
MAGMA Working Group D. Thaler
INTERNET-DRAFT Microsoft
Expires December 2003 B. Fenner
Category: Informational AT&T Research
 B. Quinn
 Stardust.com
 June 27, 2003

Socket Interface Extensions for Multicast Source Filters
<draft-ietf-magma-msf-api-05.txt>

Status of this Memo

This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other
documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as "work
in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

Expires December 2003 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-magma-msf-api-05.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Draft Multicast Source Filter API June 2003

Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

IGMPv3 for IPv4 and MLDv2 for IPv6 add the capability for
applications to express source filters on multicast group
memberships, which allows receiver applications to determine the
set of senders (sources) from which to accept multicast traffic.
This capability also simplifies support of one-to-many type
multicast applications. It is expected that in the near future,
the same capability will be available in IPv6 as well.

This document specifies new socket options and functions to manage
source filters for IP Multicast group memberships. It also
defines the socket structures to provide input and output
arguments to these new APIs. These extensions are designed to
provide access to the source filtering features, while introducing
a minimum of change into the system and providing complete
compatibility for existing multicast applications.

1. Introduction

The de facto standard application program interface (API) for
TCP/IP applications is the "sockets" interface. Although this API
was developed for Unix in the early 1980s it has also been
implemented on a wide variety of non-Unix systems. TCP/IP
applications written using the sockets API have in the past
enjoyed a high degree of portability and we would like the same
portability with applications that employ multicast source
filters. Changes are required to the sockets API to support such
filtering and this memo describes these changes.

This document specifies new socket options and functions to manage
source filters for IP Multicast group memberships. It also
defines the socket structures to provide input and output
arguments to these new APIs. These extensions are designed to
provide access to the source filtering features required by
applications, while introducing a minimum of change into the
system and providing complete compatibility for existing multicast
applications.

Furthermore, RFC 3493 [1] defines socket interface extensions for
IPv6, including protocol-independent functions for most
operations. However, while it defines join and leave functions

https://datatracker.ietf.org/doc/html/rfc3493

Expires December 2003 [Page 2]

Draft Multicast Source Filter API June 2003

for IPv6, it does not provide protocol-independent versions of
these operations. Such functions will be described in this
document.

The reader should note that this document is for informational
purposes only, and that the official standard specification of the
sockets API is [2].

2. Design Considerations

There are a number of important considerations in designing
changes to this well-worn API:

 o The API changes should provide both source and binary
 compatibility for programs written to the original API. That
 is, existing program binaries should continue to operate when
 run on a system supporting the new API. In addition, existing
 applications that are re-compiled and run on a system
 supporting the new API should continue to operate. Simply
 put, the API changes for multicast receivers that specify
 source filters should not break existing programs.

 o The changes to the API should be as small as possible in
 order to simplify the task of converting existing multicast
 receiver applications to use source filters.

 o Applications should be able to detect when the new source
 filter APIs are unavailable (e.g., calls fail with the
 ENOTSUPP error) and react gracefully (e.g., revert to old
 non-source-filter API or display a meaningful error message
 to the user).

 o Lack of type-safety in an API is a bad thing which should be
 avoided when possible.

Several implementations exist that use ioctl() for a portion of
the functionality described herein, and for historical purposes,
the ioctl API is documented in Appendix A. The preferred API,
however, includes new functions. The reasons for adding new
functions are:

 o New functions provide type-safety, unlike ioctl, getsockopt,
 and setsockopt.

Expires December 2003 [Page 3]

Draft Multicast Source Filter API June 2003

 o A new function can be written as a wrapper over an ioctl,
 getsockopt, or setsockopt call, if necessary. Hence, it
 provides more freedom as to how the functionality is
 implemented in an operating system. For example, a new
 function might be implemented as an inline function in an
 include file, or a function exported from a user-mode library
 which internally uses some mechanism to exchange information
 with the kernel, or be implemented directly in the kernel.

 o At least one operation defined herein needs to be able to
 both pass information to the TCP/IP stack, as well as
 retrieve information from it. In some implementations this
 is problematic without either changing getsockopt or using
 ioctl. Using new functions avoids the need to change such
 implementations.

