
Mobile Ad hoc Networks Working Group C. Perkins
Internet-Draft Futurewei
Intended status: Standards Track S. Ratliff
Expires: July 21, 2016 Idirect
 J. Dowdell
 Airbus Defence and Space
 L. Steenbrink
 HAW Hamburg, Dept. Informatik
 V. Mercieca
 Airbus Defence and Space
 January 18, 2016

Ad Hoc On-demand Distance Vector Version 2 (AODVv2) Routing
draft-ietf-manet-aodvv2-13

Abstract

 The Ad Hoc On-demand Distance Vector Version 2 (AODVv2) routing
 protocol is intended for use by mobile routers in wireless, multihop
 networks. AODVv2 determines unicast routes among AODVv2 routers
 within the network in an on-demand fashion.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 21, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Perkins, et al. Expires July 21, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft AODVv2 January 2016

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Overview . 4
2. Terminology . 5
3. Applicability Statement 8
4. Data Structures . 10
4.1. Interface List . 10
4.2. Router Client Table 10
4.3. Neighbor Table . 11
4.4. Sequence Numbers . 11
4.5. Local Route Set . 12
4.6. Multicast Route Message Table 15

5. Metrics . 16
6. AODVv2 Protocol Operations 18
6.1. Initialization . 18
6.2. Next Hop Monitoring 19
6.3. Neighbor Table Update 20
6.4. Interaction with the Forwarding Plane 21
6.5. Message Transmission 23
6.6. Route Discovery, Retries and Buffering 24
6.7. Processing Received Route Information 25
6.7.1. Evaluating Route Information 26
6.7.2. Applying Route Updates 28

 6.8. Suppressing Redundant Messages Using the Multicast Route
 Message Table . 29

6.9. Local Route Set Maintenance 32
6.9.1. Local Route State Changes 32
6.9.2. Reporting Invalid Routes 34

7. AODVv2 Protocol Messages 35
7.1. Route Request (RREQ) Message 35
7.1.1. RREQ Generation 36
7.1.2. RREQ Reception 38
7.1.3. RREQ Regeneration 39

7.2. Route Reply (RREP) Message 40
7.2.1. RREP Generation 41
7.2.2. RREP Reception 43
7.2.3. RREP Regeneration 44

7.3. Route Reply Acknowledgement (RREP_Ack) Message 46
7.3.1. RREP_Ack Generation 46
7.3.2. RREP_Ack Reception 46

7.4. Route Error (RERR) Message 46

Perkins, et al. Expires July 21, 2016 [Page 2]

Internet-Draft AODVv2 January 2016

7.4.1. RERR Generation 47
7.4.2. RERR Reception 49
7.4.3. RERR Regeneration 51

8. RFC 5444 Representation 51
8.1. Route Request Message Representation 53
8.1.1. Message Header 53
8.1.2. Message TLV Block 53
8.1.3. Address Block . 53
8.1.4. Address Block TLV Block 53

8.2. Route Reply Message Representation 54
8.2.1. Message Header 54
8.2.2. Message TLV Block 55
8.2.3. Address Block . 55
8.2.4. Address Block TLV Block 55

8.3. Route Reply Acknowledgement Message Representation . . . 56
8.3.1. Message Header 56
8.3.2. Message TLV Block 56
8.3.3. Address Block . 56
8.3.4. Address Block TLV Block 56

8.4. Route Error Message Representation 57
8.4.1. Message Header 57
8.4.2. Message TLV Block 57
8.4.3. Address Block . 57
8.4.4. Address Block TLV Block 58

9. Simple External Network Attachment 58
10. Optional Features . 59
10.1. Expanding Rings Multicast 60
10.2. Precursor Lists . 60
10.3. Intermediate RREP 61
10.4. Message Aggregation Delay 61

11. Configuration . 61
11.1. Timers . 62
11.2. Protocol Constants 63
11.3. Local Settings . 64
11.4. Network-Wide Settings 64
11.5. Optional Feature Settings 64
11.6. MetricType Allocation 65
11.7. AddressType Allocation 65

12. IANA Considerations . 66
12.1. RFC 5444 Message Types 66
12.2. RFC 5444 Address Block TLV Types 66

13. Security Considerations 66
14. Acknowledgments . 69
15. References . 69
15.1. Normative References 70
15.2. Informative References 71

Appendix A. AODVv2 Draft Updates 72
 Authors' Addresses . 73

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires July 21, 2016 [Page 3]

Internet-Draft AODVv2 January 2016

1. Overview

 The Ad Hoc On-demand Distance Vector Version 2 (AODVv2) routing
 protocol (formerly named DYMO) enables on-demand, multihop unicast
 routing among AODVv2 routers in mobile ad hoc networks (MANETs)
 [RFC2501].

