
Mobile Ad hoc Networks Working Group C. Perkins
Internet-Draft Futurewei
Intended status: Standards Track S. Ratliff
Expires: April 30, 2015 Cisco
 J. Dowdell
 Airbus Defence and Space
 October 27, 2014

Dynamic MANET On-demand (AODVv2) Routing
draft-ietf-manet-aodvv2-05

Abstract

 The revised Ad Hoc On-demand Distance Vector (AODVv2) routing
 protocol is intended for use by mobile routers in wireless, multihop
 networks. AODVv2 determines unicast routes among AODVv2 routers
 within the network in an on-demand fashion, offering rapid
 convergence in dynamic topologies.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Perkins, et al. Expires April 30, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft AODVv2 October 2014

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Overview . 4
2. Terminology . 5
3. Notational Conventions 7
4. Applicability Statement 8
5. Data Structures . 10
5.1. Route Table Entry . 10
5.2. Bidirectional Connectivity and Blacklists 12
5.3. Router Clients and Client Networks 12
5.4. AODVv2 Message Header Fields and Information Elements . . 13
5.5. Sequence Numbers . 14
5.6. Enabling Alternate Metrics 14
5.7. RREQ Table: Received RREQ Messages 16

6. AODVv2 Operations on Route Table Entries 17
6.1. Evaluating Incoming Routing Information 18
6.2. Applying Route Updates To Route Table Entries 19
6.3. Route Table Entry Timeouts 20

7. Routing Messages RREQ and RREP (RteMsgs) 20
7.1. Route Discovery Retries and Buffering 21
7.2. RteMsg Structure . 22
7.3. RREQ Generation . 23
7.4. RREP Generation . 24
7.5. Handling a Received RteMsg 25
7.5.1. Additional Handling for Incoming RREQ 26
7.5.2. Additional Handling for Incoming RREP 27

7.6. Suppressing Redundant RREQ messages 27
8. Route Maintenance and RERR Messages 28
8.1. Maintaining Route Lifetimes During Packet Forwarding . . 28
8.2. Active Next-hop Router Adjacency Monitoring 29
8.3. RERR Generation . 29
8.3.1. Case 1: Undeliverable Packet 30
8.3.2. Case 2: Broken Link 31

8.4. Receiving and Handling RERR Messages 31
9. Unknown Message and TLV Types 33
10. Simple Internet Attachment 33
11. Multiple Interfaces . 34
12. AODVv2 Control Message Generation Limits 34
13. Optional Features . 34
13.1. Expanding Rings Multicast 34
13.2. Intermediate RREP 35
13.3. Precursor Lists and Notifications 35
13.3.1. Overview . 35
13.3.2. Precursor Notification Details 35

Perkins, et al. Expires April 30, 2015 [Page 2]

Internet-Draft AODVv2 October 2014

13.4. Multicast RREP Response to RREQ 36
13.5. RREP_ACK . 36
13.6. Message Aggregation 37

14. Administratively Configurable Parameters and Timer Values . . 37
14.1. Timers . 37
14.2. Protocol constants 38
14.3. Administrative (functional) controls 38
14.4. Other administrative parameters and lists 39

15. IANA Considerations . 39
15.1. AODVv2 Message Types Specification 39
15.2. Message TLV Type Specification 40
15.3. Address Block TLV Specification 40
15.4. Metric Type Number Allocation 40

16. Security Considerations 41
17. Acknowledgments . 43
18. References . 43
18.1. Normative References 43
18.2. Informative References 44

Appendix A. Example Algorithms for AODVv2 Protocol Operations . 45
A.1. Subroutines for AODVv2 Protocol Operations 47
A.2. Example Algorithms for AODVv2 RREQ Operations 47
A.2.1. Generate_RREQ . 47
A.2.2. Receive_RREQ . 48
A.2.3. Regenerate_RREQ 49

A.3. Example Algorithms for AODVv2 RREP Operations 50
A.3.1. Generate_RREP . 51
A.3.2. Receive_RREP . 52
A.3.3. Regenerate_RREP 53
A.3.4. Consume_RREP . 54

A.4. Example Algorithms for AODVv2 RERR Operations 54
A.4.1. Generate_RERR . 54
A.4.2. Receive_RERR . 55
A.4.3. Regenerate_RERR 56

A.5. Example Algorithms for AODVv2 RREP-Ack Operations 58
A.5.1. Generate_RREP_Ack 58
A.5.2. Consume_RREP_Ack 58
A.5.3. Timeout_RREP_Ack 58

Appendix B. Example RFC 5444-compliant packet formats 58
B.1. RREQ Message Format 59
B.2. RREP Message Format 61
B.3. RERR Message Format 63
B.4. RREP_ACK Message Format 64

Appendix C. Changes since revision ...-04.txt 64
Appendix D. Changes since revision ...-03.txt 65
Appendix E. Changes since revision ...-02.txt 65
Appendix F. Multi-homing Considerations 66
Appendix G. Shifting Network Prefix Advertisement Between AODVv2

 Routers . 66

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 3]

Internet-Draft AODVv2 October 2014

 Authors' Addresses . 66

1. Overview

 The revised Ad Hoc On-demand Distance Vector (AODVv2) routing
 protocol [formerly named DYMO] enables on-demand, multihop unicast
 routing among AODVv2 routers in mobile ad hod networks
 [MANETs][RFC2501]. The basic operations of the AODVv2 protocol are
 route discovery and route maintenance. Route discovery is performed
 when an AODVv2 router must transmit a packet towards a destination
 for which it does not have a route. Route maintenance is performed
 to avoid prematurely expunging routes from the route table, and to
 avoid dropping packets when an active route breaks.

 During route discovery, the originating AODVv2 router (RREQ_Gen)
 multicasts a Route Request message (RREQ) to find a route toward some
 target destination. Using a hop-by-hop regeneration algorithm, each
 AODVv2 router receiving the RREQ message records a route toward the
 originator. When the target's AODVv2 router (RREP_Gen) receives the
 RREQ, it records a route toward RREQ_Gen and generates a Route Reply
 (RREP) unicast toward RREQ_Gen. Each AODVv2 router that receives the
 RREP stores a route toward the target, and again unicasts the RREP
 toward the originator. When RREQ_Gen receives the RREP, routes have
 then been established between RREQ_Gen (the originating AODVv2
 router) and RREP_Gen (the target's AODVv2 router) in both directions.

 Route maintenance consists of two operations. In order to maintain
 active routes, AODVv2 routers extend route lifetimes upon
 successfully forwarding a packet. When a data packet is received to
 be forwarded but there is no valid route for the destination, then
 the AODVv2 router of the source of the packet is notified via a Route
 Error (RERR) message. Each upstream router that receives the RERR
 marks the route as broken. Before such an upstream AODVv2 router
 could forward a packet to the same destination, it would have to
 perform route discovery again for that destination. RERR messages
 are also used to notify upstream routers when routes break (say, due
 to loss of a link to a neighbor).

 AODVv2 uses sequence numbers to assure loop freedom [Perkins99],
 similarly to AODV. Sequence numbers enable AODVv2 routers to
 determine the temporal order of AODVv2 route discovery messages,
 thereby avoiding use of stale routing information. Unlike AODV,
 AODVv2 uses RFC 5444 message and TLV formats.

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 4]

Internet-Draft AODVv2 October 2014

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 This document uses terminology from [RFC5444].

 This document defines the following terms:

 Adjacency
 A bi-directional relationship between neighboring AODVv2 routers
 for the purpose of exchanging routing information. Not every pair
 of neighboring routers will necessarily form an adjacency.
 Monitoring of adjacencies where packets are being forwarded is
 required (see Section 8.2).
 AODVv2 Router
 An IP addressable device in the ad-hoc network that performs the
 AODVv2 protocol operations specified in this document.
 AODVv2 Sequence Number (SeqNum)
 Same as Sequence Number.
 Client Interface
 An interface that directly connects Router Clients to the Router.
 Current_Time
 The current time as maintained by the AODVv2 router.
 Disregard
 Ignore for further processing (see Section 5.4).
 Handling Router (HandlingRtr)
 HandlingRtr denotes the AODVv2 router receiving and handling an
 AODVv2 message.
 Incoming Link
 A link over which an AODVv2 Router has received a message from an
 adjacent router.
 MANET
 A Mobile Ad Hoc Network as defined in [RFC2501].
 Node
 An IP addressable device in the ad-hoc network. A node may be an
 AODVv2 router, or it may be a device in the network that does not
 perform any AODVv2 protocol operations. All nodes in this
 document are either AODVv2 Routers or else Router Clients.
 Originating Node (OrigNode)
 The Originating Node is the node that launched the application
 requiring communication with the Target Node. If OrigNode is a
 Router Client, its AODVv2 router (RREQ_Gen) has the responsibility
 to generate a AODVv2 RREQ message on behalf of OrigNode as
 necessary to discover a route.
 Reactive

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc2501

Perkins, et al. Expires April 30, 2015 [Page 5]

Internet-Draft AODVv2 October 2014

 A protocol operation is said to be "reactive" if it is performed
 only in reaction to specific events. As used in this document,
 "reactive" is synonymous with "on-demand".
 Routable Unicast IP Address
 A routable unicast IP address is a unicast IP address that is
 scoped sufficiently to be forwarded by a router. Globally-scoped
 unicast IP addresses and Unique Local Addresses (ULAs) [RFC4193]
 are examples of routable unicast IP addresses.
 Route Error (RERR)
 A RERR message is used to indicate that an AODVv2 router does not
 have a route toward one or more particular destinations.
 Route Reply (RREP)
 A RREP message is used to establish a route between the Target
 Node and the Originating Node, at all the AODVv2 routers between
 them.
 Route Request (RREQ)
 An AODVv2 router uses a RREQ message to discover a valid route to
 a particular destination address, called the Target Node. An
 AODVv2 router processing a RREQ receives routing information for
 the Originating Node.
 Router Client
 A node that requires the services of an AODVv2 router for route
 discovery and maintenance. An AODVv2 router is always its own
 client, so that its list of client IP addresses is never empty.
 Router Interface
 An interface supporting the transmission or reception of Router
 Messages.
 RREP Generating Router (RREP_Gen)
 The RREP Generating Router is the AODVv2 router that serves
 TargNode. RREP_Gen generates the RREP message to advertise a
 route towards TargNode from OrigNode.
 RREQ Generating Router (RREQ_Gen)
 The RREQ Generating Router is the AODVv2 router that serves
 OrigNode. RREQ_Gen generates the RREQ message to discover a route
 for TargNode.
 Sequence Number (SeqNum)
 Each AODVv2 router MUST maintain an unsigned integer known as the
 router's "Sequence Number". The Sequence Number guarantees the
 temporal order of routing information to maintain loop-free
 routes, and fulfills the same role as the "Destination Sequence
 Number" of DSDV [Perkins94], and as the AODV Sequence Number in

RFC 3561[RFC3561]. The value zero (0) is reserved to indicate
 that the Sequence Number for an address is unknown.
 Target Node (TargNode)
 The Target Node denotes the node towards which a route is needed.
 Type-Length-Value structure (TLV)
 A generic way to represent information as specified in [RFC5444].
 Unreachable Node (UnreachableNode)

https://datatracker.ietf.org/doc/html/rfc4193
https://datatracker.ietf.org/doc/html/rfc3561
https://datatracker.ietf.org/doc/html/rfc3561
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 6]

Internet-Draft AODVv2 October 2014

 An UnreachableNode is a node for which a valid route is not known.
 upstream
 In the direction from TargNode to OrigNode.
 Valid route
 A route that can be used for forwarding; in other words a route
 that is not Broken or Expired.

3. Notational Conventions

 This document uses the conventions found in Table 1 to describe
 information in the fields from [RFC5444].

Perkins, et al. Expires April 30, 2015 [Page 7]

https://datatracker.ietf.org/doc/html/rfc5444

Internet-Draft AODVv2 October 2014

 +------------------------+--+
 | Notation | Information Location and/or Meaning |
 +------------------------+--+
 | Route[Address] | A route table entry towards Address |
Route[Address].{field}	A field in a route table entry
<msg-hop-count>	RFC 5444 Message Header <msg-hop-count>
<msg-hop-limit>	RFC 5444 Message Header <msg-hop-limit>
AddrBlk	an RFC 5444 Address TLV Block
AddrBlk[1]	The first address slot in AddrBlk
AddrBlk[N]	The Nth address slot in AddrBlk
OrigNdx	The index of OrigNode within the AddrBlk
TargNdx	The index of TargNode within the AddrBlk
AddrTLV	an RFC 5444 Address Block TLV
AddrTLV[1]	the first item in AddrTLV
AddrTLV[N]	the Nth item in AddrTLV
Metric_TLV	Metric AddrTLV for AddrBlk
SeqNum_TLV	Sequence Number AddrTLV for AddrBlk
OrigSeqNum_TLV	Originating Node Sequence Number AddrTLV
TargSeqNum_TLV	Target Node Sequence Number AddrTLV
--	--
OrigNode	Originating Node
RREQ_Gen	AODVv2 router originating an RREQ
RREP_Gen	AODVv2 router responding to an RREQ
RteMsg	Either RREQ or RREP
RteMsg.{field}	Field in RREQ or RREP
AdvRte	a route advertised in an incoming RteMsg
HandlingRtr	Handling Router
TargNode	Target Node
UnreachableNode	Unreachable Node
 +------------------------+--+

 Table 1

4. Applicability Statement

 The AODVv2 routing protocol is a reactive routing protocol designed
 for stub (i.e., non-transit) or disconnected (i.e., from the
 Internet) mobile ad hoc networks (MANETs). AODVv2 handles a wide
 variety of mobility patterns by determining routes on-demand. AODVv2
 also handles a wide variety of traffic patterns. In networks with a
 large number of routers, AODVv2 is best suited for relatively sparse
 traffic scenarios where any particular router forwards packets to
 only a small percentage of the AODVv2 routers in the network, due to
 the on-demand nature of route discovery and route maintenance.
 AODVv2 supports routers with multiple interfaces, as long as each
 interface has its own (unicast routeable) IP address; the set of all

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 8]

Internet-Draft AODVv2 October 2014

 network interfaces supporting AODVv2 is administratively configured
 in a list (namely, AODVv2_INTERFACES).

 Although AODVv2 is closely related to AODV [RFC3561], and shares some
 features of DSR [RFC4728], AODVv2 is not interoperable with either of
 those other two protocols.

 AODVv2 is applicable to memory constrained devices, since only a
 little routing state is maintained in each AODVv2 router. Routes
 that are not needed for forwarding data do not have to be maintained,
 in contrast to proactive routing protocols that require routing
 information to all routers within the MANET be maintained.

 In addition to routing for its own local applications, each AODVv2
 router can also route on behalf of other non-routing nodes (in this
 document, "Router Clients"), reachable via Client Interfaces. Each
 AODVv2 router, if serving router clients other than itself, SHOULD be
 configured with information about the IP addresses of its clients,
 using any suitable method. In the initial state, no AODVv2 router is
 required to have information about the relationship between any other
 AODVv2 router and its Router Clients (see Section 5.3).

 The coordination among multiple AODVv2 routers to distribute routing
 information correctly for a shared address (i.e. an address that is
 advertised and can be reached via multiple AODVv2 routers) is not
 described in this document. The AODVv2 router operation of shifting
 responsibility for a routing client from one AODVv2 router to another
 is described in Appendix G. Address assignment procedures are
 entirely out of scope for AODVv2. A Router Client SHOULD NOT be
 served by more than one AODVv2 router at any one time.

 AODVv2 routers perform route discovery to find a route toward a
 particular destination. AODVv2 routers MUST must be configured to
 respond to RREQs for themselves and their clients. When AODVv2 is
 the only protocol interacting with the forwarding table, AODVv2 MAY
 be configured to perform route discovery for all unknown unicast
 destinations.

 AODVv2 only supports bidirectional links. In the case of possible
 unidirectional links, blacklists (see Section 5.2) SHOULD be used, or
 other means (e.g. adjacency establishment with only neighboring
 routers that have bidirectional communication as indicated by NHDP
 [RFC6130]) of assuring and monitoring bi-directionality are
 recommended. Otherwise, persistent packet loss or persistent
 protocol failures could occur. The cost of bidirectional link L
 (denoted Cost(L)) may depend upon the direction across the link for
 which the cost is measured. If received over a link that is

https://datatracker.ietf.org/doc/html/rfc3561
https://datatracker.ietf.org/doc/html/rfc4728
https://datatracker.ietf.org/doc/html/rfc6130

Perkins, et al. Expires April 30, 2015 [Page 9]

Internet-Draft AODVv2 October 2014

 unidirectional, metric information from incoming AODVv2 messages MUST
 NOT be used for route table updates.