2.1. What Needs to be Added

The current IP Multicast APIs allow a receiver application to
specify the group address (destination) and (optionally) the local
interface. These existing APIs need not change (and cannot, to
retain binary compatibility). Hence, what is needed are new
source filter APIs that provide the same functionality and also
allow receiver multicast applications to:

 o Specify zero or more unicast (source) address(es) in a source
 filter.

 o Determine whether the source filter describes an inclusive or
 exclusive list of sources.

The new API design must enable this functionality for both IPv4
and IPv6.

2.2. Data Types

The data types of the structure elements given in this memo are
intended to be examples, not absolute requirements. Whenever
possible, data types from POSIX 1003.1g [2] are used: uintN_t
means an unsigned integer of exactly N bits (e.g., uint32_t).

Expires December 2003 [Page 4]

Draft Multicast Source Filter API June 2003

2.3. Headers

When function prototypes and structures are shown, we show the
headers that must be #included to cause that item to be defined.

2.4. Structures

When structures are described, the members shown are the ones that
must appear in an implementation. Additional, nonstandard members
may also be defined by an implementation. As an additional
precaution, nonstandard members could be verified by Feature Test
Macros as described in [2]. (Such Feature Test Macros are not
defined by this RFC.)

The ordering shown for the members of a structure is the
recommended ordering, given alignment considerations of multibyte
members, but an implementation may order the members differently.

3. Overview of APIs

There are a number of different APIs described in this document,
that are appropriate for a number of different application types
and IP versions. Before providing detailed descriptions, this
section provides a "taxonomy" with a brief description of each.

There are two categories of source-filter APIs, both of which are
designed to allow multicast receiver applications to designate the
unicast address(es) of sender(s) along with the multicast group
(destination address) to receive.

 o Basic (Delta-based): Some applications desire the simplicity of
 a delta-based API in which each function call specifies a
 single source address which should be added to or removed from
 the existing filter for a given multicast group address on
 which to listen. Such applications typically fall into either
 of two categories:

 + Any-Source Multicast: By default, all sources are accepted.
 Individual sources may be turned off and back on as needed
 over time. This is also known as "exclude" mode, since the
 source filter contains a list of excluded sources.

Expires December 2003 [Page 5]

Draft Multicast Source Filter API June 2003

 + Source-Specific Multicast: Only sources in a given list are
 allowed. The list may change over time. This is also known
 as "include" mode, since the source filter contains a list of
 included sources.

 This API would be used, for example, by "single-source"
 applications such as audio/video broadcasting. It would also
 be used for logical multi-source sessions where each source
 independently allocates its own Source-Specific Multicast
 group address.

 o Advanced (Full-state): This API allows an application to define
 a complete source-filter comprised of zero or more source
 addresses, and replace the previous filter with a new one.

 Applications which require the ability to switch between filter
 modes without leaving a group must use a full-state API (i.e.,
 to change the semantics of the source filter from inclusive to
 exclusive, or vice versa).

 Applications which use a large source list for a given group
 address should also use the full-state API, since filter
 changes can be done atomically in a single operation.

The above types of APIs exist in IPv4-specific variants as well as
with protocol-independent variants. One might ask why the
protocol-independent APIs cannot accommodate IPv4 applications as
well as IPv6. Since any IPv4 application requires modification to
use multicast source filters anyway, it might seem like a good
opportunity to create IPv6-compatible source code.

The primary reasons for extending an IPv4-specific API are:

 o To minimize changes needed in existing IPv4 multicast
 application source code to add source filter support.

 o To avoid overloading APIs to accommodate the differences
 between IPv4 interface addresses (e.g., in the ip_mreq
 structure) and interface indices.

