
Mobile Ad hoc Networks Working Group C. Perkins
Internet-Draft Futurewei
Intended status: Standards Track S. Ratliff
Expires: April 15, 2016 Idirect
 J. Dowdell
 Airbus Defence and Space
 L. Steenbrink
 HAW Hamburg, Dept. Informatik
 V. Mercieca
 Airbus Defence and Space
 October 13, 2015

Ad Hoc On-demand Distance Vector Routing Version 2 (AODVv2)
draft-ietf-manet-aodvv2-12

Abstract

 The Ad Hoc On-demand Distance Vector Version 2 (AODVv2) routing
 protocol is intended for use by mobile routers in wireless, multihop
 networks. AODVv2 determines unicast routes among AODVv2 routers
 within the network in an on-demand fashion, offering rapid
 convergence in dynamic topologies.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 15, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Perkins, et al. Expires April 15, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft AODVv2 October 2015

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Overview . 4
2. Terminology . 5
3. Applicability Statement 9
4. Data Structures . 10
4.1. Interface List . 10
4.2. Router Client Table 10
4.3. Neighbor Table . 11
4.4. Sequence Numbers . 12
4.5. Multicast Route Message Table 13
4.6. Route Table . 14

5. Metrics . 15
6. AODVv2 Protocol Operations 17
6.1. Initialization . 17
6.2. Adjacency Monitoring 18
6.3. Neighbor Table Update 19
6.4. Interaction with Forwarding Plane 20
6.5. Message Transmission 21
6.6. Route Discovery, Retries and Buffering 23
6.7. Processing Received Route Information 24
6.7.1. Evaluating Route Information 25
6.7.2. Applying Route Updates 27

 6.8. Suppressing Redundant Messages Using the Multicast Route
 Message Table . 28

6.9. Route Maintenance . 31
6.9.1. Route State . 31
6.9.2. Reporting Invalid Routes 33

7. AODVv2 Protocol Messages 34
7.1. Route Request (RREQ) Message 34
7.1.1. RREQ Generation 35
7.1.2. RREQ Reception 36
7.1.3. RREQ Regeneration 38

7.2. Route Reply (RREP) Message 39
7.2.1. RREP Generation 40
7.2.2. RREP Reception 42
7.2.3. RREP Regeneration 43

7.3. Route Reply Acknowledgement (RREP_Ack) Message 44
7.3.1. RREP_Ack Generation 45
7.3.2. RREP_Ack Reception 45

http://trustee.ietf.org/license-info

Perkins, et al. Expires April 15, 2016 [Page 2]

Internet-Draft AODVv2 October 2015

7.4. Route Error (RERR) Message 45
7.4.1. RERR Generation 46
7.4.2. RERR Reception 48
7.4.3. RERR Regeneration 49

8. RFC 5444 Representation 50
8.1. Route Request Message Representation 52
8.1.1. Message Header 52
8.1.2. Message TLV Block 52
8.1.3. Address Block . 52
8.1.4. Address Block TLV Block 52

8.2. Route Reply Message Representation 53
8.2.1. Message Header 53
8.2.2. Message TLV Block 54
8.2.3. Address Block . 54
8.2.4. Address Block TLV Block 54

8.3. Route Reply Acknowledgement Message Representation . . . 55
8.3.1. Message Header 55
8.3.2. Message TLV Block 55
8.3.3. Address Block . 55
8.3.4. Address Block TLV Block 55

8.4. Route Error Message Representation 56
8.4.1. Message Header 56
8.4.2. Message TLV Block 56
8.4.3. Address Block . 56
8.4.4. Address Block TLV Block 56

9. Simple External Network Attachment 57
10. Optional Features . 58
10.1. Expanding Rings Multicast 59
10.2. Precursor Lists . 59
10.3. Intermediate RREP 60
10.4. Message Aggregation Delay 60

11. Configuration . 60
11.1. Timers . 61
11.2. Protocol Constants 62
11.3. Local Settings . 63
11.4. Network-Wide Settings 63
11.5. Optional Feature Settings 63
11.6. MetricType Allocation 64
11.7. AddressType Allocation 64

12. IANA Considerations . 65
12.1. RFC 5444 Message Types 65
12.2. RFC 5444 Address Block TLV Types 65

13. Security Considerations 65
14. Acknowledgments . 68
15. References . 69
15.1. Normative References 69
15.2. Informative References 70

Appendix A. Multi-homing Considerations 71

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 3]

Internet-Draft AODVv2 October 2015

Appendix B. Router Client Relocation 71
Appendix C. Example Algorithms for AODVv2 Operations 72
C.1. HopCount MetricType 73
C.2. General Operations 74
C.2.1. Route Operations 74
C.2.2. LoopFree . 77
C.2.3. Multicast Route Message Table Operations 78

C.3. Message Algorithms 79
C.3.1. Build_RFC_5444_Message_Header 80
C.3.2. RREQ Operations 80
C.3.3. RREP Operations 84
C.3.4. RREP_Ack Operations 88
C.3.5. RERR Operations 88

Appendix D. AODVv2 Draft Updates 93
D.1. Changes between revisions 11 and 12 93
D.2. Changes between revisions 10 and 11 94
D.3. Changes between revisions 9 and 10 95
D.4. Changes between revisions 8 and 9 95
D.5. Changes between revisions 7 and 8 98
D.6. Changes between revisions 6 and 7 99
D.7. Changes between revisions 5 and 6 100
D.8. Changes between revisions 4 and 5 101
D.9. Changes between revisions 3 and 4 102
D.10. Changes between revisions 2 and 3 103

 Authors' Addresses . 104

1. Overview

 The Ad Hoc On-demand Distance Vector Version 2 (AODVv2) routing
 protocol (formerly named DYMO) enables on-demand, multihop unicast
 routing among AODVv2 routers in mobile ad hoc networks (MANETs)
 [RFC2501].

 Compared to AODV [RFC3561], AODVv2 makes some features optional,
 notably intermediate route replies, expanding ring search, and
 precursor lists. Hello messages and local repair have been removed.
 Message formats have been updated and made compliant with [RFC5444].
 AODVv2 also provides a mechanism for the use of multiple metric
 types.

 The basic operations of the AODVv2 protocol are route discovery and
 route maintenance.

 Route discovery is performed when an AODVv2 router needs to forward
 an IP packet for one of its clients, but does not have a valid route
 to the packet's destination. AODVv2 routers use Route Request (RREQ)
 and Route Reply (RREP) messages to carry route information between
 the originator of the route discovery and the target, establishing a

https://datatracker.ietf.org/doc/html/rfc2501
https://datatracker.ietf.org/doc/html/rfc3561
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 4]

Internet-Draft AODVv2 October 2015

 route to both endpoints on all intermediate routers. A metric value
 is included to represent the cost of the route contained within the
 message.

 AODVv2 uses sequence numbers to identify stale routing information,
 and compares route metric values to determine if advertised routes
 could form loops.

 Route maintenance involves monitoring the router's links and routes
 for changes. This includes confirming bidirectionality of links to
 other AODVv2 routers, issuing Route Error messages if link failures
 invalidate routes, extending and enforcing route timeouts, and
 reacting to received Route Error messages.

 AODVv2 control plane messages use the Generalized MANET Packet/
 Message Format defined in [RFC5444] and the parameters in [RFC5498].
 AODVv2 defines a set of Data Elements which map to [RFC5444] Address
 Blocks, Address Block TLVs, and Message TLVs.

 Security for authentication of AODVv2 routers and encryption of
 control messages is accomplished using the TIMESTAMP and ICV TLVs
 defined in [RFC7182].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119]. In addition, this document uses terminology from
 [RFC5444], and defines the following terms:

 AddressList
 An AODVv2 Data Element containing a list of IP addresses.

 Adjacency
 A bi-directional link between neighboring AODVv2 routers for the
 purpose of routing information.

 AckReq
 An AODVv2 Data Element used in a Route Reply message to request
 that the Route Reply message is acknowledged by returning a Route
 Reply Ack message. This Data Element contains the address of the
 AODVv2 router that should acknowledge the Route Reply message.

 AdvRte
 A route advertised in an incoming route message.

 AODVv2 Router

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5498
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc7182
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 5]

Internet-Draft AODVv2 October 2015

 An IP addressable device in the ad hoc network that performs the
 AODVv2 protocol operations specified in this document.

 CurrentTime
 The current time as maintained by the AODVv2 router.

 Data Element
 A named field used within AODVv2 protocol messages.

 ENAR (External Network Access Router)
 An AODVv2 router with an interface to an external, non-AODVv2
 network.

 Invalid route
 A route that cannot be used for forwarding.

 MANET
 A Mobile Ad Hoc Network as defined in [RFC2501].

 MetricType
 An AODVv2 Data Element indicating the metric type for a metric
 value included in a message.

 MetricTypeList
 An AODVv2 Data Element used in a Route Error message, containing a
 list of metric types associated with the addresses in the
 AddressList of the message.

 Neighbor
 An AODVv2 router from which an AODVv2 message has been received.
 Neighbors exchange routing information and attempt to verify
 bidirectionality of the link to a neighbor before installing a
 route via that neighbor.

 Node
 An IP addressable device in the ad hoc network. All nodes in this
 document are either AODVv2 Routers or Router Clients.

 OrigAddr (Originator Address)
 An AODVv2 Data Element containing the source IP address of the IP
 packet triggering route discovery.

 OrigMetric
 An AODVv2 Data Element containing the metric value associated with
 the route to the OrigAddr in a message.

 OrigPrefixLen
 The prefix length, in bits, associated with OrigAddr.

https://datatracker.ietf.org/doc/html/rfc2501

Perkins, et al. Expires April 15, 2016 [Page 6]

Internet-Draft AODVv2 October 2015

 OrigSeqNum
 An AODVv2 Data Element used in a Route Request message, containing
 the sequence number of the AODVv2 router which originated the
 Route Request.

 PktSource
 An AODVv2 Data Element used in a Route Error message, containing
 the source address of the IP packet which triggered the Route
 Error message.

 PrefixLengthList
 An AODVv2 Data Element containing a list of routing prefix lengths
 associated with the addresses in the AddressList of the message.

 Reactive
 A protocol operation is called "reactive" if it is performed only
 in reaction to specific events. In this document, "reactive" is
 synonymous with "on-demand".

 RERR (Route Error)
 The AODVv2 message type used to indicate that an AODVv2 router
 does not have a route toward one or more particular destinations.

 RERR_Gen (RERR Generating Router)
 The AODVv2 router generating a Route Error message.

 Routable Unicast IP Address
 A routable unicast IP address is a unicast IP address that is
 scoped sufficiently to be forwarded by a router. Globally-scoped
 unicast IP addresses and Unique Local Addresses (ULAs) [RFC4193]
 are examples of routable unicast IP addresses.

 Router Client
 An address or address range configured on an AODVv2 router,
 corresponding to one or more nodes which require that router to
 initiate and respond to route discoveries on their behalf, so that
 they can send and receive IP traffic to and from remote
 destinations. The AODVv2 router's interface addresses are also
 configured as Router Clients.

 RREP (Route Reply)
 The AODVv2 message type used to reply to a Route Request message.

 RREP_Gen (RREP Generating Router)
 The AODVv2 router configured with TargAddr as a Router Client,
 i.e., the router that creates the Route Reply message.

 RREQ (Route Request)

https://datatracker.ietf.org/doc/html/rfc4193

Perkins, et al. Expires April 15, 2016 [Page 7]

Internet-Draft AODVv2 October 2015

 The AODVv2 message type used to discover a route to the Target
 Address and distribute information about the route to the
 Originator Address.

 RREQ_Gen (RREQ Generating Router)
 The AODVv2 router that creates the Route Request message on behalf
 of a Router Client.

 RteMsg (Route Message)
 A Route Request (RREQ) or Route Reply (RREP) message.

 Sequence Number (SeqNum)
 An AODVv2 Data Element containing the sequence number maintained
 by an AODVv2 router to indicate freshness of route information.

 SeqNumList
 An AODVv2 Data Element containing a list of sequence numbers
 associated with the addresses in the AddressList of a message.

 TargAddr (Target Address)
 An AODVv2 Data Element containing the destination address of the
 IP packet triggering route discovery.

 TargMetric
 An AODVv2 Data Element containing the metric value associated with
 the route to the TargAddr in a message.

 TargPrefixLen
 The prefix length, in bits, associated with TargAddr.

 TargSeqNum
 An AODVv2 Data Element used in a Route Reply message, containing
 the sequence number of the AODVv2 router which originated the
 Route Reply.

 Valid route
 A route that can be used for forwarding.

 Unreachable Address
 An address reported in an RERR message, either the destination
 address of an IP packet that could not be forwarded because a
 valid route to the destination is not known, or the address on a
 route which became Invalid.

 Upstream
 In the direction from destination to source (from TargAddr to
 OrigAddr).

Perkins, et al. Expires April 15, 2016 [Page 8]

Internet-Draft AODVv2 October 2015

 ValidityTime
 An AODVv2 Data Element containing the length of time the route
 described by the message is offered.

 The AODVv2 Data Elements are used to create AODVv2 messages. Their
 contents are transferred into [RFC5444] formatted messages (see

Section 8) before sending.

 This document uses the notational conventions in Table 1 to simplify
 the text.

 +-----------------------+------------------------------------+
 | Notation | Meaning |
 +-----------------------+------------------------------------+
 | Route[Address] | A route toward Address |
 | Route[Address].Field | A field in a route toward Address |
 | RteMsg.Field | A field in either RREQ or RREP |
 +-----------------------+------------------------------------+

 Table 1: Notational Conventions

3. Applicability Statement

 The AODVv2 routing protocol is a reactive routing protocol. Certain
 interactions with the forwarding plane are required, and these are
 discussed in Section 6.4.

 AODVv2 is designed for stub or disconnected mobile ad hoc networks,
 i.e., non-transit networks or those not connected to the internet.
 AODVv2 can, however, be configured to perform gateway functions when
 attached to external networks, as discussed in Section 9.

 AODVv2 handles a wide variety of mobility and traffic patterns by
 determining routes on-demand. In networks with a large number of
 routers, AODVv2 is best suited for relatively sparse traffic
 scenarios where each router forwards IP packets to a small percentage
 of other AODVv2 routers in the network. In this case fewer routes
 are needed, and therefore less control traffic is produced.

 Providing security for a reactive routing protocol can be difficult.
 AODVv2 provides for message integrity and security against replay
 attacks by using integrity check values, timestamps and sequence
 numbers, as described in Section 13. If security associations can be
 established, encryption can be used for AODVv2 messages to ensure
 that only trusted routers participate in routing operations.

 Since the route discovery process typically results in a route being
 established in both directions along the same path, uni-directional

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 9]

Internet-Draft AODVv2 October 2015

 links are not suitable. AODVv2 will detect and exclude those links
 from route discovery. The route discovered is optimised for the
 requesting router, and the return path may not be the optimal route.

 AODVv2 is applicable to memory constrained devices, since only a
 little routing state is maintained in each AODVv2 router. In
 contrast to proactive routing protocols, which maintain routing
 information for all destinations within the MANET, AODVv2 routes that
 are not needed for forwarding data do not need to be maintained. On
 routers unable to store persistent AODVv2 state, recovery can impose
 a performance penalty (e.g., in case of AODVv2 router reboot), since
 if a router loses its sequence number, there is a delay before the
 router can resume full operations. This is described in Section 6.1.

 AODVv2 supports routers with multiple interfaces, as long as each
 interface configured for AODVv2 has a unicast IP address. A router
 may use the same IP address on multiple interfaces. Address
 assignment procedures are out of scope for AODVv2.

 AODVv2 supports hosts with multiple interfaces, as long as each
 interface is configured with its own unicast IP address. Multi-
 homing of an IP address is not supported by AODVv2, and therefore a
 Router Client, i.e. an IP Address, SHOULD NOT be served by more than
 one AODVv2 router at any one time. Appendix A contains some notes on
 this topic.

 Although AODVv2 is closely related to AODV [RFC3561], and shares some
 features of DSR [RFC4728], AODVv2 is not interoperable with either of
 those protocols.

 The routing algorithm in AODVv2 MAY be operated at layers other than
 the network layer, using layer-appropriate addresses.

4. Data Structures

4.1. Interface List

 If multiple interfaces of the AODVv2 router are configured for use by
 AODVv2, a list of the interfaces SHOULD be configured in the
 AODVv2_INTERFACES list.

4.2. Router Client Table

 An AODVv2 router MUST provide route discovery services for its own
 local applications and for other non-routing nodes that are reachable
 without traversing another AODVv2 router. These nodes, and the
 AODVv2 router itself, are referred to as Router Clients. An AODVv2

https://datatracker.ietf.org/doc/html/rfc3561
https://datatracker.ietf.org/doc/html/rfc4728

Perkins, et al. Expires April 15, 2016 [Page 10]

Internet-Draft AODVv2 October 2015

 router will only originate Route Request and Route Reply messages on
 behalf of configured Router Clients.

 Router Client Table entries MUST contain:

 RouterClient.IPAddress
 An IP address or the start of an address range that requires route
 discovery services from the AODVv2 router.

 RouterClient.PrefixLength
 The length, in bits, of the routing prefix associated with the
 RouterClient.IPAddress. If a prefix length is included, the
 AODVv2 router MUST provide connectivity for all addresses within
 that prefix.

 RouterClient.Cost
 The cost associated with reaching this Router Client. This cost
 will also appear as the metric in a route table entry for the
 Router Client address.

 The Router Client Table for an AODVv2 router is never empty, since an
 AODVv2 router is always its own client. The IP Addresses of the
 router's interfaces will appear in the Router Client Table.

 In the initial state, an AODVv2 router is not required to have
 information about the Router Clients of any other AODVv2 router.

 A Router Client address MUST NOT be served by more than one AODVv2
 router at any one time, i.e. a Router Client of one AODVv2 router
 MUST NOT be configured as a Router Client on another AODVv2 router
 using the same Router Client IP address. Shifting responsibility for
 a Router Client to a different AODVv2 router is discussed in

Appendix B.

4.3. Neighbor Table

 A neighbor table MUST be maintained with information about
 neighboring AODVv2 routers which are used in discovered routes.

 Neighbor Table entries MUST contain:

 Neighbor.IPAddress
 An IP address of the neighboring router, learned from the source
 IP address of a received route message.

 Neighbor.State
 The state of the adjacency with the neighbor (Confirmed, Unknown,
 or Blacklisted). The Unknown state is the initial state. The

Perkins, et al. Expires April 15, 2016 [Page 11]

Internet-Draft AODVv2 October 2015

 Confirmed state indicates that the link to the neighbor has been
 confirmed as bidirectional. The Blacklisted state indicates that
 the link to the neighbor is uni-directional. Section 6.2
 discusses how to monitor adjacency.

 Neighbor.ResetTime
 When the State is Blacklisted, this time indicates the point at
 which the State reverts to Unknown. By default this value is
 calculated at the time the router is blacklisted and is equal to
 CurrentTime + MAX_BLACKLIST_TIME. When the neighbor State is not
 Blacklisted, this time is set to INFINITY_TIME.

4.4. Sequence Numbers

 Sequence numbers enable AODVv2 routers to determine the temporal
 order of route discovery messages, identifying stale routing
 information so that it can be discarded. The sequence number
 fulfills the same roles as the "Destination Sequence Number" of DSDV
 [Perkins94], and the AODV Sequence Number in [RFC3561].

 Each AODVv2 router in the network MUST maintain its own sequence
 number as a 16-bit unsigned integer.

 All RREQ and RREP messages created by an AODVv2 router include the
 router's sequence number. Each AODVv2 router MUST ensure that its
 sequence number is strictly increasing. It is incremented by one (1)
 whenever an RREQ or RREP is created, except when the sequence number
 is 65,535 (the maximum value of a 16-bit unsigned integer), in which
 case it MUST be reset to one (1). The value zero (0) is reserved to
 indicate that the sequence number for an address is unknown.

 An AODVv2 router can only attach its own sequence number to
 information about a route to one of its configured router clients.
 All route messages regenerated by other routers retain the
 originator's sequence number. Therefore, when two pieces of
 information about a route are received, they both contain a sequence
 number from the originating router. Comparing the sequence number
 will identify which information is stale. The currently stored
 sequence number is subtracted from the incoming sequence number. The
 result of the subtraction is to be interpreted as a signed 16-bit
 integer, and if less than zero, then the information in the AODVv2
 message is stale and MUST be discarded.

 As a consequence, loop freedom is assured.

 An AODVv2 router SHOULD maintain its sequence number in persistent
 storage. If the sequence number is lost, the router MUST follow the

https://datatracker.ietf.org/doc/html/rfc3561

Perkins, et al. Expires April 15, 2016 [Page 12]

Internet-Draft AODVv2 October 2015

 procedure in Section 6.1 to safely resume routing operations with a
 new sequence number.

4.5. Multicast Route Message Table

 A route message (RteMsg) is either a Route Request or Route Reply
 message. The Multicast Route Message Table is a conceptual table
 which contains information about previously received multicast route
 messages, so that when a route message is received, an AODVv2 router
 can determine if the incoming information is redundant, and avoid
 unnecessary regeneration of the route message.

 A Multicast Route Message Table entry MUST contain the following
 information:

 RteMsg.MessageType
 Either RREQ or RREP.

 RteMsg.OrigAddr
 An IP address of the node which requires the route, i.e., the
 source address of the IP packet triggering the route request.

 RteMsg.OrigPrefixLen
 The prefix length associated with OrigAddr.

 RteMsg.TargAddr
 An IP address of the target, i.e., the destination address of the
 IP packet triggering the route request.

 RteMsg.TargPrefixLen
 The prefix length associated with TargAddr.

 RteMsg.OrigSeqNum
 The sequence number associated with the originator, if present in
 RteMsg.

 RteMsg.TargSeqNum
 The sequence number associated with the target, if present in
 RteMsg.

 RteMsg.MetricType
 The metric type of the route requested.

 RteMsg.Metric
 The metric value received in the RteMsg.

 RteMsg.Timestamp
 The last time this entry was updated.

Perkins, et al. Expires April 15, 2016 [Page 13]

Internet-Draft AODVv2 October 2015

 RteMsg.RemoveTime
 The time at which this entry MUST be removed, MAX_SEQNUM_LIFETIME
 after the last update of RteMsg.OrigSeqNum for an RREQ, or
 RteMsg.TargSeqNum for an RREP.

 The Multicast Route Message Table is maintained so that no two
 entries have the same MessageType, OrigAddr, TargAddr, and
 MetricType. See Section 6.8 for details on updating this table.

4.6. Route Table

 All AODVv2 routers MUST maintain a route table. The route table
 entry is a conceptual data structure. Implementations MAY use any
 internal representation but MUST contain the following information:

 Route.Address
 An address, which, when combined with Route.PrefixLength,
 describes the set of destination addresses this route includes.

 Route.PrefixLength
 The prefix length, in bits, associated with Route.Address.

 Route.SeqNum
 The sequence number associated with Route.Address, obtained from
 the last route message that successfully updated this route.

 Route.NextHop
 The source IP address of the message advertising the route to
 Route.Address, i.e. an IP address of the AODVv2 router used for
 the next hop on the path toward Route.Address.

 Route.NextHopInterface
 The interface used to send IP packets toward Route.Address.

 Route.LastUsed
 The time this route was last used to forward an IP packet.

 Route.LastSeqNumUpdate
 The time the sequence number for this route was last updated.

