
LWIG Working Group C. Gomez
Internet-Draft UPC/i2CAT
Intended status: Informational J. Crowcroft
Expires: April 17, 2018 University of Cambridge
 M. Scharf
 Nokia
 October 14, 2017

TCP Usage Guidance in the Internet of Things (IoT)
draft-ietf-lwig-tcp-constrained-node-networks-01

Abstract

 This document provides guidance on how to implement and use the
 Transmission Control Protocol (TCP) in Constrained-Node Networks
 (CNNs), which are a characterstic of the Internet of Things (IoT).
 Such environments require a lightweight TCP implementation and may
 not make use of optional functionality. This document explains a
 number of known and deployed techniques to simplify a TCP stack as
 well as corresponding tradeoffs. The objective is to help embedded
 developers with decisions on which TCP features to use.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 17, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Gomez, et al. Expires April 17, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft TCP in IoT October 2017

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Conventions used in this document 4
3. Characteristics of CNNs relevant for TCP 4
3.1. Network and link properties 4
3.2. Usage scenarios . 4
3.3. Communication and traffic patterns 5

4. TCP over CNNs . 6
4.1. TCP connection initiation 6
4.2. Maximum Segment Size (MSS) 6
4.3. Window Size . 7
4.4. RTO estimation . 8
4.5. TCP connection lifetime 8
4.5.1. Long TCP connection lifetime 8
4.5.2. Short TCP connection lifetime 9

4.6. Explicit congestion notification 9
4.7. TCP options . 10
4.8. Delayed Acknowledgments 11
4.9. Explicit loss notifications 11

5. Security Considerations 12
6. Acknowledgments . 12
7. Annex. TCP implementations for constrained devices 12
7.1. uIP . 12
7.2. lwIP . 13
7.3. RIOT . 13
7.4. OpenWSN . 14
7.5. TinyOS . 14
7.6. Summary . 14

8. Annex. Changes compared to previous versions 15
8.1. Changes compared to -00 15

9. References . 16
9.1. Normative References 16
9.2. Informative References 17

 Authors' Addresses . 20

1. Introduction

 The Internet Protocol suite is being used for connecting Constrained-
 Node Networks (CNNs) to the Internet, enabling the so-called Internet
 of Things (IoT) [RFC7228]. In order to meet the requirements that

https://datatracker.ietf.org/doc/html/rfc7228

Gomez, et al. Expires April 17, 2018 [Page 2]

Internet-Draft TCP in IoT October 2017

 stem from CNNs, the IETF has produced a suite of new protocols
 specifically designed for such environments (see e.g.
 [I-D.ietf-lwig-energy-efficient]).

 At the application layer, the Constrained Application Protocol (CoAP)
 was developed over UDP [RFC7252]. However, the integration of some
 CoAP deployments with existing infrastructure is being challenged by
 middleboxes such as firewalls, which may limit and even block UDP-
 based communications. This the main reason why a CoAP over TCP
 specification is being developed [I-D.ietf-core-coap-tcp-tls].

 Other application layer protocols not specifically designed for CNNs
 are also being considered for the IoT space. Some examples include
 HTTP/2 and even HTTP/1.1, both of which run over TCP by default
 [RFC7540] [RFC2616], and the Extensible Messaging and Presence
 Protocol (XMPP) [RFC6120]. TCP is also used by non-IETF application-
 layer protocols in the IoT space such as the Message Queue Telemetry
 Transport (MQTT) and its lightweight variants.

 TCP is a sophisticated transport protocol that includes many optional
 functionality and TCP options that improve performance. Many
 optional TCP extensions require complex logic inside the TCP stack
 and increase the codesize and the RAM requirements. However, many
 TCP extensions are not required for interoperability with other
 standard-compliant TCP endpoints. Given the limited resources on
 constrained devices, careful "tuning" of the TCP implementation can
 make an implementation more lightweight.

 This document provides guidance on how to implement and use TCP in
 CNNs. The overarching goal is to offer simple measures to allow for
 lightweight TCP implementation and suitable operation in such
 environments. A TCP implementation following the guidance in this
 document is intended to be compatible with a TCP endpoint that is
 compliant to the TCP standards, albeit possibly with a lower
 performance. This implies that such a TCP client would always be
 able to connect with a standard-compliant TCP server, and a
 corresponding TCP server would always be able to connect with a
 standard-compliant TCP client.

 This document assumes that the reader is familiar with TCP. A
 comprehensive survey of the TCP standards can be found in [RFC7414].
 Similar guidance regarding the use of TCP in special environments has
 been published before, e.g., for cellular wireless networks
 [RFC3481].

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc6120
https://datatracker.ietf.org/doc/html/rfc7414
https://datatracker.ietf.org/doc/html/rfc3481

Gomez, et al. Expires April 17, 2018 [Page 3]

Internet-Draft TCP in IoT October 2017

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL","SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Characteristics of CNNs relevant for TCP

3.1. Network and link properties

 CNNs are defined in [RFC7228] as networks whose characteristics are
 influenced by being composed of a significant portion of constrained
 nodes. The latter are characterized by significant limitations on
 processing, memory, and energy resources, among others [RFC7228].
 The first two dimensions pose constraints on the complexity and on
 the memory footprint of the protocols that constrained nodes can
 support. The latter requires techniques to save energy, such as
 radio duty-cycling in wireless devices
 [I-D.ietf-lwig-energy-efficient], as well as minimization of the
 number of messages transmitted/received (and their size).