Expires December 2003 [Page 6]

Draft Multicast Source Filter API June 2003

4. IPv4 Multicast Source Filter APIs

Version 3 of the Internet Group Management Protocol (IGMPv3) [3]
and version 2 of the Multicast Listener Discovery (MLDv2) protocol
[4] provide the ability to communicate source filter information
to the router and hence avoid pulling down data from unwanted
sources onto the local link. However, source filters may be
implemented by the operating system regardless of whether the
routers support IGMPv3 or MLDv2, so when the source-filter API is
available, applications can always benefit from using it.

4.1. Basic (Delta-based) API for IPv4

The reception of multicast packets is controlled by the
setsockopt() options summarized below. An error of EOPNOTSUPP is
returned if these options are used with getsockopt().

The following structures are used by both the Any-Source Multicast
and the Source-Specific Multicast API:

#include <netinet/in.h>

struct ip_mreq {
 struct in_addr imr_multiaddr; /* IP address of group */
 struct in_addr imr_interface; /* IP address of interface */
};

struct ip_mreq_source {
 struct in_addr imr_multiaddr; /* IP address of group */
 struct in_addr imr_sourceaddr; /* IP address of source */
 struct in_addr imr_interface; /* IP address of interface */
};

4.1.1. IPv4 Any-Source Multicast API

The following socket options are defined in <netinet/in.h> for
applications in the Any-Source Multicast category:

Socket option Argument type
IP_ADD_MEMBERSHIP struct ip_mreq
IP_BLOCK_SOURCE struct ip_mreq_source
IP_UNBLOCK_SOURCE struct ip_mreq_source
IP_DROP_MEMBERSHIP struct ip_mreq

Expires December 2003 [Page 7]

Draft Multicast Source Filter API June 2003

IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP are already implemented
on most operating systems, and are used to join and leave an any-
source group.

IP_BLOCK_SOURCE can be used to block data from a given source to a
given group (e.g., if the user "mutes" that source), and
IP_UNBLOCK_SOURCE can be used to undo this (e.g., if the user then
"unmutes" the source).

4.1.2. IPv4 Source-Specific Multicast API

The following socket options are available for applications in the
Source-Specific category:

Socket option Argument type
IP_ADD_SOURCE_MEMBERSHIP struct ip_mreq_source
IP_DROP_SOURCE_MEMBERSHIP struct ip_mreq_source
IP_DROP_MEMBERSHIP struct ip_mreq

IP_ADD_SOURCE_MEMBERSHIP and IP_DROP_SOURCE_MEMBERSHIP are used to
join and leave a source-specific group.

IP_DROP_MEMBERSHIP is supported, as a convenience, to drop all
sources which have been joined for a particular group and
interface. The operations are the same as if the socket had been
closed.

4.1.3. Error Codes

When the option would be legal on the group, but an address is
invalid (e.g., when trying to block a source that is already
blocked by the socket, or when trying to drop an unjoined group)
the error generated is EADDRNOTAVAIL.

When the option itself is not legal on the group (i.e., when
trying a Source-Specific option on a group after doing
IP_ADD_MEMBERSHIP, or when trying an Any-Source option without
doing IP_ADD_MEMBERSHIP) the error generated is EINVAL.

When any of these options are used with getsockopt(), the error
generated is EOPNOTSUPP.

Finally, if the implementation imposes a limit on the maximum

Expires December 2003 [Page 8]

Draft Multicast Source Filter API June 2003

number of sources in a source filter, ENOBUFS is generated when an
operation would exceed the maximum.

4.2. Advanced (Full-state) API for IPv4

Several implementations exist that use ioctl() for this API, and
for historical purposes, the ioctl() API is documented in Appendix
A. The preferred API uses the new functions described below.

4.2.1. Set Source Filter

 #include <netinet/in.h>

 int setipv4sourcefilter(int s, struct in_addr interface,
 struct in_addr group, uint32_t fmode,
 uint32_t numsrc, struct in_addr *slist);

On success the value 0 is returned, and on failure, the value -1
is returned and errno is set accordingly.

The s argument identifies the socket.

The interface argument holds the local IP address of the
interface.