 Route.ExpirationTime
 The time at which this route must be marked as Invalid.

 Route.MetricType
 The type of metric associated with this route.

 Route.Metric

Perkins, et al. Expires April 15, 2016 [Page 14]

Internet-Draft AODVv2 October 2015

 The cost of the route toward Route.Address expressed in units
 consistent with Route.MetricType.

 Route.State
 The last known state (Active, Idle, Invalid, or Unconfirmed) of
 the route.

 Route.Precursors (optional feature)
 A list of upstream neighbors using the route (see Section 10.2).

 There are four possible states for an AODVv2 route:

 Active
 An Active route is in current use for forwarding IP packets.

 Idle
 An Idle route has not been used in the last ACTIVE_INTERVAL, but
 can still be used for forwarding IP packets.

 Invalid
 An Invalid route cannot be used for forwarding IP packets.
 Invalid routes have sequence number information, which allows
 incoming information to be assessed for freshness.

 Unconfirmed
 An Unconfirmed route cannot be used for forwarding IP packets. It
 is a route learned from a Route Request which has not yet been
 confirmed as bidirectional.

 Route state changes are detailed in Section 6.9.1.

 An AODVv2 route MAY be offered for a limited time. In this case, the
 route is referred to as a timed route. The length of time for which
 the route is valid is referred to as validity time, and is included
 in messages which advertise the route. The shortened validity time
 is reflected in Route.ExpirationTime. If a route is not timed, the
 ExpirationTime is INFINITY_TIME.

5. Metrics

 Metrics measure a cost or quality associated with a route or a link,
 e.g., latency, delay, financial cost, energy, etc. Metric values are
 reported in route messages, where the goal is to determine a route
 between OrigAddr and TargAddr. In Route Request messages, the metric
 describes the cost of the route from OrigAddr (the router client) to
 the router sending the Route Request. The receiving router
 calculates the cost from OrigAddr to itself, combining the metric
 value from the message with knowledge of the link cost from the

Perkins, et al. Expires April 15, 2016 [Page 15]

Internet-Draft AODVv2 October 2015

 sender to the receiver, i.e., the incoming link cost. This updated
 route cost is included when regenerating the Route Request message.
 In Route Reply messages, the metric reflects the cost of the route
 from TargAddr (the router client) to the router sending the Route
 Reply. Routes to OrigAddr and TargAddr are installed at intermediate
 routers for the purposes of forwarding a Route Reply message and
 subsequent data traffic between OrigAddr and TargAddr. Assuming link
 metrics are symmetric, the cost of the routes to OrigAddr and
 TargAddr installed at each router will be correct.

 AODVv2 enables the use of multiple metric types. Each route
 discovery attempt indicates the metric type which is requested for
 the route. Only one metric type may be used in each route discovery
 attempt. However, routes to a single destination might be requested
 for different metric types. The decision of which of these routes to
 use for forwarding is outside the scope of AODVv2.

 For each MetricType, AODVv2 requires:

 o A MetricType number, to indicate the metric type of a route.
 MetricType numbers allocated are detailed in Section 11.6.

 o A maximum value, denoted MAX_METRIC[MetricType]. If the cost of a
 route exceeds MAX_METRIC[MetricType], the route is ignored.
 AODVv2 cannot store routes that cost more than
 MAX_METRIC[MetricType].

 o A function for incoming link cost, denoted Cost(L). Using
 incoming link costs means that the route learned has a path
 optimized for the direction from OrigAddr to TargAddr.

 o A function for route cost, denoted Cost(R).

 o A function to analyze routes for potential loops, denoted
 LoopFree(R1, R2). LoopFree verifies that a route R2 is not a sub-
 section of another route R1. An AODVv2 router invokes LoopFree()
 as part of the process in Section 6.7.1, when an advertised route
 (R1) and an existing route (R2) have the same destination address,
 metric type, and sequence number. LoopFree returns FALSE to
 indicate that an advertised route is not to be used to update a
 stored route, if it may cause a routing loop. In the case where
 the existing route is Invalid, it is possible that the advertised
 route includes the existing route and came from a router which did
 not yet receive notification of the route becoming Invalid, so the
 advertised route should not be used in case it forms a loop to a
 broken route.

Perkins, et al. Expires April 15, 2016 [Page 16]

Internet-Draft AODVv2 October 2015

 AODVv2 currently supports cost metrics where Cost(R) is strictly
 increasing, by defining:

 o Cost(R) := Sum of Cost(L) of each link in the route

 o LoopFree(R1, R2) := (Cost(R1) <= Cost(R2))

 Implementers MAY consider other metric types, but the definitions of
 Cost and LoopFree functions for such types are undefined, and
 interoperability issues need to be considered.

6. AODVv2 Protocol Operations

 The AODVv2 protocol's operations include managing sequence numbers,
 monitoring adjacent AODVv2 routers, performing route discovery and
 dealing with requests from other routers, processing incoming route
 information and updating the route table, suppressing redundant
 messages, maintaining the route table and reporting broken routes.
 These processes are discussed in detail in the following sections.

6.1. Initialization

 During initialization where an AODVv2 router does not have
 information about its previous sequence number, or if its sequence
 number is lost at any point, the router resets its sequence number to
 one (1). However, other AODVv2 routers may still hold sequence
 number information that this router previously issued. Since
 sequence number information is removed if there has been no update to
 the sequence number in MAX_SEQNUM_LIFETIME, the initializing router
 must wait for MAX_SEQNUM_LIFETIME before it creates any messages
 containing its new sequence number. It can then be sure that the
 information it sends will not be considered stale.

 Until MAX_SEQNUM_LIFETIME after its sequence number is reset, the
 router SHOULD NOT create RREQ or RREP messages.

 During this wait period, the router can do the following:

 o Process information in a received RREQ or RREP message to learn a
 route to the originator or target of that route discovery

 o Regenerate a received RREQ or RREP

 o Send an RREP_Ack

 o Maintain valid routes in order that the forwarding process can
 forward IP packets to Router Clients and to other routers

Perkins, et al. Expires April 15, 2016 [Page 17]

Internet-Draft AODVv2 October 2015

 o Create, process and regenerate RERR messages

6.2. Adjacency Monitoring

 AODVv2 routers MUST NOT establish routes over uni-directional links.
 Consider the following. An RREQ is forwarded toward TargAddr, and
 intermediate routers install a route to OrigAddr. If, at one of
 those routers, the link to the next hop toward OrigAddr was uni-
 directional, and this route was used to forward data traffic, the
 data packets would be lost. Further, an RREP sent toward OrigAddr
 using this link will not reach the next hop, and will therefore not
 be regenerated, and will never reach RREQ_Gen, so end-to-end route
 establishment will fail. AODVv2 routers MUST verify that the link to
 the next hop is bidirectional when establishing a route, and before
 allowing data traffic to be forwarded on that route. If
 bidirectionality cannot be verified, this link MUST be excluded from
 the route discovery procedure.

 AODVv2 refers to a bidirectional link with a neighboring router as an
 adjacency. AODVv2 routers do not need to monitor adjacency to all
 neighboring AODVv2 routers at all times, but MUST determine if there
 is an adjacency to the chosen next-hop AODVv2 router during route
 discovery.

 o For the next hop toward OrigAddr, the approach for testing
 bidirectional connectivity is to request acknowledgement of Route
 Reply messages. Receipt of an acknowledgement proves that
 bidirectional connectivity exists. All AODVv2 routers MUST
 support this process, which is explained in Section 7.2 and

Section 7.3. If a link to a neighbor is determined to be
 unidirectional because a requested acknowledgement is not received
 within RREP_Ack_SENT_TIMEOUT, the neighbor MUST be marked as
 blacklisted (see below).

 o For the next hop toward TargAddr, receipt of the Route Reply
 message containing the route to TargAddr is confirmation of
 bidirectionality, since a Route Reply message is a reply to a
 Route Request message which previously crossed the link in the
 opposite direction.

 To assist with adjacency monitoring, a Neighbor Table (Section 4.3)
 is maintained. Each entry contains a neighbor IP address and an
 indication of the state of the adjacency with that neighbor (Unknown,
 Blacklisted, or Confirmed). When an RREQ or RREP is received from an
 IP address which does not already have an entry in the Neighbor
 Table, a new entry is created as described in Section 6.3. While
 neighbor state is Unknown, acknowledgement of RREP messages MUST be

Perkins, et al. Expires April 15, 2016 [Page 18]

Internet-Draft AODVv2 October 2015

 requested. While neighbor state is Confirmed, the request for an
 acknowledgement is unnecessary.

 When routers perform other operations such as those from the list
 below, these MAY be used as additional indications of connectivity:

 o NHDP HELLO Messages [RFC6130]

 o Route timeout

 o Lower layer triggers, e.g. message reception or link status
 notifications

 o TCP timeouts

 o Promiscuous listening

 o Other monitoring mechanisms or heuristics

 If such an external process signals that the link is bidirectional,
 the neighbor state MAY be set to Confirmed. If an external process
 signals that a link is not bidirectional, the AODVv2 router MAY
 update the matching Neighbor Table entry by changing the neighbor
 state to Blacklisted. If an external process signals that the link
 might not be bidirectional, and the neighbor state is currently
 Confirmed, the state MAY be set to Unknown.

 For example, receipt of a Neighborhood Discovery Protocol HELLO
 message with the receiving router listed as a neighbor is a signal of
 bidirectional connectivity. The AODVv2 router MAY update the
 matching Neighbor Table entry by changing the neighbor state to
 Confirmed.

 Similarly, if AODVv2 receives notification of a timeout, for example,
 from TCP or some other protocol, this may be due to a disconnection.
 The AODVv2 router MAY update the matching Neighbor Table entry by
 resetting the neighbor state to Unknown.

6.3. Neighbor Table Update

 On receipt of an RREQ or RREP message, the neighbor table MUST be
 checked for an entry with Neighbor.IPAddress which matches the source
 IP address of the message. If no matching entry is found, a new
 entry is created.

 A new Neighbor Table entry is created as follows:

 o Neighbor.IPAddress := Source IP address of the message

https://datatracker.ietf.org/doc/html/rfc6130

Perkins, et al. Expires April 15, 2016 [Page 19]

Internet-Draft AODVv2 October 2015

 o Neighbor.State := Unknown

 o Neighbor.ResetTime := INFINITY_TIME

 When the link to the neighbor is determined to be bidirectional, the
 Neighbor Table entry is updated as follows:

 o Neighbor.State := Confirmed

 When the link to the neighbor is determined to be uni-directional,
 the Neighbor Table entry is updated as follows:

 o Neighbor.State := Blacklisted

 o Neighbor.ResetTime := CurrentTime + MAX_BLACKLIST_TIME

 When the Neighbor.ResetTime is reached, the Neighbor Table entry is
 updated as follows:

 o Neighbor.State := Unknown

 When a link to a neighbor is determined to be broken, the Neighbor
 Table entry SHOULD be removed.

 Route requests from neighbors with Neighbor.State set to Blacklisted
 are ignored to avoid persistent IP packet loss or protocol failures.
 However, the reset time allows the neighbor to again be allowed to
 participate in route discoveries after MAX_BLACKLIST_TIME, in case
 the link between the routers has become bidirectional.

6.4. Interaction with Forwarding Plane

 A reactive protocol reacts when a route is needed. A route is
 requested when an application tries to send a packet. The
 fundamental concept of reactive routing is to avoid creating routes
 that are not needed.

 AODVv2 requires signals from the forwarding plane:

 o A packet cannot be forwarded because a route is unavailable:
 AODVv2 needs to know the source and destination IP addresses of
 the packet, to determine whether it should initiate route
 discovery, and include this information in a Route Request
 message, or create a Route Error message.

 o A packet is to be forwarded: AODVv2 needs to check the state of
 the route to deal with timeouts. If the implementation uses
 timers to enforce route timeouts, this signal is unnecessary.

Perkins, et al. Expires April 15, 2016 [Page 20]

Internet-Draft AODVv2 October 2015

 o Packet forwarding failure occurs: AODVv2 needs to initiate route
 error reports.

 o Packet forwarding succeeds: AODVv2 needs to update the record of
 when a route was last used to forward a packet.

 AODVv2 needs to send signals to the forwarding plane:

 o A route discovery is in progress: packets awaiting a route may be
 buffered while route discovery is attempted.

 o A route discovery was not attempted: any buffered packets
 requiring that route should be discarded.

 o A route discovery failed: any buffered packets requiring that
 route should be discarded, and the source of the packet should be
 notified that the destination is unreachable (using an ICMP
 Destination Unreachable message).

 o A route discovery succeeded: install a route which AODVv2 has
 determined to be valid and begin transmitting any buffered
 packets.

 o A route has been lost: remove an installed route which AODVv2 has
 determined to be invalid.

 o A route has been updated: update an installed route when AODVv2
 receives new information about the route.

 These are conceptual signals, and can be implemented in various ways.
 Conformant implementations of AODVv2 are not mandated to implement
 the forwarding plane separately from the control plane or data plane;
 these signals and interactions are identified simply as assistance
 for implementers who may find them useful.

6.5. Message Transmission

 AODVv2 sends [RFC5444] formatted messages using the parameters for
 port number and IP protocol specified in [RFC5498]. Mapping of
 AODVv2 Data Elements to [RFC5444] is detailed in Section 8.

 Messages may travel a maximum of MAX_HOPCOUNT hops.

 Unless otherwise specified, AODVv2 multicast messages are sent to the
 link-local multicast address LL-MANET-Routers [RFC5498]. All AODVv2
 routers MUST subscribe to LL-MANET-Routers [RFC5498] to receive
 AODVv2 messages.

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5498
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5498
https://datatracker.ietf.org/doc/html/rfc5498

Perkins, et al. Expires April 15, 2016 [Page 21]

Internet-Draft AODVv2 October 2015

 Note that multicast messages MAY be sent via unicast. For example,
 this may occur for certain link-types (non-broadcast media), for
 manually configured router adjacencies, or in order to improve
 robustness.

 Implementations MAY choose to employ techniques to reduce the number
 of multicast messages sent. Use of [RFC6621] in deployments is
 recommended. Employing [RFC6621] in a subset of the operational
 AODVv2 routers in a network, or configuring different algorithms on
 different routers, will not cause interoperability issues, but will
 reduce the effectiveness of the multicast reduction scheme.

 When multiple interfaces are available, an AODVv2 router transmitting
 a multicast message to LL-MANET-Routers MUST send the message on all
 interfaces that have been configured for AODVv2 operation, as given
 in the AODVv2_INTERFACES list (Section 4.1). Similarly, AODVv2
 routers MUST subscribe to LL-MANET-Routers on all their AODVv2
 interfaces.

 To avoid congestion, each AODVv2 router's rate of message generation
 SHOULD be limited (CONTROL_TRAFFIC_LIMIT) and administratively
 configurable. To prioritize transmission of AODVv2 control messages
 in order to respect the CONTROL_TRAFFIC_LIMIT:

 o Highest priority SHOULD be given to RREP_Ack messages. This
 allows learned routes to be confirmed as bidirectional and avoids
 undesirable blacklisting of next hop routers.

 o Second priority SHOULD be given to RERR messages for undeliverable
 IP packets, so that broken routes that are still being used are
 reported, and to avoid IP data packets being repeatedly forwarded
 to AODVv2 routers which cannot forward to their destination.

 o Third priority SHOULD be given to RREP messages in order that
 RREQs do not time out.

 o RREQ messages SHOULD be given priority over RERR messages for
 newly invalidated routes, since the invalidated routes may not
 still be in use, and if there is an attempt to use the route, a
 new RERR message will be generated.

 o Lowest priority SHOULD be given to RERR messages generated in
 response to RREP messages which cannot be regenerated. In this
 case the route request will be retried at a later point.

https://datatracker.ietf.org/doc/html/rfc6621
https://datatracker.ietf.org/doc/html/rfc6621

Perkins, et al. Expires April 15, 2016 [Page 22]

Internet-Draft AODVv2 October 2015

6.6. Route Discovery, Retries and Buffering

 AODVv2's RREQ and RREP messages are used for route discovery. The
 main difference between the two messages is that, usually, RREQ
 messages are multicast to solicit an RREP, whereas RREP is unicast as
 a response to the RREQ. The constants used in this section are
 defined in Section 11.

 When an AODVv2 router needs to forward an IP packet (with source
 address OrigAddr and destination address TargAddr) from one of its
 Router Clients, it needs a route to the packet's destination. If no
 route exists, the AODVv2 router generates and multicasts a Route
 Request message (RREQ) using OrigAddr and TargAddr. The procedure
 for this is described in Section 7.1.1. Each new RREQ results in an
 increment to the sequence number. The AODVv2 router is referred to
 as RREQ_Gen.

 IP packets awaiting a route MAY be buffered by RREQ_Gen. Buffering
 of IP packets can have both positive and negative effects. Real-time
 traffic, voice, and scheduled delivery may suffer if packets are
 buffered and subjected to delays, but TCP connection establishment
 will benefit if packets are queued while route discovery is
 performed.

 Determining which packets to discard first when the buffer is full is
 a matter of policy at each AODVv2 router. Routers without sufficient
 memory available for buffering SHOULD have buffering disabled. This
 will affect the latency for launching TCP applications to new
 destinations.

 RREQ_Gen awaits reception of a Route Reply message (RREP) containing
 a route toward TargAddr. An RREQ from TargAddr would also fulfil the
 request, if adjacency to the next hop is already confirmed. If a
 route to TargAddr is not learned within RREQ_WAIT_TIME, RREQ_Gen MAY
 retry the route discovery. To reduce congestion in a network,
 repeated attempts at route discovery for a particular target address
 SHOULD utilize a binary exponential backoff: for each additional
 attempt, the waiting time for receipt of the RREP is multiplied by 2.
 If the requested route is not learned within the wait period, another
 RREQ MAY be sent, up to a total of DISCOVERY_ATTEMPTS_MAX. This is
 the same technique used in AODV [RFC3561].

 The RREQ is received by neighboring AODVv2 routers, and processed and
 regenerated as described in Section 7.1. Intermediate routers learn
 a potential route to OrigAddr from the RREQ. The router responsible
 for TargAddr responds by generating a Route Reply message (RREP) and
 unicasts it back toward RREQ_Gen using the potential route to

https://datatracker.ietf.org/doc/html/rfc3561

Perkins, et al. Expires April 15, 2016 [Page 23]

Internet-Draft AODVv2 October 2015

 OrigAddr learned from the RREQ. Each intermediate router regenerates
 the RREP and unicasts toward OrigAddr.

 Links which are not bidirectional cause problems. If a link is
 unavailable in the direction toward OrigAddr, an RREP is not received
 at the next hop, so cannot be regenerated, and it will never reach
 RREQ_Gen. However, since routers monitor adjacencies (Section 6.2),
 the loss of the RREP will cause the last router which regenerated the
 RREP to blacklist the router which did not receive it. Later, a
 timeout occurs at RREQ_Gen, and a new RREQ MAY be regenerated. If
 the new RREQ arrives via the blacklisted router, it will be ignored,
 enabling the RREQ to discover a different path toward TargAddr.

 Route discovery SHOULD be considered to have failed after
 DISCOVERY_ATTEMPTS_MAX and the corresponding wait time for an RREP
 response to the final RREQ, in order to avoid repeatedly generating
 control traffic that is unlikely to discover a route. After the
 attempted route discovery has failed, RREQ_Gen MUST wait at least
 RREQ_HOLDDOWN_TIME before attempting another route discovery to the
 same destination, to avoid generating more multicast messages which
 are unlikely to discover a route. Any IP packets buffered for
 TargAddr MUST also be dropped and a Destination Unreachable ICMP
 message (Type 3) with a code of 1 (Host Unreachable Error) SHOULD be
 delivered to the source of the packet, so that the application knows
 about the failure. The source can be an application on RREQ_Gen
 itself, or on a Router Client with address OrigAddr.

 If RREQ_Gen does receive a route message containing a route to
 TargAddr within the timeout, it MUST process the message according to

Section 7. When a valid route is installed, the router can begin
 sending the buffered IP packets. Any retry timers for the
 corresponding RREQ MUST be cancelled.

 During route discovery, all routers on the path learn a route to both
 OrigAddr and TargAddr, so that routes are constructed in both
 directions. The route is optimized for the forward route, and the
 return route uses the same path in reverse.

6.7. Processing Received Route Information

 All AODVv2 route messages contain a route. A Route Request (RREQ)
 includes a route to OrigAddr, and a Route Reply (RREP) contains a
 route to TargAddr.

 All AODVv2 routers that receive a route message can store the route
 contained within it. Incoming information is first checked to verify
 that it is both safe to use and offers an improvement to existing

Perkins, et al. Expires April 15, 2016 [Page 24]

Internet-Draft AODVv2 October 2015

 information. This process is explained in Section 6.7.1. The route
 table MAY then be updated according to Section 6.7.2.

 In the processes below, RteMsg is used to denote the route message,
 AdvRte is used to denote the route contained within it, and Route
 denotes an existing route which matches AdvRte on address, prefix
 length, and metric type.

 AdvRte has the following properties:

 o AdvRte.Address := RteMsg.OrigAddr (in RREQ) or RteMsg.TargAddr (in
 RREP)

 o AdvRte.PrefixLength := RteMsg.OrigPrefixLen (in RREQ) or
 RteMsg.TargPrefixLen (in RREP) if included, or if no prefix length
 was included in RteMsg, the address length, in bits, of
 AdvRte.Address

 o AdvRte.SeqNum := RteMsg.OrigSeqNum (in RREQ) or RteMsg.TargSeqNum
 (in RREP)

 o AdvRte.NextHop := RteMsg.IPSourceAddress (an address of the router
 from which the AdvRte was received)

 o AdvRte.MetricType := RteMsg.MetricType

 o AdvRte.Metric := RteMsg.Metric

 o AdvRte.Cost := Cost(R) using the cost function associated with the
 route's metric type, i.e. Cost(R) = AdvRte.Metric + Cost(L), as
 described in Section 5, where L is the link from the advertising
 router.

 o AdvRte.ValidityTime := RteMsg.ValidityTime, if included

6.7.1. Evaluating Route Information

 An incoming route advertisement (AdvRte) is compared to existing
 routes to determine whether the advertised route is to be used to
 update the routing table. The incoming route information MUST be
 processed as follows:

 1. Search for a route (Route) matching AdvRte's address, prefix
 length and metric type

 * If no matching route exists, AdvRte MUST be used to update the
 routing table. Multiple routes to the same destination may
 exist with different metric types.

Perkins, et al. Expires April 15, 2016 [Page 25]

Internet-Draft AODVv2 October 2015

 * If all matching routing table entries have State set to
 Unconfirmed, AdvRte SHOULD be added to the routing table.
 This may result in multiple Unconfirmed routes to the same
 address. In this case, the best route from the set of
 Unconfirmed routes SHOULD be used to forward future RREPs. If
 the link to the next hop is found to be bidirectional, and the
 Unconfirmed route becomes valid, any remaining Unconfirmed
 routes which would not offer improvement MUST be expunged.

 * If a matching route exists with State set to Active, Idle, or
 Invalid, continue to Step 2.

 2. Compare sequence numbers using the technique described in
Section 4.4

 * If AdvRte is more recent, AdvRte MUST be used to update the
 routing table.

 * If AdvRte is stale, AdvRte MUST NOT be used to update the
 routing table.

 * If the sequence numbers are equal, continue to Step 3.