 [RFC7228] lists typical network constraints in CNN, including low
 achievable bitrate/throughput, high packet loss and high variability
 of packet loss, highly asymmetric link characteristics, severe
 penalties for using larger packets, limits on reachability over time,
 etc. CNN may use wireless or wired technologies (e.g., Power Line
 Communication), and the transmission rates are typically low (e.g.
 below 1 Mbps).

 For use of TCP, one challenge is that not all technologies in CNN may
 be aligned with typical Internet subnetwork design principles
 [RFC3819]. For instance, constrained nodes often use physical/link
 layer technologies that have been characterized as 'lossy', i.e.,
 exhibit a relatively high bit error rate. Dealing with corruption
 loss is one of the open issues in the Internet [RFC6077].

3.2. Usage scenarios

 There are different deployment and usage scenarios for CNNs. Some
 CNNs follow the star topology, whereby one or several hosts are
 linked to a central device that acts as a router connecting the CNN
 to the Internet. CNNs may also follow the multihop topology
 [RFC6606]. One key use case for the use of TCP is a model where
 constrained devices connect to unconstrained servers in the Internet.
 But it is also possible that both TCP endpoints run on constrained
 devices.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc3819
https://datatracker.ietf.org/doc/html/rfc6077
https://datatracker.ietf.org/doc/html/rfc6606

Gomez, et al. Expires April 17, 2018 [Page 4]

Internet-Draft TCP in IoT October 2017

 In constrained environments, there can be different types of devices
 [RFC7228]. For example, there can be devices with single combined
 send/receive buffer, devices with a separate send and receive buffer,
 or devices with a pool of multiple send/receive buffers. In the
 latter case, it is possible that buffers also be shared for other
 protocols.

 When a CNN comprising one or more constrained devices and an
 unconstrained device communicate over the Internet using TCP, the
 communication possibly has to traverse a middlebox (e.g. a firewall,
 NAT, etc.). Figure 1 illustrates such scenario. Note that the
 scenario is asymmetric, as the unconstrained device will typically
 not suffer the severe constraints of the constrained device. The
 unconstrained device is expected to be mains-powered, to have high
 amount of memory and processing power, and to be connected to a
 resource-rich network.

 Assuming that a majority of constrained devices will correspond to
 sensor nodes, the amount of data traffic sent by constrained devices
 (e.g. sensor node measurements) is expected to be higher than the
 amount of data traffic in the opposite direction. Nevertheless,
 constrained devices may receive requests (to which they may respond),
 commands (for configuration purposes and for constrained devices
 including actuators) and relatively infrequent firmware/software
 updates.

 +---------------+
 o o <-------- TCP communication -----> | |
 o o | |
 o o | Unconstrained |
 o o +-----------+ | device |
 o o o ------ | Middlebox | ------- | |
 o o +-----------+ | (e.g. cloud) |
 o o o | |
 +---------------+
 constrained devices

 Figure 1: TCP communication between a constrained device and an
 unconstrained device, traversing a middlebox.

3.3. Communication and traffic patterns

 IoT applications are characterized by a number of different
 communication patterns. The following non-comprehensive list
 explains some typical examples:

https://datatracker.ietf.org/doc/html/rfc7228

Gomez, et al. Expires April 17, 2018 [Page 5]

Internet-Draft TCP in IoT October 2017

 o Unidirectional transfers: An IoT device (e.g. a sensor) can send
 (repeatedly) updates to the other endpoint. Not in every case
 there is a need for an application response back to the IoT
 device.

 o Request-response patterns: An IoT device receiving a request from
 the other endpoint, which triggers a response from the IoT device.

 o Bulk data transfers: A typical example for a long file transfer
 would be an IoT device firmware update.

 A typical communication pattern is that a constrained device
 communicates with an unconstrained device (cf. Figure 1). But it is
 also possible that constrained devices communicate amongst
 themselves.

4. TCP over CNNs

4.1. TCP connection initiation

 In the constrained device to unconstrained device scenario
 illustrated above, a TCP connection is typically initiated by the
 constrained device, in order for this device to support possible
 sleep periods to save energy.

4.2. Maximum Segment Size (MSS)

 Some link layer technologies in the CNN space are characterized by a
 short data unit payload size, e.g. up to a few tens or hundreds of
 bytes. For example, the maximum frame size in IEEE 802.15.4 is 127
 bytes. 6LoWPAN defined an adaptation layer to support IPv6 over IEEE
 802.15.4 networks. The adaptation layer includes a fragmentation
 mechanism, since IPv6 requires the layer below to support an MTU of
 1280 bytes [RFC2460], while IEEE 802.15.4 lacked fragmentation
 mechanisms. 6LoWPAN defines an IEEE 802.15.4 link MTU of 1280 bytes
 [RFC4944]. Other technologies, such as Bluetooth LE [RFC7668], ITU-T
 G.9959 [RFC7428] or DECT-ULE [RFC8105], also use 6LoWPAN-based
 adaptation layers in order to enable IPv6 support. These
 technologies do support link layer fragmentation. By exploiting this
 functionality, the adaptation layers that enable IPv6 over such
 technologies also define an MTU of 1280 bytes.