The group argument holds the IP multicast address of the group.

The fmode argument identifies the filter mode. The value of this
field must be either MCAST_INCLUDE or MCAST_EXCLUDE, which are
likewise defined in <netinet/in.h>.

The numsrc argument holds the number of source addresses in the
slist array.

The slist argument points to an array of IP addresses of sources
to include or exclude depending on the filter mode.

If the implementation imposes a limit on the maximum number of
sources in a source filter, ENOBUFS is generated when the
operation would exceed the maximum.

Expires December 2003 [Page 9]

Draft Multicast Source Filter API June 2003

4.2.2. Get Source Filter

 #include <netinet/in.h>

 int getipv4sourcefilter(int s, struct in_addr interface,
 struct in_addr group, uint32_t *fmode,
 uint32_t *numsrc, struct in_addr *slist);

On success the value 0 is returned, and on failure, the value -1
is returned and errno is set accordingly.

The s argument identifies the socket.

The interface argument holds the local IP address of the
interface.

The group argument holds the IP multicast address of the group.

The fmode argument points to an integer that will contain the
filter mode on a successful return. The value of this field will
be either MCAST_INCLUDE or MCAST_EXCLUDE, which are likewise
defined in <netinet/in.h>.

On input, the numsrc argument holds the number of source addresses
that will fit in the slist array. On output, the numsrc argument
will hold the total number of sources in the filter.

The slist argument points to buffer into which an array of IP
addresses of included or excluded (depending on the filter mode)
sources will be written. If numsrc was 0 on input, a NULL pointer
may be supplied.

If the application does not know the size of the source list
beforehand, it can make a reasonable guess (e.g., 0), and if upon
completion, numsrc holds a larger value, the operation can be
repeated with a large enough buffer.

That is, on return, numsrc is always updated to be the total
number of sources in the filter, while slist will hold as many
source addresses as fit, up to the minimum of the array size
passed in as the original numsrc value and the total number of
sources in the filter.

Expires December 2003 [Page 10]

Draft Multicast Source Filter API June 2003

5. Protocol-Independent Multicast Source Filter APIs

Protocol-independent functions are provided for join and leave
operations so that an application may pass a sockaddr_storage
structure obtained from calls such as getaddrinfo() [1] as the
group to join. For example, an application can resolve a DNS name
(e.g., NTP.MCAST.NET) to a multicast address which may be either
IPv4 or IPv6, and may easily join and leave the group.

5.1. Basic (Delta-based) API

The reception of multicast packets is controlled by the
setsockopt() options summarized below. An error of EOPNOTSUPP is
returned if these options are used with getsockopt().

The following structures are used by both the Any-Source Multicast
and the Source-Specific Multicast API:
#include <netinet/in.h>

struct group_req {
 uint32_t gr_interface; /* interface index */
 struct sockaddr_storage gr_group; /* group address */
};

struct group_source_req {
 uint32_t gsr_interface; /* interface index */
 struct sockaddr_storage gsr_group; /* group address */
 struct sockaddr_storage gsr_source; /* source address */
};

The sockaddr_storage structure is defined in RFC 3493 [1] to be
large enough to hold either IPv4 or IPv6 address information.

The rules for generating errors are the same as those given in
Section 5.1.3.

5.1.1. Any-Source Multicast API

Socket option Argument type
MCAST_JOIN_GROUP struct group_req
MCAST_BLOCK_SOURCE struct group_source_req
MCAST_UNBLOCK_SOURCE struct group_source_req
MCAST_LEAVE_GROUP struct group_req

https://datatracker.ietf.org/doc/html/rfc3493

Expires December 2003 [Page 11]

Draft Multicast Source Filter API June 2003

MCAST_JOIN_GROUP and MCAST_LEAVE_GROUP are used to join and leave
an any-source group.

MCAST_BLOCK_SOURCE can be used to block data from a given source
to a given group (e.g., if the user "mutes" that source), and
MCAST_UNBLOCK_SOURCE can be used to undo this (e.g., if the user
then "unmutes" the source).