 The routing algorithm in AODVv2 may be operated at layers other than
 the network layer, using layer-appropriate addresses. The routing
 algorithm makes use of some persistent state; if there is no
 persistent storage available for this state, recovery can impose a
 performance penalty (e.g., in case of AODVv2 router reboots).

5. Data Structures

5.1. Route Table Entry

 The route table entry is a conceptual data structure.
 Implementations MAY use any internal representation so long as it
 provides access to the information specified below.

 A route table entry has the following fields:

 Route.Address
 The address or address prefix of one or more TargNode(s)
 Route.PrefixLength
 The length of the address or prefix. If the value of
 Route.PrefixLength is less than the length of addresses in the
 address family used by the AODVv2 routers, the associated address
 is an address prefix, rather than an address. A PrefixLength is
 stored for every route in the route table.
 Route.SeqNum
 The Sequence Number associated with Route.Address, as obtained
 from the last packet that successfully updated this route table
 entry.
 Route.NextHopAddress
 The IP address of the adjacent AODVv2 router used for the path
 toward the Route.Address
 Route.NextHopInterface
 The interface used to send packets toward Route.Address
 Route.LastUsed
 The time that this route was last used
 Route.ExpirationTime
 The time at which this route must expire
 Route.MetricType
 The type of the metric for the route towards Route.Address
 Route.Metric
 The cost of the route towards Route.Address expressed in units
 consistent with Route.MetricType
 Route.State
 The last *known* state of the route. Route.State is one of the
 following: Active, Idle, Expired, Broken or Timed.

Perkins, et al. Expires April 30, 2015 [Page 10]

Internet-Draft AODVv2 October 2014

 Route.Precursors (optional)
 A list of upstream nodes using the route.

 A route table entry (i.e., a route) is in one of the following
 states:

 Active
 An Active route is in current use for forwarding packets. The
 route's state determines the operations that can be performed on
 the route table entry. During use, an Active route is maintained
 continuously by AODVv2 and is considered to remain active as long
 as it is used at least once during every ACTIVE_INTERVAL. When a
 route is no longer Active, it becomes an Idle route.
 Idle
 An Idle route can be used for forwarding packets, even though it
 is not in current use. If an Idle route is used to forward a
 packet, it becomes an Active route once again. After an Idle
 route remains idle for MAX_IDLETIME, it becomes an Expired route.
 Expired
 After a route has been idle for too long, it expires, and may no
 longer be used for forwarding packets. An Expired route is not
 used for forwarding, but the sequence number information can be
 maintained until the destination sequence number has had no
 updates for MAX_SEQNUM_LIFETIME; after that time, old sequence
 number information is considered no longer valuable and the
 Expired route MUST BE expunged.
 Broken
 A route marked as Broken cannot be used for forwarding packets but
 still has valid destination sequence number information. When the
 link to a route's next hop is broken, the route is marked as being
 Broken, and afterwards the route MAY NOT be used.
 Timed
 The expiration of a Timed route is controlled by the
 Route.ExpirationTime time of the route table entry (instead of
 MAX_IDLETIME). Until that time, a Timed route can be used for
 forwarding packets. Afterwards, the route must be Expired (or
 expunged).

 MAX_SEQNUM_LIFETIME is the time after a reboot during which an AODVv2
 router MUST NOT transmit any routing messages. Thus, if all other
 AODVv2 routers expunge routes to the rebooted router after that time
 interval, the rebooted AODVv2 router's sequence number will not be
 considered stale by any other AODVv2 router in the MANET.

Perkins, et al. Expires April 30, 2015 [Page 11]

Internet-Draft AODVv2 October 2014

5.2. Bidirectional Connectivity and Blacklists

 To avoid repeated failure of Route Discovery, an AODVv2 router
 (HandlingRtr) handling a RREP message MUST attempt to verify
 connectivity towards RREQ_Gen. This MAY be done by including the
 Acknowledgement Request (AckReq) message TLV (see Section 15.2) in
 the RREP. In reply to an AckReq, an RREP_ACK message message MUST be
 sent. If the verification is not received within
 UNICAST_MESSAGE_SENT_TIMEOUT, HandlingRtr MUST put the upstream
 neighbor in the blacklist. RREQs received from a blacklisted router,
 or any router over a link that is known to be incoming-only, MUST NOT
 be regenerated by HandlingRtr. However, the upstream neighbor SHOULD
 NOT be permanently blacklisted; after a certain time
 (MAX_BLACKLIST_TIME), it SHOULD once again be considered as a viable
 upstream neighbor for route discovery operations.

 For this purpose, a list of blacklisted routers along with their time
 of removal SHOULD be maintained:

 Blacklist.Router
 The IP address of the router that did not verify bidirectional
 connectivity.
 Blacklist.RemoveTime
 The time at which Blacklist.Router MAY be removed from the
 blacklist.

5.3. Router Clients and Client Networks

 An AODVv2 router may offer routing services to other nodes that are
 not AODVv2 routers; such nodes are defined as Router Clients in this
 document.

 For this purpose, CLIENT_ADDRESSES must be configured on each AODVv2
 router with the following information:

 Client IP address
 The IP address of the node that requires routing service from the
 AODVv2 router.
 Client Prefix Length
 The length of the routing prefix associated with the client IP
 address.

 If the Client Prefix Length is not the full length of the Client IP
 address, then the prefix defines a Client Network. If an AODVv2
 router is configured to serve a Client Network, then the AODVv2
 router MUST serve every node that has an address within the range
 defined by the routing prefix of the Client Network. The list of

Perkins, et al. Expires April 30, 2015 [Page 12]

Internet-Draft AODVv2 October 2014

 Routing Clients for an AODVv2 router is never empty, since an AODVv2
 router is always its own client as well.

5.4. AODVv2 Message Header Fields and Information Elements

 In its default mode of operation, AODVv2 sends messages using the
 parameters for port number and IP protocol specified in [RFC5498] to
 carry protocol packets. By default, AODVv2 messages are sent with
 the IP destination address set to the link-local multicast address
 LL-MANET-Routers [RFC5498] unless otherwise specified. Therefore,
 all AODVv2 routers MUST subscribe to LL-MANET-Routers [RFC5498] to
 receive AODVv2 messages. In order to reduce multicast overhead,
 regenerated multicast packets in MANETs SHOULD be done according to
 methods specified in [RFC6621]. AODVv2 does not specify which method
 should be used to restrict the set of AODVv2 routers that have the
 responsibility to regenerate multicast packets. Note that multicast
 packets MAY be sent via unicast. For example, this may occur for
 certain link-types (non-broadcast media), for manually configured
 router adjacencies, or in order to improve robustness.

 The IPv4 TTL (IPv6 Hop Limit) field for all packets containing AODVv2
 messages is set to 255. If a packet is received with a value other
 than 255, any AODVv2 message contained in the packet MUST be
 disregarded by AODVv2. This mechanism, known as "The Generalized TTL
 Security Mechanism" (GTSM) [RFC5082] helps to assure that packets
 have not traversed any intermediate routers.

 IP packets containing AODVv2 protocol messages SHOULD be given
 priority queuing and channel access.

 AODVv2 messages are transmitted in messages that conform to the
 packet and message format specified in [RFC5444]. Here is a brief
 summary of the format.

 A packet formatted according to RFC 5444 contains zero or more
 messages.
 A message contains a message header, message TLV block, and zero
 or more address blocks.
 Each address block MAY also have an associated TLV block; this TLV
 block MAY encode multiple TLVs. Each such TLV may include an
 array of values. The list of TLV values may be associated with
 various subsets of the addresses in the address block.

 If a packet contains only a single AODVv2 message and no packet TLVs,
 it need only include a minimal Packet-Header [RFC5444]. The length
 of an address (32 bits for IPv4 and 128 bits for IPv6) inside an
 AODVv2 message is indicated by the msg-addr-length (MAL) in the msg-
 header, as specified in [RFC5444].

https://datatracker.ietf.org/doc/html/rfc5498
https://datatracker.ietf.org/doc/html/rfc5498
https://datatracker.ietf.org/doc/html/rfc5498
https://datatracker.ietf.org/doc/html/rfc6621
https://datatracker.ietf.org/doc/html/rfc5082
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 13]

Internet-Draft AODVv2 October 2014

5.5. Sequence Numbers

 Sequence Numbers allow AODVv2 routers to evaluate the freshness of
 routing information. Each AODVv2 router in the network MUST maintain
 its own sequence number. Each RREQ and RREP generated by an AODVv2
 router includes that sequence number. Each AODVv2 router MUST make
 sure that its sequence number is unique and monotonically increasing.
 This can be achieved by incrementing it with every RREQ or RREP it
 generates.

 Every router receiving a RREQ or RREP can thus use the Sequence
 Number of a RREQ or RREP as information concerning the freshness of
 the packet's route update: if the new packet's Sequence Number is
 lower than the one already stored in the route table, its information
 is considered stale.

 As a consequence, loop freedom is assured.

 An AODVv2 router increments its SeqNum as follows. Most of the time,
 SeqNum is incremented by simply adding one (1). But when the SeqNum
 has the value of the largest possible number representable as a
 16-bit unsigned integer (i.e., 65,535), it MUST be incremented by
 setting to one (1). In other words, the sequence number after 65,535
 is 1.

 An AODVv2 router SHOULD maintain its SeqNum in persistent storage.
 If an AODVv2 router's SeqNum is lost, it MUST take the following
 actions to avoid the danger of routing loops. First, the AODVv2
 router MUST invalidate all route table entries, by setting
 Route.State = Broken for each entry. Furthermore the AODVv2 router
 MUST wait for at least MAX_SEQNUM_LIFETIME before transmitting or
 regenerating any AODVv2 RREQ or RREP messages. If an AODVv2 protocol
 message is received during this waiting period, the AODVv2 router
 SHOULD perform normal route table entry updates, but not forward the
 message to other nodes. If a data packet is received for forwarding
 to another destination during this waiting period, the AODVv2 router
 MUST transmit a RERR message indicating that no route is available.
 At the end of the waiting period the AODVv2 router sets its SeqNum to
 one (1) and begins performing AODVv2 protocol operations again.

5.6. Enabling Alternate Metrics

 AODVv2 route selection in MANETs depends upon associating metric
 information with each route table entry. When presented with
 candidate route update information, deciding whether to use the
 update involves evaluating the metric. Some applications may require
 metric information other than Hop Count, which has traditionally been
 the default metric associated with routes in MANET. Unfortunately,

Perkins, et al. Expires April 30, 2015 [Page 14]

Internet-Draft AODVv2 October 2014

 it is well known that reliance on Hop Count can cause selection of
 the worst possible route in many situations.

 It is beyond the scope of this document to describe how applications
 specify route selection at the time they launch processing. One
 possibility would be to provide a route metric preference as part of
 the library routines for opening sockets. In view of the above
 considerations, it is important to enable route selection based on
 metric information other than Hop Count -- in other words, based on
 "alternate metrics". Each such alternate metric measures a "cost" of
 using the associated route, and there are many different kinds of
 cost (latency, delay, monetary, energy, etc.). The range and data
 type of each such alternate metric may be different. For instance,
 the data type might be integers, or floating point numbers, or
 restricted subsets thereof.

 The most significant change when enabling use of alternate metrics is
 to require the possibility of multiple routes to the same
 destination, where the "cost" of each of the multiple routes is
 measured by a different metric. Moreover, the method by which route
 updates are tested for usefulness has to be slightly generalized to
 depend upon a more abstract method of evaluation which, in this
 document, is named "Cost(R)", where 'R' is the route for which the
 Cost is to be evaluated. From the above, the route table information
 for 'R' must always include the type of metric by which Cost(R) is
 evaluated, so the metric type does not have to be shown as a distinct
 parameter for Cost(R). Since determining loop freedom is known to
 depend on comparing the Cost(R) of route update information to the
 Cost(R) of an existing stored route using the same metric, AODVv2
 must also be able to invoke an abstract routine which in this
 document is called "LoopFree(R1, R2)". LoopFree(R1, R2) returns TRUE
 when, (under the assumption of nondecreasing SeqNum during Route
 Discovery) given that R2 is loop-free and Cost(R2) is the cost of
 route R2, Cost(R1) is known to guarantee loop freedom of the route
 R1. In this document, an AODVv2 router will only invoke LoopFree
 (AdvRte, Route), for routes AdvRte and Route which use the same
 metric to the same destination. AdvRte is the route advertised in an
 incoming RREQ or RREP, and is used as parameter R1 for LoopFree.
 Route is a route already existing in the AODVv2 router's route table,
 and is used as parameter R2 for LoopFree.

 Generally, HopCount may still be considered the default metric for
 use in MANETs, notwithstanding the above objections. Each metric has
 to have a Metric Type, and the Metric Type is allocated by IANA as
 specified in [RFC6551]. Each Route has to include the Metric Type as
 part of the route table entry for that route. Hop Count has Metric
 Type assignment 3. The Cost of a route using Metric Type 3 is simply
 the hop count between the router and the destination. Using Metric

https://datatracker.ietf.org/doc/html/rfc6551

Perkins, et al. Expires April 30, 2015 [Page 15]

Internet-Draft AODVv2 October 2014

 Type 3, LoopFree (AdvRte, Route) is TRUE when Cost(AdvRte) <=
 Cost(Route). The specification of Cost(R) and LoopFree(AdvRte,
 Route) for metric types other than 3 is beyond the scope of this
 document.

 Whenever an AODV router receives metric information in an incoming
 message, the value of the metric is as measured by the transmitting
 router, and does not reflect the cost of traversing the incoming
 link. In order to simplify the description of storing accrued route
 costs in the route table, the Cost() function is also defined to
 return the value of traversing a link 'L'. In other words, the
 domain of the Cost() function is enlarged to include links as well as
 routes. For Metric Type 3, (i.e., the HopCount metric) Cost(L) = 1
 for all links L. The specification of Cost(L) for metric types other
 than 3 is beyond the scope of this document. Whether the argument of
 the Cost() function is a link or a route will, in this document,
 always be clear. As a natural result of the way routes are looked up
 according to conformant metric type, all intermediate routers
 handling a RteMsg will assign the same metric type to all metric
 information in the RteMsg.

 For some metrics, a maximum value is defined, namely MAX_METRIC[i]
 where 'i' is the Metric Type. AODVv2 does not store routes that cost
 more than MAX_METRIC[i]. MAX_METRIC[3] is defined to be
 MAX_HOPCOUNT, where as before 3 is the Metric Type of the HopCount
 metric. MAX_HOPCOUNT MUST be larger than the AODVv2 network
 diameter. Otherwise, AODVv2 protocol messages may not reach their
 intended destinations.

5.7. RREQ Table: Received RREQ Messages

 Two incoming RREQ messages are considered to be "comparable" if they
 were generated by the same AODVv2 router in order to discover a route
 for the same destination with the same metric type. According to
 that notion of comparability, when RREQ messages are flooded in a
 MANET, an AODVv2 router may well receive comparable RREQ messages
 from more than one of its neighbors. A router, after receiving an
 RREQ message, MUST check against previous RREQs to assure that its
 response message would contain information that is not redundant (see

Section 7.6 regarding suppression of redundant RREQ messages).
 Otherwise, multicast RREQs are likely to be regenerated again and
 again with almost no additional benefit, but generating a great deal
 of unnecessary signaling traffic and interference.

 To avoid transmission of redundant RREQ messages, while still
 enabling the proper handling of earlier RREQ messages that may have
 somehow been delayed in the network, it is needed for each AODVv2

Perkins, et al. Expires April 30, 2015 [Page 16]

Internet-Draft AODVv2 October 2014

 router to keep a list of the certain information about RREQ messages
 which it has recently received.