 Compared to AODV [RFC3561], AODVv2 makes some features optional,
 notably intermediate route replies, expanding ring search, and
 precursor lists. Hello messages and local repair have been removed.
 AODVv2 provides a mechanism for the use of multiple metric types.
 Message formats have been updated and made compliant with [RFC5444].

 AODVv2 control messages are defined as sets of data, which are mapped
 to messages using the Generalized MANET Packet/Message Format defined
 in [RFC5444] and sent using the parameters in [RFC5498].

 The basic operations of the AODVv2 protocol are route discovery and
 route maintenance.

 An AODVv2 router is configured to perform route discovery on behalf
 of a configured set of IP addresses known as Router Clients. Route
 discovery is performed when an AODVv2 router needs to forward an IP
 packet from one of its Router Clients, but does not have a valid
 route to the packet's destination. AODVv2 routers use Route Request
 (RREQ) and Route Reply (RREP) messages to carry route information
 between the originator of the route discovery and the target,
 establishing a route to both endpoints on all intermediate routers.
 A metric value is included to represent the cost of the route
 contained within the message. AODVv2 uses sequence numbers to
 identify stale routing information, and compares route metric values
 to determine if advertised routes could form loops.

 Route maintenance includes confirming bidirectionality of links to
 next hop AODVv2 routers before considering discovered routes to be
 valid, issuing Route Error (RERR) messages if link failures
 invalidate routes, reacting to received Route Error messages, and
 extending and enforcing route timeouts.

 To enable the on-demand nature of AODVv2, signals are required to be
 exchanged between AODVv2 and the forwarding plane, to indicate when a
 packet is to be forwarded, in order to initiate route discovery, when
 packet forwarding fails, in order to initiate route error reporting,
 and when a packet is successfully forwarded, for route maintenance.

 Security for authentication of AODVv2 routers and encryption of
 control messages is accomplished using the TIMESTAMP and ICV TLVs
 defined in [RFC7182].

https://datatracker.ietf.org/doc/html/rfc2501
https://datatracker.ietf.org/doc/html/rfc3561
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5498
https://datatracker.ietf.org/doc/html/rfc7182

Perkins, et al. Expires July 21, 2016 [Page 4]

Internet-Draft AODVv2 January 2016

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119]. In addition, this document uses terminology from
 [RFC5444], and defines the following terms:

 AddressList
 A list of IP addresses as used in AODVv2 messages.

 AckReq
 Used in a Route Reply message to indicate the IP address of the
 router from which a Route Reply Acknowledgement is expected.

 AdvRte
 A route advertised in an incoming route message.

 AODVv2 Router
 An IP addressable device in the ad hoc network that performs the
 AODVv2 protocol operations specified in this document.

 CurrentTime
 The current time as maintained by the AODVv2 router.

 ENAR (External Network Access Router)
 An AODVv2 router with an interface to an external, non-AODVv2
 network.

 Invalid route
 A route that cannot be used for forwarding but still contains
 useful sequence number information.

 LocalRoute
 An entry in the Local Route Set.

 MANET
 A Mobile Ad Hoc Network as defined in [RFC2501].

 MetricType
 The metric type for a metric value included in a message.

 MetricTypeList
 A list of metric types associated with the addresses in the
 AddressList of a Route Error message.

 Neighbor

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc2501

Perkins, et al. Expires July 21, 2016 [Page 5]

Internet-Draft AODVv2 January 2016

 An AODVv2 router from which an RREQ or RREP message has been
 received. Neighbors exchange routing information and verify
 bidirectionality of the link to a neighbor before installing a
 route via that neighbor into the Local Route Set.

 OrigAddr
 The source IP address of the IP packet triggering route discovery.

 OrigMetric
 The metric value associated with the route to OrigAddr (and any
 other addresses included in the given prefix length).

 OrigPrefixLen
 The prefix length, in bits, configured in the Router Client entry
 which includes OrigAddr.

 OrigSeqNum
 The sequence number of the AODVv2 router which originated the
 Route Request on behalf of OrigAddr.

 PktSource
 The source address of the IP packet which triggered a Route Error
 message.

 PrefixLengthList
 A list of routing prefix lengths associated with the addresses in
 the AddressList of a message.