5.1.2. Source-Specific Multicast API

Socket option Argument type
MCAST_JOIN_SOURCE_GROUP struct group_source_req
MCAST_LEAVE_SOURCE_GROUP struct group_source_req
MCAST_LEAVE_GROUP struct group_req

MCAST_JOIN_SOURCE_GROUP and MCAST_LEAVE_SOURCE_GROUP are used to
join and leave a source-specific group.

MCAST_LEAVE_GROUP is supported, as a convenience, to drop all
sources which have been joined for a particular group and
interface. The operations are the same as if the socket had been
closed.

5.2. Advanced (Full-state) API

Implementations may exist that use ioctl() for this API, and for
historical purposes, the ioctl() API is documented in Appendix A.
The preferred API uses the new functions described below.

5.2.1. Set Source Filter

 #include <netinet/in.h>

 int setsourcefilter(int s, uint32_t interface,
 struct sockaddr *group, socklen_t grouplen,
 uint32_t fmode, uint_t numsrc,
 struct sockaddr_storage *slist);

On success the value 0 is returned, and on failure, the value -1
is returned and errno is set accordingly.

The s argument identifies the socket.

Expires December 2003 [Page 12]

Draft Multicast Source Filter API June 2003

The interface argument holds the interface index of the interface.

The group argument points to either a sockaddr_in structure (for
IPv4) or a sockaddr_in6 structure (for IPv6) that holds the IP
multicast address of the group.

The grouplen argument gives the length of the sockaddr_in or
sockaddr_in6 structure.

The fmode argument identifies the filter mode. The value of this
field must be either MCAST_INCLUDE or MCAST_EXCLUDE, which are
likewise defined in <netinet/in.h>.

The numsrc argument holds the number of source addresses in the
slist array.

The slist argument points to an array of IP addresses of sources
to include or exclude depending on the filter mode.

If the implementation imposes a limit on the maximum number of
sources in a source filter, ENOBUFS is generated when the
operation would exceed the maximum.

5.2.2. Get Source Filter

 #include <netinet/in.h>

 int getsourcefilter(int s, uint32_t interface,
 struct sockaddr *group, socklen_t grouplen,
 uint32_t fmode, uint_t *numsrc,
 struct sockaddr_storage *slist);

On success the value 0 is returned, and on failure, the value -1
is returned and errno is set accordingly.

The s argument identifies the socket.

The interface argument holds the local IP address of the
interface.

The group argument points to either a sockaddr_in structure (for
IPv4) or a sockaddr_in6 structure (for IPv6) that holds the IP
multicast address of the group.

Expires December 2003 [Page 13]

Draft Multicast Source Filter API June 2003

The fmode argument points to an integer that will contain the
filter mode on a successful return. The value of this field will
be either MCAST_INCLUDE or MCAST_EXCLUDE, which are likewise
defined in <netinet/in.h>.

On input, the numsrc argument holds the number of source addresses
that will fit in the slist array. On output, the numsrc argument
will hold the total number of sources in the filter.

The slist argument points to buffer into which an array of IP
addresses of included or excluded (depending on the filter mode)
sources will be written. If numsrc was 0 on input, a NULL pointer
may be supplied.

If the application does not know the size of the source list
beforehand, it can make a reasonable guess (e.g., 0), and if upon
completion, numsrc holds a larger value, the operation can be
repeated with a large enough buffer.

That is, on return, numsrc is always updated to be the total
number of sources in the filter, while slist will hold as many
source addresses as fit, up to the minimum of the array size
passed in as the original numsrc value and the total number of
sources in the filter.

6. Security Considerations

Although source filtering can help to combat denial-of-service
attacks, source filtering alone is not a complete solution, since
it does not provide protection against spoofing the source address
to be an allowed source. Multicast routing protocols which use
reverse-path forwarding based on the source address, however, do
provide some natural protection against spoofing the source
address, since if a router receives a packet on an interface other
than the one toward the "real" source, it will drop the packet.
However, this still does not provide any guarantee of protection.