 This list is called the AODVv2 Received RREQ Table -- or, more
 briefly, the RREQ Table. Two AODVv2 RREQ messages are comparable if:

 o they have the same metric type
 o they have the same OrigNode and TargNode addresses

 Each entry in the RREQ Table has the following fields:

 o OrigNode address
 o TargNode address
 o OrigNode Sequence Number
 o TargNode Sequence Number (if present in RREQ)
 o Metric Type
 o Metric
 o Timestamp

 The RREQ Table is maintained so that no two entries in the RREQ
 Table are comparable -- that is, all RREQs represented in the RREQ
 Table either have different OrigNode addresses, different TargNode
 addresses, or different metric types. If two RREQs have the same
 metric type and OrigNode and Targnode addresses, the information from
 the one with the older Sequence Number is not needed in the table; in
 case they have the same Sequence Number, the one with the greater
 Metric value is not needed; in case they have the same Metric as
 well, it does not matter which table entry is maintained. Whenever a
 RREQ Table entry is updated, its Timestamp field should also be
 updated to reflect the Current_Time.

 When optional multicast RREP (see Section 13.4) is used to enable
 selection from among multiple possible return routes, an AODVv2
 router can eliminate redundant RREP messages using the analogous
 mechanism along with a RREP Table. The description in this section
 only refers to RREQ multicast messages.

 Protocol handling of RERR messages eliminates the need for tracking
 RERR messages, since the rules for RERR regeneration prevent the
 phenomenon of redundant retansmission that affects RREQ and RREP
 multicast.

6. AODVv2 Operations on Route Table Entries

 In this section, operations are specified for updating the route
 table due to timeouts and route updates within AODVv2 messages.
 Route update information in AODVv2 messages includes IP addresses,
 along with the SeqNum and prefix length associated with each IP

Perkins, et al. Expires April 30, 2015 [Page 17]

Internet-Draft AODVv2 October 2014

 address, and including the Metric measured from the node transmitting
 the AODVv2 message to the IP address in the route update. IP
 addresses and prefix length are encoded within an RFC 5444 AddrBlk,
 and the SeqNum and Metric associated with each address in the AddrBlk
 are encoded in RFC 5444 AddrTLVs. A RREQ message advertises a route
 to OrigNode, and a RREP message analogously advertises a route to
 TargNode. In this section, RteMsg is either RREQ or RREP, and AdvRte
 is the route advertised by the RteMsg. All SeqNum comparisons use
 signed 16-bit arithmetic.

6.1. Evaluating Incoming Routing Information

 If the incoming RteMsg does not have a Metric Type Message TLV, then
 the metric information contained by AdvRte is considered to be of
 type DEFAULT_METRIC_TYPE -- in other words, 3 (for HopCount) unless
 changed by administrative action. The AODVv2 router (HandlingRtr)
 checks the advertised route (AdvRte) to see whether the AdvRte should
 be used to update an existing route table entry. HandlingRtr
 searches its route table to see if there is a route table entry with
 the same Metric Type as the AdvRte, matching AdvRte.Address. If not,
 HandlingRtr creates a route table entry for AdvRte.Address as
 described in Section 6.2. Otherwise, HandlingRtr compares the
 incoming routing information for AdvRte against the already stored
 routing information in the route table entry (Route) for
 AdvRte.Address, as described next.

 Route[AdvRte.Address] uses the same metric type as the incoming
 routing information, and the route entry contains Route.SeqNum,
 Route.Metric, and Route.State. Define AdvRte.SeqNum and
 AdvRte.Metric to be the corresponding routing information for
 Route.Address in the incoming RteMsg. Define AdvRte.Cost to be
 (AdvRte.Metric + Cost(L)), where L is the link from which the
 incoming message was received. The incoming routing information is
 classified as follows:

 1. Stale:: AdvRte.SeqNum < Route.SeqNum :
 If AdvRte.SeqNum < Route.SeqNum the incoming information is stale.
 Using stale routing information is not allowed, since that might
 result in routing loops. In this case, HandlingRtr MUST NOT
 update the route table entry using the routing information for
 AdvRte.Address.
 2. Unsafe against loops:: (TRUE != LoopFree (AdvRte, Route)) :
 If AdvRte is not Stale (as in (1) above), AdvRte.Cost is next
 considered to insure loop freedom. If (TRUE != LoopFree (AdvRte,
 Route)) (see Section 5.6), then the incoming AdvRte information is
 not guaranteed to prevent routing loops, and it MUST NOT be used
 to update any route table entry.
 3. More costly::

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 18]

Internet-Draft AODVv2 October 2014

 (AdvRte.Cost >= Route.Metric) && (Route.State != Broken)
 When AdvRte.SeqNum is the same as in a valid route table entry,
 and LoopFree (AdvRte, Route) assures loop freedom, incoming
 information still does not offer any improvement over the existing
 route table information if AdvRte.Cost >= Route.Metric. Using
 such incoming routing information to update a route table entry is
 not recommended.
 4. Offers improvement::
 Advertised routing information that does not match any of the
 above criteria is better than existing route table information and
 SHOULD be used to improve the route table. The following pseudo-
 code illustrates whether advertised routing information should be
 used to update an existing route table entry as described in

Section 6.2.

 (AdvRte.SeqNum > Route.SeqNum) OR
 ((AdvRte.SeqNum == Route.SeqNum) AND
 [(AdvRte.Cost < Route.Metric) OR
 ((Route.State == Broken) && LoopFree (AdvRte, Route))])

 The above logic corresponds to placing the following conditions
 (compared to the existing route table entry) on the advertised
 route update before it can be used:

 * it is more recent, or
 * it is not stale and is less costly, or
 * it can safely repair a broken route.

6.2. Applying Route Updates To Route Table Entries

 To apply the route update, a route table entry for AdvRte.Address is
 either found to already exist in the route table, or else a new route
 table entry for AdvRte.Address is created and inserted into the route
 table. If the route table entry already exists, and the state is
 Expired or Broken, then the state is reset to be Idle. If the route
 table entry had to be created, the state is set to be Active. The
 route table entry is populated with the following information:

 o If AdvRte.PrefixLength exists, then Route.PrefixLength :=
 AdvRte.PrefixLength. Otherwise, Route.PrefixLength := maximum
 length for address family (either 32 or 128).
 o Route.SeqNum := AdvRte.SeqNum
 o Route.NextHopAddress := IP.SourceAddress (i.e., an address of the
 node from which the RteMsg was received)
 o Route.NextHopInterface is set to the interface on which RteMsg was
 received
 o Route.MetricType := AdvRte.MetricType.
 o Route.Metric := AdvRte.Cost

Perkins, et al. Expires April 30, 2015 [Page 19]

Internet-Draft AODVv2 October 2014

 o Route.LastUsed := Current_Time
 o If RteMsg.VALIDITY_TIME is included, then
 Route.ExpirationTime := Current_Time + RteMsg.VALIDITY_TIME,
 otherwise, Route.ExpirationTime := Current_Time + (ACTIVE_INTERVAL
 + MAX_IDLETIME).

 With these assignments to the route table entry, a route has been
 made available, and the route can be used to send any buffered data
 packets and subsequently to forward any incoming data packets for
 Route.Address. An updated route entry also fulfills any outstanding
 route discovery (RREQ) attempts for Route.Address.

6.3. Route Table Entry Timeouts

 During normal operation, AODVv2 does not require any explicit
 timeouts to manage the lifetime of a route. However, the route table
 entry MUST be examined before using it to forward a packet, as
 discussed in Section 8.1. Any required expiry or deletion can occur
 at that time. Nevertheless, it is permissible to implement timers
 and timeouts to achieve the same effect.

 At any time, the route table can be examined and route table entries
 can be expunged according to their current state at the time of
 examination, as follows.

 o An Active route MUST NOT be expunged.
 o An Idle route SHOULD NOT be expunged.
 o An Expired route MAY be expunged (least recently used first).
 o A route MUST be expunged if (Current_Time - Route.LastUsed) >=
 MAX_SEQNUM_LIFETIME.
 o A route MUST be expunged if Current_Time >= Route.ExpirationTime

 If precursor lists are maintained for the route (as described in
Section 13.3) then the precursor lists must also be expunged at the

 same time that the route itself is expunged.

7. Routing Messages RREQ and RREP (RteMsgs)

 AODVv2 message types RREQ and RREP are together known as Routing
 Messages (RteMsgs) and are used to discover a route between an
 Originating and Target Node, denoted here by OrigNode and TargNode.
 The constructed route is bidirectional, enabling packets to flow
 between OrigNode and TargNode. RREQ and RREP have similar
 information and function, but have some differences in their rules
 for handling. When a node receives a RREQ or a RREP, the node then
 creates or updates a route to the OrigNode or the TargNode
 respectively. The main difference between the two messages is that

Perkins, et al. Expires April 30, 2015 [Page 20]

Internet-Draft AODVv2 October 2014

 RREQ messages are typically multicast to solicit a RREP, whereas RREP
 is typically unicast as a response to RREQ.

 When an AODVv2 router needs to forward a data packet from a node
 (OrigNode) in its set of router clients, and it does not have a
 forwarding route toward the packet's IP destination address
 (TargNode), the AODVv2 router (RREQ_Gen) generates a RREQ (as
 described in Section 7.3) to discover a route toward TargNode.
 Subsequently RREQ_Gen awaits reception of an RREP message (see

Section 7.4) or other route table update (see Section 6.2) to
 establish a route toward TargNode. The RREQ message contains routing
 information to enable RREQ recipients to route packets back to
 OrigNode, and the RREP message contains routing information enabling
 RREP recipients to route packets to TargNode.

7.1. Route Discovery Retries and Buffering

 After issuing a RREQ, as described above RREQ_Gen awaits a RREP
 providing a bidirectional route toward Target Node. If the RREP is
 not received within RREQ_WAIT_TIME, RREQ_Gen MAY retry the Route
 Discovery by generating another RREQ. Route Discovery SHOULD be
 considered to have failed after DISCOVERY_ATTEMPTS_MAX and the
 corresponding wait time for a RREP response to the final RREQ. After
 the attempted Route Discovery has failed, RREQ_Gen MUST wait at least
 RREQ_HOLDDOWN_TIME before attempting another Route Discovery to the
 same destination.

 To reduce congestion in a network, repeated attempts at route
 discovery for a particular Target Node SHOULD utilize a binary
 exponential backoff.

 Data packets awaiting a route SHOULD be buffered by RREQ_Gen. This
 buffer SHOULD have a fixed limited size (BUFFER_SIZE_PACKETS or
 BUFFER_SIZE_BYTES). Determining which packets to discard first is a
 matter of policy at each AODVv2 router; in the absence of policy
 constraints, by default older data packets SHOULD be discarded first.
 Buffering of data packets can have both positive and negative effects
 (albeit usually positive). Nodes without sufficient memory available
 for buffering SHOULD be configured to disable buffering by
 configuring BUFFER_SIZE_PACKETS == 0 and BUFFER_SIZE_BYTES == 0.
 Doing so will affect the latency required for launching TCP
 applications to new destinations.

 If a route discovery attempt has failed (i.e., DISCOVERY_ATTEMPTS_MAX
 attempts have been made without receiving a RREP) to find a route
 toward the Target Node, any data packets buffered for the
 corresponding Target Node MUST BE dropped and a Destination
 Unreachable ICMP message (Type 3) SHOULD be delivered to the source

Perkins, et al. Expires April 30, 2015 [Page 21]

Internet-Draft AODVv2 October 2014

 of the data packet. The code for the ICMP message is 1 (Host
 unreachable error). If RREQ_Gen is not the source (OrigNode), then
 the ICMP is sent over the interface from which OrigNode sent the
 packet to the AODVv2 router.

7.2. RteMsg Structure

 AODVv2 specifies that all control plane messages between Routers
 SHOULD use the Generalised Mobile Ad-hoc Network Packet and Message
 Format [RFC5444], which provides a multiplexed transport for multiple
 protocols. AODVv2 therefore specifies Route Messages that have
 components that map to message elements in RFC5444 but, in line with
 the concept of use, does not specify which order the messages should
 be arranged in an RFC5444 packet. An implementation of an RFC5444
 parser may choose to optimise the content of certain message elements
 to reduce control plane overhead.

 AODVv2 uses the following RFC5444 message elements:

 o Address of the originating node, OrigNode, which should be mapped
 to the <msg-orig-addr> element in <msg-header>.
 o Message Hop Count, <msg-hop-count>, which should be mapped to the
 <msg-hop-count> element in <msg-header>.
 o Message Hop Limit, <msg-hop-limit>, which should be mapped to the
 <msg-hop-limit> element in <msg-header>.

 RteMsgs have the following general format:

 +---+
 | RFC 5444 Message Header |
 +---+
 | MsgTLVs (optional) |
 +---+
 | AddrBlk := {OrigNode,TargNode} |
 +---+
 | AddrBlk.PrefixLength[OrigNode OR TargNode] (Optional) |
 +---+
 | OrigSeqNum_TLV AND/OR TargSeqNum_TLV |
 +---+
 | Metric TLV {OrigNode, TargNode} |
 +---+

 Figure 1: RREQ and RREP (RteMsg) message structure

 Required RFC 5444 Message Header Fields

 * <msg-hop-limit>

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 22]

Internet-Draft AODVv2 October 2014

 * Metric Type Message TLV, if Metric Type != 3
 Optional RFC 5444 Message Header Fields

 * <msg-hop-count>
 * Metric Type TLV (Metric Type for Metric AddrTLV)
 * AckReq TLV (Acknowledgement Requested)
 AddrBlk
 The Address Block contains the IP addresses for RREQ Originating
 and Target Node (OrigNode and TargNode). For both RREP and RREQ,
 OrigNode and TargNode are as identified in the context of the RREQ
 message originator.
 OrigSeqNum AND/OR TargSeqNum AddrTLV
 At least one of OrigSeqNum or TargSeqNum Address Block TLV is
 REQUIRED and carries the destination sequence numbers associated
 with OrigNode or TargNode respectively.
 Metric AddrTLV
 The Metric AddrTLV is REQUIRED and carries the route metric
 information associated with either OrigNode or TargNode.

 RteMsgs carry information about OrigNode and TargNode. Since their
 addresses may appear in arbitrary order within the RFC 5444 AddrBlk,
 the OrigSeqNum and/or TargSeqNum TLVs must be used to distinguish the
 nature of the node addresses present in the AddrBlk. In each RteMsg,
 either the OrigSeqNum TLV or TargSeqNum TLV MUST appear. Both TLVs
 MAY appear in the same RteMsg when SeqNum information is available
 for both OrigNode and TargNode, but each one MUST NOT appear more
 than once, because there is only one OrigNode and only one TargNode
 address in the AddrBlk. The TLV flag thassingleindex MUST be set for
 these TLVs.

 If the OrigSeqNum TLV appears, then the address range for the
 OrigSeqNum TLV MUST be limited to a single position in the AddrBlk.
 That position is used as the OrigNdx, identifying the OrigNode
 address. The other address in the AddrBlk is, by elimination, the
 TargNode address, and TargNdx is set appropriately.

 Otherwise, if the TargSeqNum TLV appears, then the address range for
 the TargSeqNum TLV MUST be limited to a single position in the
 AddrBlk. That position is used as the TargNdx, identifying the
 TargNode address. The other address in the AddrBlk is, by
 elimination, the OrigNode address, and OrigNdx is set appropriately.

7.3. RREQ Generation

 The AODVv2 router generating the RREQ (RREQ_Gen) on behalf of its
 client OrigNode follows the steps in this section. OrigNode MUST be
 a unicast address. The order of protocol elements is illustrated
 schematically in Figure 1.

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 23]

Internet-Draft AODVv2 October 2014

 1. RREQ_Gen MUST increment its SeqNum by one (1) according to the
 rules specified in Section 5.5. This assures that each node
 receiving the RREQ will update its route table using the
 information in the RREQ.
 2. <msg-hop-limit> SHOULD be set to MAX_HOPCOUNT.
 3. <msg-hop-count>, if included, MUST be set to 0.

 * This RFC 5444 constraint causes certain RREQ payloads to incur
 additional enlargement (otherwise, <msg-hop-count> could often
 be used as the metric).
 4. RREQ.AddrBlk := {OrigNode.Addr, TargNode.Addr}

 Let OrigNdx and TargNdx denote the indexes of OrigNode and
 TargNode respectively in the RREQ.AddrBlk list.
 5. If Route[OrigNode].PrefixLength/8 is equal to the number of bytes
 in the addresses of the RREQ (4 for IPv4, 16 for IPv6), then no
 <prefix-length> is included with the RREQ.AddrBlk. Otherwise,
 RREQ.PrefixLength[OrigNdx] := Route[OrigNode].PrefixLength
 according to the rules of RFC 5444 AddrBlk encoding.
 6. RREQ.OrigSeqNum_TLV[OrigNdx] := RREQ_Gen's SeqNum
 7. RREQ.TargSeqNum_TLV[TargNdx] := TargNode's SeqNum (only if known)

 RREQ_Gen SHOULD include TargNode's SeqNum, if a previous value of
 the TargNode's SeqNum is known (e.g., from an invalid route table
 entry using longest-prefix matching). If TargNode's SeqNum is
 not included, AODVv2 routers handling the RREQ assume that
 RREQ_Gen does not have that information.
 8. RREQ.Metric_TLV[OrigNdx] := Route[OrigNode].Metric

 An example RREQ message format is illustrated in Appendix B.1.