 3. Check that AdvRte is safe against routing loops (see Section 5)

 * If LoopFree(AdvRte, Route) returns FALSE, AdvRte MUST NOT be
 used to update the routing table because using the incoming
 information might cause a routing loop.

 * If LoopFree(AdvRte, Route) returns TRUE, continue to Step 4.

 4. Compare route costs

 * If AdvRte is better, it SHOULD be used to update the routing
 table because it offers improvement. If it is not used to
 update the existing route, the existing non-optimal route will
 continue to be used, causing data flows to use a route with a
 worse cost where this could have been avoided.

 * If AdvRte is equal in cost and Route is Valid, AdvRte MAY be
 used to update the routing table but will offer no
 improvement.

 * If AdvRte is worse and Route is valid, AdvRte MUST NOT be used
 to update the routing table because it does not offer any
 improvement.

Perkins, et al. Expires April 15, 2016 [Page 26]

Internet-Draft AODVv2 October 2015

 * If AdvRte is not better (i.e., it is worse or equal) but Route
 is Invalid, AdvRte SHOULD be used to update the routing table
 because it can safely repair the existing Invalid route.

 If the advertised route SHOULD be used to update the routing table,
 the procedure in Section 6.7.2 MUST be followed. If the route is not
 used, non-optimal routes will remain in the routing table.

6.7.2. Applying Route Updates

 If AdvRte is from an RREQ message, the next hop neighbor may not be
 confirmed as adjacent (see Section 4.3). If Neighbor.State is
 Unknown, the route to AdvRte.Address might not be viable, but it MUST
 be stored to allow a corresponding RREP to be sent. However, the
 route's State will be set to Unconfirmed to indicate that this route
 SHOULD NOT yet be used to forward data, since the link may be uni-
 directional and packet losses may occur. If a valid route already
 exists for this destination, this Unconfirmed route SHOULD be stored
 as an additional entry. If the link to the next hop is later
 confirmed to be bidirectional, the route will offer improvement over
 the existing valid route.

 The route update is applied as follows:

 1. If no existing route matches AdvRte on address, prefix length and
 metric type, continue to Step 3 and create a new route.

 2. If a matching route exists:

 * If AdvRte has a different next hop to the existing route
 (Route), and both AdvRte.NextHop's Neighbor.State is Unknown
 and Route.State is Active or Idle, the current route is valid
 but the advertised route may offer improvement, if the next
 hop can be confirmed as bidirectional. Continue processing
 from Step 3 to create a new route.

 * If AdvRte.NextHop's Neighbor.State is Unknown and Route.State
 is Invalid, continue processing from Step 4 to update the
 existing route (Route).

 * If AdvRte.NextHop's Neighbor.State is Confirmed, continue
 processing from Step 4 to update the existing route.

 3. Create a route and initialize as follows:

 * Route.Address := AdvRte.Address

 * Route.PrefixLength := AdvRte.PrefixLength

Perkins, et al. Expires April 15, 2016 [Page 27]

Internet-Draft AODVv2 October 2015

 * Route.MetricType := AdvRte.MetricType

 4. Update the route as follows:

 * Route.SeqNum := AdvRte.SeqNum

 * Route.NextHop := AdvRte.NextHop

 * Route.NextHopInterface := interface on which RteMsg was
 received

 * Route.Metric := AdvRte.Cost

 * Route.LastUsed := CurrentTime

 * Route.LastSeqNumUpdate := CurrentTime

 * Route.ExpirationTime := CurrentTime + AdvRte.ValidityTime if a
 validity time exists, otherwise INFINITY_TIME

 5. If a new route was created, or if the existing Route.State is
 Invalid or Unconfirmed, update the route as follows:

 * Route.State := Unconfirmed (if the next hop's Neighbor.State
 is Unknown) or Idle (if the next hop's Neighbor.State is
 Confirmed)

 6. If an existing route changed from Invalid or Unconfirmed to
 become Idle, any matching route table entries with worse metric
 values SHOULD be expunged.

 7. If this update results in a route with Route.State set to Active
 or Idle, which matches an outstanding route request, the
 associated route request retry timers can be cancelled and any
 associated buffered IP packets MUST be forwarded.

6.8. Suppressing Redundant Messages Using the Multicast Route Message
 Table

 When route messages are flooded in a MANET, an AODVv2 router may
 receive multiple similar messages. Regenerating every one of these
 gives little additional benefit, and generates unnecessary signaling
 traffic and interference.

 Each AODVv2 router stores information about recently received route
 messages in the AODVv2 Multicast Route Message Table (Section 4.5).

 To create a Multicast Route Message Table Entry:

Perkins, et al. Expires April 15, 2016 [Page 28]

Internet-Draft AODVv2 October 2015

 o RteMsg.MessageType := RREQ or RREP

 o RteMsg.OrigAddr := OrigAddr from the message

 o RteMsg.OrigPrefixLen := the prefix length associated with OrigAddr

 o RteMsg.TargAddr := TargAddr from the message

 o RteMsg.TargPrefixLen := the prefix length associated with TargAddr

 o RteMsg.OrigSeqNum := the sequence number associated with OrigAddr,
 if present in the message

 o RteMsg.TargSeqNum := the sequence number associated with TargAddr,
 if present in the message

 o RteMsg.MetricType := the metric type of the route requested

 o RteMsg.Metric := the metric value associated with OrigAddr in an
 RREQ or TargAddr in an RREP

 o RteMsg.Timestamp := CurrentTime

 o RteMsg.RemoveTime := CurrentTime + MAX_SEQNUM_LIFETIME

 Entries in the Multicast Route Message Table SHOULD be maintained for
 at least RteMsg_ENTRY_TIME after the last Timestamp update in order
 to account for long-lived RREQs traversing the network. An entry
 MUST be deleted when the sequence number is no longer valid, i.e.,
 after MAX_SEQNUM_LIFETIME. Memory-constrained devices MAY remove the
 entry before this time.

 To update a Multicast Route Message Table Entry, set:

 o RteMsg.OrigSeqNum := the sequence number associated with OrigAddr,
 if present in the message

 o RteMsg.TargSeqNum := the sequence number associated with TargAddr,
 if present in the message

 o RteMsg.Metric := the metric value associated with OrigAddr in an
 RREQ or TargAddr in an RREP

 o RteMsg.Timestamp := CurrentTime

 o RteMsg.RemoveTime := CurrentTime + MAX_SEQNUM_LIFETIME

Perkins, et al. Expires April 15, 2016 [Page 29]

Internet-Draft AODVv2 October 2015

 Received route messages are tested against previously received route
 messages, and if determined to be redundant, regeneration or response
 can be avoided.

 To determine if a received message is redundant:

 1. Search for an entry in the Multicast Route Message Table with the
 same MessageType, OrigAddr, TargAddr, and MetricType

 * If there is none, the message is not redundant.

 * If there is an entry, continue to Step 2.

 2. Compare sequence numbers using the technique described in
Section 4.4

 * For RREQ messages, use OrigSeqNum of the entry for comparison.
 For RREP messages, use TargSeqNum of the entry for comparison.

 * If the entry has an older sequence number than the received
 message, the message is not redundant.

 * If the entry has a newer sequence number than the received
 message, the message is redundant.

 * If the entry has the same sequence number, continue to Step 3.

 3. Compare the metric values

 * If the entry has a Metric value that is worse than or equal to
 the metric in the received message, the message is redundant.

 * If the entry has a Metric value that is better than the metric
 in the received message, the message is not redundant.

 If the message is redundant, update the timestamp on the entry, since
 matching route messages are still traversing the network and this
 entry should be maintained. This message SHOULD NOT be regenerated
 or responded to.

 If the message is not redundant, create an entry or update the
 existing entry. Where the message is determined not redundant before
 Step 3, it MUST be regenerated or responded to. Where the message is
 determined not redundant in Step 3, it MAY be suppressed to avoid
 extra control traffic. However, since the processing of the message
 will result in an update to the route table, the message SHOULD be
 regenerated or responded to, to ensure other routers have up-to-date
 information and the best metrics. If not regenerated, the best route

Perkins, et al. Expires April 15, 2016 [Page 30]

Internet-Draft AODVv2 October 2015

 may not be found. Where necessary, regeneration or response is
 performed using the processes in Section 7.

6.9. Route Maintenance

 Route maintenance involves monitoring and updating route state,
 handling route timeouts and reporting routes that become Invalid.

 Before using a route to forward an IP packet, an AODVv2 router MUST
 check firstly if there is a route, and secondly the status of the
 route (Section 6.9.1). If the route exists and is valid, it MUST be
 marked as Active and its LastUsed timestamp MUST be updated, before
 forwarding the IP packet to the route's next hop. If there is no
 valid route, and if the source address of the IP packet is a Router
 Client, the RREQ generation procedure MUST be followed. Otherwise,
 the absence of a route MUST be reported to the packet's source (see

Section 6.9.2).

6.9.1. Route State

 During normal operation, AODVv2 does not require any explicit
 timeouts to manage the lifetime of a route. At any time, any route
 MAY be examined and updated according to the rules below. If timers
 are not used to prompt route state updates, route state MUST be
 checked before IP packet forwarding and before any operation based on
 route state.

 The four possible states for an AODVv2 route are Active, Idle,
 Invalid, and Unconfirmed:

 Active
 If Route.State is Active and the route is not timed (i.e., if
 Route.ExpirationTime is INFINITY_TIME), Route.State MUST become
 Idle if Route is not used to forward IP packets within
 ACTIVE_INTERVAL. Route.State for a timed route (i.e.,
 Route.ExpirationTime is not equal to INFINITY_TIME) remains Active
 until its expiration time, after which it MUST become Invalid.

 Idle
 If Route.State is Idle, and the route is used to forward an IP
 packet, Route.State MUST become Active. If the route is not used
 to forward an IP packet within MAX_IDLETIME, Route.State MUST
 become Invalid.

 Invalid
 If Route.State is Invalid, the route SHOULD be maintained until
 MAX_SEQNUM_LIFETIME after Route.LastSeqNumUpdate, after which it

Perkins, et al. Expires April 15, 2016 [Page 31]

Internet-Draft AODVv2 October 2015

 MUST be expunged. Route.SeqNum is used to classify future
 information about Route.Address as stale or fresh.

 Unconfirmed
 If Route.State is Unconfirmed, the route MUST become Idle when an
 adjacency with Route.NextHop is confirmed, or MUST be expunged if
 the neighbor is blacklisted, or at MAX_SEQNUM_LIFETIME after
 Route.LastSeqNumUpdate.

 In all cases, if the time since Route.LastSeqNumUpdate exceeds
 MAX_SEQNUM_LIFETIME, Route.SeqNum must be set to zero. This is
 required to ensure that any AODVv2 routers following the
 initialization procedure can safely begin routing functions using a
 new sequence number, and that their messages will not be classified
 as stale and ignored. A route with Route.State set to Active or Idle
 can continue to be used to forward IP packets, but if Route.State
 later becomes Invalid, the route MUST be expunged.

Appendix C.2.1.1 contains an algorithmic representation of this
 timeout behavior.

 Routes can become Invalid before a timeout occurs:

 o If a link breaks, all routes using that link for Route.NextHop
 MUST immediately have Route.State set to Invalid.

 o If a Route Error (RERR) message containing the route is received,
 either from Route.NextHop, or with PktSource set to a Router
 Client address, Route.State MUST immediately be set to Invalid.

 When Route.State changes from Unconfirmed to Idle as a result of the
 adjacency with Route.NextHop being Confirmed (see Section 4.3), any
 matching routes with metric values worse than Route.Metric MUST be
 expunged.

 Memory constrained devices MAY choose to expunge routes from the
 AODVv2 route table before Route.ExpirationTime, but MUST adhere to
 the following rules:

 o An Active route MUST NOT be expunged, as this will result in
 generation of a Route Error message followed by a necessary Route
 Request to re-establish the route.

 o An Idle route SHOULD NOT be expunged, as the route is still valid
 for forwarding IP traffic, and if deleted, this could result in
 dropped IP packets and a Route Request could be generated to re-
 establish the route.

Perkins, et al. Expires April 15, 2016 [Page 32]

Internet-Draft AODVv2 October 2015

 o Any Invalid route MAY be expunged; least recently used Invalid
 routes SHOULD be expunged first, since these are less likely to be
 reused.

 o An Unconfirmed route MUST NOT be expunged if it was installed
 within the last RREQ_WAIT_TIME, because it may correspond to a
 route discovery in progress. A Route Reply message might be
 received which needs to use the Route.NextHop information.
 Otherwise, it MAY be expunged.

 Route table entries are updated when Neighbor State is updated:

 o While Neighbor.State is set to Unknown, any routes learned through
 that neighbor are marked as Unconfirmed.

 o When Neighbor.State is set to Confirmed, the Unconfirmed routes
 using the neighbor as a next hop SHOULD be marked as valid (see

Section 6.9.1).

 o When Neighbor.State is set to Blacklisted, any valid routes
 installed which use that neighbor for their next hop are marked as
 Invalid.

 o When a Neighbor Table entry is removed, all routes using the
 neighbor as next hop MUST be marked as Invalid.

6.9.2. Reporting Invalid Routes

 When Route.State changes from Active to Invalid as a result of a
 broken link or a received Route Error (RERR) message, other routers
 SHOULD be informed by sending an RERR message containing details of
 the invalidated route.

 An RERR message SHOULD also be sent when an AODVv2 router receives an
 IP packet to forward on behalf of another router but does not have a
 valid route for the destination of the packet.

 An RERR message SHOULD also be sent when an AODVv2 router receives an
 RREP message to regenerate, but the route to the OrigAddr in the RREP
 has been lost and is marked as Invalid.

 The packet or message triggering the RERR MUST be discarded.

 Generation of an RERR message is described in Section 7.4.1.

Perkins, et al. Expires April 15, 2016 [Page 33]

Internet-Draft AODVv2 October 2015

7. AODVv2 Protocol Messages

 AODVv2 defines four message types: Route Request (RREQ), Route Reply
 (RREP), Route Reply Acknowledgement (RREP_Ack), and Route Error
 (RERR).

 Each AODVv2 message is defined as a set of Data Elements. Rules for
 the generation, reception and regeneration of each message type are
 described in the following sections. Section 8 discusses how the
 Data Elements map to [RFC5444] Message TLVs, Address Blocks, and
 Address TLVs.

7.1. Route Request (RREQ) Message

 Route Request messages are used in route discovery operations to
 request a route to a specified target address. RREQ messages have
 the following contents:

 +---+
 | msg_hop_limit, (optional) msg_hop_count |
 +---+
 | AddressList |
 +---+
 | PrefixLengthList (optional) |
 +---+
 | OrigSeqNum, (optional) TargSeqNum |
 +---+
 | MetricType |
 +---+
 | OrigMetric |
 +---+
 | ValidityTime (optional) |
 +---+

 Figure 1: RREQ message contents

 RREQ Data Elements

 msg_hop_limit
 The remaining number of hops allowed for dissemination of the RREQ
 message.

 msg_hop_count
 The number of hops already traversed during dissemination of the
 RREQ message.

 AddressList

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 34]

Internet-Draft AODVv2 October 2015

 Contains OrigAddr and TargAddr, the source and destination
 addresses of the IP packet for which a route is requested.
 OrigAddr and TargAddr MUST be routable unicast addresses.

 PrefixLengthList
 Contains OrigPrefixLen, i.e., the length, in bits, of the prefix
 associated with OrigAddr. If omitted, the prefix length is equal
 to OrigAddr's address length in bits.

 OrigSeqNum
 The sequence number associated with OrigAddr.

 TargSeqNum
 A sequence number associated with TargAddr. This MAY be included
 if an Invalid route exists to the target. This is useful for the
 optional Intermediate RREP feature (see Section 10.3).

 MetricType
 The metric type associated with OrigMetric.

 OrigMetric
 The metric value associated with the route to OrigAddr, as
 measured by the sender of the message.

 ValidityTime
 The length of time that the message sender is willing to offer a
 route toward OrigAddr. Omitted if no time limit is imposed.

7.1.1. RREQ Generation

 An RREQ is generated when an IP packet needs to be forwarded for a
 Router Client, and no valid route currently exists for the packet's
 destination.

 Before creating an RREQ, the router SHOULD check if an RREQ has
 recently been sent for the requested destination. If so, and the
 wait time for a reply has not yet been reached, the router SHOULD
 continue to await a response without generating a new RREQ. If the
 timeout has been reached, a new RREQ MAY be generated. If buffering
 is configured, the incoming IP packet SHOULD be buffered until the
 route discovery is completed.

 If the limit for the rate of AODVv2 control message generation has
 been reached, no message SHOULD be generated. If approaching the
 limit, the message should be sent if the priorities in Section 6.5
 allow it.

Perkins, et al. Expires April 15, 2016 [Page 35]

Internet-Draft AODVv2 October 2015

 To generate the RREQ, the router (referred to as RREQ_Gen) follows
 this procedure:

 1. Set msg_hop_limit := MAX_HOPCOUNT

 2. Set msg_hop_count := 0, if including it

 3. Set AddressList := {OrigAddr, TargAddr}

 4. For the PrefixLengthList:

 * If OrigAddr is part of an address range configured as a Router
 Client, set PrefixLengthList := {OrigPrefixLen, null}.

 * Otherwise, omit PrefixLengthList.

 5. For OrigSeqNum:

 * Increment the router SeqNum as specified in Section 4.4.

 * Set OrigSeqNum := SeqNum.

 6. For TargSeqNum:

 * If an Invalid route exists matching TargAddr using longest
 prefix matching and has a valid sequence number, set
 TargSeqNum := route's sequence number.

 * If no Invalid route exists matching TargAddr, or the route
 doesn't have a sequence number, omit TargSeqNum.

 7. Include the MetricType Data Element and set the type accordingly

 8. Set OrigMetric := Route[OrigAddr].Metric, i.e., RouterClient.Cost

 9. Include the ValidityTime Data Element if advertising that the
 route to OrigAddr via this router is offered for a limited time,
 and set ValidityTime accordingly

 This AODVv2 message is used to create a corresponding [RFC5444]
 message (see Section 8) which is multicast, by default, to LL-MANET-
 Routers on all interfaces configured for AODVv2 operation.

7.1.2. RREQ Reception

 Upon receiving an RREQ, an AODVv2 router performs the following
 steps:

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 36]

Internet-Draft AODVv2 October 2015

 1. If the sender is blacklisted (Section 4.3), check the entry's
 reset time

 * If CurrentTime < Remove Time, ignore this RREQ for further
 processing.

 * If CurrentTime >= Remove Time, reset the neighbor state to
 Unknown and continue to Step 2.

 2. Verify that the message hop count, if included, hasn't exceeded
 MAX_HOPCOUNT

 * If so, ignore this RREQ for further processing.

 3. Verify that the message contains the required Data Elements:
 msg_hop_limit, OrigAddr, TargAddr, OrigSeqNum, and OrigMetric,
 and that OrigAddr and TargAddr are valid addresses (routable and
 unicast)

 * If not, ignore this RREQ for further processing.

 4. Check that the MetricType is supported and configured for use

 * If not, ignore this RREQ for further processing.

 5. Verify that the cost of the advertised route will not exceed the
 maximum allowed metric value for the metric type (Metric <=
 MAX_METRIC[MetricType] - Cost(L))

 * If it will, ignore this RREQ for further processing.

 6. Process the route to OrigAddr as specified in Section 6.7.1

 7. Check if the message is redundant by comparing to entries in the
 Multicast Route Message table, following the procedure in
 (Section 6.8)

 * If redundant, ignore this RREQ for further processing.

 * If not redundant, continue processing.

 8. Check if the TargAddr belongs to one of the Router Clients

 * If so, generate an RREP as specified in Section 7.2.1.

 * If not, continue to RREQ regeneration.

Perkins, et al. Expires April 15, 2016 [Page 37]

Internet-Draft AODVv2 October 2015

7.1.3. RREQ Regeneration

 By regenerating an RREQ, a router advertises that it will forward IP
 packets to the OrigAddr contained in the RREQ according to the
 information enclosed. The router MAY choose not to regenerate the
 RREQ, though this could decrease connectivity in the network or
 result in non-optimal paths. The full set of circumstances under
 which a router might avoid regenerating an RREQ are not declared in
 this document, though examples include the router being heavily
 loaded or low on energy and therefore unwilling to advertise routing
 capability for more traffic.

 The RREQ SHOULD NOT be regenerated if the limit for the rate of
 AODVv2 control message generation has been reached. If approaching
 the limit, the message should be sent if the priorities in

Section 6.5 allow it.

 The procedure for RREQ regeneration is as follows:

 1. Set msg_hop_limit := received msg_hop_limit - 1

 2. If msg_hop_limit is now zero, do not continue the regeneration
 process

 3. Set msg_hop_count := received msg_hop_count + 1, if included,
 otherwise omit msg_hop_count

 4. Set AddressList, PrefixLengthList, sequence numbers and
 MetricType to the values in the received RREQ

 5. Set OrigMetric := Route[OrigAddr].Metric

 6. If the received RREQ contains a ValidityTime, or if the
 regenerating router wishes to limit the time that it offers a
 route to OrigAddr, the regenerated RREQ MUST include a
 ValidityTime Data Element

 * The ValidityTime is either the time limit the previous AODVv2
 router specified, or the time limit this router wishes to
 impose, whichever is lower.

 This AODVv2 message is used to create a corresponding [RFC5444]
 message (see Section 8) which is multicast, by default, to LL-MANET-
 Routers on all interfaces configured for AODVv2 operation. However,
 the regenerated RREQ can be unicast to the next hop address of the
 route toward TargAddr, if known.

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 38]

Internet-Draft AODVv2 October 2015

7.2. Route Reply (RREP) Message

 When a Route Request message is received, requesting a route to a
 Target Address which is configured as a Router Client, a Route Reply
 message is sent in response. The RREP offers a route to the Target
 Address.

 The RREP is sent by unicast to the next hop router on the route to
 OrigAddr, if there is a Confirmed entry in the Neighbor Table for the
 next hop. Otherwise, the RREP is sent multicast to LL-MANET-Routers,
 including the AckReq Data Element in the message to indicate the
 intended next hop address and to request acknowledgement to confirm
 the neighbor adjacency.

 RREP messages have the following contents:

 +---+
 | msg_hop_limit, (optional) msg_hop_count |
 +---+
 | AckReq (optional) |
 +---+
 | AddressList |
 +---+
 | PrefixLengthList (optional) |
 +---+
 | TargSeqNum |
 +---+
 | MetricType |
 +---+
 | TargMetric |
 +---+
 | ValidityTime (optional) |
 +---+

 Figure 2: RREP message contents

 RREP Data Elements

 msg_hop_limit
 The remaining number of hops allowed for dissemination of the RREP
 message.

 msg_hop_count
 The number of hops already traversed during dissemination of the
 RREP message.

 AckReq

Perkins, et al. Expires April 15, 2016 [Page 39]

Internet-Draft AODVv2 October 2015

 The address of the intended next hop of the RREP. This Data
 Element is used when the RREP is to be multicast because the next
 hop toward OrigAddr is a neighbor with Unknown state. It
 indicates that an acknowledgement of the RREP is requested by the
 sender from the intended next hop (see Section 6.2).

 AddressList
 Contains OrigAddr and TargAddr, the source and destination
 addresses of the IP packet for which a route is requested.
 OrigAddr and TargAddr MUST be routable unicast addresses.