7. Acknowledgments

This draft was updated based on feedback from the IETF's IDMR and
MAGMA Working Groups, and the Austin Group. Wilbert de Graaf also
provided many helpful comments.

Expires December 2003 [Page 14]

Draft Multicast Source Filter API June 2003

8. Appendix A: Use of ioctl() for full-state operations

The API defined here is historic, but is documented here for
informational purposes since it is implemented by multiple
platforms. The new functions defined earlier in this document
should now be used instead.

Retrieving the source filter for a given group cannot be done with
getsockopt() on some existing platforms, since the group and
interface must be passed down in order to retrieve the correct
filter, and getsockopt only supports an output buffer. This can,
however, be done with an ioctl(), and hence for symmetry, both
gets and sets are done with an ioctl.

8.1. IPv4 Options

The following are defined in <sys/sockio.h>:

 o ioctl() SIOCGIPMSFILTER: to retrieve the list of source
 addresses that comprise the source filter along with the
 current filter mode.

 o ioctl() SIOCSIPMSFILTER: to set or modify the source filter
 content (e.g. unicast source address list) or mode (exclude
 or include).

Ioctl option Argument type
SIOCGIPMSFILTER struct ip_msfilter
SIOCSIPMSFILTER struct ip_msfilter

struct ip_msfilter {
 struct in_addr imsf_multiaddr; /* IP multicast address of group */
 struct in_addr imsf_interface; /* local IP address of interface */
 uint32_t imsf_fmode; /* filter mode */
 uint32_t imsf_numsrc; /* number of sources in src_list */
 struct in_addr imsf_slist[1]; /* start of source list */
};

#define IP_MSFILTER_SIZE(numsrc) \
 (sizeof(struct ip_msfilter) - sizeof(struct in_addr) \
 + (numsrc) * sizeof(struct in_addr))

Expires December 2003 [Page 15]

Draft Multicast Source Filter API June 2003

The imsf_fmode mode is a 32-bit integer that identifies the filter
mode. The value of this field must be either MCAST_INCLUDE or
MCAST_EXCLUDE, which are likewise defined in <netinet/in.h>.

The structure length pointed to must be at least
IP_MSFILTER_SIZE(0) bytes long, and the imsf_numsrc parameter
should be set so that IP_MSFILTER_SIZE(imsf_numsrc) indicates the
buffer length.

If the implementation imposes a limit on the maximum number of
sources in a source filter, ENOBUFS is generated when a set
operation would exceed the maximum.

The result of a get operation (SIOCGIPMSFILTER) will be that the
imsf_multiaddr and imsf_interface fields will be unchanged, while
imsf_fmode, imsf_numsrc, and as many source addresses as fit will
be filled into the application's buffer.

If the application does not know the size of the source list
beforehand, it can make a reasonable guess (e.g., 0), and if upon
completion, the imsf_numsrc field holds a larger value, the
operation can be repeated with a large enough buffer.

That is, on return from SIOCGIPMSFILTER, imsf_numsrc is always
updated to be the total number of sources in the filter, while
imsf_slist will hold as many source addresses as fit, up to the
minimum of the array size passed in as the original imsf_numsrc
value and the total number of sources in the filter.

8.2. Protocol-Independent Options

The following are defined in <sys/sockio.h>:

 o ioctl() SIOCGMSFILTER: to retrieve the list of source
 addresses that comprise the source filter along with the
 current filter mode.

 o ioctl() SIOCSMSFILTER: to set or modify the source filter
 content (e.g. unicast source address list) or mode (exclude
 or include).
Ioctl option Argument type
SIOCGMSFILTER struct group_filter
SIOCSMSFILTER struct group_filter

Expires December 2003 [Page 16]

Draft Multicast Source Filter API June 2003

struct group_filter {
 uint32_t gf_interface; /* interface index */
 struct sockaddr_storage gf_group; /* multicast address */
 uint32_t gf_fmode; /* filter mode */
 uint32_t gf_numsrc; /* number of sources */
 struct sockaddr_storage gf_slist[1]; /* source address */
};

#define GROUP_FILTER_SIZE(numsrc) \
 (sizeof(struct group_filter) - sizeof(struct sockaddr_storage) \
 + (numsrc) * sizeof(struct sockaddr_storage))

The imf_numsrc field is used in the same way as described for
imsf_numsrc above.