7.4. RREP Generation

 This section specifies the generation of an RREP by an AODVv2 router
 (RREP_Gen) that provides connectivity for the Target Node (TargNode)
 of a RREQ, thus enabling the establishment of a route between
 OrigNode and TargNode. If TargNode is not a unicast IP address the
 RREP MUST NOT be generated, and processing for the RREQ is complete.
 Before transmitting a RREP, the routing information of the RREQ is
 processed as specified in Section 6.2; after such processing,
 RREP_Gen has an updated route to OrigNode as well as TargNode. The
 basic format of an RREP conforms to the structure for RteMsgs as
 shown in Figure 1.

 RREP_Gen generates the RREP as follows:

 1. RREP_Gen checks the RREQ against recently received RREQ
 information as specified in Section 7.6. If a previously

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 24]

Internet-Draft AODVv2 October 2014

 received RREQ has made the information in the incoming RREQ to
 be redundant, no RREP is generated and processing is complete.
 2. RREP_Gen MUST increment its SeqNum by one (1) according to the
 rules specified in Section 5.5.
 3. RREP.AddrBlk := {OrigNode.Addr, TargNode.Addr}

 Let OrigNdx and TargNdx denote the indexes of OrigNode and
 TargNode respectively in the RREQ.AddrBlk list.
 4. RREP.TargSeqNum_TLV[TargNdx] := RREP_Gen's SeqNum
 5. If Route[TargNode].PrefixLength/8 is equal to the number of
 bytes in the addresses of the RREQ (4 for IPv4, 16 for IPv6),
 then no <prefix-length> is included with the RREP.AddrBlk.
 Otherwise, RREP.PrefixLength[TargNdx] :=
 Route[TargNode].PrefixLength according to the rules of RFC 5444
 AddrBlk encoding.
 6. If (DEFAULT != Route[TargNode].MetricType) then include the
 Metric Type message TLV and assign RREP.MetricType[TargNdx] :=
 Route[TargNode].MetricType
 7. RREP.Metric_TLV[TargNdx] := Route[TargNode].Metric
 8. <msg-hop-count>, if included, MUST be set to 0.
 9. <msg-hop-limit> SHOULD be set to RREQ.<msg-hop-count>.
 10. IP.DestinationAddress := Route[OrigNode].NextHop

 An example message format for RREP is illustrated in Appendix B.2.

7.5. Handling a Received RteMsg

 Before an AODVv2 router can make use of a received RteMsg (i.e., RREQ
 or RREP), the router first must verify that the RteMsg is permissible
 according to the following steps. OrigNdx and TargNdx are set
 according to the rules in Section 7.2. For RREQ, RteMsg.Metric is
 Metric_TLV[OrigNdx]. For RREP, RteMsg.Metric is Metric_TLV[TargNdx].
 In this section (unless qualified by additional description such as
 "upstream" or "neighboring") all occurrences of the term "router"
 refer to the AODVv2 router handling the received RteMsg.

 1. A router MUST handle RteMsgs only from neighbors as specified in
Section 5.4. RteMsgs from other sources MUST be disregarded.

 2. The router examines the RteMsg to ascertain that it contains the
 required information: <msg-hop-limit>, TargNode.Addr,
 OrigNode.Addr, RteMsg.Metric, and either RteMsg.OrigSeqNum or
 RteMsg.TargSeqNum. If the required information does not exist,
 the message is disregarded.
 3. The router checks that OrigNode.Addr and TargNode.Addr are valid
 routable unicast addresses. If not, the message is disregarded.
 4. The router checks the Metric Type MsgTLV (if present) to assure
 that the Metric Type associated with the Metric AddrTLV

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 25]

Internet-Draft AODVv2 October 2014

 information in the RREQ or RREP is known. If not, the message is
 disregarded.

 * DISCUSSION: or, can change the AddrBlk metric to use HopCount,
 e.g., measured from <msg-hop-count>.
 5. If (MAX_METRIC[RteMsg.MetricType] - Cost(L)) <= RteMsg.Metric,
 the RteMsg is disregarded, where Cost(L) denotes the cost of
 traversing the incoming link (i.e., as measured by the network
 interface receiving the incoming RteMsg).

 An AODVv2 router handles a permissible RteMsg according to the
 following steps.

 1. The router MUST process the routing information for OrigNode and
 TargNode contained in the RteMsg as specified in Section 6.1.
 2. If RteMsg.<msg-hop-limit> is zero (0), no further action is
 taken, and the RteMsg is not regenerated. Otherwise, the router
 MUST decrement RteMsg.<msg-hop-limit>.
 3. If the RteMsg.<msg-hop-count> is present, and MAX_HOPCOUNT <=
 <msg-hop-count>, then no further action is taken. Otherwise, the
 router MUST increment RteMsg.<msg-hop-count>

 Further actions to transmit an updated RteMsg depend upon whether the
 incoming RteMsg is an RREP or an RREQ.

7.5.1. Additional Handling for Incoming RREQ

 o By sending a RREQ, a router advertises that it will route for
 addresses contained in the RteMsg based on the information
 enclosed. The router MAY choose not to send the RREQ, though not
 resending the RREQ could decrease connectivity in the network or
 result in nonoptimal paths. The circumstances under which a
 router might choose not to re-transmit a RREQ are not specified in
 this document. Some examples might include the following:

 * The router is already heavily loaded and does not want to
 advertise routing for more traffic
 * The router recently transmitted identical routing information
 (e.g. in a RREQ advertising the same metric) Section 7.6
 * The router is low on energy and has to reduce energy expended
 for sending protocol messages or packet forwarding

 Unless the router is prepared to send a RREQ, it halts processing.
 o If the upstream router sending a RREQ is in the Blacklist, and
 Current_Time < Blacklist.RemoveTime, then the router receiving
 that RREQ MUST NOT transmit any outgoing RteMsg, and processing is
 complete.

Perkins, et al. Expires April 30, 2015 [Page 26]

Internet-Draft AODVv2 October 2014

 o Otherwise, if the upstream router is in the Blacklist, and
 Current_Time >= Blacklist.RemoveTime, then the upstream router
 SHOULD be removed from the Blacklist, and message processing
 continued.
 o The incoming RREQ MUST be checked against previously received
 information from the RREQ Table (Section 7.6). If the information
 in the incoming RteMsg is redundant, then then no further action
 is taken.
 o If TargNode is a client of the router receiving the RREQ, then the
 router generates a RREP message as specified in Section 7.4, and
 subsequently processing for the RREQ is complete. Otherwise,
 processing continues as follows.
 o If (DEFAULT != Route[OrigNode].MetricType) then include the Metric
 Type message TLV and assign RREQ.MetricType :=
 Route[OrigNode].MetricType
 o RREQ.Metric_TLV[OrigNdx] := Route[OrigNode].Metric
 o The RREQ (with updated fields as specified above>) SHOULD be sent
 to the IP multicast address LL-MANET-Routers [RFC5498]. If the
 RREQ is unicast, the IP.DestinationAddress is set to
 Route[RREQ.TargNode].NextHopAddress.

7.5.2. Additional Handling for Incoming RREP

 As always, OrigNode and TargNode are named in the context of RREQ_Gen
 (i.e., the router originating the RREQ for which the RREP was
 generated) (see Table 1). OrigNdx and TargNdx are set according to
 the rules in Section 7.2.

 o If no forwarding route exists to OrigNode, then a RERR SHOULD be
 transmitted to RREP.AddrBlk[TargNdx]. Otherwise, if HandlingRtr
 is not RREQ_Gen then the outgoing RREP is sent to the
 Route.NextHopAddress for the RREP.AddrBlk[OrigNdx].
 o If HandlingRtr is RREQ_Gen then the RREP satisfies RREQ_Gen's
 earlier RREQ, and RREP processing is completed. Any packets
 buffered for OrigNode should be transmitted.

7.6. Suppressing Redundant RREQ messages

 Since RREQ messages are multicast, there are common circumstances in
 which an AODVv2 router might transmit a redundant response (RREQ or
 RREP), duplicating the information transmitted in response to some
 other recent RREQ (see Section 5.7). Before responding, an AODVv2
 router MUST suppress such RREQ messages. This is done by checking
 the list of recently received RREQs to determine whether the incoming
 RREQ is redundant, as follows:

 o The AODVv2 router searches the RREQ Table for recent entries with
 the same OrigNode, TargNode, and Metric Type. If there is no such

https://datatracker.ietf.org/doc/html/rfc5498

Perkins, et al. Expires April 30, 2015 [Page 27]

Internet-Draft AODVv2 October 2014

 entry, the incoming RREQ message is not suppressed. A new entry
 for the incoming RREQ is created in the RREQ Table.
 o If there is such an entry, and the incoming RREQ has a newer
 sequence number, the incoming RREQ is not suppressed, and the
 existing table entry MUST be updated to reflect the new Sequence
 Number and Metric.
 o Similarly, if the Sequence Numbers are the same, and the incoming
 RREQ offers a better Metric, the incoming RREQ is not suppressed,
 and the RREQ Table entry MUST be updated to reflect the new
 Metric.
 o Otherwise, the incoming RREQ is suppressed.

8. Route Maintenance and RERR Messages

 AODVv2 routers attempt to maintain active routes. When a routing
 problem is encountered, an AODVv2 router (denoted RERR_Gen) attempts
 to quickly notify upstream routers. Two kinds of routing problems
 may trigger generation of a RERR message. The first case happens
 when the router receives a packet but does not have a route for the
 destination of the packet. The second case happens immediately upon
 detection of a broken link (see Section 8.2) of an Active route, to
 quickly notify upstream AODVv2 routers that that route is no longer
 available.

8.1. Maintaining Route Lifetimes During Packet Forwarding

 Before using a route to forward a packet, an AODVv2 router MUST check
 the status of the route as follows.

 o If the route is marked has been marked as Broken, it cannot be
 used for forwarding.
 o If Current_Time > Route.ExpirationTime, the route table entry has
 expired, and cannot be used for forwarding.
 o Similarly, if (Route.ExpirationTime == MAXTIME), and if
 (Current_Time - Route.LastUsed) > (ACTIVE_INTERVAL +
 MAX_IDLETIME), the route has expired, and cannot be used for
 forwarding.
 o Furthermore, if Current_Time - Route.LastUsed >
 (MAX_SEQNUM_LIFETIME), the route table entry MUST be expunged.

 If any of the above route error conditions hold true, the route
 cannot be used to forward the packet, and an RERR message MUST be
 generated (see Section 8.3).

 Otherwise, Route.LastUsed := Current_Time, and the packet is
 forwarded to the route's next hop.

Perkins, et al. Expires April 30, 2015 [Page 28]

Internet-Draft AODVv2 October 2014

 Optionally, if a precursor list is maintained for the route, see
Section 13.3 for precursor lifetime operations.

8.2. Active Next-hop Router Adjacency Monitoring

 Neighboring routers MAY form an adjacency based on various
 information or other protocols; for example, exchange of AODVv2
 routing messages, other protocols (e.g. NDP [RFC4861] or NHDP
 [RFC6130]), or manual configuration. Loss of a routing adjacency may
 also be indicated by similar information. AODVv2 routers SHOULD
 monitor connectivity to adjacent routers along active routes. This
 monitoring can be accomplished by one or several mechanisms,
 including:

 o Neighborhood discovery [RFC6130]
 o Route timeout
 o Lower layer trigger that a link is broken
 o TCP timeouts
 o Promiscuous listening
 o Other monitoring mechanisms or heuristics

 If a next-hop AODVv2 router has become unreachable, RERR_Gen follows
 the procedures specified in Section 8.3.2.

8.3. RERR Generation

 An RERR message is generated by a AODVv2 router (i.e., RERR_Gen) in
 order to notify upstream routers that packets cannot be delivered to
 certain destinations. An RERR message has the following general
 structure:

 +---+
 | RFC 5444 Message Header <msg-hoplimit> <msg-hopcount> |
 +---+
 | UnreachableNode AddrBlk (Unreachable Node addresses) |
 +---+
 | AddrBlk.PrefixLength[UnreachableNodes] (Optional) |
 +---+
 | UnreachableNode SeqNum AddrBlk TLV |
 +---+
 | UnreachableNode PfxLen AddrBlk TLV |
 +---+

 Figure 2: RERR message structure

 Required Message Header Fields
 The RERR MUST contain the following:

https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc6130
https://datatracker.ietf.org/doc/html/rfc6130
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 29]

Internet-Draft AODVv2 October 2014

 * <msg-hop-limit>
 * PktSource Message TLV (see Section 15), if the RERR is unicast
 * Metric Type Message TLV (see Section 15), if Metric Type != 3
 Optional Message Header Fields
 The RERR SHOULD contain the following:

 * <msg-hop-count>
 UnreachableNode AddrBlk
 This Address Block contains the IP addresses unreachable by AODVv2
 router transmitting the RERR.
 UnreachableNode.PrefixLength
 If needed, the Address Block can also carry the prefix length
 associated with each UnreachableNode.
 Sequence Number AddrBlk TLV
 This Address Block TLV carries the destination sequence number
 associated with each UnreachableNode when that information is
 available.

 There are two kinds of events indicating that packets cannot be
 delivered to certain destinations. The two cases differ in the way
 that the neighboring IP destination address for the RERR is chosen,
 and in the way that the set of UnreachableNodes is identified.

 In both cases, the <msg-hop-limit> MUST be included and SHOULD be set
 to MAX_HOPCOUNT. <msg-hop-count> SHOULD be included and set to 0, to
 facilitate use of various route repair strategies including expanding
 rings multicast and Intermediate RREP [I-D.perkins-irrep].

8.3.1. Case 1: Undeliverable Packet

 The first case happens when the router receives a packet from another
 AODVv2 router but does not have a valid route for the destination of
 the packet. In this case, there is exactly one UnreachableNode to be
 included in the RERR's AddrBlk (either IP.DestinationAddress from a
 data packet or the OrigNode address found in the AddrBlk of an RREP
 message). The RERR SHOULD be sent to the multicast address LL-MANET-
 Routers, but RERR_Gen MAY instead send the RERR to the next hop
 towards the source IP address of the packet which was undeliverable.
 For unicast RERR, the PktSource Message TLV MUST be included,
 containing the the source IP address of the undeliverable packet, or
 the IP address of TargRtr in case the undeliverable packet was an
 RREP message generated by TargRtr. If a Sequence Number for
 UnreachableNode is known, that Sequence Number SHOULD be included in
 a Seqnum AddrTLV the RERR. Otherwise all nodes handling the RERR
 will assume their route through RERR_Gen towards the UnreachableNode
 is no longer valid and mark those routes as broken, regardless of the
 Sequence Number information for those routes. RERR_Gen MUST discard
 the packet or message that triggered generation of the RERR.

Perkins, et al. Expires April 30, 2015 [Page 30]

Internet-Draft AODVv2 October 2014

 If an AODVv2 router receives an ICMP packet from the address of one
 of its client nodes, it simply relays the packet to the ICMP packet's
 destination address, and does not generate any RERR message.

8.3.2. Case 2: Broken Link

 The second case happens when the link breaks to an active adjacent
 AODVv2 router (i.e., the next hop of an active route). In this case,
 the RERR MUST be sent to the multicast address LL-MANET-Routers,
 except when the optional feature of maintaining precursor lists is
 used as specified in Section 13.3. All routes (Active, Idle and
 Expired) that use the broken link MUST be marked as Broken. The set
 of UnreachableNodes is initialized by identifying those Active routes
 which use the broken link. For each such Active Route, Route.Dest is
 added to the set of Unreachable Nodes. After the Active Routes using
 the broken link have all been included as UnreachableNodes, Idle
 routes MAY also be included, if allowed by the setting of
 ENABLE_IDLE_IN_RERR, as long as the packet size of the RERR does not
 exceed the MTU (interface "Maximum Transfer Unit") of the physical
 medium.