 On the other hand, there exist technologies also used in the CNN
 space, such as Master Slave / Token Passing (TP) [RFC8163],
 Narrowband IoT (NB-IoT) [I-D.ietf-lpwan-overview] or IEEE 802.11ah
 [I-D.delcarpio-6lo-wlanah], that do not suffer the same degree of
 frame size limitations as the technologies mentioned above. The MTU
 for MS/TP is recommended to be 1500 bytes [RFC8163], the MTU in NB-

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc7668
https://datatracker.ietf.org/doc/html/rfc7428
https://datatracker.ietf.org/doc/html/rfc8105
https://datatracker.ietf.org/doc/html/rfc8163
https://datatracker.ietf.org/doc/html/rfc8163

Gomez, et al. Expires April 17, 2018 [Page 6]

Internet-Draft TCP in IoT October 2017

 IoT is 1600 bytes, and the maximum frame payload size for IEEE
 802.11ah is 7991 bytes.

 For the sake of lightweight implementation and operation, unless
 applications require handling large data units (i.e. leading to an
 IPv6 datagram size greater than 1280 bytes), it may be desirable to
 limit the MTU to 1280 bytes in order to avoid the need to support
 Path MTU Discovery [RFC1981].

 An IPv6 datagram size exceeding 1280 bytes can be avoided by setting
 the TCP MSS not larger than 1220 bytes. (Note: IP version 6 is
 assumed.)

4.3. Window Size

 A TCP stack can reduce the RAM requirements by advertising a TCP
 window size of one MSS, and also transmit at most one MSS of
 unacknowledged data. In that case, both congestion and flow control
 implementation is quite simple. Such a small receive and send window
 may be sufficient for simple message exchanges in the CNN space.
 However, only using a window of one MSS can significantly affect
 performance. A stop-and-wait operation results in low throughput for
 transfers that exceed the lengths of one MSS, e.g., a firmware
 download. In addition, there can be interactions with the delayed
 acknowledgements (see Section 4.8).

 Devices that have enough memory to allow larger TCP window size can
 leverage a more efficient error recovery using Fast Retransmit and
 Fast Recovery [RFC5681]. These algorithms work efficiently for
 window sizes of at least 5 MSS: If in a given TCP transmission of
 segments 1,2,3,4,5, and 6 the segment 2 gets lost, the sender should
 get an acknowledgement for segment 1 when 3 arrives and duplicate
 acknowledgements when 4, 5, and 6 arrive. It will retransmit segment
 2 when the third duplicate ack arrives. In order to have segment 2,
 3, 4, 5, and 6 sent, the window has to be at least five. With an MSS
 of 1220 byte, a buffer of the size of 5 MSS would require 6100 byte.

 For bulk data transfers further TCP improvements may also be useful,
 such as limited transmit [RFC3402].

 If CoAP is used over TCP with the default setting for NSTART in
 [RFC7252], a CoAP endpoint is not allowed to send a new message to a
 destination until a response for the previous message sent to that
 destination has been received. This is equivalent to an application-
 layer window size of 1. For this use of CoAP, a maximum TCP window
 of one MSS will be sufficient.

https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3402
https://datatracker.ietf.org/doc/html/rfc7252

Gomez, et al. Expires April 17, 2018 [Page 7]

Internet-Draft TCP in IoT October 2017

4.4. RTO estimation

 The Retransmission Timeout (RTO) estimation is one of the fundamental
 TCP algorithms. There is a fundamental trade-off: A short,
 aggressive RTO behavior reduces wait time before retransmissions, but
 it also increases the probability of spurious timeouts. The latter
 lead to unnecessary waste of potentially scarce resources in CNNs
 such as energy and bandwidth. In contrast, a conservative timeout
 can result in long error recovery times and thus needlessly delay
 data delivery.

 [RFC6298] describes the standard TCP RTO algorithm. If a TCP sender
 uses very small window size and cannot use Fast Retransmit/Fast
 Recovery or SACK, the Retransmission Timeout (RTO) algorithm has a
 larger impact on performance than for a more powerful TCP stack. In
 that case, RTO algorithm tuning may be considered, although careful
 assessment of possible drawbacks is recommended.

 As an example, an adaptive RTO algorithm for CoAP over UDP has been
 defined [I-D.ietf-core-cocoa] that has been found to perform well in
 CNN scenarios [Commag].

4.5. TCP connection lifetime

 [[Note: future revisions will better separate what a TCP stack should
 support, or not, and how the TCP stack should be used by
 applications, e.g., whether to close connections or not.]]

4.5.1. Long TCP connection lifetime

 In CNNs, in order to minimize message overhead, a TCP connection
 should be kept open as long as the two TCP endpoints have more data
 to exchange or it is envisaged that further segment exchanges will
 take place within an interval of two hours since the last segment has
 been sent. A greater interval may be used in scenarios where
 applications exchange data infrequently.

 TCP keep-alive messages [RFC1122] may be supported by a server, to
 check whether a TCP connection is active, in order to release state
 of inactive connections. This may be useful for servers running on
 memory-constrained devices.

 Since the keep-alive timer may not be set to a value lower than two
 hours [RFC1122], TCP keep-alive messages are not useful to guarantee
 that filter state records in middleboxes such as firewalls will not
 be deleted after an inactivity interval typically in the order of a
 few minutes [RFC6092]. In scenarios where such middleboxes are
 present, alternative measures to avoid early deletion of filter state

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc6092

Gomez, et al. Expires April 17, 2018 [Page 8]

Internet-Draft TCP in IoT October 2017

 records (which might lead to frequent establishment of new TCP
 connections between the two involved endpoints) include increasing
 the initial value for the filter state inactivity timers (if
 possible), and using application layer heartbeat messages.

