffering.  The TCP library does not do any receive-side
   buffering.  Instead, it will immediately dispatch new, in-order data
   to the application and otherwise drop the segment.  A send buffer is
   provided so that the TCP implementation can automatically retransmit
   missing segments.

7.6.  Summary
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                             +-------+---------+---------+------+---------
+--------+
                             |  uIP  |lwIP orig|lwIP 2.0 | RIOT | OpenWSN | 
TinyOS |
   +--------+----------------+-------+---------+---------+------+---------
+--------+
   |        |   Data size    |   *   |    *    |    *    |  *   |    *    |   
*    |
   | Memory +----------------+-------+---------+---------+------+---------
+--------+
   |        | Code size (kB) |  < 5  |~9 to ~14|    *    |  *   |    *    |   
*    |
   +--------+----------------+-------+---------+---------+------+---------
+--------+
   |        |Window size(MSS)|  1    | Multiple| Multiple|  1   |    1    |
Multiple|
   |        +----------------+-------+---------+---------+------+---------
+--------+
   |        |  Slow start    |  No   |   Yes   |   Yes   |  No  |   No    |  
Yes   |
   |   T    +----------------+-------+---------+---------+------+---------
+--------+
   |   C    | Fast rec/retx  |  No   |   Yes   |   Yes   |  No  |   No    |  
Yes   |
   |   P    +----------------+-------+---------+---------+------+---------
+--------+
   |        |  Keep-alive    |  No   |    *    |    *    |  No  |   No    |   
No   |
   |        +----------------+-------+---------+---------+------+---------
+--------+
   |   f    |     TFO        |  No   |    No   |    *    |  No  |   No    |   
No   |
   |   e    +----------------+-------+---------+---------+------+---------
+--------+
   |   a    |     ECN        |  No   |    No   |    *    |  No  |   No    |   
No   |
   |   t    +----------------+-------+---------+---------+------+---------
+--------+
   |   u    | Window Scale   |  No   |    No   |   Yes   |  No  |   No    |   
No   |
   |   r    +----------------+-------+---------+---------+------+---------
+--------+
   |   e    | TCP timestamps |  No   |    No   |   Yes   |  No  |   No    |   
No   |
   |   s    +----------------+-------+---------+---------+------+---------
+--------+
   |        |    SACK        |  No   |    No   |   Yes   |  No  |   No    |   
No   |



   |        +----------------+-------+---------+---------+------+---------
+--------+
   |        | Delayed ACKs   |  No   |   Yes   |   Yes   |  No  |   No    |   
No   |
   +--------+----------------+-------+---------+---------+------+---------
+--------+

     Figure 2: Summary of TCP features for differrent lightweight TCP
                             implementations.

   TODO: Add information about RAM requirements (in addition to
   codesize)

8.  Annex.  Changes compared to previous versions

   RFC Editor: To be removed prior to publication

8.1.  Changes compared to -00

   o  Changed title and abstract

   o  Clarification that communcation with standard-compliant TCP
      endpoints is required, based on feedback from Joe Touch

   o  Additional discussion on communication patters
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   o  Numerous changes to address a comprehensive review from Hannes
      Tschofenig

   o  Reworded security considerations

   o  Additional references and better distinction between normative and
      informative entries

   o  Feedback from Rahul Jadhav on the uIP TCP implementation

   o  Basic data for the TinyOS TCP implementation added, based on
      source code analysis
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