
Network Working Group Ross Finlayson
Internet-Draft LIVE.COM
Expire in six months 1999.08.22

 An Abstract API for Multicast Address Allocation

 <draft-ietf-malloc-api-07.txt>

1. Status of this Memo

 This document is an Internet-Draft and is in full conformance
 with all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-
 Drafts as reference material or to cite them other than as
 "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

2. Abstract

This document describes the ''abstract service interface'' for the dynamic
multicast address allocation service, as seen by applications. While it
does not describe a concrete API (i.e., for a specific programming
language), it describes - in abstract terms - the semantics of this
service, including the guarantees that it makes to applications.

Additional documents (not necessarily products of the IETF) would describe
concrete APIs for this service.

3. Introduction

Applications are the customers of a multicast address allocation service,
so a definition of this service should include not only the inter-node
network protocols that are used to implement it, but also the 'protocol'
that applications use to access the service. While APIs ("application
programming interfaces") for specific programming languages (or operating
systems) are outside the domain of the IETF, it is appropriate for us to
define - in abstract terms - the semantic interface that this service
presents to applications. Specific APIs would then be based upon this
abstract service interface.

https://datatracker.ietf.org/doc/html/draft-ietf-malloc-api-07.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Note that it is possible to implement the multicast address allocation
service in at least two different ways. The first (& perhaps most common)
way is for end nodes to allocate addresses by communicating with a separate
"Address Allocation Server" node, using the "Host to Address Allocation
Server" network protocol (MADCAP) [1][7]. Alternatively, an
"Address Allocation Server" implementation might be co-located (along
with one or more applications) on an end node, in which case some other,
internal, mechanism might be used to access the server. In either case,
however, the abstract service interface (and, presumably, any specific
APIs) would remain the same.

The remainder of this document describes the abstract interface.

Note that this interface is intended only for the allocation of dynamic
multicast addresses, as used by the traditional multicast service model [2].
Future multicast service models might allocate or assign multicast
addresses in other ways, but this is outside the scope of this document.

4. Abstract Data Types

The interface described below uses the following abstract data types:
- AddressFamily: e.g., IPv4 or IPv6
- MulticastAddress: An actual multicast address (i.e., that could
subsequently
 be used as the destination of a datagram)
- MulticastAddressSet: A set of "MulticastAddress"es
- LanguageTag: The code for a (human) language, as defined in [4]
- Scope: An "administrative scope" [3] from which multicast addresses
 are to be allocated. Each scope is a "MulticastAddressSet",
 with an associated set of (character-string) names - indexed by
 "LanguageTag". (Each language tag has at most one corresponding
name,
 per scope.) For each scope, a (language tag, name) pair may be
 defined to be the 'default' name for this scope. (See the section
 "Querying the name of a scope" below.)
 (An implementation of this abstract data type might also include
other
 information, such as a default TTL for the scope.)
- Time: An (absolute) event time. This is used for specifying the
 "lifetime" of multicast addresses: the period of time during which
 allocated multicast addresses are guaranteed to be available.
 (It is also used to specify the desired start time for an
 "advance allocation".)
 Note that a concrete API might prefer to specify some of these
 times as relative times (i.e., relative to the current time-of-day),
 rather than absolute time. (Relative times have the advantage of
 not requiring clock synchronization.)
- Lease: A compound data type that describes the result of a (successful)
 multicast address allocation. It consists of:
 - [MulticastAddressSet] The set of addresses that were allocated;

 - [AddressFamily] The address family of these addresses
 - [Time] The lifetime of these addresses (the same for each address)
 - [Time] The "start time" of the allocation. (See the discussion of
 "advance allocation" below.)
 (A concrete API would likely also include a
 MADCAP "Lease Identifier" [1].)
- NestingRelationship: A binary data type that describes whether
 or not two scopes nest. Two scopes nest if traffic sent
 sent to a multicast group within one scope could be seen
 by all hosts present within the other scope were they to
 join the multicast group within the first scope. This value
 would be "False" for overlapping scopes where only some
 (or none) of the hosts within the second scope could see
 traffic sent to an address due to the presence of an
 administratively scoped boundary. In cases where the first
 and second scopes are topologically identical this value
 would be "True."
- Status: A result code.

5. The Abstract Interface

5.1 Allocating multicast addresses:
 alloc_multicast_addr(in AddressFamily family,
 in Scope scope,
 in Integer minDesiredAddresses,
 in Integer maxDesiredAddresses,
 in Time minDesiredStartTime,
 in Time maxDesiredStartTime,
 in Time minDesiredLifetime,
 in Time maxDesiredLifetime,
 out Lease multicastAddressSetLease,
 out Status status)
 This operation attempts to allocate a set of multicast addresses
 (the size of this set is in the range
 [minDesiredAddresses, maxDesiredAddresses]) within the given address
 family and scope, and within a given range of desired
 lifetimes. ("minDesiredStartTime" and "maxDesiredStartTime" are
 used to specify "advance allocation"; this is described in more
 detail below.)