4.5.2. Short TCP connection lifetime

 A different approach to addressing the problem of traversing
 middleboxes that perform early filter state record deletion relies on
 using TCP Fast Open (TFO) [RFC7413]. In this case, instead of trying
 to maintain a TCP connection for long time, possibly short-lived
 connections can be opened between two endpoints while incurring low
 overhead. In fact, TFO allows data to be carried in SYN (and SYN-
 ACK) packets, and to be consumed immediately by the receceiving
 endpoint, thus reducing overhead compared with the traditional three-
 way handshake required to establish a TCP connection.

 For security reasons, TFO requires the TCP endpoint that will open
 the TCP connection (which in CNNs will typically be the constrained
 device) to request a cookie from the other endpoint. The cookie,
 with a size of 4 or 16 bytes, is then included in SYN packets of
 subsequent connections. The cookie needs to be refreshed (and
 obtained by the client) after a certain amount of time.
 Nevertheless, TFO is more efficient than frequently opening new TCP
 connections (by using the traditional three-way handshake) for
 transmitting new data, as long as the cookie update rate is well
 below the data new connection rate.

4.6. Explicit congestion notification

 Explicit Congestion Notification (ECN) [RFC3168] may be used in CNNs.
 ECN allows a router to signal in the IP header of a packet that
 congestion is arising, for example when queue size reaches a certain
 threshold. If such a packet encapsulates a TCP data packet, an ECN-
 enabled TCP receiver will echo back the congestion signal to the TCP
 sender by setting a flag in its next TCP ACK. The sender triggers
 congestion control measures as if a packet loss had happened. In
 that case, when the congestion window of a TCP sender has a size of
 one segment, the TCP sender resets the retransmit timer, and will
 only be able to send a new packet when the retransmit timer expires
 [RFC3168]. Effectively, the TCP sender reduces at that moment its
 sending rate from 1 segment per Round Trip Time (RTT) to 1 segment
 per default RTO.

 ECN can reduce packet losses, since congestion control measures can
 be applied earlier than after the reception of three duplicate ACKs
 (if the TCP sender window is large enough) or upon TCP sender RTO
 expiration [RFC2884]. Therefore, the number of retries decreases,

https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc2884

Gomez, et al. Expires April 17, 2018 [Page 9]

Internet-Draft TCP in IoT October 2017

 which is particularly beneficial in CNNs, where energy and bandwidth
 resources are typically limited. Furthermore, latency and jitter are
 also reduced.

 ECN is particularly appropriate in CNNs, since in these environments
 transactional type interactions are a dominant traffic pattern. As
 transactional data size decreases, the probability of detecting
 congestion by the presence of three duplicate ACKs decreases. In
 contrast, ECN can still activate congestion control measures without
 requiring three duplicate ACKs.

4.7. TCP options

 A TCP implementation needs to support options 0, 1 and 2 [RFC0793].
 These options are sufficient for interoperability with a standard-
 compliant TCP endpoint, albeit many TCP stacks support additional
 options and can negotiate their use.

 A TCP implementation for a constrained device that uses a single-MSS
 TCP receive or transmit window size may not benefit from supporting
 the following TCP options: Window scale [RFC1323], TCP Timestamps
 [RFC1323], Selective Acknowledgements (SACK) and SACK-Permitted
 [RFC2018]. Also other TCP options may not be required on a
 constrained device with a very lightweight implementation.

 If a device with less severe memory and processing constraints can
 afford advertising a TCP window size of several MSSs, it makes sense
 to support the SACK option to improve performance. SACK allows a
 data receiver to inform the data sender of non-contiguous data blocks
 received, thus a sender (having previously sent the SACK-Permitted
 option) can avoid performing unnecessary retransmissions, saving
 energy and bandwidth, as well as reducing latency. SACK is
 particularly useful for bulk data transfers. The receiver supporting
 SACK will need to manage the reception of possible out-of-order
 received segments, requiring sufficient buffer space. SACK adds
 8*n+2 bytes to the TCP header, where n denotes the number of data
 blocks received, up to 4 blocks. For a low number of out-of- order
 segments, the header overhead penalty of SACK is compensated by
 avoiding unnecessary retransmissions.

 Another potentially relevant TCP option in the context of CNNs is
 (TFO) [RFC7413]. As described in Section 4.5.2, TFO can be used to
 address the problem of traversing middleboxes that perform early
 filter state record deletion.

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc7413

Gomez, et al. Expires April 17, 2018 [Page 10]

Internet-Draft TCP in IoT October 2017

4.8. Delayed Acknowledgments

 TCP Delayed Acknowledgements reduce the number of transferred bytes
 within a TCP connection, but they may increase the time until a
 sender may receive an ACK. For certain traffic patterns Delayed
 Acknowledgements may have a detrimental effect. Advanced TCP stacks
 may use heuristics to determine the maximum delay for an ACK. For
 CNNs, the recommendation depends on the expected communication
 patterns.

 A device that advertises a single-MSS receive window should avoid use
 of delayed ACKs in order to avoid contributing unnecessary delay (of
 up to 500 ms) to the RTT [RFC5681], which limits the throughput and
 can increase the data delivery time.