 PrefixLengthList
 Contains TargPrefixLen, i.e., the length, in bits, of the prefix
 associated with TargAddr. If omitted, the prefix length is equal
 to TargAddr's address length, in bits.

 TargSeqNum
 The sequence number associated with TargAddr.

 MetricType
 The metric type associated with TargMetric.

 TargMetric
 The metric value associated with the route to TargAddr, as seen
 from the sender of the message.

 ValidityTime
 The length of time that the message sender is willing to offer a
 route toward TargAddr. Omitted if no time limit is imposed.

7.2.1. RREP Generation

 An RREP is generated when an RREQ arrives requesting a route to one
 of the AODVv2 router's Router Clients.

 Before creating an RREP, the router SHOULD check if the corresponding
 RREQ is redundant, i.e., a response has already been generated, or if
 the limit for the rate of AODVv2 control message generation has been
 reached. If so, the RREP SHOULD NOT be created. If approaching the
 limit, the message should be sent if the priorities in Section 6.5
 allow it.

 If the next hop neighbor on the route to OrigAddr is not yet
 confirmed as adjacent (as described in Section 6.2), the RREP MUST
 include an AckReq Data Element including the intended next hop
 address, in order to perform adjacency monitoring. If the next hop
 neighbor is already confirmed as adjacent, the AckReq Data Element
 can be omitted. The AckReq Data Element indicates that an

Perkins, et al. Expires April 15, 2016 [Page 40]

Internet-Draft AODVv2 October 2015

 acknowledgement to the RREP is requested from the intended next hop
 router in the form of a Route Reply Acknowledgement (RREP_Ack).

 Implementations MAY allow a number of retries of the RREP if an
 acknowledgement is not received within RREP_Ack_SENT_TIMEOUT,
 doubling the timeout with each retry, up to a maximum of
 RREP_RETRIES, using the same exponential backoff described in

Section 6.6 for RREQ retries. Adjacency confirmation MUST be
 considered to have failed after the wait time for an RREP_Ack
 response to the final RREP. The next hop router MUST be marked as
 blacklisted (Section 4.3), and any installed routes with next hop set
 to the newly blacklisted router SHOULD become Invalid.

 To generate the RREP, the router (also referred to as RREP_Gen)
 follows this procedure:

 1. Set msg_hop_limit := msg_hop_count from the received RREQ
 message, if it was included, or MAX_HOPCOUNT if it was not
 included

 2. Set msg_hop_count := 0, if including it

 3. If adjacency with the next hop toward OrigAddr is not already
 confirmed, include the AckReq Data Element with the address of
 the intended next hop router

 4. Set Address List := {OrigAddr, TargAddr}

 5. For the PrefixLengthList:

 * If TargAddr is part of an address range configured as a Router
 Client, set PrefixLengthList := {null, TargPrefixLen}.

 * Otherwise, omit PrefixLengthList.

 6. For the TargSeqNum:

 * Increment the router SeqNum as specified in Section 4.4.

 * Set TargSeqNum := SeqNum.

 7. Include the MetricType Data Element and set the type to match the
 MetricType in the received RREQ message

 8. Set TargMetric := Route[TargAddr].Metric, i.e., RouterClient.Cost

Perkins, et al. Expires April 15, 2016 [Page 41]

Internet-Draft AODVv2 October 2015

 9. Include the ValidityTime Data Element if advertising that the
 route to TargAddr via this router is offered for a limited time,
 and set ValidityTime accordingly

 This AODVv2 message is used to create a corresponding [RFC5444]
 message (see Section 8). If there is a Confirmed entry in the
 Neighbor Table for the next hop router on the route to OrigAddr, the
 RREP is sent by unicast to the next hop. Otherwise, the RREP is sent
 multicast to LL-MANET-Routers.

7.2.2. RREP Reception

 Upon receiving an RREP, an AODVv2 router performs the following
 steps:

 1. If the sender is blacklisted (Section 4.3), but the RREP answers
 a recently sent RREQ, the Neighbor Table entry for this sender
 SHOULD have State set to Confirmed since an RREP is an
 indication of adjacency

 2. Verify that the message hop count, if included, hasn't exceeded
 MAX_HOPCOUNT

 * If so, ignore this RREQ for further processing.

 3. Verify that the message contains the required Data Elements:
 msg_hop_limit, OrigAddr, TargAddr, TargSeqNum, and TargMetric,
 and that OrigAddr and TargAddr are valid addresses (routable and
 unicast)

 * If not, ignore this RREP for further processing.

 4. Check that the MetricType is supported and configured for use

 * If not, ignore this RREP for further processing.

 5. Verify that the cost of the advertised route does not exceed the
 maximum allowed metric value for the metric type (Metric <=
 MAX_METRIC[MetricType] - Cost(L))

 * If it does, ignore this RREP for further processing.

 6. If the AckReq Data Element is present, check the intended
 recipient of the received RREP

 * If the receiving router is the intended recipient, send an
 acknowledgement as specified in Section 7.3 and continue
 processing.

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 42]

Internet-Draft AODVv2 October 2015

 * If the receiving router is not the intended recipient, ignore
 this RREP for further processing.

 7. Process the route to TargAddr as specified in Section 6.7.1

 * If the route to TargAddr fulfills a previously sent RREQ, any
 associated timeouts will be cancelled and buffered IP packets
 will be forwarded to TargAddr, but processing continues to
 Step 8.

 8. Check if the message is redundant by comparing to entries in the
 Multicast Route Message table (Section 6.8)

 * If redundant, ignore this RREP for further processing.

 * If not redundant, save the information in the Multicast Route
 Message table to identify future redundant RREP messages and
 continue processing.

 9. Check if the OrigAddr belongs to one of the Router Clients

 * If so, no further processing is necessary.

 10. Check if a valid (Active or Idle) or Unconfirmed route exists to
 OrigAddr

 * If so, continue to RREP regeneration.

 * If not, a Route Error message SHOULD be transmitted to
 TargAddr according to Section 7.4.1 and the RREP SHOULD be
 discarded and not regenerated.

7.2.3. RREP Regeneration

 A received Route Reply message is regenerated toward OrigAddr.
 Unless the router is prepared to advertise the route contained within
 the received RREP, it halts processing. By regenerating a RREP, a
 router advertises that it will forward IP packets to TargAddr
 according to the information enclosed. The router MAY choose not to
 regenerate the RREP, in the same way it MAY choose not to regenerate
 an RREQ (see Section 7.1.3), though this could decrease connectivity
 in the network or result in non-optimal paths.

 The RREP SHOULD NOT be regenerated if the limit for the rate of
 AODVv2 control message generation has been reached. If approaching
 the limit, the message should be sent if the priorities in

Section 6.5 allow it.

Perkins, et al. Expires April 15, 2016 [Page 43]

Internet-Draft AODVv2 October 2015

 If the next hop neighbor on the route to OrigAddr is not yet
 confirmed as adjacent (as described in Section 6.2), the RREP MUST
 include an AckReq Data Element including the intended next hop
 address, in order to perform adjacency monitoring. If the adjacency
 is already confirmed, the AckReq Data Element can be omitted. The
 AckReq Data Element indicates that an acknowledgement to the RREP is
 requested in the form of a Route Reply Acknowledgement (RREP_Ack)
 from the intended next hop router.

 The procedure for RREP regeneration is as follows:

 1. Set msg_hop_limit := received msg_hop_limit - 1

 2. If msg_hop_limit is now zero, do not continue the regeneration
 process

 3. Set msg_hop_count := received msg_hop_count + 1, if it was
 included, otherwise omit msg_hop_count

 4. If an adjacency with the next hop toward OrigAddr is not already
 confirmed, include the AckReq Data Element with the address of
 the intended next hop router

 5. Set AddressList, PrefixLengthList, TargSeqNum and MetricType to
 the values in the received RREP

 6. Set TargMetric := Route[TargAddr].Metric

 7. If the received RREP contains a ValidityTime, or if the
 regenerating router wishes to limit the time that it will offer a
 route to TargAddr, the regenerated RREP MUST include a
 ValidityTime Data Element

 * The ValidityTime is either the time limit the previous AODVv2
 router specified, or the time limit this router wishes to
 impose, whichever is lower.

 This AODVv2 message is used to create a corresponding [RFC5444]
 message (see Section 8). If there is a Confirmed entry in the
 Neighbor Table for the next hop router on the route to OrigAddr, the
 RREP is sent by unicast to the next hop. Otherwise, the RREP is sent
 multicast to LL-MANET-Routers.

7.3. Route Reply Acknowledgement (RREP_Ack) Message

 The Route Reply Acknowledgement MUST be sent in response to a
 received Route Reply which includes an AckReq Data Element with an
 address matching one of the receiving router's IP addresses. When

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 44]

Internet-Draft AODVv2 October 2015

 the RREP_Ack message is received, it confirms the adjacency between
 the two routers. The RREP_Ack has no Data Elements.

7.3.1. RREP_Ack Generation

 An RREP_Ack MUST be generated when a received RREP includes the
 AckReq Data Element with the address of the receiving router. The
 RREP_Ack SHOULD NOT be generated if the limit for the rate of AODVv2
 control message generation has been reached.

 There are no Data Elements in an RREP_Ack. The [RFC5444]
 representation is discussed in Section 8. The RREP_Ack is unicast,
 by default, to the source IP address of the RREP message that
 requested it.

7.3.2. RREP_Ack Reception

 Upon receiving an RREP_Ack, an AODVv2 router performs the following
 steps:

 1. If an RREP_Ack message was expected from the IP source address of
 the RREP_Ack, the router cancels any associated timeouts

 2. If the RREP_Ack was expected, ensure the router sending the
 RREP_Ack is marked with state Confirmed in the Neighbor
 Table (Section 4.3)

7.4. Route Error (RERR) Message

 A Route Error message is generated by an AODVv2 router to notify
 other AODVv2 routers of routes that are no longer available. An RERR
 message has the following contents:

 +---+
 | msg_hop_limit |
 +---+
 | PktSource (optional) |
 +---+
 | AddressList |
 +---+
 | PrefixLengthList (optional) |
 +---+
 | SeqNumList (optional) |
 +---+
 | MetricTypeList |
 +---+

 Figure 3: RERR message contents

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 45]

Internet-Draft AODVv2 October 2015

 RERR Data Elements

 msg_hop_limit
 The remaining number of hops allowed for dissemination of the RERR
 message.

 PktSource
 The source address of the IP packet triggering the RERR. If the
 RERR is triggered by a broken link, the PktSource Data Element is
 not required.

 AddressList
 The addresses of the routes no longer available through RERR_Gen.

 PrefixLengthList
 The prefix lengths, in bits, associated with the routes no longer
 available through RERR_Gen. These values indicate whether routes
 represent a single device or an address range.

 SeqNumList
 The sequence numbers of the routes no longer available through
 RERR_Gen (where known).

 MetricTypeList
 The metric types associated with the routes no longer available
 through RERR_Gen.

7.4.1. RERR Generation

 An RERR is generated when an AODVv2 router (also referred to as
 RERR_Gen) needs to report that a destination is no longer reachable.
 There are two events that cause this response:

 o If an IP packet arrives that cannot be forwarded because no valid
 route exists for its destination, or if an RREP arrives which
 cannot be regenerated because no route exists to OrigAddr, the
 RERR generated MUST contain the PktSource Data Element and will
 contain only one unreachable address. The contents of PktSource
 and AddressList are set as follows:

 * For an IP packet that cannot be forwarded, PktSource is set to
 the source address of the IP packet, and the AddressList
 contains the destination address of the IP packet.

 * For an RREP message when the route to OrigAddr has been lost,
 PktSource is set to the TargAddr of the RREP, and the
 AddressList contains the OrigAddr from the RREP.

Perkins, et al. Expires April 15, 2016 [Page 46]

Internet-Draft AODVv2 October 2015

 The prefix length and sequence number MAY be included if known
 from an Invalid route entry to PktSource. The MetricTypeList MUST
 also be included if a MetricType can be determined from the IP
 packet or an existing Invalid route to PktSource.

 RERR_Gen MUST discard the IP packet or RREP message that triggered
 generation of the RERR.

 In order to avoid flooding the network with RERR messages when a
 stream of IP packets to an unreachable address arrives, an AODVv2
 router SHOULD determine whether an RERR has recently been sent
 with the same unreachable address and PktSource, and SHOULD avoid
 creating duplicate RERR messages.

 o When a link breaks, multiple routes may become Invalid, and the
 RERR generated MAY contain multiple unreachable addresses. If the
 message contents would cause the MTU to be exceeded, multiple RERR
 messages must be sent. The RERR MUST include the MetricTypeList
 Data Element. The PktSource Data Element is omitted.

 All previously Active routes that used the broken link MUST be
 reported. The AddressList, PrefixLengthList, SeqNumList, and
 MetricTypeList will contain entries for each route which has
 become Invalid.

 An RERR message is only sent if an Active route becomes Invalid,
 though an AODVv2 router can also include Idle routes that become
 Invalid if the configuration parameter ENABLE_IDLE_IN_RERR is set
 (see Section 11.3).

 Incidentally, if an AODVv2 router receives an ICMP error packet to or
 from the address of one of its Router Clients, it simply forwards the
 ICMP packet in the same way as any other IP packet, and will not
 generate any RERR message based on the contents of the ICMP packet.

 The RERR SHOULD NOT be generated if the limit for the rate of AODVv2
 control message generation has been reached. If approaching the
 limit, the message should be sent if the priorities in Section 6.5
 allow it.

 To generate the RERR, the router follows this procedure:

 1. Set msg_hop_limit := MAX_HOPCOUNT

 2. If necessary, include the PktSource Data Element and set the
 value to the source address of the IP packet triggering the RERR,
 or the TargAddr of an RREP that cannot be regenerated toward
 OrigAddr

Perkins, et al. Expires April 15, 2016 [Page 47]

Internet-Draft AODVv2 October 2015

 3. For each route that needs to be reported, while respecting the
 interface MTU:

 * Insert the route address into the AddressList.

 * Insert the prefix length into PrefixLengthList, if known and
 not equal to the address length.

 * Insert the sequence number into SeqNumList, if known.

 * Insert the metric type into MetricTypeList.

 4. If interface MTU would be exceeded, create additional RERR
 messages

 The AODVv2 message is used to create a corresponding [RFC5444]
 message (see Section 8).

 If the RERR is sent in response to an undeliverable IP packet or RREP
 message, it SHOULD be sent unicast to the next hop on the route to
 PktSource, or alternatively it MUST be multicast to LL-MANET-Routers.

 If the RERR is sent in response to a broken link, the RERR is, by
 default, multicast to LL-MANET-Routers.

 If the optional precursor lists feature (see Section 10.2) is
 enabled, the RERR is unicast to the precursors of the routes being
 reported.

7.4.2. RERR Reception

 Upon receiving an RERR, an AODVv2 router performs the following
 steps:

 1. Verify that the message contains the required Data Elements:
 msg_hop_limit and at least one unreachable address

 * If not, ignore this RREP for further processing.

 2. For each address in the AddressList, check that:

 * The address is valid (routable and unicast)

 * The MetricType is supported and configured for use

 * There is a valid route with the same MetricType matching the
 address using longest prefix matching

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 48]

Internet-Draft AODVv2 October 2015

 * Either the route's next hop is the sender of the RERR and
 route's next hop interface is the interface on which the RERR
 was received, or PktSource is present in the RERR and is a
 Router Client address

 * The unreachable address' sequence number is either unknown, or
 is greater than the route's sequence number

 If any of the above are false, the route does not need to be made
 Invalid and the unreachable address does not need to be
 advertised in a regenerated RERR.

 If all of the above are true:

 * If the route's prefix length is the same as the unreachable
 address' prefix length, set the route state to Invalid, and
 note that the route SHOULD be advertised in a regenerated
 RERR.

 * If the prefix length is shorter than the original route, the
 route MUST be expunged from the routing table, since it is a
 sub-route of the larger route which is reported to be Invalid.

 * If the prefix length is different, create a new route with the
 unreachable address, and its prefix and sequence number, set
 the state to Invalid, and note that the route SHOULD be
 advertised in a regenerated RERR.

 * Update the sequence number on the existing route, if the
 reported sequence number is determined to be newer using the
 comparison technique described in Section 4.4.

 3. If PktSource is included and is a Router Client, do not
 regenerate the RERR.

 4. Check if there are unreachable addresses which need to be
 advertised in a regenerated RERR

 * If so, regenerate the RERR as detailed in Section 7.4.3.

 * If not, take no further action.

7.4.3. RERR Regeneration

 The RERR SHOULD NOT be generated if the limit for the rate of AODVv2
 control message generation has been reached. If approaching the
 limit, the message should be sent if the priorities in Section 6.5
 allow it.

Perkins, et al. Expires April 15, 2016 [Page 49]

Internet-Draft AODVv2 October 2015

 The procedure for RERR regeneration is as follows:

 1. Set msg_hop_limit := received msg_hop_limit - 1

 2. If msg_hop_limit is now zero, do not continue the regeneration
 process

 3. If the PktSource Data Element was included in the original RERR,
 copy it into the regenerated RERR

 4. For each route that needs to be reported, while respecting the
 interface MTU:

 * Insert the unreachable address into the AddressList.

 * Insert the prefix length into PrefixLengthList, if known and
 not equal to the address length.

 * Insert the sequence number into SeqNumList, if known.

 * Insert the MetricType into MetricTypeList.

 5. If interface MTU would be exceeded, create additional RERR
 messages

 The AODVv2 message is used to create a corresponding [RFC5444]
 message (see Section 8). If the RERR contains the PktSource Data
 Element, the regenerated RERR SHOULD be sent unicast to the next hop
 on the route to PktSource, or alternatively it MUST be multicast to
 LL-MANET-Routers. If the RERR is sent in response to a broken link,
 the RERR is, by default, multicast to LL-MANET-Routers.

8. RFC 5444 Representation

 AODVv2 specifies that all control plane messages between routers
 SHOULD use the Generalized Mobile Ad Hoc Network Packet/Message
 Format [RFC5444], and therefore AODVv2's route messages comprise Data
 Elements that map to message elements in [RFC5444].

 [RFC5444] provides a multiplexed transport for multiple protocols.
 An [RFC5444] multiplexer MAY choose to optimize the content of
 certain message elements to reduce control plane overhead.

 A brief summary of the [RFC5444] format:

 1. A packet contains zero or more messages

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 50]

Internet-Draft AODVv2 October 2015

 2. A message contains a Message Header, one Message TLV Block, zero
 or more Address Blocks, and one Address Block TLV Block per
 Address Block

 3. The Message TLV Block MAY contain zero or more Message TLVs

 4. An Address Block TLV Block MAY include zero or more Address Block
 TLVs

 5. Each TLV value in an Address Block TLV Block can be associated
 with all of the addresses, or with a contiguous set of addresses,
 or with a single address in the Address Block

 AODVv2 does not require access to the [RFC5444] packet header.

 In the message header, AODVv2 uses <msg-hop-limit>, <msg-hop-count>,
 <msg-type> and <msg-addr-length>. The <msg-addr-length> field
 indicates the length of any addresses in the message (using <msg-
 addr-length> := (address length in octets - 1), i.e. 3 for IPv4 and
 15 for IPv6).

 Each address included in the Address Block is identified as OrigAddr,
 TargAddr, PktSource, or Unreachable Address by including an
 ADDRESS_TYPE TLV in the Address Block TLV Block.

 The addresses in an Address Block MAY appear in any order, and values
 in a TLV in the Address Block TLV Block must be associated with the
 correct address in the Address Block by the [RFC5444] implementation.
 To indicate which value is associated with each address, the AODVv2
 message representation uses lists where the order of the addresses in
 the AODVv2 AddressList Data Element matches the order of values in
 other list-based Data Elements, e.g., the order of SeqNums in the
 SeqNumList in an RERR. [RFC5444] maps this information to Address
 Block TLVs associated with the relevant addresses in the Address
 Block.

 The following sections show how AODVv2 Data Elements are represented
 in [RFC5444] messages. AODVv2 makes use of the VALIDITY_TIME TLV
 from [RFC5497], and defines (in Section 12) a number of new TLVs.

 Where the extension type of a TLV is set to zero, this is the default
 [RFC5444] value and the extension type will not be included in the
 message.

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5497
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 51]

Internet-Draft AODVv2 October 2015

8.1. Route Request Message Representation

8.1.1. Message Header

 +---------------+-----------------+---------------------------------+
 | Data Element | Header Field | Value |
 +---------------+-----------------+---------------------------------+
None	<msg-type>	RREQ
msg_hop_limit	<msg-hop-limit>	MAX_HOPCOUNT, reduced by number
		of hops traversed so far by the
		message.
msg_hop_count	<msg-hop-count>	Number of hops traversed so far
		by the message.
 +---------------+-----------------+---------------------------------+

8.1.2. Message TLV Block

 An RREQ contains no Message TLVs.

8.1.3. Address Block

 An RREQ contains two Addresses, OrigAddr and TargAddr, and each
 address has an associated prefix length. If the prefix length has
 not been included in the AODVv2 message, it is equal to the address
 length in bits.

 +-------------------------+------------------------------+
 | Data Elements | Address Block |
 +-------------------------+------------------------------+
 | OrigAddr/OrigPrefixLen | <address> + <prefix-length> |
 | TargAddr/TargPrefixLen | <address> + <prefix-length> |
 +-------------------------+------------------------------+

8.1.4. Address Block TLV Block

 Address Block TLVs are always associated with one or more addresses
 in the Address Block. The following sections show the TLVs that
 apply to each address.

8.1.4.1. Address Block TLVs for OrigAddr

Perkins, et al. Expires April 15, 2016 [Page 52]

Internet-Draft AODVv2 October 2015

 +--------------+---------------+------------+-----------------------+
 | Data Element | TLV Type | Extension | Value |
 | | | Type | |
 +--------------+---------------+------------+-----------------------+
None	ADDRESS_TYPE	0	ADDRTYPE_ORIGADDR
OrigSeqNum	SEQ_NUM	0	Sequence Number of
			RREQ_Gen, the router
			which initiated route
			discovery.
OrigMetric	PATH_METRIC	MetricType	Metric value for the
/MetricType			route to OrigAddr,
			using MetricType.
ValidityTime	VALIDITY_TIME	0	ValidityTime for
			route to OrigAddr.
 +--------------+---------------+------------+-----------------------+

8.1.4.2. Address Block TLVs for TargAddr

 +------------+--------------+-------------+-------------------------+
 | Data | TLV Type | Extension | Value |
 | Element | | Type | |
 +------------+--------------+-------------+-------------------------+
None	ADDRESS_TYPE	0	ADDRTYPE_TARGADDR
TargSeqNum	SEQ_NUM	0	The last known
			TargSeqNum for
			TargAddr.
 +------------+--------------+-------------+-------------------------+

8.2. Route Reply Message Representation

8.2.1. Message Header

 +---------------+-----------------+---------------------------------+
 | Data Element | Header Field | Value |
 +---------------+-----------------+---------------------------------+
None	<msg-type>	RREP
msg_hop_limit	<msg-hop-limit>	<msg-hop-count> from
		corresponding RREQ, reduced by
		number of hops traversed so far
		by the message.
msg_hop_count	<msg-hop-count>	Number of hops traversed so far
		by the message.
 +---------------+-----------------+---------------------------------+

Perkins, et al. Expires April 15, 2016 [Page 53]

Internet-Draft AODVv2 October 2015

8.2.2. Message TLV Block

 An RREP contains no Message TLVs.