 Reactive
 Performed only in reaction to specific events. In AODVv2, routes
 are requested only when data packets need to be forwarded. In
 this document, "reactive" is synonymous with "on-demand".

 RERR (Route Error)
 The AODVv2 message type used to indicate that an AODVv2 router
 does not have a valid LocalRoute toward one or more particular
 destinations.

 RERR_Gen (RERR Generating Router)
 The AODVv2 router generating a Route Error message.

 Routable Unicast IP Address
 A routable unicast IP address is a unicast IP address that is
 scoped sufficiently to be forwarded by a router. Globally-scoped
 unicast IP addresses and Unique Local Addresses (ULAs) [RFC4193]
 are examples of routable unicast IP addresses.

 Router Client

https://datatracker.ietf.org/doc/html/rfc4193

Perkins, et al. Expires July 21, 2016 [Page 6]

Internet-Draft AODVv2 January 2016

 An address or address range configured on an AODVv2 router, on
 behalf of which that router will initiate and respond to route
 discoveries, so that devices configured to use these addresses can
 send and receive IP traffic to and from remote destinations.
 These addresses may be used by the AODVv2 router itself or by non-
 routing devices that are reachable without traversing another
 AODVv2 router.

 RREP (Route Reply)
 The AODVv2 message type used to reply to a Route Request message.

 RREP_Gen (RREP Generating Router)
 The AODVv2 router that generates the Route Reply message, i.e.,
 the router configured with TargAddr as a Router Client.

 RREQ (Route Request)
 The AODVv2 message type used to discover a route to TargAddr and
 distribute information about a route to OrigAddr.

 RREQ_Gen (RREQ Generating Router)
 The AODVv2 router that generates the Route Request message, i.e.,
 the router configured with OrigAddr as a Router Client.

 RteMsg (Route Message)
 A Route Request (RREQ) or Route Reply (RREP) message.

 SeqNum
 The sequence number maintained by an AODVv2 router to indicate
 freshness of route information.

 SeqNumList
 A list of sequence numbers associated with the addresses in the
 AddressList of a message.

 TargAddr
 The target address of a route request, i.e., the destination
 address of the IP packet triggering route discovery.

 TargMetric
 The metric value associated with the route to TargAddr (and any
 other addresses included in the given prefix length).

 TargPrefixLen
 The prefix length, in bits, configured in the Router Client entry
 which includes TargAddr.

 TargSeqNum

Perkins, et al. Expires July 21, 2016 [Page 7]

Internet-Draft AODVv2 January 2016

 The sequence number of the AODVv2 router which originated the
 Route Reply on behalf of TargAddr.

 Valid route
 A route that can be used for forwarding, which has been confirmed
 as having a bidirectional link to the next hop, and has not timed
 out or been made invalid by a route error.

 Unreachable Address
 An address reported in a Route Error message, either the address
 on a LocalRoute which became Invalid, or the destination address
 of an IP packet that could not be forwarded because a valid
 LocalRoute to the destination is not known, and will not be
 requested.

 Upstream
 In the direction from destination to source (from TargAddr to
 OrigAddr).

 ValidityTime
 The length of time the route described by the message is offered.

 This document uses the notational conventions in Table 1 to simplify
 the text.

 +-----------------------+------------------------------------+
 | Notation | Meaning |
 +-----------------------+------------------------------------+
 | Route[Address] | A route toward Address |
 | Route[Address].Field | A field in a route toward Address |
 | RteMsg.Field | A field in either RREQ or RREP |
 +-----------------------+------------------------------------+

 Table 1: Notational Conventions

3. Applicability Statement

 The AODVv2 routing protocol is a reactive routing protocol. While
 proactive routing protocols send frequent messages and determine
 routes in advance of them being used, a reactive protocol only sends
 messages to discover a route when there is data to send on that
 route. Therefore, a reactive routing protocol requires certain
 interactions with the forwarding plane, for example, to indicate when
 a packet is to be forwarded, in order to initiate route discovery,
 route error reporting, or route maintenance. The set of signals
 exchanged between AODVv2 and the forwarding plane are discussed in

Section 6.4.

Perkins, et al. Expires July 21, 2016 [Page 8]

Internet-Draft AODVv2 January 2016

 AODVv2 is designed for stub or disconnected mobile ad hoc networks,
 i.e., non-transit networks or those not connected to the internet.
 AODVv2 can, however, be configured to perform gateway functions when
 attached to external networks, as discussed in Section 9.