 A device that can send at most one MSS of data is significantly
 affected if the receiver uses delayed ACKs, e.g., if a TCP server or
 receiver is outside the CNN. One known workaround is to split the
 data to be sent into two segments of smaller size. A standard
 compliant TCP receiver will then immediately acknowledge the second
 segment, which can improve throughput. This "split hack" works if
 the TCP receiver uses Delayed Acks, but the downside is the overhead
 of sending two IP packets instead of one.

 Also for larger windows, it may make sense to use a small timeout or
 disable delayed ACKs when traffic over a CNN is expected to mostly be
 small messages with a size typically below one MSS. For request-
 response traffic between a constrained device and a peer (e.g.
 backend infrastructure) that uses delayed ACKs, the maximum ACK rate
 of the peer will be typically of one ACK every 200 ms (or even
 lower). If in such conditions the peer device is administered by the
 same entity managing the constrained device, it is recommended to
 disable delayed ACKs at the peer side.

 In contrast, delayed ACKs allow to reduce the number of ACKs in bulk
 transfer type of traffic, e.g. for firmware/software updates or for
 transferring larger data units containing a batch of sensor readings.

4.9. Explicit loss notifications

 There has been a significant body of research on solutions capable of
 explicitly indicating whether a TCP segment loss is due to
 corruption, in order to avoid activation of congestion control
 mechanisms [ETEN] [RFC2757]. While such solutions may provide
 significant improvement, they have not been widely deployed and
 remain as experimental work. In fact, as of today, the IETF has not
 standardized any such solution.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc2757

Gomez, et al. Expires April 17, 2018 [Page 11]

Internet-Draft TCP in IoT October 2017

5. Security Considerations

 Best current practise for securing TCP and TCP-based communication
 also applies to CNN. As example, use of Transport Layer Security
 (TLS) is strongly recommended if it is applicable.

 There are also TCP options which can improve TCP security. Examples
 include the TCP MD5 signature option [RFC2385] and the TCP
 Authentication Option (TCP-AO) [RFC5925]. However, both options add
 overhead and complexity. The TCP MD5 signature option adds 18 bytes
 to every segment of a connection. TCP-AO typically has a size of
 16-20 bytes.

 For the mechanisms discussed in this document, the corresponding
 considerations apply. For instance, if TFO is used, the security
 considerations of [RFC7413] apply.

6. Acknowledgments

 Carles Gomez has been funded in part by the Spanish Government
 (Ministerio de Educacion, Cultura y Deporte) through the Jose
 Castillejo grant CAS15/00336 and by European Regional Development
 Fund (ERDF) and the Spanish Government through project
 TEC2016-79988-P, AEI/FEDER, UE. Part of his contribution to this
 work has been carried out during his stay as a visiting scholar at
 the Computer Laboratory of the University of Cambridge.

 The authors appreciate the feedback received for this document. The
 following folks provided comments that helped improve the document:
 Carsten Bormann, Zhen Cao, Wei Genyu, Ari Keranen, Abhijan
 Bhattacharyya, Andres Arcia-Moret, Yoshifumi Nishida, Joe Touch, Fred
 Baker, Nik Sultana, Kerry Lynn, Erik Nordmark, Markku Kojo, and
 Hannes Tschofenig. Simon Brummer provided details on the RIOT TCP
 implementation. Xavi Vilajosana provided details on the OpenWSN TCP
 implementation. Rahul Jadhav provided details on the uIP TCP
 implementation.

7. Annex. TCP implementations for constrained devices

 This section overviews the main features of TCP implementations for
 constrained devices.

7.1. uIP

 uIP is a TCP/IP stack, targetted for 8 and 16-bit microcontrollers.
 uIP has been deployed with Contiki and the Arduino Ethernet shield.
 A code size of ~5 kB (which comprises checksumming, IP, ICMP and TCP)
 has been reported for uIP [Dunk].

https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc7413

Gomez, et al. Expires April 17, 2018 [Page 12]

Internet-Draft TCP in IoT October 2017

 uIP uses same buffer both incoming and outgoing traffic, with has a
 size of a single packet. In case of a retransmission, an application
 must be able to reproduce the same user data that had been
 transmitted.

 The MSS is announced via the MSS option on connection establishment
 and the receive window size (of one MSS) is not modified during a
 connection. Stop-and-wait operation is used for sending data. Among
 other optimizations, this allows to avoid sliding window operations,
 which use 32-bit arithmetic extensively and are expensive on 8-bit
 CPUs.

 Contiki uses the "split hack" technique (see Section 4.8) to avoid
 delayed ACKs for senders using a single MSS.

7.2. lwIP

 lwIP is a TCP/IP stack, targetted for 8- and 16-bit microcontrollers.
 lwIP has a total code size of ~14 kB to ~22 kB (which comprises
 memory management, checksumming, network interfaces, IP, ICMP and
 TCP), and a TCP code size of ~9 kB to ~14 kB [Dunk].

 In contrast with uIP, lwIP decouples applications from the network
 stack. lwIP supports a TCP transmission window greater than a single
 segment, as well as buffering of incoming and outcoming data. Other
 implemented mechanisms comprise slow start, congestion avoidance,
 fast retransmit and fast recovery. SACK and Window Scale have been
 recently added to lwIP.