 If the set of UnreachableNodes is empty, no RERR is generated.
 Otherwise, RERR_Gen generates a new RERR, and the address of each
 UnreachableNode is inserted into an AddrBlock. If any
 UnreachableNode.Addr entry is associated with a routing prefix (i.e.,
 a prefix length shorter than the maximum length for the address
 family), then the AddrBlk MUST include prefix lengths; otherwise, if
 no such entry, the prefix lengths NOT be included. The value for
 each UnreachableNode's SeqNum (UnreachableNode.SeqNum) MUST be placed
 in the SeqNum AddrTLV.

 Every broken route reported in the RERR MUST have the same Metric
 Type. If the Metric Type is not 3, then the RERR message MUST
 contain a Metric Type MsgTLV indicating the Metric Type of the broken
 route(s).

8.4. Receiving and Handling RERR Messages

 When an AODVv2 router (HandlingRtr) receives a RERR message, it uses
 the information provided to invalidate affected routes. If
 HandlingRtr has neighbors that are using the affected routes, then
 HandlingRtr subsequently sends an RERR message to those neighbors.
 This has the effect of regenerating the RERR information and is
 counted as another "hop" for purposes of properly modifying <msg-hop-
 limit> and <msg-hop-count> in the RERR message header.

 HandlingRtr examines the incoming RERR to assure that it contains
 <msg-hop-limit> and at least one UnreachableNode.Address. If the

Perkins, et al. Expires April 30, 2015 [Page 31]

Internet-Draft AODVv2 October 2014

 required information does not exist, the incoming RERR message is
 disregarded and further processing stopped. Otherwise, for each
 UnreachableNode.Address, HandlingRtr searches its route table for a
 route using longest prefix matching. If no such Route is found,
 processing is complete for that UnreachableNode.Address. Otherwise,
 HandlingRtr verifies the following:

 1. The UnreachableNode.Address is a routable unicast address.
 2. Route.NextHopAddress is the same as RERR IP.SourceAddress.
 3. Route.NextHopInterface is the same as the interface on which the
 RERR was received.
 4. The UnreachableNode.SeqNum is unknown, OR Route.SeqNum <=
 UnreachableNode.SeqNum (using signed 16-bit arithmetic).

 If the Route satisfies all of the above conditions, HandlingRtr
 checks whether Route.PrefixLength is the same as the prefix length
 for UnreachableNode.Address. If so, HandlingRtr simply sets the
 state for that Route to be Broken. Otherwise, HandlingRtr creates a
 new route (call it BrokenRoute) with the same PrefixLength as the
 prefix length for UnreachableNode.Address, and sets Route.State ==
 Broken for BrokenRoute. If the prefix length for the new route is
 shorter than Route.PrefixLength, then Route MUST be expunged from the
 route table (since it is a subroute of the larger route which is
 reported to be broken). Furthermore, if <msg-hop-limit> is greater
 than 0, then HandlingRtr adds the UnreachableNode address and TLV
 information to an AddrBlk for delivery in the outgoing RERR message.

 If there are no UnreachableNode addresses to be transmitted in an
 RERR to upstream routers, HandlingRtr MUST discard the RERR, and no
 further action is taken.

 Otherwise, <msg-hop-limit> is decremented by one (1) and processing
 continues as follows:

 o (Optional) If precursor lists are maintained, the outgoing RERR
 SHOULD be sent to the active precursors of the broken route as
 specified in Section 13.3.
 o Otherwise, if the incoming RERR message was received at the LL-
 MANET-Routers [RFC5498] multicast address, the outgoing RERR
 SHOULD also be sent to LL-MANET-Routers.
 o Otherwise, if the PktSource Message TLV is present, and
 HandlingRtr has a Route to PktSource.Addr, then HandlingRtr MUST
 send the outgoing RERR to Route[PktSource.Addr].NextHop.
 o Otherwise, the outgoing RERR MUST be sent to LL-MANET-Routers.

https://datatracker.ietf.org/doc/html/rfc5498

Perkins, et al. Expires April 30, 2015 [Page 32]

Internet-Draft AODVv2 October 2014

9. Unknown Message and TLV Types

 For handling of messages that contain unknown TLV types, ignore the
 information for processing, but preserve it unmodified for
 forwarding.

10. Simple Internet Attachment

 Simple Internet attachment means attachment of a stub (i.e., non-
 transit) network of AODVv2 routers to the Internet via a single
 Internet AODVv2 router (called IAR).

 As in any Internet-attached network, AODVv2 routers, and their
 clients, wishing to be reachable from hosts on the Internet MUST have
 IP addresses within the IAR's routable and topologically correct
 prefix (e.g. 191.0.2.0/24).

 /-------------------------\
 / +----------------+ \
 / | AODVv2 Router | \
 | | 191.0.2.2/32 | |
 | +----------------+ | Routable
 | +-----+--------+ Prefix
 | | Internet | /191.0.2/24
 | | AODVv2 Router| /
 | | 191.0.2.1 |/ /---------------\
 | | serving net +------+ Internet \
 | | 191.0.2/24 | \ /
 | +-----+--------+ \---------------/
 | +----------------+ |
 | | AODVv2 Router | |
 | | 191.0.2.3/32 | |
 \ +----------------+ /
 \ /
 \-------------------------/

 Figure 3: Simple Internet Attachment Example

 When an AODVv2 router within the AODVv2 MANET wants to discover a
 route toward a node on the Internet, it uses the normal AODVv2 route
 discovery for that IP Destination Address. The IAR MUST respond to
 RREQ on behalf of all Internet destinations.

 When a packet from a node on the Internet destined for a node in the
 AODVv2 MANET reaches the IAR, if the IAR does not have a route toward
 that destination it will perform normal AODVv2 route discovery for
 that destination.

Perkins, et al. Expires April 30, 2015 [Page 33]

Internet-Draft AODVv2 October 2014

11. Multiple Interfaces

 AODVv2 MAY be used with multiple interfaces; therefore, the
 particular interface over which packets arrive MUST be known whenever
 a packet is received. Whenever a new route is created, the interface
 through which the route's destination can be reached is also recorded
 in the route table entry.

 When multiple interfaces are available, a node transmitting a
 multicast packet to LL-MANET-Routers MUST send the packet on all
 interfaces that have been configured for AODVv2 operation.

 Similarly, AODVv2 routers MUST subscribe to LL-MANET-Routers on all
 their AODVv2 interfaces.

12. AODVv2 Control Message Generation Limits

 To avoid congestion, each AODVv2 router's rate of packet/message
 generation SHOULD be limited. The rate and algorithm for limiting
 messages (CONTROL_TRAFFIC_LIMITS) is left to the implementor and
 should be administratively configurable. AODVv2 messages SHOULD be
 discarded in the following order of preference: RREQ, RREP, and
 finally RERR.

13. Optional Features

 Some optional features of AODVv2, associated with AODV, are not
 required by minimal implementations. These features are expected to
 apply in networks with greater mobility, or larger node populations,
 or requiring reduced latency for application launches. The optional
 features are as follows:

 o Expanding Rings Multicast
 o Intermediate RREPs (iRREPs): Without iRREP, only the destination
 can respond to a RREQ.
 o Precursor lists.
 o Reporting Multiple Unreachable Nodes. An RERR message can carry
 more than one Unreachable Destination node for cases when a single
 link breakage causes multiple destinations to become unreachable
 from an intermediate router.
 o RREP_ACK.
 o Message Aggregation.

13.1. Expanding Rings Multicast

 For multicast RREQ, <msg-hop-limit> MAY be set in accordance with an
 expanding ring search as described in [RFC3561] to limit the RREQ

https://datatracker.ietf.org/doc/html/rfc3561

Perkins, et al. Expires April 30, 2015 [Page 34]

Internet-Draft AODVv2 October 2014

 propagation to a subset of the local network and possibly reduce
 route discovery overhead.

13.2. Intermediate RREP

 This specification has been published as a separate Internet Draft
 [I-D.perkins-irrep].

13.3. Precursor Lists and Notifications

 This section specifies an interoperable enhancement to AODVv2 (and
 possibly other reactive routing protocols) enabling more economical
 notifications to traffic sources upon determination that a route
 needed to forward such traffic to its destination has become Broken.

13.3.1. Overview

 In many circumstances, there can be several sources of traffic for a
 certain destination. Each such source of traffic is known as a
 "precursor" for the destination, as well as all upstream routers
 between the forwarding AODVv2 router and the traffic source. For
 each active destination, an AODVv2 router MAY choose to keep track of
 the upstream neighbors that have provided traffic for that
 destination; there is no need to keep track of upstream routers any
 farther away than the next hop.

 Moreover, any particular link to an adjacent AODVv2 router may be a
 path component of multiple routes towards various destinations. The
 precursors for all destinations using the next hop across any link
 are collectively known as the precursors for that next hop.

 When an AODVv2 router determines that an active link to one of its
 neighbors has broken, the AODVv2 router detecting the broken link
 must mark multiple routes as Broken, for each of the newly
 unreachable destinations, as described in Section 8.3. Each route
 that relies on the newly broken link is no longer valid.
 Furthermore, the precursors of the broken link should be notified
 (using RERR) about the change in status of their route to a
 destination relying upon the broken next hop.

13.3.2. Precursor Notification Details

 During normal operation, each AODVv2 router wishing to maintain
 precursor lists as described above, maintains a precursor table and
 updates the table whenever the node forwards traffic to one of the
 destinations in its route table. For each precursor in the precursor
 list, a record must be maintained to indicate whether the precursor
 has been used for recent traffic (in other words, whether the

Perkins, et al. Expires April 30, 2015 [Page 35]

Internet-Draft AODVv2 October 2014

 precursor is an Active precursor). So, when traffic arrives from a
 precursor, the Current_Time is used to mark the time of last use for
 the precursor list element associated with that precursor.

 When an AODVv2 router detects that a link is broken, then for each
 precursor using that next hop, the node MAY notify the precursor
 using either unicast or multicast RERR:

 unicast RERR to each Active precursor
 This option is applicable when there are few Active precursors
 compared to the number of neighboring AODVv2 routers.
 multicast RERR to RERR_PRECURSORS
 RERR_PRECURSORS is, by default, LL-MANET-Routers [RFC5498]. This
 option is typically preferable when there are many precursors,
 since fewer packet transmissions are required.

 Each active upstream neighbor (i.e., precursor) MAY then execute the
 same procedure until all active upstream routers have received the
 RERR notification.

13.4. Multicast RREP Response to RREQ

 The RREQ Target Router (RREP_Gen) MAY, as an alternative to
 unicasting a RREP, be configured to distribute routing information
 about the route toward the RREQ TargNode (RREP_Gen's client) more
 widely. That is, RREP_Gen MAY be configured respond to a route
 discovery by generating a RREP, using the procedure in Section 7.4,
 but multicasting the RREP to LL-MANET-Routers [RFC5498] (subject to
 similar suppression algorithm for redundant RREP multicasts as
 described in Section 7.6). The redundant message suppression must
 occur at every router handling the multicast RREP. Afterwards,
 RREP_Gen processing for the incoming RREQ is complete.

 Broadcast RREP response to incoming RREQ was originally specified to
 handle unidirectional links, but it is expensive. Due to the
 significant overhead, AODVv2 routers MUST NOT use multicast RREP
 unless configured to do so by setting the administrative parameter
 USE_MULTICAST_RREP.

13.5. RREP_ACK

 Instead of relying on existing mechanisms for requesting verification
 of link bidirectionality during Route Discovery, RREP_Ack is provided
 as an optional feature and modeled on the RREP_Ack message type from
 AODV [RFC3561].

 Since the RREP_ACK is simply echoed back to the node from which the
 RREP was received, there is no need for any additional RFC 5444

https://datatracker.ietf.org/doc/html/rfc5498
https://datatracker.ietf.org/doc/html/rfc5498
https://datatracker.ietf.org/doc/html/rfc3561
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 36]

Internet-Draft AODVv2 October 2014

 address information (or TLVs). Considerations of packet TTL are as
 specified in Section 5.4. An example message format is illustrated
 in section Appendix B.4.

13.6. Message Aggregation

 The aggregation of multiple messages into a packet is specified in
RFC 5444 [RFC5444].

 Implementations MAY choose to briefly delay transmission of messages
 for the purpose of aggregation (into a single packet) or to improve
 performance by using jitter [RFC5148].

14. Administratively Configurable Parameters and Timer Values

 AODVv2 uses various configurable parameters of various types:

 o Timers
 o Protocol constants
 o Administrative (functional) controls
 o Other administrative parameters and lists

 The tables in the following sections show the parameters along their
 definitions and default values (if any).

 Note: several fields have limited size (bits or bytes). These sizes
 and their encoding may place specific limitations on the values that
 can be set. For example, <msg-hop-count> is a 8-bit field and
 therefore MAX_HOPCOUNT cannot be larger than 255.

14.1. Timers

 AODVv2 requires certain timing information to be associated with
 route table entries. The default values are as follows, subject to
 future experience:

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5148

Perkins, et al. Expires April 30, 2015 [Page 37]

Internet-Draft AODVv2 October 2014

 +------------------------------+---------------+
 | Name | Default Value |
 +------------------------------+---------------+
 | ACTIVE_INTERVAL | 5 second |
 | MAX_IDLETIME | 200 seconds |
 | MAX_BLACKLIST_TIME | 200 seconds |
 | MAX_SEQNUM_LIFETIME | 300 seconds |
 | RREQ_WAIT_TIME | 2 seconds |
 | UNICAST_MESSAGE_SENT_TIMEOUT | 1 second |
 | RREQ_HOLDDOWN_TIME | 10 seconds |
 +------------------------------+---------------+

 Table 2: Timing Parameter Values

 The above timing parameter values have worked well for small and
 medium well-connected networks with moderate topology changes.

 The timing parameters SHOULD be administratively configurable for the
 network where AODVv2 is used. Ideally, for networks with frequent
 topology changes the AODVv2 parameters should be adjusted using
 either experimentally determined values or dynamic adaptation. For
 example, in networks with infrequent topology changes MAX_IDLETIME
 may be set to a much larger value.

14.2. Protocol constants

 AODVv2 protocol constants typically do not require changes. The
 following table lists these constants, along with their values and a
 reference to the specification describing their use.

 +------------------------+--------------------+---------------------+
 | Name | Default Value | Description |
 +------------------------+--------------------+---------------------+
DISCOVERY_ATTEMPTS_MAX	3	Section 7.1
MAX_HOPCOUNT	20 hops	Section 5.6
MAX_METRIC[i]	Specified only for	Section 5.6
	HopCount	
MAXTIME	[TBD]	Maximum expressible
		clock time
 +------------------------+--------------------+---------------------+

 Table 3: Parameter Values

14.3. Administrative (functional) controls

 The following administrative controls may be used to change the
 operation of the network, by enabling optional behaviors. These
 options are not required for correct routing behavior, although they

Perkins, et al. Expires April 30, 2015 [Page 38]

Internet-Draft AODVv2 October 2014

 may potentially reduce AODVv2 protocol messaging in certain
 situations. The default behavior is to NOT enable most such options,
 options. Packet buffering is enabled by default.

 +------------------------+------------------------------------+
 | Name | Description |
 +------------------------+------------------------------------+
 | DEFAULT_METRIC_TYPE | 3 (i.e, Hop Count (see [RFC6551])) |
 | ENABLE_IDLE_IN_RERR | Section 8.3.2 |
 | ENABLE_IRREP | Section 7.3 |
 | USE_MULTICAST_RREP | Section 13.4 |
 +------------------------+------------------------------------+

 Table 4: Administratively Configured Controls

14.4. Other administrative parameters and lists

 The following table lists contains AODVv2 parameters which should be
 administratively configured for each specific network.

 +-----------------------+-----------------------+-----------------+
 | Name | Default Value | Cross Reference |
 +-----------------------+-----------------------+-----------------+
 | AODVv2_INTERFACES | | Section 4 |
 | BUFFER_SIZE_PACKETS | 2 | Section 7.1 |
 | BUFFER_SIZE_BYTES | MAX_PACKET_SIZE [TBD] | Section 7.1 |
 | CLIENT_ADDRESSES | AODVv2_INTERFACES | Section 5.3 |
 | CONTROL_TRAFFIC_LIMIT | TBD [50 packets/sec?] | Section 12 |
 +-----------------------+-----------------------+-----------------+

 Table 5: Other Administrative Parameters

15. IANA Considerations

 This section specifies several message types, message tlv-types, and
 address tlv-types. Also, a new registry of 16-bit alternate metric
 types is specified.