8.2.3. Address Block

 An RREP contains a minimum of two Addresses, OrigAddr and TargAddr,
 and each address has an associated prefix length. If the prefix
 length has not been included in the AODVv2 message, it is equal to
 the address length in bits.

 It MAY also contain the address of the intended next hop, in order to
 request acknowledgement to confirm adjacency, as described in

Section 6.2. The prefix length associated with this address is equal
 to the address length in bits.

 +-------------------------+------------------------------+
 | Data Elements | Address Block |
 +-------------------------+------------------------------+
 | OrigAddr/OrigPrefixLen | <address> + <prefix-length> |
 | TargAddr/TargPrefixLen | <address> + <prefix-length> |
 | AckReq | <address> + <prefix-length> |
 +-------------------------+------------------------------+

8.2.4. Address Block TLV Block

 Address Block TLVs are always associated with one or more addresses
 in the Address Block. The following sections show the TLVs that
 apply to each address.

8.2.4.1. Address Block TLVs for OrigAddr

 +-------------+---------------+----------------+--------------------+
 | Data | TLV Type | Extension Type | Value |
 | Element | | | |
 +-------------+---------------+----------------+--------------------+
 | None | ADDRESS_TYPE | 0 | ADDRTYPE_ORIGADDR |
 +-------------+---------------+----------------+--------------------+

8.2.4.2. Address Block TLVs for TargAddr

Perkins, et al. Expires April 15, 2016 [Page 54]

Internet-Draft AODVv2 October 2015

 +--------------+---------------+------------+-----------------------+
 | Data Element | TLV Type | Extension | Value |
 | | | Type | |
 +--------------+---------------+------------+-----------------------+
None	ADDRESS_TYPE	0	ADDRTYPE_TARGADDR
TargSeqNum	SEQ_NUM	0	Sequence number of
			RREP_Gen, the router
			which created the
			RREP.
TargMetric	PATH_METRIC	MetricType	Metric value for the
/MetricType			route to TargAddr,
			using MetricType.
ValidityTime	VALIDITY_TIME	0	ValidityTime for
			route to TargAddr.
 +--------------+---------------+------------+-----------------------+

8.2.4.3. Address Block TLVs for AckReq Intended Recipient Address

 +--------------+---------------+-----------------+------------------+
 | Data Element | TLV Type | Extension Type | Value |
 +--------------+---------------+-----------------+------------------+
 | None | ADDRESS_TYPE | 0 | ADDRTYPE_INTEND |
 +--------------+---------------+-----------------+------------------+

8.3. Route Reply Acknowledgement Message Representation

8.3.1. Message Header

 +---------------+---------------+-----------+
 | Data Element | Header Field | Value |
 +---------------+---------------+-----------+
 | None | <msg-type> | RREP_Ack |
 +---------------+---------------+-----------+

8.3.2. Message TLV Block

 An RREP_Ack contains no Message TLVs.

8.3.3. Address Block

 An RREP_Ack contains no Address Block.

8.3.4. Address Block TLV Block

 An RREP_Ack contains no Address Block TLV Block.

Perkins, et al. Expires April 15, 2016 [Page 55]

Internet-Draft AODVv2 October 2015

8.4. Route Error Message Representation

8.4.1. Message Header

 +---------------+-----------------+---------------------------------+
 | Data Element | Header Field | Value |
 +---------------+-----------------+---------------------------------+
None	<msg-type>	RERR
msg_hop_limit	<msg-hop-limit>	MAX_HOPCOUNT, reduced by number
		of hops traversed so far by the
		message.
 +---------------+-----------------+---------------------------------+

8.4.2. Message TLV Block

 An RERR contains no Message TLVs.

8.4.3. Address Block

 The Address Block in an RERR MAY contain PktSource, the source
 address of the IP packet triggering RERR generation, as detailed in

Section 7.4. Prefix Length associated with PktSource is equal to the
 address length in bits.

 Address Block always contains one Address per route that is no longer
 valid, and each address has an associated prefix length. If a prefix
 length has not been included for this address, it is equal to the
 address length in bits.

 +------------------------------+------------------------------------+
 | Data Element | Address Block |
 +------------------------------+------------------------------------+
PktSource	<address> + <prefix-length> for
	PktSource
AddressList/PrefixLengthList	<address> + <prefix-length> for
	each unreachable address in
	AddressList
 +------------------------------+------------------------------------+

8.4.4. Address Block TLV Block

 Address Block TLVs are always associated with one or more addresses
 in the Address Block. The following sections show the TLVs that
 apply to each type of address in the RERR.

Perkins, et al. Expires April 15, 2016 [Page 56]

Internet-Draft AODVv2 October 2015

8.4.4.1. Address Block TLVs for PktSource

 +--------------+---------------+---------------+--------------------+
 | Data Element | TLV Type | Extension | Value |
 | | | Type | |
 +--------------+---------------+---------------+--------------------+
 | PktSource | ADDRESS_TYPE | 0 | ADDRTYPE_PKTSOURCE |
 +--------------+---------------+---------------+--------------------+

8.4.4.2. Address Block TLVs for Unreachable Addresses

 +----------------+--------------+------------+----------------------+
 | Data Element | TLV Type | Extension | Value |
 | | | Type | |
 +----------------+--------------+------------+----------------------+
None	ADDRESS_TYPE	0	ADDRTYPE_UNREACHABLE
SeqNumList	SEQ_NUM	0	Sequence Number
			associated with
			invalid route to the
			unreachable address.
MetricTypeList	PATH_METRIC	MetricType	None. Extension Type
			set to MetricType of
			the route to the
			unreachable address.
 +----------------+--------------+------------+----------------------+

9. Simple External Network Attachment

 Figure 4 shows a stub (i.e., non-transit) network of AODVv2 routers
 which is attached to an external network via a single External
 Network Access Router (ENAR). The interface to the external network
 MUST NOT be configured in the AODVv2_INTERFACES list.

 As in any externally-attached network, AODVv2 routers and Router
 Clients that wish to be reachable from hosts on the external network
 MUST have IP addresses within the ENAR's routable and topologically
 correct prefix (i.e., 191.0.2.0/24 in Figure 4). This AODVv2 network
 and subnets within it will be advertised to the external network
 using procedures which are out of scope for this specification.

Perkins, et al. Expires April 15, 2016 [Page 57]

Internet-Draft AODVv2 October 2015

 /-------------------------\
 / +----------------+ \
 / | AODVv2 Router | \
 | | 191.0.2.2/32 | |
 | +----------------+ | Routable
 | +-----+--------+ Prefix
 | | ENAR | /191.0.2.0/24
 | | AODVv2 Router| /
 | | 191.0.2.1 |/ /---------------\
 | | serving net +------+ External \
 | | 191.0.2.0/24 | \ Network /
 | +-----+--------+ \---------------/
 | +----------------+ |
 | | AODVv2 Router | |
 | | 191.0.2.3/32 | |
 \ +----------------+ /
 \ /
 \-------------------------/

 Figure 4: Simple External Network Attachment Example

 When an AODVv2 router within the AODVv2 MANET wants to discover a
 route toward an address on the external network, it uses the normal
 AODVv2 route discovery for that IP Destination Address. The ENAR
 MUST respond to RREQ on behalf of all external network destinations,
 i.e., destinations not on the configured 191.0.2.0/24 subnet. RREQs
 for addresses inside the AODVv2 network, i.e. destinations on the
 configured 191.0.2.0/24 subnet, are handled using the standard
 processes described in Section 7.

 When an IP packet from an address on the external network destined
 for an address in the AODVv2 MANET reaches the ENAR, if the ENAR does
 not have a route toward that exact destination it will perform normal
 AODVv2 route discovery for that destination.

 Configuring the ENAR as a default router is outside the scope of this
 specification.

10. Optional Features

 A number of optional features for AODVv2, associated initially with
 AODV, MAY be useful in networks with greater mobility or larger node
 populations, or networks requiring reduced latency for application
 launches. These features are not required by minimal
 implementations.

Perkins, et al. Expires April 15, 2016 [Page 58]

Internet-Draft AODVv2 October 2015

10.1. Expanding Rings Multicast

 For multicast RREQ, msg_hop_limit MAY be set in accordance with an
 expanding ring search as described in [RFC3561] to limit the RREQ
 propagation to a subset of the local network and possibly reduce
 route discovery overhead.

10.2. Precursor Lists

 This section specifies an interoperable enhancement to AODVv2
 enabling more economical RERR notifications.

 There can be several sources of traffic for a certain destination.
 Each source of traffic and each upstream router between the
 forwarding AODVv2 router and the traffic source is known as a
 "precursor" for the destination. For each destination, an AODVv2
 router MAY choose to keep track of precursors that have provided
 traffic for that destination. Route Error messages about that
 destination can be sent unicast to these precursors instead of
 multicast to all AODVv2 routers.

 Since an RERR will be regenerated if it comes from a next hop on a
 valid route, the RERR SHOULD ideally be sent backwards along the
 route that the source of the traffic uses, to ensure it is
 regenerated at each hop and reaches the traffic source. If the
 reverse path is unknown, the RERR SHOULD be sent toward the source
 along some other route. Therefore, the options for saving precursor
 information are as follows:

 o Save the next hop on an existing route to the IP packet's source
 address as the precursor. In this case, it is not guaranteed that
 an RERR that is sent will follow the reverse of the source's
 route. In rare situations, this may prevent the route from being
 invalidated at the source of the data traffic.

 o Save the IP packet's source address as the precursor. In this
 case, the RERR can be sent along any existing route to the source
 of the data traffic, and SHOULD include the PktSource Data Element
 to ensure that the route will be invalidated at the source of the
 traffic, in case the RERR does not follow the reverse of the
 source's route.

 o By inspecting the MAC address of each forwarded IP packet,
 determine which router forwarded the packet, and save the router
 address as a precursor. This ensures that when an RERR is sent to
 the precursor router, the route will be invalidated at that
 router, and the RERR will be regenerated toward the source of the
 IP packet.

https://datatracker.ietf.org/doc/html/rfc3561

Perkins, et al. Expires April 15, 2016 [Page 59]

Internet-Draft AODVv2 October 2015

 During normal operation, each AODVv2 router maintaining precursor
 lists for a route must update the precursor list whenever it uses
 this route to forward traffic to the destination. Precursors are
 classified as Active if traffic has recently been forwarded by the
 precursor. The precursor is marked with a timestamp to indicate the
 time it last forwarded traffic on this route.

 When an AODVv2 router detects that one or more routes are broken, it
 MAY notify each Active precursor using a unicast Route Error message
 instead of creating multicast traffic. Unicast is applicable when
 there are few Active precursors compared to the number of neighboring
 AODVv2 routers. However, the default multicast behavior is still
 preferable when there are many precursors, since fewer message
 transmissions are required.

 When an AODVv2 router supporting precursor lists receives an RERR
 message, it MAY identify the list of its own affected Active
 precursors for the routes in the RERR, and choose to send a unicast
 RERR to those, rather than send a multicast RERR.

 When a route is expunged, any precursor list associated with it must
 also be expunged.

10.3. Intermediate RREP

 Without iRREP, only the AODVv2 router responsible for the target
 address can respond to an RREQ. Using iRREP, route discoveries can
 be faster and create less control traffic. This specification has
 been published as a separate Internet Draft [I-D.perkins-irrep].

10.4. Message Aggregation Delay

 The aggregation of multiple messages into a packet is specified in
 [RFC5444].

 Implementations MAY choose to briefly delay transmission of messages
 for the purpose of aggregation (into a single packet) or to improve
 performance by using jitter [RFC5148].

11. Configuration

 AODVv2 uses various parameters which can be grouped into the
 following categories:

 o Timers

 o Protocol constants

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5148

Perkins, et al. Expires April 15, 2016 [Page 60]

Internet-Draft AODVv2 October 2015

 o Administrative parameters and controls

 This section show the parameters along with their definitions and
 default values (if any).

 Note that several fields have limited size (bits or bytes). These
 sizes and their encoding may place specific limitations on the values
 that can be set.

11.1. Timers

 AODVv2 requires certain timing information to be associated with
 route table entries and message replies. The default values are as
 follows:

 +------------------------+----------------+
 | Name | Default Value |
 +------------------------+----------------+
 | ACTIVE_INTERVAL | 5 second |
 | MAX_IDLETIME | 200 seconds |
 | MAX_BLACKLIST_TIME | 200 seconds |
 | MAX_SEQNUM_LIFETIME | 300 seconds |
 | RteMsg_ENTRY_TIME | 12 seconds |
 | RREQ_WAIT_TIME | 2 seconds |
 | RREP_Ack_SENT_TIMEOUT | 1 second |
 | RREQ_HOLDDOWN_TIME | 10 seconds |
 +------------------------+----------------+

 Table 2: Timing Parameter Values

 The above timing parameter values have worked well for small and
 medium well-connected networks with moderate topology changes. The
 timing parameters SHOULD be administratively configurable. Ideally,
 for networks with frequent topology changes the AODVv2 parameters
 SHOULD be adjusted using experimentally determined values or dynamic
 adaptation. For example, in networks with infrequent topology
 changes MAX_IDLETIME MAY be set to a much larger value.

 If MAX_SEQNUM_LIFETIME was configured differently across the network,
 and any of the routers lost their sequence number or rebooted, this
 could result in their next route messages being classified as stale
 at any AODVv2 router using a greater value for MAX_SEQNUM_LIFETIME.
 This would delay route discovery from and to the re-initializing
 router.

Perkins, et al. Expires April 15, 2016 [Page 61]

Internet-Draft AODVv2 October 2015

11.2. Protocol Constants

 AODVv2 protocol constants typically do not require changes. The
 following table lists these constants, along with their values and a
 reference to the section describing their use.

 +------------------------+---------+--------------------------------+
 | Name | Default | Description |
 +------------------------+---------+--------------------------------+
DISCOVERY_ATTEMPTS_MAX	3	Section 6.6
RREP_RETRIES	2	Section 7.2.1
MAX_METRIC[MetricType]	[TBD]	Section 5
MAX_METRIC[HopCount]	20 hops	Section 5 and Section 7
MAX_HOPCOUNT	20	Same as MAX_METRIC[HopCount]
INFINITY_TIME	[TBD]	Maximum expressible clock time
		(Section 6.7.2)
 +------------------------+---------+--------------------------------+

 Table 3: AODVv2 Constants

 Note that <msg-hop-count> is an 8-bit field in the [RFC5444] message
 header and therefore MAX_HOPCOUNT cannot be larger than 255.

 MAX_METRIC[MetricType] MUST always be the maximum expressible metric
 value of type MetricType. Field lengths associated with metric
 values are found in Section 11.6.

 These protocol constants MUST have the same values for all AODVv2
 routers in the ad hoc network. If the values were configured
 differently, the following consequences may be observed:

 o DISCOVERY_ATTEMPTS_MAX: Routers with higher values are likely to
 be more successful at finding routes, at the cost of additional
 control traffic.

 o RREP_RETRIES: Routers with lower values are more likely to
 blacklist neighbors when there is a

 o MAX_METRIC[MetricType]: No interoperability problems due to
 variations on different routers, but routers with lower values may
 exhibit overly restrictive behavior during route comparisons.
 temporary fluctuation in link quality.

 o MAX_HOPCOUNT: Routers with a value too small would not be able to
 discover routes to distant addresses.

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 62]

Internet-Draft AODVv2 October 2015

 o INFINITY_TIME: No interoperability problems due to variations on
 different routers, but if a lower value is used, route state
 management may exhibit overly restrictive behavior.

11.3. Local Settings

 The following table lists AODVv2 parameters which SHOULD be
 administratively configured for each router:

 +------------------------+------------------------+--------------+
 | Name | Default Value | Description |
 +------------------------+------------------------+--------------+
 | AODVv2_INTERFACES | | Section 3 |
 | BUFFER_SIZE_PACKETS | 2 | Section 6.6 |
 | BUFFER_SIZE_BYTES | MAX_PACKET_SIZE [TBD] | Section 6.6 |
 | CONTROL_TRAFFIC_LIMIT | [TBD - 50 pkts/sec?] | Section 7 |
 +------------------------+------------------------+--------------+

 Table 4: Configuration for Local Settings

11.4. Network-Wide Settings

 The following administrative controls MAY be used to change the
 operation of the network. The same settings SHOULD be used across
 the network. Inconsistent settings at different routers in the
 network will not result in protocol errors, but poor performance may
 result.

 +----------------------+-----------+----------------+
 | Name | Default | Description |
 +----------------------+-----------+----------------+
 | ENABLE_IDLE_IN_RERR | Disabled | Section 7.4.1 |
 +----------------------+-----------+----------------+

 Table 5: Configuration for Network-Wide Settings

11.5. Optional Feature Settings

 These options are not required for correct routing behavior, although
 they may reduce AODVv2 protocol overhead in certain situations. The
 default behavior is to leave these options disabled.

Perkins, et al. Expires April 15, 2016 [Page 63]

Internet-Draft AODVv2 October 2015

 +---------------------------+-----------+---------------------------+
 | Name | Default | Description |
 +---------------------------+-----------+---------------------------+
PRECURSOR_LISTS	Disabled	Local (Section 10.2)
MSG_AGGREGATION	Disabled	Local (Section 10.4)
ENABLE_IRREP	Disabled	Network-wide (Section
		10.3)
EXPANDING_RINGS_MULTICAST	Disabled	Network-wide (Section
		10.1)
 +---------------------------+-----------+---------------------------+

 Table 6: Configuration for Optional Features

11.6. MetricType Allocation

 The metric types used by AODVv2 are identified according to the
 assignments in [RFC6551]. All implementations MUST use these values.

 +---------------------+----------+--------------------+
 | Name of MetricType | Type | Metric Value Size |
 +---------------------+----------+--------------------+
 | Unassigned | 0 | Undefined |
 | Hop Count | 3 [TBD] | 1 octet |
 | Unallocated | 9 - 254 | TBD |
 | Reserved | 255 | Undefined |
 +---------------------+----------+--------------------+

 Table 7: AODVv2 Metric Types

11.7. AddressType Allocation

 These values are used in the [RFC5444] Address Type TLV discussed in
Section 8. All implementations MUST use these values.

 +-----------------------+--------+
 | Address Type | Value |
 +-----------------------+--------+
 | ADDRTYPE_ORIGADDR | 0 |
 | ADDRTYPE_TARGADDR | 1 |
 | ADDRTYPE_UNREACHABLE | 2 |
 | ADDRTYPE_PKTSOURCE | 3 |
 | ADDRTYPE_INTEND | 4 |
 | ADDRTYPE_UNSPECIFIED | 255 |
 +-----------------------+--------+

 Table 8: AODVv2 Address Types

https://datatracker.ietf.org/doc/html/rfc6551
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 64]

Internet-Draft AODVv2 October 2015

12. IANA Considerations

 This section specifies several [RFC5444] message types and address
 tlv-types required for AODVv2. A registry of metric types is
 specified, in addition to a registry of address types.

12.1. RFC 5444 Message Types

 This specification defines four Message Types, to be allocated from
 the 0-223 range of the "Message Types" namespace defined in
 [RFC5444], as specified in Table 9.

 +---+-----------+
 | Name of Message | Type |
 +---+-----------+
 | Route Request (RREQ) | 10 (TBD) |
 | Route Reply (RREP) | 11 (TBD) |
 | Route Error (RERR) | 12 (TBD) |
 | Route Reply Acknowledgement (RREP_Ack) | 13 (TBD) |
 +---+-----------+

 Table 9: AODVv2 Message Types

12.2. RFC 5444 Address Block TLV Types

 This specification defines three Address Block TLV Types, to be
 allocated from the "Address Block TLV Types" namespace defined in
 [RFC5444], as specified in Table 10.

 +------------------------+----------+---------------+---------------+
 | Name of TLV | Type | Length | Reference |
 | | | (octets) | |
 +------------------------+----------+---------------+---------------+
PATH_METRIC	10 (TBD)	depends on	Section 7
		MetricType	
SEQ_NUM	11 (TBD)	2	Section 7
ADDRESS_TYPE	15 (TBD)	1	Section 8
 +------------------------+----------+---------------+---------------+

 Table 10: AODVv2 Address Block TLV Types

13. Security Considerations

 This section describes various security considerations and potential
 avenues to secure AODVv2 routing. The objective of the AODVv2
 protocol is for each router to communicate reachability information
 about addresses for which it is responsible, and for routes it has
 learned from other AODVv2 routers. Positive routing information

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 65]

Internet-Draft AODVv2 October 2015

 (i.e. a route exists) is distributed via RREQ and RREP messages.
 AODVv2 routers store the information contained in these messages in
 order to properly forward IP packets, and they generally provide this
 information to other AODVv2 routers. Negative routing information
 (i.e. a route does not exist) is distributed via RERR messages.
 AODVv2 routers process these messages and remove routes, and forward
 this information to other AODVv2 routers.

 Networks using AODVv2 to maintain connectivity and establish routes
 on demand may be vulnerable to certain well-known types of threats.
 Flooding attacks using RREQ amount to a denial of service for route
 discovery. Valid route table entries can be replaced by maliciously
 constructed RREQ and RREP messages. Links could be erroneously
 treated as bidirectional if malicious unsolicited RREP or RREP_Ack
 messages were to be accepted. Replay attacks using RERR messages
 could, in some circumstances, be used to disrupt active routes.
 Passive inspection of AODVv2 control messages could enable
 unauthorized devices to gain information about the network topology,
 since exchanging such information is the main purpose of AODVv2.

 The on-demand nature of AODVv2 route discovery reduces the
 vulnerability to route disruption. Since control traffic for
 updating route tables is diminished, there is less opportunity for
 failure. Processing requirements for AODVv2 are typically quite
 small, and would typically be dominated by calculations to verify
 integrity. This has the effect of reducing (but by no means
 eliminating) AODVv2's vulnerability to denial of service attacks.

 Encryption MAY be used for AODVv2 messages. If the routers share a
 packet-level security association, the message data can be encrypted
 prior to message transmission. The establishment of such security
 associations is outside the scope of this specification. Encryption
 will not only protect against unauthorized devices obtaining
 information about network topology but will ensure that only trusted
 routers participate in routing operations.

 Message integrity checking is enabled by the Integrity Check Value
 mechanisms defined in [RFC7182]. The data contained in AODVv2
 routing protocol messages SHOULD be verified using ICV values, to
 avoid the use of message data if the message has been tampered with
 or replayed. Otherwise, it would be possible to disrupt
 communications by injecting nonexistent or malicious routes into the
 route tables of routers within the ad hoc network. This can result
 in loss of data or message processing by unauthorized devices.

 The remainder of this section provides specific recommendations for
 the use of the integrity checking and timestamp functions defined in
 [RFC7182] to ensure the integrity of each AODVv2 message. The

https://datatracker.ietf.org/doc/html/rfc7182
https://datatracker.ietf.org/doc/html/rfc7182

Perkins, et al. Expires April 15, 2016 [Page 66]

Internet-Draft AODVv2 October 2015

 calculation used for the Integrity Check Value will depend on the
 message type. Sequence numbers can be used as timestamps to protect
 against replay, since they are known to be strictly increasing.