 If the address allocation succeeds, the result is returned in
 "multicastAddressSetLease" (with "status" = OK).

 During the lifetime of this lease, the allocation service will
 make a "best-effort" attempt to not allocate any of these addresses
 to others. (However, once the lease's lifetime has expired, any of
 its addresses can be allocated to others.)

 Multicast addresses are allocated for a limited lifetime.
 An application may attempt to extend this lifetime, but this
 operation may fail. Therefore, an application must be prepared

 for the possibility it will not be able to use the same addresses
 for as long as it desires. In particular, the application must
 be prepared to either quit early (because its original multicast
 address assignments have expired), or, alternatively, to
occasionally
 'renumber' its multicast addresses (in some application or
 higher-level-protocol dependent way), by making a new allocation.
 However, if an application needs to consider 'renumbering', it will
 always know this in advance, at the time it acquired its current
 address(es) - by checking the lifetime in the returned lease.
 An application will never need to be notified asynchronously of
 the need to 'renumber'.

 Possible errors:
 - bad address family
 - bad scope
 - bad desired number of addresses (e.g., max < min)
 - bad desired lifetimes (e.g., max < min)
 - errors with the two "start time" parameters (see
 "Advance allocation" below)
 - no addresses can be allocated (for the requested
parameters)

 An allocation attempt can also fail with a result "status" code
 of TRY_LATER, indicating that the requested allocation cannot
 be made at this time, but that it might succeed if the caller
 retries the attempt at some future time. (This future time is
 returned in the "start time" field of the
"multicastAddressSetLease";
 the other parts of this lease are undefined.)

 Note that a concrete (i.e., programming language-specific) API for
 multicast address allocation will probably include additional,
 specialized variants of this general allocation operation. For
 instance, it may include separate operations for:
 - allocating only a single address
 (i.e., minDesiredAddresses = maxDesiredAddresses = 1);
 - (attempting to) allocate an address with a single, fixed
 lifetime (i.e., minDesiredLifetime = maxDesiredLifetime);
 - (attempting to) allocate an address for immediate use
 (i.e., minDesiredStartTime = maxDesiredStartTime = 'now')

5.2 Changing multicast addresses' lifetime:
 change_multicast_addr_lifetime(in Lease multicastAddressSetLease,
 in Time minDesiredLifetime,
 in Time maxDesiredLifetime,
 out Time lifetime)
 This operation attempts to change the lifetime of previously
 allocated multicast addresses. Unless an error occurs, it returns
 the new lifetime (which might remain unchanged).

 Possible errors:
 - bad address family
 - bad durations (e.g., max < min)
 - the addresses' lifetime could not be changed
 (and the existing lifetime was not in the requested range
 [minDesiredLifetime,maxDesiredLifetime])
 - the addresses were not ones that we had allocated
 (see section 5.9) - or they have already expired

5.3 Deallocating multicast addresses:
 deallocate_multicast_addr(in Lease multicastAddressSetLease)
 This operation attempts to deallocate previously allocated
 multicast addresses.

 Possible errors:
 - bad address family
 - the addresses were not ones that we had allocated
 (or they have already expired)

5.4 Querying the set of usable multicast address scopes:
 get_multicast_addr_scopes(in AddressFamily family,
 out "set of" Scope)
 This operation returns the set of administrative multicast address
 scopes that are defined for this node.

 Possible errors:
 - bad address family

5.5 Querying the name of a scope:
 get_scope_name(in Scope scope,
 in LanguageTag language,
 out String name,
 out LanguageTag languageForName)
 This operation returns a character-string name for a given scope.
 If the scope has a name in the specified "language", then this name
 (and language) is returned. Otherwise, the scope's default
 (language, name) pair is returned.

 Possible errors:
 - bad scope

5.6 Querying the nesting state of known usable multicast address scopes:
 get_scope_nesting_state(in "set of" Scope,
 out "matrix of" NestingRelationship)

 Possible errors:
 - bad scope.
 - nesting state undetermined at this time.

 This operation would return a matrix that shows the
 current nesting relationships between the supplied
 set of scopes which would have previously been supplied

 via the get_multicast_addr_scopes(...) function.

5.7 Querying the set of scopes that a given scope is known to nest inside:
 get_larger_scopes(in Scope,
 out "set of" Scope)

 This operation returns the set of administrative multicast
 address scopes that are known to encompass the supplied
 Scope.

 Possible errors:
 - bad scope.
 - nesting state undetermined at this time.