 AODVv2 handles a wide variety of mobility and traffic patterns by
 determining routes on-demand. In networks with a large number of
 routers, AODVv2 is best suited for relatively sparse traffic
 scenarios where each router forwards IP packets to a small percentage
 of other AODVv2 routers in the network. In this case fewer routes
 are needed, and therefore less control traffic is produced.

 Providing security for a reactive routing protocol can be difficult.
 AODVv2 provides for message integrity and security against replay
 attacks by using integrity check values, timestamps and sequence
 numbers, as described in Section 13. If security associations can be
 established, encryption can be used for AODVv2 messages to ensure
 that only trusted routers participate in routing operations.

 Since the route discovery process aims for a route to be established
 in both directions along the same path, uni-directional links are not
 suitable. AODVv2 will detect and exclude those links from route
 discovery. The route discovered is optimised for the requesting
 router, and the return path may not be the optimal route.

 AODVv2 is applicable to memory constrained devices, since only a
 little routing state is maintained in each AODVv2 router. In
 contrast to proactive routing protocols, which maintain routing
 information for all destinations within the MANET, AODVv2 routes that
 are not needed for forwarding data do not need to be maintained. On
 routers unable to store persistent AODVv2 state, recovery can impose
 a performance penalty (e.g., in case of AODVv2 router reboot), since
 if a router loses its sequence number, there is a delay before the
 router can resume full operations. This is described in Section 6.1.

 AODVv2 supports routers with multiple interfaces and multiple IP
 addresses per interface. A router may also use the same IP address
 on multiple interfaces. AODVv2 requires only that each interface
 configured for AODVv2 has at least one unicast IP address. Address
 assignment procedures are out of scope for AODVv2.

 AODVv2 supports Router Clients with multiple interfaces, as long as
 each interface is configured with its own unicast IP address. Multi-
 homing of a Router Client IP address is not supported by AODVv2, and
 therefore an IP address SHOULD NOT be configured as a Router Client
 on more than one AODVv2 router at any one time.

Perkins, et al. Expires July 21, 2016 [Page 9]

Internet-Draft AODVv2 January 2016

 Although AODVv2 is closely related to AODV [RFC3561], and shares some
 features of DSR [RFC4728], AODVv2 is not interoperable with either of
 those protocols.

 The routing algorithm in AODVv2 MAY be operated at layers other than
 the network layer, using layer-appropriate addresses.

4. Data Structures

4.1. Interface List

 If multiple interfaces of the AODVv2 router are configured for use by
 AODVv2, a list of the interfaces MUST be configured in the
 AODVv2_INTERFACES list.

4.2. Router Client Table

 An AODVv2 router provides route discovery services for its own local
 applications and for other non-routing devices that are reachable
 without traversing another AODVv2 router. The addresses used by
 these devices, and the AODVv2 router itself, are configured in the
 Router Client Table. An AODVv2 router will only originate Route
 Request and Route Reply messages on behalf of configured Router
 Clients.

 Router Client Table entries MUST contain:

 RouterClient.IPAddress
 An IP address or the start of an address range that requires route
 discovery services from the AODVv2 router.

 RouterClient.PrefixLength
 The length, in bits, of the routing prefix associated with the
 RouterClient.IPAddress. If a prefix length is included, the
 AODVv2 router MUST provide connectivity for all addresses within
 that prefix.

 RouterClient.Cost
 The cost associated with reaching this Router Client.

 The Router Client Table for an AODVv2 router is never empty, since an
 AODVv2 router's interface addresses are always configured in Router
 Client entries.

 In the initial state, an AODVv2 router is not required to have
 information about the Router Clients of any other AODVv2 router.

https://datatracker.ietf.org/doc/html/rfc3561
https://datatracker.ietf.org/doc/html/rfc4728

Perkins, et al. Expires July 21, 2016 [Page 10]

Internet-Draft AODVv2 January 2016

 A Router Client address SHOULD NOT be served by more than one AODVv2
 router at any one time. To shift responsibility for a Router Client
 to a different AODVv2 router, correct AODVv2 routing behavior MUST be
 observed. The AODVv2 router adding the Router Client MUST wait for
 any existing routing information about this Router Client to be
 purged from the network, i.e., at least MAX_SEQNUM_LIFETIME since the
 last SeqNum update on the router which is removing this Router
 Client.

4.3. Neighbor Table

 A Neighbor Table MUST be maintained with information about
 neighboring AODVv2 routers. Neighbor Table entries are stored when
 AODVv2 messages are received. If the Neighbor is chosen as a next
 hop on an installed route, the link to the Neighbor will be tested
 for bidirectionality and the result stored in this table. A route
 will only be considered valid when the link is confirmed to be
 bidirectional.