7.3. RIOT

 The RIOT TCP implementation (called GNRC TCP) has been designed for
 Class 1 devices [RFC 7228]. The main target platforms are 8- and
 16-bit microcontrollers. GNRC TCP offers a similar function set as
 uIP, but it provides and maintains an independent receive buffer for
 each connection. In contrast to uIP, retransmission is also handled
 by GNRC TCP. GNRC TCP uses a single-MSS window size, which
 simplifies the implementation. The application programmer does not
 need to know anything about the TCP internals, therefore GNRC TCP can
 be seen as a user-friendly uIP TCP implementation.

 The MSS is set on connections establishment and cannot be changed
 during connection lifetime. GNRC TCP allows multiple connections in
 parallel, but each TCB must be allocated somewhere in the system. By
 default there is only enough memory allocated for a single TCP
 connection, but it can be increased at compile time if the user needs
 multiple parallel connections.

https://datatracker.ietf.org/doc/html/rfc7228

Gomez, et al. Expires April 17, 2018 [Page 13]

Internet-Draft TCP in IoT October 2017

7.4. OpenWSN

 The TCP implementation in OpenWSN is mostly equivalent to the uIP TCP
 implementation. OpenWSN TCP implementation only supports the minimum
 state machine functionality required. For example, it does not
 perform retransmissions.

7.5. TinyOS

 TODO: To be verified

 TinyOS has an experimental TCP stack that uses a simple nonblocking
 library-based implementation of TCP. The application is responsible
 for buffering. The TCP library does not do any receive-side
 buffering. Instead, it will immediately dispatch new, in-order data
 to the application and otherwise drop the segment. A send buffer is
 provided so that the TCP implementation can automatically retransmit
 missing segments.

7.6. Summary

Gomez, et al. Expires April 17, 2018 [Page 14]

Internet-Draft TCP in IoT October 2017

 +-------+---------+---------+------+---------
+--------+
 | uIP |lwIP orig|lwIP 2.0 | RIOT | OpenWSN |
TinyOS |
 +--------+----------------+-------+---------+---------+------+---------
+--------+
 | | Data size | * | * | * | * | * |
* |
 | Memory +----------------+-------+---------+---------+------+---------
+--------+
 | | Code size (kB) | < 5 |~9 to ~14| * | * | * |
* |
 +--------+----------------+-------+---------+---------+------+---------
+--------+
 | |Window size(MSS)| 1 | Multiple| Multiple| 1 | 1 |
Multiple|
 | +----------------+-------+---------+---------+------+---------
+--------+
 | | Slow start | No | Yes | Yes | No | No |
Yes |
 | T +----------------+-------+---------+---------+------+---------
+--------+
 | C | Fast rec/retx | No | Yes | Yes | No | No |
Yes |
 | P +----------------+-------+---------+---------+------+---------
+--------+
 | | Keep-alive | No | * | * | No | No |
No |
 | +----------------+-------+---------+---------+------+---------
+--------+
 | f | TFO | No | No | * | No | No |
No |
 | e +----------------+-------+---------+---------+------+---------
+--------+
 | a | ECN | No | No | * | No | No |
No |
 | t +----------------+-------+---------+---------+------+---------
+--------+
 | u | Window Scale | No | No | Yes | No | No |
No |
 | r +----------------+-------+---------+---------+------+---------
+--------+
 | e | TCP timestamps | No | No | Yes | No | No |
No |
 | s +----------------+-------+---------+---------+------+---------
+--------+
 | | SACK | No | No | Yes | No | No |
No |

 | +----------------+-------+---------+---------+------+---------
+--------+
 | | Delayed ACKs | No | Yes | Yes | No | No |
No |
 +--------+----------------+-------+---------+---------+------+---------
+--------+

 Figure 2: Summary of TCP features for differrent lightweight TCP
 implementations.

 TODO: Add information about RAM requirements (in addition to
 codesize)

8. Annex. Changes compared to previous versions

 RFC Editor: To be removed prior to publication

8.1. Changes compared to -00

 o Changed title and abstract

 o Clarification that communcation with standard-compliant TCP
 endpoints is required, based on feedback from Joe Touch

 o Additional discussion on communication patters

Gomez, et al. Expires April 17, 2018 [Page 15]

Internet-Draft TCP in IoT October 2017

 o Numerous changes to address a comprehensive review from Hannes
 Tschofenig

 o Reworded security considerations

 o Additional references and better distinction between normative and
 informative entries

 o Feedback from Rahul Jadhav on the uIP TCP implementation

 o Basic data for the TinyOS TCP implementation added, based on
 source code analysis

9. References

9.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC1323] Jacobson, V., Braden, R., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, DOI 10.17487/RFC1323, May
 1992, <https://www.rfc-editor.org/info/rfc1323>.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018,
 DOI 10.17487/RFC2018, October 1996,
 <https://www.rfc-editor.org/info/rfc2018>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
 December 1998, <https://www.rfc-editor.org/info/rfc2460>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <https://www.rfc-editor.org/info/rfc3168>.

https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/rfc1323
https://www.rfc-editor.org/info/rfc1323
https://datatracker.ietf.org/doc/html/rfc2018
https://www.rfc-editor.org/info/rfc2018
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2460
https://www.rfc-editor.org/info/rfc2460
https://datatracker.ietf.org/doc/html/rfc3168
https://www.rfc-editor.org/info/rfc3168

Gomez, et al. Expires April 17, 2018 [Page 16]

Internet-Draft TCP in IoT October 2017

 [RFC3402] Mealling, M., "Dynamic Delegation Discovery System (DDDS)
 Part Two: The Algorithm", RFC 3402, DOI 10.17487/RFC3402,
 October 2002, <https://www.rfc-editor.org/info/rfc3402>.