 RREQ messages advertise a route to OrigAddr, and impose very little
 processing requirement for receivers. The main threat presented by
 sending an RREQ message with false information is that traffic to
 OrigAddr could be disrupted. Since RREQ is multicast and likely to
 be received by all routers in the ad hoc network, this threat could
 have serious impact on applications communicating by way of OrigAddr.
 The actual threat to disrupt routes to OrigAddr is reduced by the
 AODVv2 mechanism of marking RREQ-derived routes as "Unconfirmed"
 until adjacency with the next hop is confirmed. If AODVv2 routers
 always verify the integrity of the RREQ message data, then the threat
 of disruption is minimized. The ICV mechanisms offered in [RFC7182]
 are sufficient for this purpose. Since OrigAddr is included as a
 Data Element of the RREQ, the ICV can be calculated and verified
 using message contents. The ICV SHOULD be verified at every step
 along the dispersal path of the RREQ to mitigate the threat. Since
 RREQ_Gen's sequence number is incremented for each new RREQ, replay
 protection is already afforded and no extra timestamp mechanism is
 required.

 RREP messages advertise a route to TargAddr, and impose very little
 processing requirement for receivers. The main threat presented by
 sending an RREP message with false information is that traffic to
 TargAddr could be disrupted. Since RREP is unicast, this threat is
 restricted to receivers along the path from OrigAddr to TargAddr. If
 AODVv2 routers always verify the integrity of the RREP message data,
 then this threat is minimized. This facility is offered by the ICV
 mechanisms in [RFC7182]. Since TargAddr is included as a Data
 Element of the RREP, the ICV can be calculated and verified using
 message contents. The ICV SHOULD be verified at every step along the
 unicast path of the RREP. Since RREP_Gen's sequence number is
 incremented for each new RREP, replay protection is afforded and no
 extra timestamp mechanism is required.

 RREP_Ack messages are intended to verify bidirectional neighbor
 connectivity, and impose very little processing requirement for
 receivers. The main threat presented by sending an RREP_Ack message
 with false information is that the route advertised to a target
 address in an RREP might be erroneously accepted even though the
 route would contain a unidirectional link and thus not be suitable
 for most traffic. Since RREP_Ack is unicast, this threat is strictly
 local to the RREP transmitter expecting the acknowledgement. A
 malicious router could also attempt to send an unsolicited RREP_Ack
 to convince another router that a bidirectional link exists and
 subsequently use further messages to divert traffic along a route

https://datatracker.ietf.org/doc/html/rfc7182
https://datatracker.ietf.org/doc/html/rfc7182

Perkins, et al. Expires April 15, 2016 [Page 67]

Internet-Draft AODVv2 October 2015

 which is not valid. If AODVv2 routers always verify the integrity of
 the RREP_Ack message data, then this threat is minimized. This
 facility is offered by the ICV mechanisms in [RFC7182]. The RREP_Gen
 SHOULD use the source IP address of the RREP_Ack to identify the
 sender, and so the ICV SHOULD be calculated using the message
 contents and the IP source address. The message must also include
 the Timestamp defined in [RFC7182] to protect against replay attacks,
 using TargSeqNum from the RREP as the value in the TIMESTAMP TLV.

 RERR messages remove routes, and impose very little processing
 requirement for receivers. The main threat presented by sending an
 RERR message with false information is that traffic to the advertised
 destinations could be disrupted. Since RERR is multicast and can be
 received by many routers in the ad hoc network, this threat could
 have serious impact on applications communicating by way of the
 sender of the RERR message. However, since the sender of the RERR
 message with erroneous information MAY be presumed to be either
 malicious or broken, it is better that such routes not be used
 anyway. Another threat is that a malicious RERR message MAY be sent
 with a PktSource Data Element included, to disrupt PktSource's
 ability to send to the addresses contained in the RERR. If AODVv2
 routers always verify the integrity of the RERR message data, then
 this threat is reduced. This facility is offered by the ICV
 mechanisms in [RFC7182]. The receiver of the RERR SHOULD use the
 source IP address of the RERR to identify the sender. The message
 must also include the Timestamp defined in [RFC7182] to protect
 against replay attacks, using SeqNum from RERR_Gen as the value in
 the TIMESTAMP TLV.

14. Acknowledgments

 AODVv2 is a descendant of the design of previous MANET on-demand
 protocols, especially AODV [RFC3561] and DSR [RFC4728]. Changes to
 previous MANET on-demand protocols stem from research and
 implementation experiences. Thanks to Elizabeth Belding and Ian
 Chakeres for their long time authorship of AODV. Additional thanks
 to Derek Atkins, Emmanuel Baccelli, Abdussalam Baryun, Ramon Caceres,
 Thomas Clausen, Justin Dean, Christopher Dearlove, Ulrich Herberg,
 Henner Jakob, Luke Klein-Berndt, Lars Kristensen, Tronje Krop,
 Koojana Kuladinithi, Kedar Namjoshi, Keyur Patel, Alexandru Petrescu,
 Henning Rogge, Fransisco Ros, Pedro Ruiz, Christoph Sommer, Romain
 Thouvenin, Richard Trefler, Jiazi Yi, Seung Yi, and Cong Yuan, for
 their reviews of AODVv2 and DYMO, as well as numerous specification
 suggestions.

https://datatracker.ietf.org/doc/html/rfc7182
https://datatracker.ietf.org/doc/html/rfc7182
https://datatracker.ietf.org/doc/html/rfc7182
https://datatracker.ietf.org/doc/html/rfc7182
https://datatracker.ietf.org/doc/html/rfc3561
https://datatracker.ietf.org/doc/html/rfc4728

Perkins, et al. Expires April 15, 2016 [Page 68]

Internet-Draft AODVv2 October 2015

15. References

15.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3561] Perkins, C., Belding-Royer, E., and S. Das, "Ad hoc On-
 Demand Distance Vector (AODV) Routing", RFC 3561, DOI
 10.17487/RFC3561, July 2003,
 <http://www.rfc-editor.org/info/rfc3561>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <http://www.rfc-editor.org/info/rfc4291>.

 [RFC5082] Gill, V., Heasley, J., Meyer, D., Savola, P., Ed., and C.
 Pignataro, "The Generalized TTL Security Mechanism
 (GTSM)", RFC 5082, DOI 10.17487/RFC5082, October 2007,
 <http://www.rfc-editor.org/info/rfc5082>.

 [RFC5444] Clausen, T., Dearlove, C., Dean, J., and C. Adjih,
 "Generalized Mobile Ad Hoc Network (MANET) Packet/Message
 Format", RFC 5444, DOI 10.17487/RFC5444, February 2009,
 <http://www.rfc-editor.org/info/rfc5444>.

 [RFC5497] Clausen, T. and C. Dearlove, "Representing Multi-Value
 Time in Mobile Ad Hoc Networks (MANETs)", RFC 5497, DOI
 10.17487/RFC5497, March 2009,
 <http://www.rfc-editor.org/info/rfc5497>.

 [RFC5498] Chakeres, I., "IANA Allocations for Mobile Ad Hoc Network
 (MANET) Protocols", RFC 5498, DOI 10.17487/RFC5498, March
 2009, <http://www.rfc-editor.org/info/rfc5498>.

 [RFC6551] Vasseur, JP., Ed., Kim, M., Ed., Pister, K., Dejean, N.,
 and D. Barthel, "Routing Metrics Used for Path Calculation
 in Low-Power and Lossy Networks", RFC 6551, DOI 10.17487/

RFC6551, March 2012,
 <http://www.rfc-editor.org/info/rfc6551>.

 [RFC7182] Herberg, U., Clausen, T., and C. Dearlove, "Integrity
 Check Value and Timestamp TLV Definitions for Mobile Ad
 Hoc Networks (MANETs)", RFC 7182, DOI 10.17487/RFC7182,
 April 2014, <http://www.rfc-editor.org/info/rfc7182>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3561
http://www.rfc-editor.org/info/rfc3561
https://datatracker.ietf.org/doc/html/rfc4291
http://www.rfc-editor.org/info/rfc4291
https://datatracker.ietf.org/doc/html/rfc5082
http://www.rfc-editor.org/info/rfc5082
https://datatracker.ietf.org/doc/html/rfc5444
http://www.rfc-editor.org/info/rfc5444
https://datatracker.ietf.org/doc/html/rfc5497
http://www.rfc-editor.org/info/rfc5497
https://datatracker.ietf.org/doc/html/rfc5498
http://www.rfc-editor.org/info/rfc5498
https://datatracker.ietf.org/doc/html/rfc6551
https://datatracker.ietf.org/doc/html/rfc6551
http://www.rfc-editor.org/info/rfc6551
https://datatracker.ietf.org/doc/html/rfc7182
http://www.rfc-editor.org/info/rfc7182

Perkins, et al. Expires April 15, 2016 [Page 69]

Internet-Draft AODVv2 October 2015

15.2. Informative References

 [I-D.perkins-irrep]
 Perkins, C., "Intermediate RREP for dynamic MANET On-
 demand (AODVv2) Routing", draft-perkins-irrep-03 (work in
 progress), May 2015.

 [Perkins94]
 Perkins, C. and P. Bhagwat, "Highly Dynamic Destination-
 Sequenced Distance-Vector Routing (DSDV) for Mobile
 Computers", Proceedings of the ACM SIGCOMM '94 Conference
 on Communications Architectures, Protocols and
 Applications, London, UK, pp. 234-244, August 1994.

 [Perkins99]
 Perkins, C. and E. Royer, "Ad hoc On-Demand Distance
 Vector (AODV) Routing", Proceedings of the 2nd IEEE
 Workshop on Mobile Computing Systems and Applications, New
 Orleans, LA, pp. 90-100, February 1999.

 [RFC2501] Corson, S. and J. Macker, "Mobile Ad hoc Networking
 (MANET): Routing Protocol Performance Issues and
 Evaluation Considerations", RFC 2501, DOI 10.17487/

RFC2501, January 1999,
 <http://www.rfc-editor.org/info/rfc2501>.

 [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
 Addresses", RFC 4193, DOI 10.17487/RFC4193, October 2005,
 <http://www.rfc-editor.org/info/rfc4193>.

 [RFC4728] Johnson, D., Hu, Y., and D. Maltz, "The Dynamic Source
 Routing Protocol (DSR) for Mobile Ad Hoc Networks for
 IPv4", RFC 4728, DOI 10.17487/RFC4728, February 2007,
 <http://www.rfc-editor.org/info/rfc4728>.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 DOI 10.17487/RFC4861, September 2007,
 <http://www.rfc-editor.org/info/rfc4861>.

 [RFC5148] Clausen, T., Dearlove, C., and B. Adamson, "Jitter
 Considerations in Mobile Ad Hoc Networks (MANETs)", RFC

5148, DOI 10.17487/RFC5148, February 2008,
 <http://www.rfc-editor.org/info/rfc5148>.

https://datatracker.ietf.org/doc/html/draft-perkins-irrep-03
https://datatracker.ietf.org/doc/html/rfc2501
https://datatracker.ietf.org/doc/html/rfc2501
http://www.rfc-editor.org/info/rfc2501
https://datatracker.ietf.org/doc/html/rfc4193
http://www.rfc-editor.org/info/rfc4193
https://datatracker.ietf.org/doc/html/rfc4728
http://www.rfc-editor.org/info/rfc4728
https://datatracker.ietf.org/doc/html/rfc4861
http://www.rfc-editor.org/info/rfc4861
https://datatracker.ietf.org/doc/html/rfc5148
https://datatracker.ietf.org/doc/html/rfc5148
http://www.rfc-editor.org/info/rfc5148

Perkins, et al. Expires April 15, 2016 [Page 70]

Internet-Draft AODVv2 October 2015

 [RFC6130] Clausen, T., Dearlove, C., and J. Dean, "Mobile Ad Hoc
 Network (MANET) Neighborhood Discovery Protocol (NHDP)",

RFC 6130, DOI 10.17487/RFC6130, April 2011,
 <http://www.rfc-editor.org/info/rfc6130>.

 [RFC6621] Macker, J., Ed., "Simplified Multicast Forwarding", RFC
6621, DOI 10.17487/RFC6621, May 2012,

 <http://www.rfc-editor.org/info/rfc6621>.

 [Sholander02]
 Sholander, P., Coccoli, P., Oakes, T., and S. Swank, "A
 Portable Software Implementation of a Hybrid MANET Routing
 Protocol", 2002.

Appendix A. Multi-homing Considerations

 Multi-homing is not supported by the AODVv2 specification. A Router
 Client, i.e., an IP Address, can only be served by one AODVv2 router
 at any time. The coordination between multiple AODVv2 routers to
 distribute routing information correctly for a shared address is not
 defined. See Appendix B for information about how to move a router
 client to a different AODVv2 router.

 Previous work indicates that it can be supported by expanding the
 sequence number to include the AODVv2 router's IP address as a
 parsable field of the SeqNum. Without this, comparing sequence
 numbers would not work to evaluate freshness. Even when the IP
 address is included, there is no good way to compare sequence numbers
 from different IP addresses, but a handling node can determine
 whether the two given sequence numbers are comparable. If the route
 table can store multiple routes for the same destination, then multi-
 homing can work with sequence numbers augmented by IP addresses.

 This non-normative information is provided simply to document the
 results of previous efforts to enable multi-homing. The intention is
 to simplify the task of future specification if multihoming becomes
 necessary for reactive protocol operation.

Appendix B. Router Client Relocation

 Only one AODVv2 router within a MANET SHOULD be responsible for a
 particular address at any time. If two AODVv2 routers dynamically
 shift the advertisement of a network prefix, correct AODVv2 routing
 behavior must be observed. The AODVv2 router adding the new network
 prefix must wait for any existing routing information about this
 network prefix to be purged from the network, i.e., it must wait at
 least MAX_SEQNUM_LIFETIME after the previous AODVv2 router's last
 SeqNum update for this network prefix.

https://datatracker.ietf.org/doc/html/rfc6130
http://www.rfc-editor.org/info/rfc6130
https://datatracker.ietf.org/doc/html/rfc6621
https://datatracker.ietf.org/doc/html/rfc6621
http://www.rfc-editor.org/info/rfc6621

Perkins, et al. Expires April 15, 2016 [Page 71]

Internet-Draft AODVv2 October 2015

Appendix C. Example Algorithms for AODVv2 Operations

 The following subsections show example algorithms for protocol
 operations required by AODVv2. AODVv2 requires general algorithms
 for manipulating and comparing table entries, and algorithms specific
 to each message type, and sometimes values and algorithms specific to
 each metric type.

 The following table indicates the field names used in subsequent
 sections and their meaning.

 +-------------------------+---+
 | Parameter | Description |
 +-------------------------+---+
RteMsg	A route message
	(inRREQ/outRREQ/inRREP/outRREP)
RteMsg.HopLimit	Hop limit for the message
RteMsg.HopCount	Hop count for the message
RteMsg.AckReq	True/False, optional in RREP
RteMsg.MetricType	The type of metric included, optional
RteMsg.OrigAddr	Address of source of queued data
RteMsg.TargAddr	Address route is requested for
RteMsg.OrigPrefixLen	Prefix length of OrigAddr, optional
RteMsg.TargPrefixLen	Prefix length of TargAddr, optional
RteMsg.OrigSeqNum	SeqNum of OrigAddr, in RREQ only
RteMsg.TargSeqNum	SeqNum of TargAddr, in RREP, optional
	in RREQ
RteMsg.OrigMetric	Metric to OrigAddr, in RREQ only
RteMsg.TargMetric	Metric to TargAddr, in RREP only
RteMsg.ValidityTime	Time limit for route advertised
RteMsg.NbrIP	Sender of the RteMsg
RteMsg.Netif	Interface on which the RteMsg arrived
AdvRte	Derived from a RteMsg (see Section 6.7)
AdvRte.Address	Route destination address
AdvRte.PrefixLength	Route destination prefix length
AdvRte.SeqNum	SeqNum associated with route
AdvRte.MetricType	MetricType associated with route
AdvRte.Metric	Advertised metric of route
AdvRte.Cost	Cost from receiving router
AdvRte.ValidityTime	Time limit for route advertised
AdvRte.NextHopIP	Sender of the RteMsg
AdvRte.NextHopIntf	Interface on which the RteMsg arrived
AdvRte.HopCount	Number of hops traversed
AdvRte.HopLimit	Allowed number of hops remaining
Route	A route table entry (see Section 4.6)
Route.Address	Route destination address
Route.PrefixLength	Route destination prefix length
Route.SeqNum	SeqNum associated with route

Perkins, et al. Expires April 15, 2016 [Page 72]

Internet-Draft AODVv2 October 2015

Route.NextHop	Address of router which advertised the
	route
Route.NextHopInterface	Interface on which next hop is
	reachable
Route.LastUsed	Time this route was last used for
	packet forwarding
Route.LastSeqNumUpdate	Time the SeqNum of the route was last
	updated
Route.ExpirationTime	Time at which the route will expire
Route.MetricType	MetricType associated with route
Route.Metric	Cost from receiving router
Route.State	Active/Idle/Invalid
Route.Precursors	Optional (see Section 10.2)
RERR	Route Error message (inRERR/outRERR)
RERR.HopLimit	Hop limit for the message
RERR.PktSource	Source address of packet which
	triggered RERR
RERR.AddressList[]	List of unreachable route addresses
RERR.PrefixLengthList[]	List of PrefixLengths for AddressList
RERR.SeqNumList[]	List of SeqNums for AddressList
RERR.MetricTypeList[]	MetricType for the invalid routes
RERR.Netif	Interface on which the RERR arrived
 +-------------------------+---+

 Table 11: Notation used in Appendix

C.1. HopCount MetricType

 The HopCount MetricType defines:

 o MAX_METRIC[HopCount] := MAX_HOPCOUNT. A constant defined in
Section 11.2. MAX_HOPCOUNT is also used to limit the number of

 hops an AODVv2 message can travel, regardless of the MetricType in
 use. It MUST be larger than the AODVv2 network diameter, in order
 that AODVv2 protocol messages may reach their intended
 destinations.

 o Cost(L) := 1

 o Cost(R) := Sum of Cost(L) of each link in the route, i.e., the hop
 count between the router calculating the cost, and the destination
 of the route (OrigAddr if RREQ, TargAddr if RREP)

 o LoopFree(R1, R2) := (Cost(R1) <= Cost(R2)). This is derived
 from the fact that route cost increases with number of hops.
 Therefore, an advertised route with higher cost than the
 corresponding existing route could include the existing route as a

Perkins, et al. Expires April 15, 2016 [Page 73]

Internet-Draft AODVv2 October 2015

 sub-section. Replacing the existing route with the advertised
 route could form a routing loop.

C.2. General Operations

 General AODVv2 operations involve the comparisons of incoming and
 current data, and updates to local data sets.

C.2.1. Route Operations

C.2.1.1. Check_Route_State

 /* Update the state of the route entry based on timeouts. Return
 whether the route can be used for forwarding a packet. */

 Check_Route_State(route)
 {
 if (CurrentTime > route.ExpirationTime)
 route.State := Invalid;
 if ((CurrentTime - route.LastUsed > ACTIVE_INTERVAL + MAX_IDLETIME)
 AND (route.State != Unconfirmed)
 AND (route.ExpirationTime == INFINITY_TIME)) //not a timed route
 route.State := Invalid;
 if ((CurrentTime - route.LastUsed > ACTIVE_INTERVAL)
 AND (route.State != Unconfirmed)
 AND (route.ExpirationTime == INFINITY_TIME)) //not a timed route
 route.State := Idle;
 if ((CurrentTime - route.LastSeqNumUpdate > MAX_SEQNUM_LIFETIME)
 AND (route.State == Invalid OR route.State == Unconfirmed))
 /* remove route from route table */
 if ((CurrentTime - route.LastSeqNumUpdate > MAX_SEQNUM_LIFETIME)
 AND (route.State != Invalid)
 route.SeqNum := 0;

 if (route still exists AND route.State != Invalid
 AND Route.State != Unconfirmed)
 return TRUE;
 else
 return FALSE;
 }

C.2.1.2. Process_Routing_Info

 (See Section 6.7.1)

Perkins, et al. Expires April 15, 2016 [Page 74]

Internet-Draft AODVv2 October 2015

 /* Compare incoming route information to stored route, and if better,
 use to update stored route. */

 Process_Routing_Info (advRte)
 {
 rte := Fetch_Route_Table_Entry (advRte);
 if (!rte exists)
 {
 rte := Create_Route_Table_Entry(advRte);
 return rte;
 }

 if (AdvRte.SeqNum > Route.SeqNum /* stored route is stale */
 OR
 (AdvRte.SeqNum == Route.SeqNum /* same SeqNum */
 AND
 ((Route.State == Invalid AND LoopFree(advRte, rte))
 /* advRte can repair stored */
 OR AdvRte.Cost < Route.Metric))) /* advRte is better */
 {
 if (advRte is from a RREQ)
 rte := Create_Route_Table_Entry(advRte);
 else
 Update_Route_Table_Entry (rte, advRte);
 }
 return rte;
 }

C.2.1.3. Fetch_Route_Table_Entry

Perkins, et al. Expires April 15, 2016 [Page 75]

Internet-Draft AODVv2 October 2015

 /* Lookup a route table entry matching an advertised route */

 Fetch_Route_Table_Entry (advRte)
 {
 foreach (rteTableEntry in rteTable)
 {
 if (rteTableEntry.Address == advRte.Address
 AND rteTableEntry.MetricType == advRte.MetricType)
 return rteTableEntry;
 }
 return null;
 }

 /* Lookup a route table entry matching address and metric type */

 Fetch_Route_Table_Entry (destination, metricType)
 {
 foreach (rteTableEntry in rteTable)
 {
 if (rteTableEntry.Address == destination
 AND rteTableEntry.MetricType == metricType)
 return rteTableEntry;
 }
 return null;
 }

C.2.1.4. Update_Route_Table_Entry

 /* Update a route table entry using AdvRte in received RteMsg */

 Update_Route_Table_Entry (rte, advRte);
 {
 rte.SeqNum := advRte.SeqNum;
 rte.NextHop := advRte.NextHopIp;
 rte.NextHopInterface := advRte.NextHopIntf;
 rte.LastUsed := CurrentTime;
 rte.LastSeqNumUpdate := CurrentTime;
 if (validityTime)
 rte.ExpirationTime := CurrentTime + advRte.ValidityTime;
 else
 rte.ExpirationTime := INFINITY_TIME;

 rte.Metric := advRte.Cost;
 if (rte.State == Invalid)
 rte.State := Idle (if advRte is from RREP);
 or Unconfirmed (if advRte is from RREQ);
 }

Perkins, et al. Expires April 15, 2016 [Page 76]

Internet-Draft AODVv2 October 2015

C.2.1.5. Create_Route_Table_Entry

 /* Create a route table entry from address and prefix length */

 Create_Route_Table_Entry (address, prefixLength, seqNum, metricType)
 {
 rte := allocate_memory();
 rte.Address := address;
 rte.PrefixLength := prefixLength;
 rte.SeqNum := seqNum;
 rte.MetricType := metricType;
 }

 /* Create a route table entry from the advertised route */

 Create_Route_Table_Entry(advRte)
 {
 rte := allocate_memory();

 rte.Address := advRte.Address;
 if (advRte.PrefixLength)
 rte.PrefixLength := advRte.PrefixLength;
 else
 rte.PrefixLength := maxPrefixLenForAddressFamily;

 rte.SeqNum := advRte.SeqNum;
 rte.NextHop := advRte.NextHopIp;
 rte.NextHopInterface := advRte.NextHopIntf;
 rte.LastUsed := CurrentTime;
 rte.LastSeqNumUpdate := CurrentTime;
 if (validityTime)
 rte.ExpirationTime := CurrentTime + advRte.ValidityTime;
 else
 rte.ExpirationTime := INFINITY_TIME;
 rte.MetricType := advRte.MetricType;
 rte.Metric := advRte.Metric;
 rte.State := Idle (if advRte is from RREP);
 or Unconfirmed (if advRte is from RREQ);
 }