15.1. AODVv2 Message Types Specification

https://datatracker.ietf.org/doc/html/rfc6551

Perkins, et al. Expires April 30, 2015 [Page 39]

Internet-Draft AODVv2 October 2014

 +--+------------+
 | Name | Type (TBD) |
 +--+------------+
 | Route Request (RREQ) | 10 |
 | Route Reply (RREP) | 11 |
 | Route Error (RERR) | 12 |
 | Route Reply Acknowledgement (RREP_ACK) | 13 |
 +--+------------+

 Table 6: AODVv2 Message Types

15.2. Message TLV Type Specification

 +-----------------------------------+-------+---------+-------------+
Name	Type	Length	Cross
	(TBD)	in	Reference
		octets	
+-----------------------------------+-------+---------+-------------+			
Acknowledgment Request (AckReq)	10	0	Section 5.2
Packet Source (PktSource)	11	4 or 16	Section 8.3
Metric Type	12	1	Section 7.2
 +-----------------------------------+-------+---------+-------------+

 Table 7: Message TLV Types

15.3. Address Block TLV Specification

 +-----------------------------+--------+--------------+-------------+
 | Name | Type | Length | Value |
 | | (TBD) | | |
 +-----------------------------+--------+--------------+-------------+
Metric	10	depends on	Section 7.2
		Metric Type	
Sequence Number (SeqNum)	11	2 octets	Section 7.2
Originating Node Sequence	12	2 octets	Section 7.2
Number (OrigSeqNum)			
Target Node Sequence Number	13	2 octets	Section 7.2
(TargSeqNum)			
VALIDITY_TIME	1	1 octet	[RFC5497]
 +-----------------------------+--------+--------------+-------------+

 Table 8: Address Block TLV (AddrTLV) Types

15.4. Metric Type Number Allocation

 Metric types are identified according to the assignments as specified
 in [RFC6551]. The metric type of the Hop Count metric is assigned to
 be 3, in order to maintain compatibility with that existing table of

https://datatracker.ietf.org/doc/html/rfc5497
https://datatracker.ietf.org/doc/html/rfc6551

Perkins, et al. Expires April 30, 2015 [Page 40]

Internet-Draft AODVv2 October 2014

 values from RFC 6551. Non-addititve metrics are not supported in
 this draft.

 +-----------------------+----------+-------------+
 | Name | Type | Metric Size |
 +-----------------------+----------+-------------+
 | Unallocated | 0 -- 2 | TBD |
 | Hop Count | 3 - TBD | 1 octet |
 | Unallocated | 4 -- 254 | TBD |
 | Reserved | 255 | Undefined |
 +-----------------------+----------+-------------+

 Table 9: Metric Types

16. Security Considerations

 The objective of the AODVv2 protocol is for each router to
 communicate reachability information about addresses for which it is
 responsible. Positive routing information (i.e. a route exists) is
 distributed via RREQ and RREP messages. Negative routing information
 (i.e. a route does not exist) is distributed via RERRs. AODVv2
 routers store the information contained in these messages in order to
 properly forward data packets, and they generally provide this
 information to other AODVv2 routers.

 This section does not mandate any specific security measures.
 Instead, this section describes various security considerations and
 potential avenues to secure AODVv2 routing.

 The most important security mechanisms for AODVv2 routing are
 integrity/authentication and confidentiality.

 In situations where routing information or router identity are
 suspect, integrity and authentication techniques SHOULD be applied to
 AODVv2 messages. In these situations, routing information that is
 distributed over multiple hops SHOULD also verify the integrity and
 identity of information based on originator of the routing
 information.

 A digital signature could be used to identify the source of AODVv2
 messages and information, along with its authenticity. A nonce or
 timestamp SHOULD also be used to protect against replay attacks. S/
 MIME and OpenPGP are two authentication/integrity protocols that
 could be adapted for this purpose.

 In situations where confidentiality of AODVv2 messages is important,
 cryptographic techniques can be applied.

https://datatracker.ietf.org/doc/html/rfc6551

Perkins, et al. Expires April 30, 2015 [Page 41]

Internet-Draft AODVv2 October 2014

 In certain situations, for example sending a RREP or RERR, an AODVv2
 router could include proof that it has previously received valid
 routing information to reach the destination, at one point of time in
 the past. In situations where routers are suspected of transmitting
 maliciously erroneous information, the original routing information
 along with its security credentials SHOULD be included.

 Note that if multicast is used, any confidentiality and integrity
 algorithms used MUST permit multiple receivers to handle the message.

 Routing protocols, however, are prime targets for impersonation
 attacks. In networks where the node membership is not known, it is
 difficult to determine the occurrence of impersonation attacks, and
 security prevention techniques are difficult at best. However, when
 the network membership is known and there is a danger of such
 attacks, AODVv2 messages must be protected by the use of
 authentication techniques, such as those involving generation of
 unforgeable and cryptographically strong message digests or digital
 signatures. While AODVv2 does not place restrictions on the
 authentication mechanism used for this purpose, IPsec Authentication
 Message (AH) is an appropriate choice for cases where the nodes share
 an appropriate security association that enables the use of AH.

 In particular, routing messages SHOULD be authenticated to avoid
 creation of spurious routes to a destination. Otherwise, an attacker
 could masquerade as that destination and maliciously deny service to
 the destination and/or maliciously inspect and consume traffic
 intended for delivery to the destination. RERR messages SHOULD be
 authenticated in order to prevent malicious nodes from disrupting
 active routes between communicating nodes.

 If the mobile nodes in the ad hoc network have pre-established
 security associations, the purposes for which the security
 associations are created should include that of authorizing the
 processing of AODVv2 control packets. Given this understanding, the
 mobile nodes should be able to use the same authentication mechanisms
 based on their IP addresses as they would have used otherwise.

 If the mobile nodes in the ad hoc network have pre-established
 security associations, the purposes for which the security
 associations Most AODVv2 messages are transmitted to the multicast
 address LL-MANET-Routers [RFC5498]. It is therefore required for
 security that AODVv2 neighbors exchange security information that can
 be used to insert an ICV [RFC6621] into the AODVv2 message block
 [RFC5444]. This enables hop-by-hop security. For destination-only
 RREP discovery procedures, AODVv2 routers that share a security
 association SHOULD use the appropriate mechanisms as specified in RFC

https://datatracker.ietf.org/doc/html/rfc5498
https://datatracker.ietf.org/doc/html/rfc6621
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 42]

Internet-Draft AODVv2 October 2014

 6621. The establishment of these security associations is out of
 scope for this document.

17. Acknowledgments

 AODVv2 is a descendant of the design of previous MANET on-demand
 protocols, especially AODV [RFC3561] and DSR [RFC4728]. Changes to
 previous MANET on-demand protocols stem from research and
 implementation experiences. Thanks to Elizabeth Belding-Royer for
 her long time authorship of AODV. Additional thanks to Derek Atkins,
 Emmanuel Baccelli, Abdussalam Baryun, Ramon Caceres, Thomas Clausen,
 Christopher Dearlove, Ulrich Herberg, Henner Jakob, Luke Klein-
 Berndt, Lars Kristensen, Tronje Krop, Koojana Kuladinithi, Kedar
 Namjoshi, Alexandru Petrescu, Henning Rogge, Fransisco Ros, Pedro
 Ruiz, Christoph Sommer, Lotte Steenbrink, Romain Thouvenin, Richard
 Trefler, Jiazi Yi, Seung Yi, and Cong Yuan, for their reviews AODVv2
 and DYMO, as well as numerous specification suggestions.

18. References

18.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5082] Gill, V., Heasley, J., Meyer, D., Savola, P., and C.
 Pignataro, "The Generalized TTL Security Mechanism
 (GTSM)", RFC 5082, October 2007.

 [RFC5444] Clausen, T., Dearlove, C., Dean, J., and C. Adjih,
 "Generalized Mobile Ad Hoc Network (MANET) Packet/Message
 Format", RFC 5444, February 2009.

 [RFC5497] Clausen, T. and C. Dearlove, "Representing Multi-Value
 Time in Mobile Ad Hoc Networks (MANETs)", RFC 5497, March
 2009.

 [RFC5498] Chakeres, I., "IANA Allocations for Mobile Ad Hoc Network
 (MANET) Protocols", RFC 5498, March 2009.

 [RFC6551] Vasseur, JP., Kim, M., Pister, K., Dejean, N., and D.
 Barthel, "Routing Metrics Used for Path Calculation in
 Low-Power and Lossy Networks", RFC 6551, March 2012.

https://datatracker.ietf.org/doc/html/rfc3561
https://datatracker.ietf.org/doc/html/rfc4728
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5082
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5497
https://datatracker.ietf.org/doc/html/rfc5498
https://datatracker.ietf.org/doc/html/rfc6551

Perkins, et al. Expires April 30, 2015 [Page 43]

Internet-Draft AODVv2 October 2014

18.2. Informative References

 [I-D.perkins-irrep]
 Perkins, C. and I. Chakeres, "Intermediate RREP for
 dynamic MANET On-demand (AODVv2) Routing", draft-perkins-

irrep-02 (work in progress), November 2012.

 [Perkins94]
 Perkins, C. and P. Bhagwat, "Highly Dynamic Destination-
 Sequenced Distance-Vector Routing (DSDV) for Mobile
 Computers", Proceedings of the ACM SIGCOMM '94 Conference
 on Communications Architectures, Protocols and
 Applications, London, UK, pp. 234-244, August 1994.

 [Perkins99]
 Perkins, C. and E. Royer, "Ad hoc On-Demand Distance
 Vector (AODV) Routing", Proceedings of the 2nd IEEE
 Workshop on Mobile Computing Systems and Applications, New
 Orleans, LA, pp. 90-100, February 1999.

 [RFC2501] Corson, M. and J. Macker, "Mobile Ad hoc Networking
 (MANET): Routing Protocol Performance Issues and
 Evaluation Considerations", RFC 2501, January 1999.

 [RFC3561] Perkins, C., Belding-Royer, E., and S. Das, "Ad hoc On-
 Demand Distance Vector (AODV) Routing", RFC 3561, July
 2003.

 [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
 Addresses", RFC 4193, October 2005.

 [RFC4728] Johnson, D., Hu, Y., and D. Maltz, "The Dynamic Source
 Routing Protocol (DSR) for Mobile Ad Hoc Networks for
 IPv4", RFC 4728, February 2007.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 September 2007.

 [RFC5148] Clausen, T., Dearlove, C., and B. Adamson, "Jitter
 Considerations in Mobile Ad Hoc Networks (MANETs)", RFC

5148, February 2008.

 [RFC6130] Clausen, T., Dearlove, C., and J. Dean, "Mobile Ad Hoc
 Network (MANET) Neighborhood Discovery Protocol (NHDP)",

RFC 6130, April 2011.

https://datatracker.ietf.org/doc/html/draft-perkins-irrep-02
https://datatracker.ietf.org/doc/html/draft-perkins-irrep-02
https://datatracker.ietf.org/doc/html/rfc2501
https://datatracker.ietf.org/doc/html/rfc3561
https://datatracker.ietf.org/doc/html/rfc4193
https://datatracker.ietf.org/doc/html/rfc4728
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc5148
https://datatracker.ietf.org/doc/html/rfc5148
https://datatracker.ietf.org/doc/html/rfc6130

Perkins, et al. Expires April 30, 2015 [Page 44]

Internet-Draft AODVv2 October 2014

 [RFC6621] Macker, J., "Simplified Multicast Forwarding", RFC 6621,
 May 2012.

Appendix A. Example Algorithms for AODVv2 Protocol Operations

 The following subsections show example algorithms for protocol
 operations required by AODVv2, including RREQ, RREP, RERR, and RREP-
 ACK.

 Processing for RREQ, RREP, and RERR messages follows the following
 general outline:

 1. Receive incoming message.
 2. Update route table as appropriate.
 3. Respond as needed, often regenerating the incoming message with
 updated information.

 Once the route table has been updated, the information contained
 there is known to be the most recent available information for any
 fields in the outgoing message. For this reason, the algorithms are
 written as if outgoing message field values are assigned from the
 route table information, even though it is often equally appropriate
 to use fields from the incoming message.

 AODVv2_algorithms:

 o Process_Routing_Info
 o Generate_RREQ
 o Receive_RREQ
 o Regenerate_RREQ
 o Generate_RREP
 o Receive_RREP
 o Regenerate_RREP
 o Generate_RERR
 o Receive_RERR
 o Regenerate_RERR
 o Generate_RREP_Ack
 o Consume_RREP_Ack()
 o Timeout RREP_Ack()

 The following lists indicate the meaning of the field names used in
 subsequent sections to describe message processing for the above
 algorithms.

 Incoming RREQ message parameters:

 inRREQ.origIP := originator IP address
 inRREQ.origSeq := originator IP sequence #

https://datatracker.ietf.org/doc/html/rfc6621

Perkins, et al. Expires April 30, 2015 [Page 45]

Internet-Draft AODVv2 October 2014

 inRREQ.metType := metric type
 inRREQ.origMet := metric to originator
 inRREQ.targIP := target IP address
 inRREQ.targSeq := target sequence # (if known)
 inRREQ.hopLim := msg-hop-limit /* from RFC 5444 header */
 inRREQ.nbrIP := IP address of the neighbor that sent the RREQ

 Outgoing RREQ message parameters:

 outRREQ.origIP := originator IP address
 outRREQ.origSeq := originator IP sequence #
 outRREQ.metType := metric type
 outRREQ.origMet := metric to origNode {initially
 MIN_METRIC[MetType]}
 outRREQ.targIP := target IP address
 outRREQ.targSeq := target sequence # (if known)
 outRREQ.hopLim /* initially MAX_HOPCOUNT at originator */

 Incoming RREP message parameters:

 inRREP.hoplim /* msg-hop-limit from RFC 5444 header */
 inRREP.origIP := originator's IP address
 inRREP.metType := metric type
 inRREP.targIP := target IP address
 inRREP.targSeq := target sequence #
 inRREP.targMet := target's metric {initially MIN_METRIC[MetType]}
 inRREP.PfxLen

 Outgoing RREP message parameters:

 outRREP.origIP := originator's IP address
 outRREP.metType := metric type
 outRREP.targIP := target IP address
 outRREP.targSeq := target sequence #
 outRREP.targMet := target's metric {starting with zero}
 outRREP.PfxLen
 outRREP.hopLim /* initially MAX_HOPCOUNT at originator */

 Incoming RERR message parameters:

 inRERR.PktSrc := source IP of unforwardable packet (if present)
 inRERR.metType := metric type for routes to unreachable
 destinations
 inRERR.PfxLen[] := prefix lengths for unreachable destinations
 inRERR.LostDest[] := unreachable destinations
 inRERR.LostSeq[] := sequence #s for unreachable destinations

 Outgoing RERR message parameters:

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 46]

Internet-Draft AODVv2 October 2014

 outRERR.PktSrc := source IP of unforwardable packet (if present)
 outRERR.metType := metric type for routes to unreachable
 destinations
 outRERR.PfxLen[] := prefix lengths for unreachable destinations
 outRERR.LostDest[] := unreachable destinations
 outRERR.LostSeq[] := sequence #s for unreachable destinations

A.1. Subroutines for AODVv2 Protocol Operations

 /* Compare incoming route information to current route, maybe use */
 Process_Routing_Info (dest, seq#, metric_type, metric,
 last_hop_metric)
 /* last_hop_metric: either Cost(inRREQ.netif) or (inRREP.netif) */
 {
 new_metric := metric + last_hop_metric;
 rte := Fetch_Route_Table_Entry (dest, seq#, metric_type);
 if (NULL == rte) {
 rte := Create_Route_Table_Entry
 (dest, seq#, metric_type, new_metric);
 } else if (seq# > rte.seq#) { /* stale rte route entry */
 Update_Route_Table_Entry (rte, seq#, metric_type, new_metric);
 } else if (seq# < rte.seq#) { /* stale incoming route infor */
 return(NULL);
 } else if (rte.state == broken) { /* when (seq# == rte.seq#) */
 Update_Route_Table_Entry (rte, seq#, metric_type, new_metric);
 } else if (rte.metric > (new_metric) { /* and (seq# == rte.seq#) */
 Update_Route_Table_Entry (rte, seq#, metric_type, new_metric);
 } else { /* incoming route information is not useful */
 return(NULL);
 }
 return (rte);
 }