 [RFC3819] Karn, P., Ed., Bormann, C., Fairhurst, G., Grossman, D.,
 Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and L.
 Wood, "Advice for Internet Subnetwork Designers", BCP 89,

RFC 3819, DOI 10.17487/RFC3819, July 2004,
 <https://www.rfc-editor.org/info/rfc3819>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <https://www.rfc-editor.org/info/rfc5681>.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <https://www.rfc-editor.org/info/rfc5925>.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298,
 DOI 10.17487/RFC6298, June 2011,
 <https://www.rfc-editor.org/info/rfc6298>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

9.2. Informative References

 [Commag] A. Betzler, C. Gomez, I. Demirkol, J. Paradells, "CoAP
 Congestion Control for the Internet of Things", IEEE
 Communications Magazine, June 2016.

 [Dunk] A. Dunkels, "Full TCP/IP for 8-Bit Architectures", 2003.

 [ETEN] R. Krishnan et al, "Explicit transport error notification
 (ETEN) for error-prone wireless and satellite networks",
 Computer Networks 2004.

 [I-D.delcarpio-6lo-wlanah]
 Vega, L., Robles, I., and R. Morabito, "IPv6 over
 802.11ah", draft-delcarpio-6lo-wlanah-01 (work in
 progress), October 2015.

https://datatracker.ietf.org/doc/html/rfc3402
https://www.rfc-editor.org/info/rfc3402
https://datatracker.ietf.org/doc/html/bcp89
https://datatracker.ietf.org/doc/html/rfc3819
https://www.rfc-editor.org/info/rfc3819
https://datatracker.ietf.org/doc/html/rfc5681
https://www.rfc-editor.org/info/rfc5681
https://datatracker.ietf.org/doc/html/rfc5925
https://www.rfc-editor.org/info/rfc5925
https://datatracker.ietf.org/doc/html/rfc6298
https://www.rfc-editor.org/info/rfc6298
https://datatracker.ietf.org/doc/html/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://datatracker.ietf.org/doc/html/rfc7413
https://www.rfc-editor.org/info/rfc7413
https://datatracker.ietf.org/doc/html/draft-delcarpio-6lo-wlanah-01

Gomez, et al. Expires April 17, 2018 [Page 17]

Internet-Draft TCP in IoT October 2017

 [I-D.ietf-core-coap-tcp-tls]
 Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,
 Silverajan, B., and B. Raymor, "CoAP (Constrained
 Application Protocol) over TCP, TLS, and WebSockets",

draft-ietf-core-coap-tcp-tls-09 (work in progress), May
 2017.

 [I-D.ietf-core-cocoa]
 Bormann, C., Betzler, A., Gomez, C., and I. Demirkol,
 "CoAP Simple Congestion Control/Advanced", draft-ietf-

core-cocoa-01 (work in progress), March 2017.

 [I-D.ietf-lpwan-overview]
 Farrell, S., "LPWAN Overview", draft-ietf-lpwan-

overview-07 (work in progress), October 2017.

 [I-D.ietf-lwig-energy-efficient]
 Gomez, C., Kovatsch, M., Tian, H., and Z. Cao, "Energy-
 Efficient Features of Internet of Things Protocols",

draft-ietf-lwig-energy-efficient-07 (work in progress),
 March 2017.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, DOI 10.17487/RFC1981, August
 1996, <https://www.rfc-editor.org/info/rfc1981>.

 [RFC2385] Heffernan, A., "Protection of BGP Sessions via the TCP MD5
 Signature Option", RFC 2385, DOI 10.17487/RFC2385, August
 1998, <https://www.rfc-editor.org/info/rfc2385>.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616,
 DOI 10.17487/RFC2616, June 1999,
 <https://www.rfc-editor.org/info/rfc2616>.

 [RFC2757] Montenegro, G., Dawkins, S., Kojo, M., Magret, V., and N.
 Vaidya, "Long Thin Networks", RFC 2757,
 DOI 10.17487/RFC2757, January 2000,
 <https://www.rfc-editor.org/info/rfc2757>.

 [RFC2884] Hadi Salim, J. and U. Ahmed, "Performance Evaluation of
 Explicit Congestion Notification (ECN) in IP Networks",

RFC 2884, DOI 10.17487/RFC2884, July 2000,
 <https://www.rfc-editor.org/info/rfc2884>.

https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-tcp-tls-09
https://datatracker.ietf.org/doc/html/draft-ietf-core-cocoa-01
https://datatracker.ietf.org/doc/html/draft-ietf-core-cocoa-01
https://datatracker.ietf.org/doc/html/draft-ietf-lpwan-overview-07
https://datatracker.ietf.org/doc/html/draft-ietf-lpwan-overview-07
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-energy-efficient-07
https://datatracker.ietf.org/doc/html/rfc1981
https://www.rfc-editor.org/info/rfc1981
https://datatracker.ietf.org/doc/html/rfc2385
https://www.rfc-editor.org/info/rfc2385
https://datatracker.ietf.org/doc/html/rfc2616
https://www.rfc-editor.org/info/rfc2616
https://datatracker.ietf.org/doc/html/rfc2757
https://www.rfc-editor.org/info/rfc2757
https://datatracker.ietf.org/doc/html/rfc2884
https://www.rfc-editor.org/info/rfc2884

Gomez, et al. Expires April 17, 2018 [Page 18]

Internet-Draft TCP in IoT October 2017

 [RFC3481] Inamura, H., Ed., Montenegro, G., Ed., Ludwig, R., Gurtov,
 A., and F. Khafizov, "TCP over Second (2.5G) and Third
 (3G) Generation Wireless Networks", BCP 71, RFC 3481,
 DOI 10.17487/RFC3481, February 2003,
 <https://www.rfc-editor.org/info/rfc3481>.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
 <https://www.rfc-editor.org/info/rfc4944>.