C.2.2. LoopFree

Perkins, et al. Expires April 15, 2016 [Page 77]

Internet-Draft AODVv2 October 2015

 /* Return TRUE if the route advRte is LoopFree compared to rte */

 LoopFree(advRte, rte)
 {
 if (advRte.Cost <= rte.Cost)
 return TRUE;
 else
 return FALSE;
 }

C.2.3. Multicast Route Message Table Operations

C.2.3.1. Fetch_Rte_Msg_Table_Entry

 /* Find an entry in the RteMsg table matching the given
 message's msg-type, OrigAddr, TargAddr, MetricType */

 Fetch_Rte_Msg_Table_Entry (rteMsg)
 {
 foreach (entry in RteMsgTable)
 {
 if (entry.msg-type == rteMsg.msg-type
 AND entry.OrigAddr == rteMsg.OrigAddr
 AND entry.TargAddr == rteMsg.TargAddr
 AND entry.MetricType == rteMsg.MetricType)
 return entry;
 }
 return NULL;
 }

C.2.3.2. Update_Rte_Msg_Table

 (See Section 4.5)

 /* Update the multicast route message suppression table based on the
 received RteMsg, return true if it was created or the SeqNum was
 updated (i.e. it needs to be regenerated) */

 Update_Rte_Msg_Table(rteMsg)
 {
 /* search for a comparable entry */
 entry := Fetch_Rte_Msg_Table_Entry(rteMsg);

 /* if there is none, create one */
 if (entry does not exist)
 {
 entry.MessageType := rteMsg.msg_type;
 entry.OrigAddr := rteMsg.OrigAddr;

Perkins, et al. Expires April 15, 2016 [Page 78]

Internet-Draft AODVv2 October 2015

 entry.TargAddr := rteMsg.TargAddr;
 entry.OrigSeqNum := rteMsg.origSeqNum; // (if present)
 entry.TargSeqNum := rteMsg.targSeqNum; // (if present)
 entry.MetricType := rteMsg.MetricType;
 entry.Metric := rteMsg.OrigMetric; // (for RREQ)
 or rteMsg.TargMetric; // (for RREP)
 entry.Timestamp := CurrentTime;
 return TRUE;
 }

 /* if current entry is stale */
 if (
 (rteMsg.msg-type == RREQ AND entry.OrigSeqNum < rteMsg.OrigSeqNum)
 OR
 (rteMsg.msg-type == RREP AND entry.TargSeqNum < rteMsg.TargSeqNum))
 {
 entry.OrigSeqNum := rteMsg.OrigSeqNum; // (if present)
 entry.TargSeqNum := rteMsg.TargSeqNum; // (if present)
 entry.Timestamp := CurrentTime;
 return TRUE;
 }

 /* if received rteMsg is stale */
 if (
 (rteMsg.msg-type == RREQ AND entry.OrigSeqNum > rteMsg.OrigSeqNum)
 OR
 (rteMsg.msg-type == RREP AND entry.TargSeqNum > rteMsg.TargSeqNum))
 {
 entry.Timestamp := CurrentTime;
 return FALSE;
 }

 /* if same SeqNum but rteMsg has lower metric */
 if (entry.Metric > rteMsg.Metric)
 entry.Metric := rteMsg.Metric;

 entry.Timestamp := CurrentTime;
 return FALSE;
 }

C.3. Message Algorithms

 Processing for messages follows the following general outline:

 1. Receive incoming message.

 2. Update route table as appropriate.

Perkins, et al. Expires April 15, 2016 [Page 79]

Internet-Draft AODVv2 October 2015

 3. Respond as needed, often regenerating the incoming message with
 updated information.

 After processing a message, the most recent information is stored in
 the route table. For this reason, it is equally appropriate to set
 outgoing message field values using route table information or using
 fields from the incoming message.

C.3.1. Build_RFC_5444_Message_Header

 /* This pseudocode shows possible RFC 5444 actions, and would not
 be performed by the AODVv2 implementation. It is shown only to
 provide more understanding about the AODVv2 message that will be
 constructed by RFC 5444.
 MAL := Message Address Length
 MF := Message Flags
 Size := number of octets in MsgHdr, AddrBlk, AddrTLVs */

 Build_RFC_5444_Message_Header (msgType, Flags, AddrFamily, Size,
 hopLimit, hopCount, tlvLength)
 {
 /* Build RFC 5444 message header fields */
 msg-type := msgType;
 MF := Flags;
 MAL := 3 or 15; // for IPv4 or IPv6
 msg-size := Size;
 msg-hop-limit := hopLimit;
 if (hopCount != 0) /* if hopCount is 0, do not include */
 msg-hop-count := hopCount;
 msg.tlvs-length := tlvLength;
 }

C.3.2. RREQ Operations

C.3.2.1. Generate_RREQ

/* Generate a route request message to find a route from OrigAddr
 to TargAddr using the given MetricType
 origAddr := IP address of Router Client which generated the
 packet to be forwarded
 origPrefix := prefix length associated with the Router Client
 targAddr := destination IP address in the packet to be forwarded
 targSeqNum := sequence number in existing route to targAddr
 mType := metric type for the requested route */

Generate_RREQ(origAddr, origPrefix, targAddr, targSeqNum, mType)
{
 /* Increment sequence number in nonvolatile storage */

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 80]

Internet-Draft AODVv2 October 2015

 mySeqNum := (1 + mySeqNum);

 /* Marshall parameters */
 outRREQ.HopLimit := MAX_HOPCOUNT;
 outRREQ.HopCount := 0; // if included
 outRREQ.MetricType := mType; //include if not DEFAULT_METRIC_TYPE
 outRREQ.OrigAddr := origAddr;
 outRREQ.TargAddr := targAddr;
 outRREQ.OrigPrefixLen := origPrefix; //include if not address length
 outRREQ.OrigSeqNum := mySeqNum;
 outRREQ.TargSeqNum := targSeqNum; //included if available
 outRREQ.OrigMetric := Route[OrigAddr].Metric; //zero by default
 outRREQ.ValidityTime := limit for route to OrigAddr; //if required

 /* Build Address Blk using prefix length information from
 outRREQ.OrigPrefixLen if necessary */
 AddrBlk := {outRREQ.OrigAddr, outRREQ.TargAddr};

 /* Include sequence numbers in appropriate Address Block TLVs */
 /* OrigSeqNum Address Block TLV */
 origSeqNumAddrBlkTlv.value := outRREQ.OrigSeqNum;
 /* TargSeqNum Address Block TLV */
 if (outRREQ.TargSeqNum is known)
 targSeqNumAddrBlkTlv.value := outRREQ.TargSeqNum;

 /* Build Metric Address Block TLV, include Metric AddrBlkTlv
 Extension type if a non-default metric */
 metricAddrBlkTlv.value := outRREQ.OrigMetric;
 if (outRREQ.MetricType != DEFAULT_METRIC_TYPE)
 metricAddrBlkTlv.typeExtension := outRREQ.MetricType;

 if (outRREQ.ValidityTime is required)
 {
 /* Build VALIDITY_TIME Address Block TLV */
 VALIDITY_TIMEAddrBlkTlv.value := outRREQ.ValidityTime;
 }

 Build_RFC_5444_Message_Header (RREQ, 4, IPv4 or IPv6, NN,
 outRREQ.HopLimit, outRREQ.HopCount, tlvLength);

 /* multicast RFC 5444 message to LL-MANET-Routers */
}

C.3.2.2. Receive_RREQ

 /* Process a RREQ received on link L */

 Receive_RREQ (inRREQ, L)

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 81]

Internet-Draft AODVv2 October 2015

 {
 if (inRREQ.NbrIP present in blacklist)
 {
 if (blacklist_expiration_time < CurrentTime)
 return; // don't process or regenerate RREQ
 else
 remove nbrIP from blacklist;
 }
 if (inRREQ does not contain msg_hop_limit, OrigAddr,
 TargAddr, OrigSeqNum, OrigMetric)
 return;
 if (msg_hop_count > MAX_HOPCOUNT)
 return;
 if (msg_hop_limit < 0)
 return;
 if (inRREQ.OrigAddr and inRREQ.TargAddr are not valid routable
 and unicast addresses)
 return;
 if (inRREQ.MetricType is present but an unknown value)
 return;
 if (inRREQ.OrigMetric > MAX_METRIC[inRREQ.MetricType] - Cost(L))
 return;

 /* Extract inRREQ values */
 advRte.Address := inRREQ.OrigAddr;
 advRte.PrefixLength := inRREQ.OrigPrefixLen; (if present)
 or the address length of advRte.Address;
 advRte.SeqNum := inRREQ.OrigSeqNum;
 advRte.MetricType := inRREQ.MetricType;
 advRte.Metric := inRREQ.OrigMetric;
 advRte.Cost := inRREQ.OrigMetric + Cost(L);
 //according to the indicated MetricType
 advRte.ValidityTime := inRREQ.ValidityTime; //if present
 advRte.NextHopIP := inRREQ.NbrIP;
 advRte.NextHopIntf := inRREQ.Netif;
 advRte.HopCount := inRREQ.HopCount;
 advRte.HopLimit := inRREQ.HopLimit;

 rte := Process_Routing_Info (advRte);

 /* Update the RteMsgTable and determine if the RREQ needs
 to be regenerated */
 regenerate := Update_Rte_Msg_Table(inRREQ);

 if (inRREQ.TargAddr is in Router Client list)
 Generate_RREP(inRREQ, rte);
 else if (regenerate)
 Regenerate_RREQ(inRREQ, rte);

Perkins, et al. Expires April 15, 2016 [Page 82]

Internet-Draft AODVv2 October 2015

 }

C.3.2.3. Regenerate_RREQ

 /* Called from receive_RREQ()
 rte := the route to OrigAddr */

 Regenerate_RREQ (inRREQ, rte)
 {
 outRREQ.HopLimit := inRREQ.HopLimit - 1;
 if (outRREQ.HopLimit == 0)
 return; // don't regenerate

 if (inRREQ.HopCount exists)
 {
 if (inRREQ.HopCount >= MAX_HOPCOUNT)
 return; // don't regenerate
 outRREQ.HopCount := inRREQ.HopCount + 1;
 }

 /* Marshall parameters */
 outRREQ.MetricType := rte.MetricType;
 outRREQ.OrigAddr := rte.Address;
 outRREQ.TargAddr := inRREQ.TargAddr;
 /* include prefix length if not equal to address length */
 outRREQ.OrigPrefixLen := rte.PrefixLength;
 outRREQ.OrigSeqNum := rte.SeqNum;
 outRREQ.TargSeqNum := inRREQ.TargSeqNum; // if present
 outRREQ.OrigMetric := rte.Metric;
 outRREQ.ValidityTime := rte.ValidityTime;
 or the time limit this router wishes to put on
 route to OrigAddr

 /* Build Address Block using prefix length information from
 outRREQ.OrigPrefixLen if necessary */
 AddrBlk := {outRREQ.OrigAddr, outRREQ.TargAddr};

 /* Include sequence numbers in appropriate Address Block TLVs */
 /* OrigSeqNum Address Block TLV */
 origSeqNumAddrBlkTlv.value := outRREQ.OrigSeqNum;
 /* TargSeqNum Address Block TLV */
 if (outRREQ.TargSeqNum is known)
 targSeqNumAddrBlkTlv.value := outRREQ.TargSeqNum;

 /* Build Metric Address Block TLV, include Metric AddrBlkTlv
 Extension type if a non-default metric */
 metricAddrBlkTlv.value := outRREQ.OrigMetric;
 if (outRREQ.MetricType != DEFAULT_METRIC_TYPE)

Perkins, et al. Expires April 15, 2016 [Page 83]

Internet-Draft AODVv2 October 2015

 metricAddrBlkTlv.typeExtension := outRREQ.MetricType;

 if (outRREQ.ValidityTime is required)
 {
 /* Build VALIDITY_TIME Address Block TLV */
 VALIDITY_TIMEAddrBlkTlv.value := outRREQ.ValidityTime;
 }
 Build_RFC_5444_Message_Header (RREQ, 4, IPv4 or IPv6, NN,
 outRREQ.HopLimit, outRREQ.HopCount, tlvLength);

 /* Multicast RFC 5444 message to LL-MANET-Routers, or if
 inRREQ was unicast, the message can be unicast to the next
 hop on the route to TargAddr, if known */
 }

C.3.3. RREP Operations

C.3.3.1. Generate_RREP

Generate_RREP(inRREQ, rte)
{
 /* Increment sequence number in nonvolatile storage */
 mySeqNum := (1 + mySeqNum);

 /* Marshall parameters */
 outRREP.HopLimit := inRREQ.HopCount;
 outRREP.HopCount := 0;
 /* Include the AckReq when:
 - previous RREP does not seem to enable any data flow, OR
 - when RREQ is received from same OrigAddr after RREP was
 unicast to rte.NextHop */
 outRREP.AckReq := TRUE or FALSE; //TRUE if acknowledgement required
 /* if included, set timeout RREP_Ack_SENT_TIMEOUT */

 if (rte.MetricType != DEFAULT_METRIC_TYPE)
 outRREP.MetricType := rte.MetricType;
 outRREP.OrigAddr := inRREQ.Address;
 outRREP.TargAddr := rte.TargAddr;
 outRREP.TargPrefixLen := rte.PrefixLength; //if not address length
 outRREP.TargSeqNum := mySeqNum;
 outRREP.TargMetric := rte.Metric;
 outRREP.ValidityTime := limit for route to TargAddr; //if required

 if (outRREP.AckReq == TRUE)
 /* include AckReq Message TLV */

 /* Build Address Block using prefix length information from
 outRREP.TargPrefixLen if necessary */

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 84]

Internet-Draft AODVv2 October 2015

 AddrBlk := {outRREP.OrigAddr, outRREP.TargAddr};

 /* TargSeqNum Address Block TLV */
 targSeqNumAddrBlkTlv.value := outRREP.TargSeqNum;

 /* Build Metric Address Block TLV include Metric AddrBlkTlv
 Extension type if a non-default metric */
 metricAddrBlkTlv.value := outRREP.TargMetric;
 if (outRREP.MetricType != DEFAULT_METRIC_TYPE)
 metricAddrBlkTlv.typeExtension := outRREP.MetricType;

 if (outRREP.ValidityTime is required)
 {
 /* Build VALIDITY_TIME Address Block TLV */
 VALIDITY_TIMEAddrBlkTlv.value := outRREP.ValidityTime;
 }

 Build_RFC_5444_Message_Header (RREP, 4, IPv4 or IPv6, NN,
 outRREP.HopLimit, outRREQ.HopCount, tlvLength);

 /* unicast RFC 5444 message to rte[OrigAddr].NextHop */
}

C.3.3.2. Receive_RREP

 /* Process a RREP received on link L */

 Receive_RREP (inRREP, L)
 {
 if (inRREP.NbrIP present in blacklist)
 {
 if (blacklist_expiration_time < CurrentTime)
 return; // don't process or regenerate RREP
 else
 remove NbrIP from blacklist;
 }

 if (inRREP does not contain msg_hop_limit, OrigAddr,
 TargAddr, TargSeqNum, TargMetric)
 return;
 if (msg_hop_count > MAX_HOPCOUNT)
 return;
 if (msg_hop_limit < 0)
 return;
 if (inRREP.OrigAddr and inRREQ.TargAddr are not
 valid routable and unicast addresses)
 return;
 if (inRREP.MetricType is present but an unknown value)

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 85]

Internet-Draft AODVv2 October 2015

 return;
 if (inRREP.TargMetric > MAX_METRIC[inRREP.MetricType])
 return;

 /* Extract inRREP values */
 advRte.Address := inRREP.TargAddr;
 advRte.PrefixLength := inRREP.TargPrefixLen; //if present
 or the address length of advRte.Address;
 advRte.SeqNum := inRREP.TargSeqNum;
 advRte.MetricType := inRREP.MetricType;
 advRte.Metric := inRREP.TargMetric;
 advRte.Cost := inRREP.TargMetric + Cost(L);
 //according to the indicated MetricType
 advRte.ValidityTime := inRREP.ValidityTime; //if present
 advRte.NextHopIP := inRREP.NbrIP;
 advRte.NextHopIntf := inRREP.Netif;
 advRte.HopCount := inRREP.HopCount;
 advRte.HopLimit := inRREP.HopLimit; //if included

 rte := Process_Routing_Info (advRte);

 ` if (inRREP includes AckReq data element)
 Generate_RREP_Ack(inRREP);

 /* Update the RteMsgTable and determine if the RREP needs
 to be regenerated */
 regenerate := Update_Rte_Msg_Table(inRREP);

 if (inRREP.TargAddr is in the Router Client list)
 send_buffered_packets(rte); /* start to use the route */
 else if (regenerate)
 Regenerate_RREP(inRREP, rte);
 }

C.3.3.3. Regenerate_RREP

Regenerate_RREP(inRREP, rte)
{
 if (rte does not exist)
 {
 Generate_RERR(inRREP);
 return;
 }

 outRREP.HopLimit := inRREP.HopLimit - 1;
 if (outRREP.HopLimit == 0) /* don't regenerate */
 return;

Perkins, et al. Expires April 15, 2016 [Page 86]

Internet-Draft AODVv2 October 2015

 if (inRREP.HopCount exists)
 {
 if (inRREP.HopCount >= MAX_HOPCOUNT)
 return; // don't regenerate the RREP
 outRREP.HopCount := inRREP.HopCount + 1;
 }

 /* Marshall parameters */
 /* Include the AckReq when:
 - previous unicast RREP seems not to enable data flow, OR
 - when RREQ is received from same OrigAddr after RREP
 was unicast to rte.NextHop */
 outRREP.AckReq := TRUE or FALSE; //TRUE if acknowledgement required
 /* if included, set timeout RREP_Ack_SENT_TIMEOUT */

 if (rte.MetricType != DEFAULT_METRIC_TYPE)
 outRREP.MetricType := rte.MetricType;
 outRREP.OrigAddr := inRREP.OrigAddr;
 outRREP.TargAddr := rte.Address;
 outRREP.TargPrefixLen := rte.PrefixLength; //if not address length
 outRREP.TargSeqNum := rte.SeqNum;
 outRREP.TargMetric := rte.Metric;
 outRREP.ValidityTime := limit for route to TargAddr; //if required
 outRREP.NextHop := rte.NextHop

 if (outRREP.AckReq == TRUE)
 /* include AckReq Message TLV */

 /* Build Address Block using prefix length information from
 outRREP.TargPrefixLen if necessary */
 AddrBlk := {outRREP.OrigAddr, outRREP.TargAddr};

 /* TargSeqNum Address Block TLV */
 targSeqNumAddrBlkTlv.value := outRREP.TargSeqNum;

 /* Build Metric Address Block TLV include Metric AddrBlkTlv
 Extension type if a non-default metric */
 metricAddrBlkTlv.value := outRREP.TargMetric;
 if (outRREP.MetricType != DEFAULT_METRIC_TYPE)
 metricAddrBlkTlv.typeExtension := outRREP.MetricType;

 if (outRREP.ValidityTime is required)
 {
 /* Build VALIDITY_TIME Address Block TLV */
 VALIDITY_TIMEAddrBlkTlv.value := outRREP.ValidityTime;
 }

 Build_RFC_5444_Message_Header (RREP, 4, IPv4 or IPv6, NN,

Perkins, et al. Expires April 15, 2016 [Page 87]

Internet-Draft AODVv2 October 2015

 outRREP.HopLimit, 0, tlvLength);

 /* unicast RFC 5444 message to rte[OrigAddr].NextHop */
}

C.3.4. RREP_Ack Operations

C.3.4.1. Generate_RREP_Ack

 /* To be sent when a received RREP includes the AckReq data element */

 Generate_RREP_Ack(inRREP)
 {
 Build_RFC_5444_Message_Header (RREP_Ack, 4, IPv4 or IPv6, NN,
 1, 0, 0);
 /* unicast RFC 5444 message to inRREP.NbrIP */
 }

C.3.4.2. Receive_RREP_Ack

 Receive_RREP_Ack(inRREP_Ack)
 {
 /* cancel timeout event for the node sending RREP_Ack */
 }

C.3.4.3. Timeout_RREP_Ack

 Timeout_RREP_Ack(outRREP)
 {
 if (numRetries < RREP_RETRIES)
 /* resend RREP and double the previous timeout */
 else
 /* insert unresponsive node into blacklist */
 }

C.3.5. RERR Operations

C.3.5.1. Generate_RERR

 There are two parts to this function, based on whether it was
 triggered by an undeliverable packet or a broken link to neighboring
 AODVv2 router.