A.2. Example Algorithms for AODVv2 RREQ Operations

A.2.1. Generate_RREQ

Perkins, et al. Expires April 30, 2015 [Page 47]

Internet-Draft AODVv2 October 2014

 Generate_RREQ {
 /* Marshall parameters */
 outRREQ.origIP := IP address used by application
 outRREQ.origSeq := originating router's sequence #
 outRREQ.metType := (if included) metric type needed by application
 outRREQ.origMet := 0 (default) or MIN_METRIC(Metric_type)
 outRREQ.targIP := target IP address
 outRREQ.targSeq := target sequence # /* if known from route table */
 outRREQ.hopLim := msg-hop-limit /* RFC 5444 */

 /* build RFC 5444 message header fields */
 {
 msg-type=RREQ (message is of type RREQ)
 MF=4 (Message Flags = 4 [only msg-hop-limit field is present])
 MAL=3 or 15 (Message Address Length [3 for IPv4, 15 for IPv6])
 msg-size=NN (octets -- counting MsgHdr, AddrBlk, and AddrTLVs)
 msg-hop-limit := MAX_HOPCOUNT
 if (Metric_type == DEFAULT) {
 msg.tlvs-length=0
 } else { /* Metric_type != HopCount */
 /* Build Metric_type Message TLV */
 }
 }

 /* build AddrBlk */
 num-addr := 2
 AddrBlk := {outRREQ.origIP and outRREQ.targIP addresses}

 /* Include each available Sequence Number in appropriate AddrTLV */
 /* put outRREQ.origSeq in OrigSeqNum AddrTLV */
 if (NULL != targSeq) {
 /* put outRREQ.targSeq in TargSeqNum AddrTLV */
 }

 /* Build Metric AddrTLV containing OrigNode metric */
 /* use MIN_METRIC(metric type) [==0 for default metric type */
 }

A.2.2. Receive_RREQ

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 48]

Internet-Draft AODVv2 October 2014

 Receive_RREQ (inRREQ) {
 /* Extract inRREQ values */
 origRTE = Process_Routing_Info (inRREQ.origIP, inRREQ.origSeq, ...)
 if (inRREQ.targIP belongs to me or my client subnet) {
 Generate_RREP()
 } else if (inRREQ present in RREQ_table) {
 return; /* don't regenerate RREQ... */
 } else if (inRREQ.nbrIP not present in blacklist) {
 Regenerate_RREQ(origRTE, inRREQ)
 } else if (blacklist_expiration_time > current_time) {
 return; /* don't regenerate RREQ... */
 } else {
 Remove nbrIP from blacklist;
 Regenerate_RREQ(origRTE, inRREQ)
 }
 }

A.2.3. Regenerate_RREQ

Perkins, et al. Expires April 30, 2015 [Page 49]

Internet-Draft AODVv2 October 2014

 Regenerate_RREQ (origRTE, inRREQ) { /* called from receive_RREQ() */
 outRREQ.hopLim := inRREQ.hopLim - 1
 if (outRREQ.hopLim == 0) { /* don't regenerate */
 return()
 }
 /* Marshall parameters */
 outRREQ.origIP := origRTE.origIP
 outRREQ.origSeq := origRTE.origSeq
 outRREQ.origMet := origRTE.origMet
 outRREQ.metType := origRTE.metType
 outRREQ.targIP := inRREQ.targIP
 outRREQ.targSeq := inRREQ.targSeq /* if present */

 /* build RFC 5444 message header fields */
 {
 msg-type=RREQ (message is of type RREQ)
 MF=4 (Message Flags = 4 [only msg-hop-limit field is present])
 MAL=3 or 15 (Message Address Length [3 for IPv4, 15 for IPv6])
 msg-size=NN (octets -- counting MsgHdr, AddrBlk, and AddrTLVs)
 msg-hop-limit := MAX_METRIC(Metric Type) (default, MAX_HOPCOUNT)
 if (Metric_type == DEFAULT) {
 msg.tlvs-length=0
 } else { /* Metric_type != HopCount */
 /* Build Metric_type Message TLV */
 }
 }

 /* build AddrBlk */
 num-addr := 2
 AddrBlk := {outRREQ.origIP and outRREQ.targIP addresses}

 /* Include each available Sequence Number in its proper AddrTLV */
 /* put outRREQ.origSeq in OrigSeqNum AddrTLV */
 if (NULL != targSeq) {
 /* put outRREQ.targSeq in TargSeqNum AddrTLV */
 }

 /* Build Metric AddrTLV to contain outRREQ.origMet */

 }

A.3. Example Algorithms for AODVv2 RREP Operations

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 50]

Internet-Draft AODVv2 October 2014

A.3.1. Generate_RREP

 Generate_RREP {
 /* Marshall parameters */
 outRREP.origIP := origRTE.origIP
 metric_type := origRTE.metType /* if not default */
 if (DEFAULT != metric_type)
 outRREP.metType := metric_type
 outRREP.targIP := inRREQ.targIP
 outRREP.targMet := MIN_METRIC(outRREP.metType) (0 by default)
 my_sequence_# := (1 + my_sequence_#) /* from nonvolatile storage */
 outRREP.targSeq := my_sequence_#

 /* build RFC 5444 message header fields */
 {
 msg-type=RREP
 MF=4 (Message Flags = 4 [only msg-hop-limit field is present])
 MAL=3 or 15 (Message Address Length [3 for IPv4, 15 for IPv6])
 msg-size=NN (octets -- counting MsgHdr, AddrBlk, and AddrTLVs)
 msg-hop-limit := MAX_HOPCOUNT
 /* Include the AckReq TLV when:
 - previous RREP does not seem to enable any data flow, OR
 - when RREQ is received from same OrigNode after RREP was
 unicast to targRTE.nextHop
 */
 if (DEFAULT != metric_type) {
 msg.tlvs-length=0
 } else { /* Metric_type != HopCount */
 /* Build Metric_type Message TLV */
 }
 }

 /* build AddrBlk */
 num-addr := 2
 AddrBlk := {outRREQ.origIP and outRREQ.targIP addresses}

 /* put outRREP.TargSeq in TargSeqNum AddrTLV */

 /* Build Metric AddrTLV containing TargNode metric */
 /* use MIN_METRIC(origRTE.metType) */
 }

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 51]

Internet-Draft AODVv2 October 2014

A.3.2. Receive_RREP

 Receive_RREP (inRREP)
 {
 If (RREP includes AckReq TLV) {
 Generate_RREP_Ack()
 }
 /* Extract inRREP values */
 targRTE := Process_Routing_Info (inRREP.targIP, inRREP.targSeq, ...)
 if (inRREP.targIP belongs to me, a client, or a client subnet) {
 Consume_RREP(inRREP)
 } else {
 Regenerate_RREP(targRTE, inRREP)
 }
 }

Perkins, et al. Expires April 30, 2015 [Page 52]

Internet-Draft AODVv2 October 2014

A.3.3. Regenerate_RREP

 Regenerate_RREP(targRTE, inRREP) {
 outRREP.hopLim := inRREP.hopLim - 1
 if (outRREP.hopLim == 0) { /* don't regenerate */
 return()
 }
 /* Marshall parameters */
 outRREP.targIP := targRTE.targIP
 outRREP.targSeq := targRTE.targSeq
 outRREP.targMet := targRTE.targMet
 metric_type := origRTE.metType /* if not default */
 if (DEFAULT != metric_type)
 outRREP.metType := metric_type
 outRREP.origIP := inRREP.origIP
 outRREP.nextHop := targRTE.nextHop

 /* build RFC 5444 message header fields */
 {
 msg-type=RREP (message is of type RREP)
 MF=4 (Message Flags = 4 [only msg-hop-limit field is present])
 MAL=3 or 15 (Message Address Length [3 for IPv4, 15 for IPv6])
 msg-size=NN (octets -- counting MsgHdr, AddrBlk, and AddrTLVs)
 /* Include the AckReq TLV when:
 - previous RREP does not seem to enable any data flow, OR
 - when RREQ is received from same OrigNode after RREP was
 unicast to targRTE.nextHop
 */
 msg-hop-limit := outRREP.hopLim;
 if (metric_type == DEFAULT) {
 msg.tlvs-length=0
 } else { /* Metric_type != HopCount */
 /* Build Metric_type Message TLV */
 }
 }

 /* build AddrBlk */
 num-addr := 2
 AddrBlk := {outRREQ.origIP and outRREQ.targIP addresses}

 /* put outRREP.targSeq in TargSeqNum AddrTLV */

 /* Build Metric AddrTLV containing TargNode metric */
 }

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 53]

Internet-Draft AODVv2 October 2014

A.3.4. Consume_RREP

 /* executed by RREQ_Gen */
 /* TargNode route table entry was updated by Receive_RREP() */
 Consume_RREP() {
 /* Transmit buffered packet(s) (if any) to TargNode */
 }

A.4. Example Algorithms for AODVv2 RERR Operations

A.4.1. Generate_RERR

 Generate_RERR()
 {
 metric_type := DEFAULT;
 switch (error_type) in {
 case (broken_link):
 num-broken-addr=0
 /* find unreachable destinations, seqNums, prefixes */
 for (every rte (route table entry) in route table) {
 if (broken_link == rte.next_hop) {
 rte.state := broken;
 outRERR.LostDest[num-broken-addr] := rte.dest
 outRERR.LostSeq[num-broken-addr] := rte.seq#
 outRERR.PfxLen[num-broken-addr] := rte.pfx
 metric_type := rte.metType
 num-broken-addr := (num-broken-addr+1)
 }
 }
 /* No offending-src for this case */
 case (undeliverable packet):
 offending-src := undeliverable_packet.srcIP
 outRERR.LostDest[] := undeliverable_packet.destIP
 outRERR.LostPfxSiz[] := MAX_PFX_SIZE /* 31 or 127 */
 num-broken-addr=1
 }

 /* build RFC 5444 message header fields */
 {
 msg-type=RERR (message is of type RERR)
 MF=4 (Message Flags = 4 [only msg-hop-limit field is present])
 MAL=3 or 15 (Message Address Length [3 for IPv4, 15 for IPv6])
 msg-size=NN (octets -- counting MsgHdr, AddrBlk, and AddrTLVs)
 msg-hop-limit := outRERR.hopLim;
 if (NULL != offending-src) {

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 54]

Internet-Draft AODVv2 October 2014

 /* Build PktSource Message TLV */
 }
 if (metric_type != DEFAULT) { /* Metric_type != HopCount */
 /* Build Metric_type Message TLV */
 }
 }

 /* build AddrBlk */
 num-addr := num-broken-addr;
 AddrBlk := outRERR.LostDest[];

 /* Add AddrBlk Seq# TLV */
 Seq#TLV := outRERR.LostSeq[]

 /* only add AddrBlk PfxSiz TLV if prefixes are nondefault */
 for (pfx in outRERR.LostPfx[]) {
 if (pfx != Max_Prefix_Size) { /* 31 for IPv4, 127 for IPv6 */
 PfxSizTLV := outRERR.LostPfx[]
 return;
 }
 }
 }

A.4.2. Receive_RERR

Perkins, et al. Expires April 30, 2015 [Page 55]

Internet-Draft AODVv2 October 2014

 Receive_RERR (inERR)
 {
 /* Extract inERR values */
 next_hop := inRERR.nbrIP
 offending-src := inRERR.offending-src; /* NULL if not present */

 precursors[] := NULL;
 num-broken-addr := 0;
 in-broken-addr := 0;
 for (IPaddr := inRERR.LostDest[in-broken-addr]) {
 rte := Fetch_Route_Table_Entry (dest, metric_type);
 if (NULL == rte) {
 continue;
 } else if (rte.nextHop != inRERR.fromIP) {
 continue;
 } else if (NULL != rte.precursors) {
 /* add rte.precursors to precursors */
 } else if (rte.PfxSiz < inRERR.PfxSiz) {
 /***
 If the reported prefix from the incoming RERR is *longer*
 than the prefix from Route Table, then create a new route
 with the longer prefix.
 The newly created route will be marked as broken, and used
 to regenerate RERR, NOT using shorter the routing prefix.
 This avoids unnecessarily invalidating the larger subnet.
 **/
 rte := Create_Route_Table_Entry (IPaddr, seq#,
 metric_type, new_metric, inRERR.PfxSiz);
 }
 LostDest[num-broken-addr] := rte.Dest;
 Seq#[num-broken-addr] := rte.Seq#;
 PfxSiz[num-broken-addr] := rte.PfxSiz;
 rte.state = broken;
 num-broken-addr := (num-broken-addr + 1);
 in-broken-addr := (in-broken-addr + 1);
 }
 if (num-broken-addr > 0) {
 Regenerate_RERR (offending-src, precursors,
 LostDest[], Seq#[], PfxSiz[])
 }
 }

A.4.3. Regenerate_RERR

Perkins, et al. Expires April 30, 2015 [Page 56]

Internet-Draft AODVv2 October 2014

 Regenerate_RERR (offending-src, precursors,
 LostDest[], LostSeq#[], PfxSiz[])
 {
 /* build RFC 5444 message header fields */
 {
 msg-type=RERR (message is of type RERR)
 MF=4 (Message Flags = 4 [only msg-hop-limit field is present])
 MAL=3 or 15 (Message Address Length [3 for IPv4, 15 for IPv6])
 msg-size=NN (octets -- counting MsgHdr, AddrBlk, and AddrTLVs)
 outRERR.hopLim := inRERR.hopLim - 1
 msg-hop-limit := outRERR.hopLim;

 if (NULL != offending-src) {
 /* Build PktSource Message TLV */
 }
 if (metric_type != DEFAULT) { /* Metric_type != HopCount */
 /* Build Metric_type Message TLV */
 }
 }

 /* build AddrBlk */
 num-addr := num-broken-addr;
 AddrBlk := LostDest[];

 /* Add AddrBlk Seq# TLV */
 Seq#TLV := LostSeq[]

 /* only add AddrBlk PfxSiz TLV if prefixes are nondefault */
 for (pfx in PfxSiz[]) {
 if (pfx != Max_Prefix_Size) { /* 31 for IPv4, 127 for IPv6 */
 PfxSizTLV := PfxSiz[]
 }
 } /* If all are default, don't include PfxSize AddrTLV */

 if (#precursors == 1) {
 unicast RERR to precursor[0];
 } else if (#precursors > 1) {
 multicast RERR to RERR_PRECURSORS;
 } else if (offending-src != NULL) {
 unicast RERR to offending-src;
 } else {
 multicast RERR to RERR_PRECURSORS;
 }
 }

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 57]

Internet-Draft AODVv2 October 2014

A.5. Example Algorithms for AODVv2 RREP-Ack Operations

A.5.1. Generate_RREP_Ack

 /* To be sent when RREP includes the AckReq TLV */
 Generate_RREP_Ack()
 {
 /* assign RFC 5444 fields */
 msgtype := RREPAck
 MF := 0
 MAL := 3
 msg-size := 4
 }

A.5.2. Consume_RREP_Ack

 Consume_RREP_Ack()
 {
 /* turn off timeout event for the node sending RREP_Ack */
 }

A.5.3. Timeout_RREP_Ack

 Timeout_RREP_Ack()
 {
 /* insert unresponsive node into blacklist */
 }

Appendix B. Example RFC 5444-compliant packet formats

 The following subsections show example RFC 5444-compliant packets for
 AODVv2 message types RREQ, RREP, RERR, and RREP-Ack. These proposed
 message formats are designed based on expected savings from IPv6
 addressable MANET nodes, and a layout for the Address TLVs that may
 be viewed as natural, even if perhaps not the absolute most compact
 possible encoding.

 For RteMsgs, the msg-hdr fields are followed by at least one and
 optionally two Address Blocks. The first AddrBlk contains OrigNode
 and TargNode. For each AddrBlk, there must be AddrTLVs of type
 Metric and one of the SeqNum types (i.e, OrigSeqNum, TargSeqNum, or
 Seqnum).

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 58]

Internet-Draft AODVv2 October 2014

 There is no Metric Type Message TLV present, so the Metric AddrTLV
 measures HopCount. The Metric AddrTLV also provides a way for the
 AODV router generating the RREQ or RREP to supply an initial nonzero
 cost for the route to its client node (OrigNode or TargNode, for RREQ
 or RREP respectively).