9. Authors' Addresses

 Dave Thaler
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052-6399
 Phone: +1 425 703 8835
 EMail: dthaler@microsoft.com

 Bill Fenner
 75 Willow Road
 Menlo Park, CA 94025
 Phone: +1 650 867 6073
 EMail: fenner@research.att.com

 Bob Quinn
 IP Multicast Initiative (IPMI)
 Stardust.com
 1901 S. Bascom Ave. #333
 Campbell, CA 95008
 Phone: +1 408 879 8080
 EMail: rcq@ipmulticast.com

10. Normative References

[1] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6", RFC

3493, February 2003.

https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc3493

Expires December 2003 [Page 17]

Draft Multicast Source Filter API June 2003

[2] IEEE Std. 1003.1-2001 Standard for Information Technology --
 Portable Operating System Interface (POSIX). Open Group
 Technical Standard: Base Specifications, Issue 6, December
 2001. ISO/IEC 9945:2002. http://www.opengroup.org/austin

11. Informative References

[3] Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.
 Thyagarajan, "Internet Group Management Protocol, Version 3",

RFC 3376, October 2002.

[4] Vida, R. and L. Costa, "Multicast Listener Discovery Version
 2 (MLDv2) for IPv6", Work in progress, draft-vida-mld-

v2-07.txt, June 2003.

12. Full Copyright Statement

Copyright (C) The Internet Society (2003). All Rights Reserved.

This document and translations of it may be copied and furnished
to others, and derivative works that comment on or otherwise
explain it or assist in its implementation may be prepared,
copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative
works. However, this document itself may not be modified in any
way, such as by removing the copyright notice or references to the
Internet Society or other Internet organizations, except as needed
for the purpose of developing Internet standards in which case the
procedures for copyrights defined in the Internet Standards
process must be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not
be revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on
an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

http://www.opengroup.org/austin
https://datatracker.ietf.org/doc/html/rfc3376
https://datatracker.ietf.org/doc/html/draft-vida-mld-v2-07.txt
https://datatracker.ietf.org/doc/html/draft-vida-mld-v2-07.txt

Expires December 2003 [Page 18]

Draft Multicast Source Filter API June 2003

Table of Contents

1: Introduction ... 2
2: Design Considerations 3
2.1: What Needs to be Added 4
2.2: Data Types ... 4
2.3: Headers .. 5
2.4: Structures ... 5
3: Overview of APIs ... 5
4: IPv4 Multicast Source Filter APIs 7
4.1: Basic (Delta-based) API for IPv4 7
4.1.1: IPv4 Any-Source Multicast API 7
4.1.2: IPv4 Source-Specific Multicast API 8
4.1.3: Error Codes .. 8
4.2: Advanced (Full-state) API for IPv4 9
4.2.1: Set Source Filter 9
4.2.2: Get Source Filter 10
5: Protocol-Independent Multicast Source Filter APIs 11
5.1: Basic (Delta-based) API 11
5.1.1: Any-Source Multicast API 11
5.1.2: Source-Specific Multicast API 12
5.2: Advanced (Full-state) API 12
5.2.1: Set Source Filter 12
5.2.2: Get Source Filter 13
6: Security Considerations 14
7: Acknowledgments .. 14
8: Appendix A: Use of ioctl() for full-state operations 15
8.1: IPv4 Options ... 15
8.2: Protocol-Independent Options 16
9: Authors' Addresses 17
10: Normative References 17
11: Informative References 18
12: Full Copyright Statement 18

Expires December 2003 [Page 19]