/* Generate a Route Error message.
 errorType := undeliverablePacket or brokenLink */

Generate_RERR(errorType, triggerPkt, brokenLinkNbrIp)
{

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 88]

Internet-Draft AODVv2 October 2015

 switch (errorType)
 {
 case (brokenLink):
 doGenerate := FALSE;
 num-broken-addr := 0;
 precursors[] := new empty precursor list;
 outRERR.HopLimit := MAX_HOPCOUNT;
 /* find routes which are now Invalid */
 foreach (rte in route table)
 {
 if (brokenLinkNbrIp == rte.NextHop
 AND (rte.State == Active
 OR
 (rte.State == Idle AND ENABLE_IDLE_IN_RERR)))
 {
 if (rte.State == Active)
 doGenerate := TRUE;
 rte.State := Invalid;
 precursors += rte.Precursors (if any);
 outRERR.AddressList[num-broken-addr] := rte.Address;
 outRERR.PrefixLengthList[num-broken-addr] :=
 rte.PrefixLength;
 outRERR.SeqNumList[num-broken-addr] := rte.SeqNum;
 outRERR.MetricTypeList[num-broken-addr] := rte.MetricType
 num-broken-addr := num-broken-addr + 1;
 }
 }
 }
 case (undeliverablePacket):
 doGenerate := TRUE;
 num-broken-addr := 1;
 outRERR.HopLimit := MAX_HOPCOUNT;
 outRERR.PktSource := triggerPkt.SrcIP;
 or triggerPkt.TargAddr; //if pkt was a RREP
 outRERR.AddressList[0] := triggerPkt.DestIP;
 or triggerPkt.OrigAddr; //if pkt was RREP
 /* optional to include outRERR.PrefixLengthList, outRERR.SeqNumList
 and outRERR.MetricTypeList */
 }

 if (doGenerate == FALSE)
 return;

 if (triggerPkt exists)
 {
 /* Build PktSource Message TLV */
 pktSourceMessageTlv.value := outRERR.PktSource;
 }

Perkins, et al. Expires April 15, 2016 [Page 89]

Internet-Draft AODVv2 October 2015

 /* The remaining steps add address, prefix length, sequence
 number and metric type information for each unreachable address,
 while conforming to the allowed MTU. If the MTU is reached, a new
 message MUST be created. */

 /* Build Address Block using prefix length information from
 outRERR.PrefixLengthList[] if necessary */
 AddrBlk := outRERR.AddressList[];

 /* Optionally, add SeqNum Address Block TLV, including index values */
 seqNumAddrBlkTLV := outRERR.SeqNumList[];

 if (outRERR.MetricTypeList contains non-default MetricTypes)
 /* include Metric Address Block TLVs with Type Extension set to
 MetricType, including index values if necessary */
 metricAddrBlkTlv.typeExtension := outRERR.MetricTypeList[];

 Build_RFC_5444_Message_Header (RERR, 4, IPv4 or IPv6, NN,
 outRERR.HopLimit, 0, tlvLength);

 if (undeliverablePacket)
 /* unicast outRERR to rte[outRERR.PktSource].NextHop */
 else if (brokenLink)
 /* unicast to precursors, or multicast to LL-MANET-Routers */
}

C.3.5.2. Receive_RERR

Receive_RERR (inRERR)
{
 if (inRERR does not contain msg_hop_limit and at least
 one unreachable address)
 return;

 /* Extract inRERR values, copy relevant unreachable addresses,
 their prefix lengths, and sequence numbers to outRERR */
 num-broken-addr := 0;
 precursors[] := new empty precursor list;
 foreach (unreachableAddress in inRERR.AddressList)
 {
 if (unreachableAddress is not valid routable and unicast)
 continue;
 if (unreachableAddress MetricType is present but an unknown value)
 return;

 /* Find a matching route table entry, assume
 DEFAULT_METRIC_TYPE if no MetricType included */
 rte := Fetch_Route_Table_Entry (unreachableAddress,

Perkins, et al. Expires April 15, 2016 [Page 90]

Internet-Draft AODVv2 October 2015

 unreachableAddress MetricType)
 if (rte does not exist)
 continue;
 if (rte.State == Invalid)/* ignore already invalid routes */
 continue;
 if ((rte.NextHop != inRERR.NbrIP
 OR
 rte.NextHopInterface != inRERR.Netif)
 AND (PktSource is not present OR is not a Router Client))
 continue;
 if (unreachableAddress SeqNum (if known) < rte.SeqNum)
 continue;

 /* keep a note of all precursors of newly Invalid routes */
 precursors += rte.Precursors; //if any

 /* assume prefix length is address length if not included */
 if (rte.PrefixLength != unreachableAddress prefixLength)
 {
 /* create new route with unreachableAddress information */
 invalidRte := Create_Route_Table_Entry(unreachableAddress,
 unreachableAddress PrefixLength,
 unreachableAddress SeqNum,
 unreachableAddress MetricType);
 invalidRte.State := Invalid;

 if (rte.PrefixLength > unreachableAddress prefixLength)
 expunge_route(rte);
 rte := invalidRte;
 }
 else if (rte.PrefixLength == unreachableAddress prefixLength)
 rte.State := Invalid;

 outRERR.AddressList[num-broken-addr] := rte.Address;
 outRERR.PrefixLengthList[num-broken-addr] := rte.PrefixLength;
 outRERR.SeqNumList[num-broken-addr] := rte.SeqNum;
 outRERR.MetricTypeList[num-broken-addr] := rte.MetricType;
 num-broken-addr := num-broken-addr + 1;
 }

 if (num-broken-addr AND (PktSource is not present OR PktSource is not
 a Router Client))
 Regenerate_RERR(outRERR, inRERR, precursors);
}

Perkins, et al. Expires April 15, 2016 [Page 91]

Internet-Draft AODVv2 October 2015

C.3.5.3. Regenerate_RERR

Regenerate_RERR (outRERR, inRERR, precursors)
{
 /* Marshal parameters */
 outRERR.HopLimit := inRERR.HopLimit - 1;
 if (outRERR.HopLimit == 0) // don't regenerate
 return;

 outRERR.PktSource := inRERR.PktSource; //if included
 /* AddressList[], SeqNumList[], and PrefixLengthList[] are
 already up-to-date */

 if (outRERR.PktSource exists)
 {
 /* Build PktSource Message TLV */
 pktSourceMessageTlv.value := outRERR.PktSource;
 }

 /* Build Address Block using prefix length information from
 outRERR.PrefixLengthList[] if necessary */
 AddrBlk := outRERR.AddressList[];

 /* Optionally, add SeqNum Address Block TLV, including index values */
 seqNumAddrBlkTLV := outRERR.SeqNumList[];

 if (outRERR.MetricTypeList contains non-default MetricTypes)
 /* include Metric Address Block TLVs with Type Extension set to
 MetricType, including index values if necessary */
 metricAddrBlkTlv.typeExtension := outRERR.MetricTypeList[];

 Build_RFC_5444_Message_Header (RERR, 4, IPv4 or IPv6, NN,
 outRERR.HopLimit, 0, tlvLength);

 if (outRERR.PktSource exists)
 /* unicast RFC 5444 message to next hop towards
 outRERR.PktSource */
 else if (number of precursors == 1)
 /* unicast RFC 5444 message to precursors[0] */
 else if (number of precursors > 1)
 /* unicast RFC 5444 message to all precursors, or multicast

RFC 5444 message to RERR_PRECURSORS if preferable */
 else
 /* multicast RFC 5444 message to LL-MANET-Routers */
}

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 92]

Internet-Draft AODVv2 October 2015

Appendix D. AODVv2 Draft Updates

D.1. Changes between revisions 11 and 12

 This section lists the changes between AODVv2 revisions ...-11.txt
 and ...-12.txt.

 o Avoided use of "node" and "subnet" where possible.

 o Improved separation of data structure information from protocol
 operation.

 o Updated uses of the terms "IP address" and "packet" to be clearer.

 o More consistent and accurate use of MUST, SHOULD, SHOULD NOT, and
 MAY, and added explanations of consequences of not implementing
 SHOULDs.

 o Used consistent references to [RFC5444].

 o Updated title to include "Version 2".

 o Updated Overview to state differences from AODV, text about loop
 freedom and RFC 7182 in Overview.

 o Updated Terminology and removed the Data Element table. Gave
 clearer definition of Router Client and Unreachable Address.

 o Updated Applicability Statement to draw attention to requirements
 of the forwarding plane, handling of uni-directional links, usage
 of IP addresses on multiple interfaces, and description of gateway
 functionality. Added note about penalty for not storing
 persistent state.

 o Updated Router Client section and added cost to Router Client
 entry.

 o Clarified that Neighbor Table needs only information on
 neighboring routers on discovered routes.

 o Updated Sequence Number section. Use only one sequence number per
 router. Added description of sequence number comparison.

 o Updated descriptions of route states.

 o Improved clarity of Metrics section, generic metric instead of
 hopcount, removed default metric type, added explanation of
 LoopFree.

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc7182

Perkins, et al. Expires April 15, 2016 [Page 93]

Internet-Draft AODVv2 October 2015

 o Improved Initialization section.

 o Major update to Adjacency Monitoring section. Made it clear that
 if bidirectional connectivity is already confirmed, requesting
 acknowledgement is unnecessary. Separated Neighbor Table Updates
 into separate section.

 o Updated description of message prioritization near the control
 message generation limit.

 o Updated wording regarding [RFC6621].

 o Added description of backoff used for message retries.

 o Improved description of how unidirectional links are handled.

 o Improved text regarding creation of Unconfirmed route entries.

 o Improved section on determining redundancy of received multicast
 messages.

 o Added section on interactions with the forwarding plane.

 o Improved Route State section. Clarified action when Active route
 expires. Separated information on expunging routes on memory
 constrained routers.

 o Updated RERR description to be clearer about triggers.

 o Updated IANA section to include only newly defined Messages and
 TLVs, and define an Unspecified value for AddressType.

 o Updated references.

 o Updated section on Gateway behaviour.

 o Updated Appendix D to include more checks on msg_hop_limit and
 msg_hop_count.

 o Renamed MAX_TIME to INFINITY_TIME to make meaning clearer.

D.2. Changes between revisions 10 and 11

 This section lists the changes between AODVv2 revisions ...-10.txt
 and ...-11.txt.

 o Updated Simple Internet Attachment section to clarify behaviour of
 IAR for incoming RREQ messages.

https://datatracker.ietf.org/doc/html/rfc6621

Perkins, et al. Expires April 15, 2016 [Page 94]

Internet-Draft AODVv2 October 2015

D.3. Changes between revisions 9 and 10

 This section lists the changes between AODVv2 revisions ...-09.txt
 and ...-10.txt.

 o Updated [RFC5444] Representation section to add "Address Type"
 TLV, which explicitly declares the meaning of addresses in the
 [RFC5444] Address Block.

 o Relocated route state definitions. Minor improvements to clarity
 throughout.

 o Updated definition of timed routes.

 o More consistent use of OrigPrefixLen, TargPrefixLen, and Invalid.

 o Mandated use of neighbor adjacency checking and support of AckReq
 and RREP_Ack and clarified related text.

 o Changed order of LoopFree checking and route cost comparisons in
 Evaluating Route Information.

 o Updated structure of section on Applying Route Updates.

 o Updated AckReq to include intended next hop address, and RREP to
 be multicast if intended next hop is not a confirmed neighbor.

 o Clarified that gateway router is not default router.

D.4. Changes between revisions 8 and 9

 This section lists the changes between AODVv2 revisions ...-08.txt
 and ...-09.txt.

 o Numerous editorial improvements were made, including
 relocation/removal/renaming/adding of some sections and text,
 collection and tidying of scattered text on same topic, formatting
 made more consistent to improve readability.

 o Removed mentions of precursors from main text, except one mention
 in Route Table Entry.

 o Removed use of MIN_METRIC which was not defined.

 o Changed Current_Time to CurrentTime for consistency.

 o Changed OrigAddrMetric and TargAddrMetric to OrigMetric and
 TargMetric respectively.

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 95]

Internet-Draft AODVv2 October 2015

 o Updated Overview to simplify and provide a broader summary.

 o Updated Terminology definitions, Data Elements tables and combined
 sections.

 o Updated Applicability Statement to move some of the non-
 applicability text and to simplify what remains.

 o Updated TLV names to conform to existing naming style.

 o Updated Blacklist to be a NeighborList to include neighbors that
 have confirmed bidirectional connectivity.

 o Updated messages processed if router on blacklist and which are
 indicators of bidirectional links.

 o Added RemoveTime to RteMsg Table section.

 o Added short description of timed route to Route Table Entry
 section but removed Route.Timed flag. Route is timed if its
 expiration time is not MAX_TIME.

 o Added Unconfirmed route state for route to OrigAddr learned from
 RREQ.

 o Updated AODVv2 Protocol Operations section and subsections,
 including Initialization, Adjacency Monitoring, making algorithms
 easier to read and making notation consistent, general
 improvements to the text.

 o Updated Route Discovery, Retries and Buffering to include a more
 complete description of the route discovery process.

 o Updated wording relating to different metric types.

 o Added text regarding control message limit in Message Transmission
 section.

 o Added short explanation of positive/negative effects of buffering.

 o Simplified the packet diagrams, since some of their contents was
 already explained in the text below and then again as part of
 generation, reception and regeneration processes.

 o Clarified some elements of the message content descriptions.

 o Moved MetricType above MetricList in message sections, for
 consistency.

Perkins, et al. Expires April 15, 2016 [Page 96]

Internet-Draft AODVv2 October 2015

 o Mirrored structure throughout AODVv2 Protocol Messages.

 o Changed RREQ and RREP's use of Lists when only one entry is
 necessary.

 o Added some pre-message-generation checks.

 o Ensured consistency in regeneration (if msg-hop-limit is reduced
 to zero, do not regenerate).

 o Removed statements about neighbors but added blacklist checks
 where necessary.

 o Noted that RREQ retries SHOULD increase the SeqNum.

 o Added statement that implementations SHOULD retry sending RREP.

 o Added text explaining what happens if RREP is lost, regarding
 blacklisting and RREQ retries.

 o Removed hop limit from RREP_Ack. Changed order of blacklist
 check.

 o Updated RERR so that multiple metric types can be reported in the
 same message.

 o Updated RERR reception processing to ensure PktSource deletes the
 contained route.

 o Added text to show that if a router is the destination of a RERR,
 the RERR is not regenerated.

 o Added text that RERRs SHOULD NOT be created if the same RERR has
 recently been sent.

 o Updated [RFC5444] overview and simplified/rearranged text in this
 section.

 o Major update to [RFC5444] representation section

 o Updated RERR's [RFC5444] representation so that PktSource is
 placed in Address Block, and updated IANA section to make
 PktSource an Address Block TLV to indicate which address is
 PktSource.

 o Described use of extension type in Metric TLV to represent
 MetricType, and the interpretation when using the default metric
 type.

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 97]

Internet-Draft AODVv2 October 2015

 o Removed Multicast RREP as an optional feature.

 o Updated Precursor Lists section to include options for precursor
 information to store.

 o Updated Security Considerations.

D.5. Changes between revisions 7 and 8

 This section lists the changes between AODVv2 revisions ...-07.txt
 and ...-08.txt.

 o MetricType is now an Address Block TLV. Minor changes to the
 text. By using an extension type in the Metric TLV we can
 represent MetricType more elegantly in the [RFC5444] message.

 o Updated Overview to be slightly more concise.

 o Moved MetricType next to Metric when mentioned for better flow.

 o Added text to Applicability to address comments on mailing list
 regarding gateway behavior and NHDP HELLO messages.

 o Removed paragraph in AODVv2 Message Transmission section regarding
 TTL.

 o Added reference where precursors are mentioned in route table
 entry.

 o Added text to bidirectionality explanation regarding NHDP HELLO
 messages and lower layer triggers.

 o Clarified blacklist removal with SHOULD rather than MAY.

 o Removed pseudo-code from section on evaluating incoming routing
 information.

 o Clarified rules for expunging route entries on memory-constrained
 devices.

 o Clarified the use of exponential backoff for route discovery
 attempts.

 o Small updates to message sections. Removed steps about checking
 if neighbors.

 o Renamed [RFC5444] parser to multiplexer in Section 10.

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 98]

Internet-Draft AODVv2 October 2015

 o Removed "optional feature" to include multiple addresses in RERR.

 o Removed MetricType from the Message TLV Type Specification.

 o Updated Security Considerations.

 o Added reference to RFC 7182.

 o Small updates to message algorithms, including moving MetricType
 from Message TLV to the Metric TLV in the Address Block TLV Block,
 and only generating RERR if an Active route was made Invalid.

D.6. Changes between revisions 6 and 7

 This section lists the changes since AODVv2 revision ...-06.txt

 o Added Victoria Mercieca as co-author.

 o Reorganized protocol message descriptions into major subsections
 for each protocol message. For protocol messages, organized
 processing into Generation, Reception, and Regeneration
 subsections.

 o Separated RREQ and RREP message processing description into
 separate major subsection which had previously been combined into
 RteMsg description.

 o Enlarged RREQ Table function to include similar processing for
 optional flooded RREP messages. The table name has been
 correspondingly been changed to be the Table for Multicast
 RteMsgs.

 o Moved sections for Multiple Interfaces and AODVv2 Control Message
 Generation Limits to be major subsections of the AODVv2 Protocol
 Operations section.

 o Reorganized the protocol message processing steps into the
 subsections as previously described, adopting a more step-by-step
 presentation.

 o Coalesced the router states Broken and Expired into a new combined
 state named the Invalid state. No changes in processing are
 required for this.

 o Merged the sections describing Next-hop Router Adjacency
 Monitoring and Blacklists.

https://datatracker.ietf.org/doc/html/rfc7182

Perkins, et al. Expires April 15, 2016 [Page 99]

Internet-Draft AODVv2 October 2015

 o Specified that routes created during Route Discovery are marked as
 Idle routes. If they are used for carrying data they become
 Active routes.

 o Added Route.LastSeqNumUpdate information to route table, so that
 route activity and sequence number validity can be tracked
 separately. An active route can still forward traffic even if the
 sequence number has not been refreshed within MAX_SEQNUM_LIFETIME.

 o Mandated implementation of RREP_Ack as response to AckReq Message
 TLV in RREP messages.
 Added field to RREP_Ack to ensure correspondence to the correct
 AckReq message.

 o Added explanations for what happens if protocol constants are
 given different values on different AODVv2 routers.

 o Specified that AODVv2 implementations are free to choose their own
 heuristics for reducing multicast overhead, including RFC 6621.

 o Added appendix to identify AODVv2 requirements from OS
 implementation of IP and ICMP.

 o Deleted appendix showing example [RFC5444] packet formats.

 o Clarification on the use of RFC 5497 VALIDITY_TIME.

 o In Terminology, deleted superfluous definitions, added missing
 definitions.

 o Numerous editorial improvements and clarifications.

D.7. Changes between revisions 5 and 6

 This section lists the changes between AODVv2 revisions ...-05.txt
 and ...-06.txt.

 o Added Lotte Steenbrink as co-author.

 o Reorganized section on Metrics to improve readability by putting
 specific topics into subsections.

 o Introduced concept of data element, which is used to clarify the
 method of enabling [RFC5444] representation for AODVv2 data
 elements. A list of Data Elements was introduced in section 3,
 which provides a better understanding of their role than was
 previously supplied by the table of notational devices.

https://datatracker.ietf.org/doc/html/rfc6621
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5497
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 100]

Internet-Draft AODVv2 October 2015

 o Replaced instances of OrigNode by OrigAddr whenever the more
 specific meaning is appropriate. Similarly for instances of other
 node versus address terminology.

 o Introduced concepts of PrefixLengthList and MetricList in order to
 avoid use of index-based terminology such as OrigNdx and TargNdx.

 o Added section 5, "AODVv2 Message Transmission", describing the
 intended interface to [RFC5444].

 o Included within the main body of the specification the mandatory
 setting of the TLV flag thassingleindex for TLVs OrigSeqNum and
 TargSeqNum.

 o Removed the Route.Timed state. Created a new flag for route table
 entries known as Route.Timed. This flag can be set when the route
 is in the active state. Previous description would require that
 the route table entry be in two states at the same time, which
 seems to be misleading. The new flag is used to clarify other
 specification details for Timed routes.

 o Created table 3 to show the correspondence between AODVv2 data
 elements and [RFC5444] message components.

 o Replaced "invalid" terminology by the more specific terms "broken"
 or "expired" where appropriate.

 o Eliminated the instance of duplicate specification for inclusion
 of OrigNode (now, OrigAddr) in the message.

 o Corrected the terminology to be Mid instead of Tail for the
 trailing address bits of OrigAddr and TargAddr for the example
 message formats in the appendices.

 o Repaired remaining instances of phraseology that could be
 construed as indicating that AODV only supports a single network
 interface.

 o Numerous editorial improvements and clarifications.

D.8. Changes between revisions 4 and 5

 This section lists the changes between AODVv2 revisions ...-04.txt
 and ...-05.txt.

 o Normative text moved out of definitions into the relevant section
 of the body of the specification.

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 101]

Internet-Draft AODVv2 October 2015

 o Editorial improvements and improvements to consistent terminology
 were made. Replaced "retransmit" by the slightly more accurate
 term "regenerate".

 o Issues were resolved as discussed on the mailing list.

 o Changed definition of LoopFree as suggested by Kedar Namjoshi and
 Richard Trefler to avoid the failure condition that they have
 described. In order to make understanding easier, replaced
 abstract parameters R1 by RteMsg and R2 by Route to reduce the
 level of abstraction when the function LoopFree is discussed.

 o Added text to clarify that different metrics may have different
 data types and different ranges of acceptable values.

 o Added text to section "RteMsg Structure" to emphasize the proper
 use of [RFC5444].

 o Included within the main body of the specification the mandatory
 setting of the TLV flag thassingleindex for TLVs OrigSeqNum and
 TargSeqNum.

 o Made more extensive use of the AdvRte terminology, in order to
 better distinguish between the incoming RREQ or RREP message
 (i.e., RteMsg) versus the route advertised by the RteMsg (i.e.,
 AdvRte).

D.9. Changes between revisions 3 and 4

 This section lists the changes between AODVv2 revisions ...-03.txt
 and ...-04.txt.

 o An appendix was added to exhibit algorithmic code for
 implementation of AODVv2 functions.

 o Numerous editorial improvements and improvements to consistent
 terminology were made. Terminology related to prefix lengths was
 made consistent. Some items listed in "Notational Conventions"
 were no longer used, and so deleted.

 o Issues were resolved as discussed on the mailing list.

 o Appropriate instances of "may" were changed to "MAY".

 o Definition inserted for "upstream".

 o Route.Precursors included as an *optional* route table field

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires April 15, 2016 [Page 102]

Internet-Draft AODVv2 October 2015

 o Reworded text to avoid use of "relevant".

 o Deleted references to "DestOnly" flag.

 o Refined statements about MetricType TLV to allow for omission when
 MetricType == HopCount.

 o Bulletized list in section 8.1

 o ENABLE_IDLE_UNREACHABLE renamed to be ENABLE_IDLE_IN_RERR

 o Transmission and subscription to LL-MANET-Routers converted to
 MUST from SHOULD.

D.10. Changes between revisions 2 and 3

 This section lists the changes between AODVv2 revisions ...-02.txt
 and ...-03.txt.

 o The "Added Node" feature was removed. This feature was intended
 to enable additional routing information to be carried within a
 RREQ or a RREP message, thus increasing the amount of topological
 information available to nodes along a routing path. However,
 enlarging the packet size to include information which might never
 be used can increase congestion of the wireless medium. The
 feature can be included as an optional feature at a later date
 when better algorithms are understood for determining when the
 inclusion of additional routing information might be worthwhile.

 o Numerous editorial improvements and improvements to consistent
 terminology were made. Instances of OrigNodeNdx and TargNodeNdx
 were replaced by OrigNdx and TargNdx, to be consistent with the
 terminology shown in Table 1.

 o Example RREQ and RREP message formats shown in the Appendices were
 changed to use OrigSeqNum and TargSeqNum message TLVs instead of
 using the SeqNum message TLV.

 o Inclusion of the OrigNode's SeqNum in the RREP message is not
 specified. The processing rules for the OrigNode's SeqNum were
 incompletely specified in previous versions of the draft, and very
 little benefit is foreseen for including that information, since
 reverse path forwarding is used for the RREP.

 o Additional acknowledgements were included, and contributors names
 were alphabetized.

Perkins, et al. Expires April 15, 2016 [Page 103]

Internet-Draft AODVv2 October 2015

 o Definitions in the Terminology section capitalize the term to be
 defined.

 o Uncited bibliographic entries deleted.

 o Ancient "Changes" sections were deleted.

Authors' Addresses

 Charles E. Perkins
 Futurewei Inc.
 2330 Central Expressway
 Santa Clara, CA 95050
 USA

 Phone: +1-408-330-4586
 Email: charliep@computer.org

 Stan Ratliff
 Idirect
 13861 Sunrise Valley Drive, Suite 300
 Herndon, VA 20171
 USA

 Email: ratliffstan@gmail.com

 John Dowdell
 Airbus Defence and Space
 Celtic Springs
 Newport, Wales NP10 8FZ
 United Kingdom

 Email: john.dowdell@airbus.com

 Lotte Steenbrink
 HAW Hamburg, Dept. Informatik
 Berliner Tor 7
 D-20099 Hamburg
 Germany

 Email: lotte.steenbrink@haw-hamburg.de

Perkins, et al. Expires April 15, 2016 [Page 104]

Internet-Draft AODVv2 October 2015

 Victoria Mercieca
 Airbus Defence and Space
 Celtic Springs
 Newport, Wales NP10 8FZ
 United Kingdom

 Email: victoria.mercieca@airbus.com

Perkins, et al. Expires April 15, 2016 [Page 105]