 [RFC6077] Papadimitriou, D., Ed., Welzl, M., Scharf, M., and B.
 Briscoe, "Open Research Issues in Internet Congestion
 Control", RFC 6077, DOI 10.17487/RFC6077, February 2011,
 <https://www.rfc-editor.org/info/rfc6077>.

 [RFC6092] Woodyatt, J., Ed., "Recommended Simple Security
 Capabilities in Customer Premises Equipment (CPE) for
 Providing Residential IPv6 Internet Service", RFC 6092,
 DOI 10.17487/RFC6092, January 2011,
 <https://www.rfc-editor.org/info/rfc6092>.

 [RFC6120] Saint-Andre, P., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 6120, DOI 10.17487/RFC6120,
 March 2011, <https://www.rfc-editor.org/info/rfc6120>.

 [RFC6606] Kim, E., Kaspar, D., Gomez, C., and C. Bormann, "Problem
 Statement and Requirements for IPv6 over Low-Power
 Wireless Personal Area Network (6LoWPAN) Routing",

RFC 6606, DOI 10.17487/RFC6606, May 2012,
 <https://www.rfc-editor.org/info/rfc6606>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7414] Duke, M., Braden, R., Eddy, W., Blanton, E., and A.
 Zimmermann, "A Roadmap for Transmission Control Protocol
 (TCP) Specification Documents", RFC 7414,
 DOI 10.17487/RFC7414, February 2015,
 <https://www.rfc-editor.org/info/rfc7414>.

 [RFC7428] Brandt, A. and J. Buron, "Transmission of IPv6 Packets
 over ITU-T G.9959 Networks", RFC 7428,
 DOI 10.17487/RFC7428, February 2015,
 <https://www.rfc-editor.org/info/rfc7428>.

https://datatracker.ietf.org/doc/html/bcp71
https://datatracker.ietf.org/doc/html/rfc3481
https://www.rfc-editor.org/info/rfc3481
https://datatracker.ietf.org/doc/html/rfc4944
https://www.rfc-editor.org/info/rfc4944
https://datatracker.ietf.org/doc/html/rfc6077
https://www.rfc-editor.org/info/rfc6077
https://datatracker.ietf.org/doc/html/rfc6092
https://www.rfc-editor.org/info/rfc6092
https://datatracker.ietf.org/doc/html/rfc6120
https://www.rfc-editor.org/info/rfc6120
https://datatracker.ietf.org/doc/html/rfc6606
https://www.rfc-editor.org/info/rfc6606
https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7414
https://www.rfc-editor.org/info/rfc7414
https://datatracker.ietf.org/doc/html/rfc7428
https://www.rfc-editor.org/info/rfc7428

Gomez, et al. Expires April 17, 2018 [Page 19]

Internet-Draft TCP in IoT October 2017

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC7668] Nieminen, J., Savolainen, T., Isomaki, M., Patil, B.,
 Shelby, Z., and C. Gomez, "IPv6 over BLUETOOTH(R) Low
 Energy", RFC 7668, DOI 10.17487/RFC7668, October 2015,
 <https://www.rfc-editor.org/info/rfc7668>.

 [RFC8105] Mariager, P., Petersen, J., Ed., Shelby, Z., Van de Logt,
 M., and D. Barthel, "Transmission of IPv6 Packets over
 Digital Enhanced Cordless Telecommunications (DECT) Ultra
 Low Energy (ULE)", RFC 8105, DOI 10.17487/RFC8105, May
 2017, <https://www.rfc-editor.org/info/rfc8105>.

 [RFC8163] Lynn, K., Ed., Martocci, J., Neilson, C., and S.
 Donaldson, "Transmission of IPv6 over Master-Slave/Token-
 Passing (MS/TP) Networks", RFC 8163, DOI 10.17487/RFC8163,
 May 2017, <https://www.rfc-editor.org/info/rfc8163>.

Authors' Addresses

 Carles Gomez
 UPC/i2CAT
 C/Esteve Terradas, 7
 Castelldefels 08860
 Spain

 Email: carlesgo@entel.upc.edu

 Jon Crowcroft
 University of Cambridge
 JJ Thomson Avenue
 Cambridge, CB3 0FD
 United Kingdom

 Email: jon.crowcroft@cl.cam.ac.uk

 Michael Scharf
 Nokia
 Lorenzstrasse 10
 Stuttgart, 70435
 Germany

 Email: michael.scharf@nokia.com

https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7668
https://www.rfc-editor.org/info/rfc7668
https://datatracker.ietf.org/doc/html/rfc8105
https://www.rfc-editor.org/info/rfc8105
https://datatracker.ietf.org/doc/html/rfc8163
https://www.rfc-editor.org/info/rfc8163

Gomez, et al. Expires April 17, 2018 [Page 20]