5.8 Querying the set of scopes that are known to nest inside a given scope:
 get_smaller_scopes(in Scope,
 out "set of" Scope)

 This operation returns the set of administrative multicast
 address scopes that are known to nest inside the supplied
 Scope (NB this would include those scopes that are
 topologically identical to the supplied scope).

 Possible errors:
 - bad scope.
 - nesting state undetermined at this time.

5.9 Note:
The decision as to who is allowed to deallocate (or change the lifetime
of) a previously allocated multicast address set lease is
implementation-specific, and depends upon the security policy of the host
system. Thus it is not specified in this abstract API. One possible
starting point, however, is the following:
 A previously allocated multicast address can be deallocated (or have
 its lifetime queried or changed) by the same "principal", and on the
 same node, as that which originally allocated it. ("principal"
might,
 for example, be a "user" in the host operating system.)

5.10 Advance allocation
=======================
By specifying "minDesiredStartTime = maxDesiredStartTime = 'now'",
the address allocation operation - "alloc_multicast_addr" - described above
can be used to request a set of multicast addresses that can be used
immediately (and until their lifetime expires). During this whole time,
the addresses are not available for allocation to others.

It is also possible - using the "minDesiredStartTime" and
"maxDesiredStartTime" parameters - to allocate multicast addresses
in advance - i.e., so that they have a future "start time" as well as
an expiration time. Before the start time, the multicast addresses may
be allocated to others.

Advance allocation is convenient for allocating addresses for events that
begin far in the future - e.g., several weeks or months away. Without
advance allocation, it would be necessary to allocate addresses for a long
period of time - even when it will not be used. Such a request would not
only be a wasteful use of the multicast address space, but it may also be
difficult to implement (especially since address allocations are expected
to remain valid in spite of topology changes).

Advance allocation requests can produce the following errors (in addition to
those defined earlier):
 - bad start time durations (e.g., max < min)
 - requested start times conflict with requested lifetimes
 (i.e., min start time > max lifetime)

The following operation is also defined:

 change_multicast_addr_start_time(in Lease multicastAddressSetLease,
 in Time minDesiredStartTime,
 in Time maxDesiredStartTime,
 out Time startTime)
 This operation attempts to change the start time of previously
 allocated multicast addresses. Unless an error occurs, it returns
 the new start time (which might remain unchanged).

 Possible errors: the same as "change_multicast_addr_lifetime"

6. Security Considerations

As noted in section 5.9 above, each implementation of this abstract API
should define a security policy that specifies when (and by whom)
previously allocated multicast addresses can be deallocated (or queried,
or have their lifetime changed).

Because multicast addresses are a finite resource, there is a potential for
a "denial of service" attack by allocating a large number of multicast
addresses without deallocating them. Preventing such an attack, however,
is not the role of the API, but rather by the underlying MAAS ("Multicast
Address Allocation Server(s)" [6]).

7. Acknowledgements

Many thanks to other participants in the "MALLOC" working group
- in particular Steve Hanna, Dave Thaler, Roger Kermode,
and Pavlin Radoslavov - for their valuable comments.

8. References

[1] Patel, B., Shah, M., Hanna, S.,
 "Multicast Address Dynamic Client Allocation Protocol (MADCAP)",
 Work-in-Progress, Internet-Draft "draft-ietf-malloc-madcap-06.txt",
 August, 1999.

https://datatracker.ietf.org/doc/html/draft-ietf-malloc-madcap-06.txt

[2] Deering, S., "Host Extensions for IP Multicasting",
RFC 1112, August 1989.

[3] Meyer, D., "Administratively Scoped IP Multicast",
RFC 2365 (BCP 23), July, 1998.

[4] Alvestrand, H., "Tags for the Identification of Languages",
RFC 1766, March 1995.

[5] Handley, M., Jacobson, V., "SDP: Session Description Protocol",
RFC 2327, April 1998.

[6] Estrin, D., Handley, M., Thaler, D.,
 "The Internet Multicast Address Allocation Architecture",
 Work-in-Progress, Internet-Draft "draft-ietf-malloc-arch-01.txt",
 May 1999.
[7] Kermode, R. "MADCAP Multicast Scope Nesting State Option,"
 Work-In-Progress, Internet-Draft
 "draft-ietf-malloc-madcap-nest-opt-01.txt", April 1999.

9. Author's Address

 Ross Finlayson,
 Live Networks, Inc. (LIVE.COM)
 email: finlayson@live.com
 WWW: http://www.live.com/

https://datatracker.ietf.org/doc/html/rfc1112
https://datatracker.ietf.org/doc/html/rfc2365
https://datatracker.ietf.org/doc/html/bcp23
https://datatracker.ietf.org/doc/html/rfc1766
https://datatracker.ietf.org/doc/html/rfc2327
https://datatracker.ietf.org/doc/html/draft-ietf-malloc-arch-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-malloc-madcap-nest-opt-01.txt
http://www.live.com/