 In all cases, the length of an address (32 bits for IPv4 and 128 bits
 for IPv6) inside an AODVv2 message is indicated by the msg-addr-
 length (MAL) in the msg-header, as specified in [RFC5444].

 The RFC 5444 header preceding AODVv2 messages in this document has
 the format illustrated in Figure 4.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 | PV=0 | PF=0 |
 +-+-+-+-+-+-+-+-+

 Figure 4: RFC 5444 Packet Header

 The fields in Figure 4 are to be interpreted as follows:

 o PV=0 (Packet Header Version = 0)
 o PF=0 (Packet Flags = 0)

B.1. RREQ Message Format

 Figure 5 illustrates an example RREQ message format.

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 59]

Internet-Draft AODVv2 October 2014

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | msg-type=RREQ | MF=4 | MAL=3 | msg-size=28 |
 +-+
 | msg-hop-limit | msg.tlvs-length=0 | num-addr=2 |
 +-+
 |1|0|0|0|0| Rsv | head-length=3 | Head (bytes for Orig & Target):
 +-+
 :Head(Orig&Targ)| Orig.Tail | Target.Tail |addr.TLV.len=11:
 +-+
 :addr.TLV.len=11|type=OrigSeqNum|0|1|0|1|0|0|Rsv| Index-start=0 |
 +-+
 | tlv-length=2 | Orig.Node Sequence # | type=Metric |
 +-+
 |0|1|0|1|0|0|Rsv| Index-start=0 | tlv-length=1 | OrigNodeHopCt |
 +-+

 Figure 5: Example IPv4 RREQ, with OrigSeqNum and Metric AddrTLVs

 The fields in Figure 5 are to be interpreted as follows:

 o msg-type=RREQ (first [and only] message is of type RREQ)
 o MF=4 (Message Flags = 4 [only msg-hop-limit field is present])
 o MAL=3 (Message Address Length indicator [3 for IPv4, 15 for IPv6])
 o msg-size=28 (octets -- counting MsgHdr, MsgTLVs, and AddrBlks)
 o msg-hop-limit (initially MAX_HOPCOUNT by default)
 o msg.tlvs-length=0 (no Message TLVs)
 o num-addr=2 (OrigNode and TargNode addresses in RteMsg AddrBlock)
 o AddrBlk flags:

 * bit 0 (ahashead): 1
 * bit 1 (ahasfulltail): 0
 * bit 2 (ahaszerotail): 0
 * bit 3 (ahassingleprelen): 0
 * bit 4 (ahasmultiprelen): 0
 * bits 5-7: RESERVED
 o head-length=3 (length of head part of each address is 3 octets)
 o Head (3 initial bytes for both Originating & Target addresses)
 o Orig.Tail (4th byte of Originating Node IP address)
 o Target.Tail (4th byte of Target Node IP address)
 o addr.TLV.len = 11 (length in bytes for OrigSeqNum and Metric TLVs
 o type=OrigSeqNum (type of first AddrBlk TLV, value 2 octets)
 o AddrTLV flags for the OrigSeqNum TLV:

 * bit 0 (thastypeext): 0
 * bit 1 (thassingleindex): 1
 * bit 2 (thasmultiindex): 0

Perkins, et al. Expires April 30, 2015 [Page 60]

Internet-Draft AODVv2 October 2014

 * bit 3 (thasvalue): 1
 * bit 4 (thasextlen): 0
 * bit 5 (tismultivalue): 0
 * bits 6-7: RESERVED
 o Index-start=0 (OrigSeqNum TLV value applies at index 0)
 o tlv-length=2 (so there is only one TLV value, [1 = 2/2])
 o Orig.Node Sequence # (TLV value for the OrigSeqNum TLV
 o type=Metric (AddrTLV type of second AddrBlk TLV, values 1 octet)
 o AddrTLV flags for Metric_TLV:

 * bit 0 (thastypeext): 0
 * bit 1 (thassingleindex): 1
 * bit 2 (thasmultiindex): 0
 * bit 3 (thasvalue): 1
 * bit 4 (thasextlen): 0
 * bit 5 (tismultivalue): 0
 * bits 6-7: RESERVED
 o Index-start=0 (Metric TLV values start at index 0)
 o tlv-length=1 (so there is only one TLV value, [1 = 1/1])
 o OrigNodeHopCt (first [and only] TLV value for the Metric TLV)

B.2. RREP Message Format

 Figure 6 illustrates a packet format for an example RREP message.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | msg-type=RREP | MF=4 | MAL=3 | msg-size=28 |
 +-+
 | msg-hop-limit | msg.tlvs-length=0 | num-addr=2 |
 +-+
 |1|0|0|0|0| Rsv | head-length=3 | Head (bytes for Orig & Target):
 +-+
 :Head(Orig&Targ)| Orig.Tail | Target.Tail |addr.TLV.len=11:
 +-+
 :addr.TLV.len=11|type=TargSeqNum|0|1|0|1|0|0|Rsv| Index-start=1 |
 +-+
 | tlv-length=2 | Targ.Node Sequence # | type=Metric |
 +-+
 |0|1|0|1|0|0|Rsv| Index-start=1 | tlv-length=1 | TargNodeHopCt |
 +-+

 Figure 6: Example IPv4 RREP, with TargSeqNum TLV and 1 Metric

Perkins, et al. Expires April 30, 2015 [Page 61]

Internet-Draft AODVv2 October 2014

 The fields in Figure 6 are to be interpreted as follows:

 o msg-type=RREP (first [and only] message is of type RREP)
 o MF=4 (Message Flags = 4 [only msg-hop-limit field is present])
 o MAL=3 (Message Address Length indicator [3 for IPv4, 15 for IPv6])
 o msg-size=28 (octets -- counting MsgHdr, MsgTLVs, and AddrBlks)
 o msg-hop-limit (initially MAX_HOPCOUNT by default)
 o msg.tlvs-length=0 (no Message TLVs)
 o num-addr=2 (OrigNode and TargNode addresses in RteMsg AddrBlock)
 o AddrBlk flags:

 * bit 0 (ahashead): 1
 * bit 1 (ahasfulltail): 0
 * bit 2 (ahaszerotail): 0
 * bit 3 (ahassingleprelen): 0
 * bit 4 (ahasmultiprelen): 0
 * bits 5-7: RESERVED
 o head-length=3 (length of head part of each address is 3 octets)
 o Head (3 initial bytes for both Originating & Target addresses)
 o Orig.Tail (4th byte of Originating Node IP address)
 o Target.Tail (4th byte of Target Node IP address)
 o addr.TLV.len = 11 (length in bytes for TargSeqNum TLV and Metric
 TLV
 o type=TargSeqNum (type of first AddrBlk TLV, value 2 octets)
 o AddrTLV flags for the TargSeqNum TLV:

 * bit 0 (thastypeext): 0
 * bit 1 (thassingleindex): 1
 * bit 2 (thasmultiindex): 0
 * bit 3 (thasvalue): 1
 * bit 4 (thasextlen): 0
 * bit 5 (tismultivalue): 0
 * bits 6-7: RESERVED
 o Index-start=1 (TargSeqNum TLV value applies to address at index 1)
 o tlv-length=2 (there is one TLV value, 2 bytes in length)
 o Targ.Node Sequence # (value for the TargSeqNum TLV)
 o type=Metric (AddrTLV type of second AddrBlk TLV, value 1 octet)
 o AddrTLV flags for the Metric TLV [01010000, same as for TargSeqNum
 TLV]
 o Index-start=1 (Metric TLV values start at index 1)
 o tlv-length=1 (there is one TLV value, 1 byte in length)
 o TargNodeHopCt (first [and only] TLV value for Metric TLV)

Perkins, et al. Expires April 30, 2015 [Page 62]

Internet-Draft AODVv2 October 2014

B.3. RERR Message Format

 Figure 7 illustrates an example RERR message format.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | msg-type=RERR | MF=4 | MAL=3 | msg-size=24 |
 +-+
 | msg-hop-limit | msg.tlvs-length=0 | num-addr=2 |
 +-+
 |1|0|0|0|0| Rsv | head-length=3 | Head (for both destinations) :
 +-+
 :Head (3rd byte)| Tail(Dest_1) | Tail(Dest_2) | addr.TLV.len=7:
 +-+
 :addr.TLV.len=7 | type=SeqNum |0|0|1|1|0|1|Rsv| tlv-length=4 |
 +-+
 | Dest_1 Sequence # | Dest_2 Sequence # |
 +-+

 Figure 7: Example IPv4 RERR with Two Unreachable Nodes

 The fields in Figure 7 are to be interpreted as follows:

 o msg-type=RERR (first [and only] message is of type RERR)
 o MF=4 (Message Flags = 4 [only msg-hop-limit field is present])
 o MAL=3 (Message Address Length indicator [3 for IPv4, 15 for IPv6])
 o msg-size=24 (octets -- counting MsgHdr, MsgTLVs, and AddrBlks)
 o msg-hop-limit (initially MAX_HOPCOUNT by default)
 o msg.tlvs-length=0 (no Message TLVs)
 o num-addr=2 (OrigNode and TargNode addresses in RteMsg AddrBlock)
 o AddrBlk flags == 10000000 [same as RREQ and RREP AddrBlk examples]
 o head-length=3 (length of head part of each address is 3 octets)
 o Head (3 initial bytes for both Unreachable Nodes, Dest_1 and
 Dest_2)
 o Dest_1.Tail (4th byte of Dest_1 IP address)
 o Dest_2.Tail (4th byte of Dest_2 IP address)
 o addr.TLV.len = 7 (length in bytes for SeqNum TLV
 o type=SeqNum (AddrTLV type of AddrBlk TLV, values 2 octets each)
 o AddrTLV flags for SeqNum TLV:

 * bit 0 (thastypeext): 0
 * bit 1 (thassingleindex): 0
 * bit 2 (thasmultiindex): 1
 * bit 3 (thasvalue): 1
 * bit 4 (thasextlen): 0
 * bit 5 (tismultivalue): 1
 * bits 6-7: RESERVED

Perkins, et al. Expires April 30, 2015 [Page 63]

Internet-Draft AODVv2 October 2014

 o tlv-length=4 (so there are two TLV values, [2 = 4/2])
 o Dest_1 Sequence # (first of two TLV values for the SeqNum TLV)
 o Dest_2 Sequence # (second of two TLV values for the SeqNum TLV)

B.4. RREP_ACK Message Format

 The figure below illustrates a packet format for an example RREP_ACK
 message.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |msgtype=RREPAck| MF=0 | MAL=3 | msg-size=4 |
 +-+

 Figure 8: Example IPv4 RREP_ACK

Appendix C. Changes since revision ...-04.txt

 This section lists the changes since AODVv2 revision ...-04.txt

 o Normative text moved out of definitions into the relevant section
 of the body of the specification.
 o Editorial improvements and improvements to consistent terminology
 were made. Replaced "retransmit" by the slightly more accurate
 term "regenerate".
 o Issues were resolved as discussed on the mailing list.
 o Changed definition of LoopFree as suggested by Kedar Namjoshi and
 Richard Trefler to avoid the failure condition that they have
 described. In order to make understanding easier, replaced
 abstract parameters R1 by RteMsg and R2 by Route to reduce the
 level of abstraction when the function LoopFree is discussed.
 o Added text to clarify that different metrics may have different
 data types and different ranges of acceptable values.
 o Added text to section "RteMsg Structure" to emphasize the proper
 use of RFC 5444.
 o Included within the main body of the specification the mandatory
 setting of the TLV flag thassingleindex for TLVs OrigSeqNum and
 TargSeqNum.
 o Made more extensive use of the AdvRte terminology, in order to
 better distinguish between the incoming RREQ or RREP message

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 30, 2015 [Page 64]

Internet-Draft AODVv2 October 2014

 (i.e., RteMsg) versus the route advertised by the RteMsg (i.e.,
 AdvRte).

Appendix D. Changes since revision ...-03.txt

 This section lists the changes since AODVv2 revision ...-03.txt

 o An appendix was added to exhibit algorithmic code for
 implementation of AODVv2 functions.
 o Numerous editorial improvements and improvements to consistent
 terminology were made. Terminology related to prefix lengths was
 made consistent. Some items listed in "Notational Conventions"
 were no longer used, and so deleted.
 o Issues were resolved as discussed on the mailing list.
 o Appropriate instances of "may" were changed to "MAY".
 o Definition inserted for "upstream".
 o Route.Precursors included as an *optional* route table field
 o Reworded text to avoid use of "relevant".
 o Deleted references to "DestOnly" flag.
 o Refined statements about Metric Type TLV to allow for omission
 when Metric Type == HopCount.
 o Bulletized list in section 8.1
 o ENABLE_IDLE_UNREACHABLE renamed to be ENABLE_IDLE_IN_RERR
 o Transmission and subscription to LL-MANET-Routers converted to
 MUST from SHOULD.

Appendix E. Changes since revision ...-02.txt

 This section lists the changes since AODVv2 revision ...-02.txt

 o The "Added Node" feature was removed. This feature was intended
 to enable additional routing information to be carried within a
 RREQ or a RREP message, thus increasing the amount of topological
 information available to nodes along a routing path. However,
 enlarging the packet size to include information which might never
 be used can increase congestion of the wireless medium. The
 feature can be included as an optional feature at a later date
 when better algorithms are understood for determining when the
 inclusion of additional routing information might be worthwhile.
 o Numerous editorial improvements and improvements to consistent
 terminology were made. Instances of OrigNodeNdx and TargNodeNdx
 were replaced by OrigNdx and TargNdx, to be consistent with the
 terminology shown in Table 1.
 o Example RREQ and RREP message formats shown in the Appendices were
 changed to use OrigSeqNum and TargSeqNum message TLVs instead of
 using the SeqNum message TLV.
 o Inclusion of the OrigNode's SeqNum in the RREP message is not
 specified. The processing rules for the OrigNode's SeqNum were

Perkins, et al. Expires April 30, 2015 [Page 65]

Internet-Draft AODVv2 October 2014

 incompletely specified in previous versions of the draft, and very
 little benefit is foreseen for including that information, since
 reverse path forwarding is used for the RREP.
 o Additional acknowledgements were included, and contributors names
 were alphabetized.
 o Definitions in the Terminology section capitalize the term to be
 defined.
 o Uncited bibliographic entries deleted.
 o Ancient "Changes" sections were deleted.

Appendix F. Multi-homing Considerations

 Multi-homing is not supported by the AODVv2 specification. There has
 been previous work indicating that it can be supported by expanding
 the sequence number to include the AODVv2 router's IP address as a
 parsable field of the SeqNum. Otherwise, comparing sequence numbers
 would not work to evaluate freshness. Even when the IP address is
 included, there isn't a good way to compare sequence numbers from
 different IP addresses, but at least a handling node can determine
 whether the two given sequence numbers are comparable. If the route
 table can store multiple routes for the same destination, then multi-
 homing can work with sequence numbers augmented by IP addresses.

 This non-normative information is provided simply to document the
 results of previous efforts to enable multi-homing. The intention is
 to simplify the task of future specification if multihoming becomes
 needed for reactive protocol operation.

Appendix G. Shifting Network Prefix Advertisement Between AODVv2
 Routers

 Only one AODVv2 router within a MANET SHOULD be responsible for a
 particular address at any time. If two AODVv2 routers dynamically
 shift the advertisement of a network prefix, correct AODVv2 routing
 behavior must be observed. The AODVv2 router adding the new network
 prefix must wait for any existing routing information about this
 network prefix to be purged from the network. Therefore, it must
 wait at least ROUTER_SEQNUM_AGE_MAX_TIMEOUT after the previous AODVv2
 router for this address stopped advertising routing information on
 its behalf.

Authors' Addresses

Perkins, et al. Expires April 30, 2015 [Page 66]

Internet-Draft AODVv2 October 2014

 Charles E. Perkins
 Futurewei Inc.
 2330 Central Expressway
 Santa Clara, CA 95050
 USA

 Phone: +1-408-330-5305
 Email: charliep@computer.org

 Stan Ratliff
 Cisco
 170 West Tasman Drive
 San Jose, CA 95134
 USA

 Email: sratliff@cisco.com

 John Dowdell
 Airbus Defence and Space
 Celtic Springs
 Newport, Wales NP10 8FZ
 United Kingdom

 Email: john.dowdell@cassidian.com

Perkins, et al. Expires April 30, 2015 [Page 67]