 Neighbor Table entries MUST contain:

 Neighbor.IPAddress
 An IP address of the neighboring router, learned from the source
 IP address of a received route message.

 Neighbor.State
 Indicates whether the link to the neighbor is bidirectional.
 There are three possible states: Confirmed, Unknown, and
 Blacklisted. Unknown is the initial state. Confirmed indicates
 that the link to the neighbor has been confirmed as bidirectional.
 Blacklisted indicates that the link to the neighbor is uni-
 directional. Section 6.2 discusses how to monitor link
 bidirectionality.

 Neighbor.ResetTime
 When the value of Neighbor.State is Blacklisted, this indicates
 the time at which the value of Neighbor.State will revert to
 Unknown. By default this value is calculated at the time the
 router is blacklisted and is equal to CurrentTime +
 MAX_BLACKLIST_TIME. When the value of Neighbor.State is not
 Blacklisted, this time is set to INFINITY_TIME.

4.4. Sequence Numbers

 Sequence numbers enable AODVv2 routers to determine the temporal
 order of route discovery messages, identifying stale routing
 information so that it can be discarded. The sequence number

Perkins, et al. Expires July 21, 2016 [Page 11]

Internet-Draft AODVv2 January 2016

 fulfills the same roles as the "Destination Sequence Number" of DSDV
 [Perkins94], and the AODV Sequence Number in [RFC3561].

 Each AODVv2 router in the network MUST maintain its own sequence
 number. All RREQ and RREP messages created by an AODVv2 router
 include the router's sequence number, reported as a 16-bit unsigned
 integer. Each AODVv2 router MUST ensure that its sequence number is
 strictly increasing, and that it is incremented by one (1) whenever
 an RREQ or RREP is created, except when the sequence number is 65,535
 (the maximum value of a 16-bit unsigned integer), in which case it
 MUST be reset to one (1). The value zero (0) is reserved to indicate
 that the sequence number is unknown.

 An AODVv2 router MUST only attach its own sequence number to
 information about a route to one of its configured Router Clients.
 All route messages regenerated by other routers retain the
 originator's sequence number. Therefore, when two pieces of
 information about a route are received, they both contain a sequence
 number from the originating router. Comparing the sequence number
 will identify which information is stale. The previously stored
 sequence number is subtracted from the incoming sequence number. The
 result of the subtraction is to be interpreted as a signed 16-bit
 integer, and if less than zero, the information in the new AODVv2
 message is stale and MUST be discarded.

 This, along with the processes in Section 6.7.1, ensures loop
 freedom.

 An AODVv2 router SHOULD maintain its sequence number in persistent
 storage. If the sequence number is lost, the router MUST follow the
 procedure in Section 6.1 to safely resume routing operations with a
 new sequence number.

4.5. Local Route Set

 All AODVv2 routers MUST maintain a Local Route Set, containing
 information about routes learned from AODVv2 route messages.
 Implementations MAY choose to modify the Routing Information Base.
 Alternatively, the Local Route Set is stored separately, and the
 Routing Information Base is updated using information from the Local
 Route Set.

 Routes learned from AODVv2 route messages are referred to in this
 document as LocalRoutes, and MUST contain the following information:

 LocalRoute.Address
 An address, which, when combined with LocalRoute.PrefixLength,
 describes the set of destination addresses this route includes.

https://datatracker.ietf.org/doc/html/rfc3561

Perkins, et al. Expires July 21, 2016 [Page 12]

Internet-Draft AODVv2 January 2016

 LocalRoute.PrefixLength
 The prefix length, in bits, associated with LocalRoute.Address.

 LocalRoute.SeqNum
 The sequence number associated with LocalRoute.Address, obtained
 from the last route message that successfully updated this entry.

 LocalRoute.NextHop
 The source IP address of the IP packet containing the AODVv2
 message advertising the route to LocalRoute.Address, i.e. an IP
 address of the AODVv2 router used for the next hop on the path
 toward LocalRoute.Address.

 LocalRoute.NextHopInterface
 The interface used to send IP packets toward LocalRoute.Address.

 LocalRoute.LastUsed
 If this route is installed in the Routing Information Base, the
 time it was last used to forward an IP packet.

 LocalRoute.LastSeqNumUpdate
 The time LocalRoute.SeqNum was last updated.

 LocalRoute.ExpirationTime
 The time at which this entry must be marked as Invalid.

 LocalRoute.MetricType
 The type of metric associated with this route.

 LocalRoute.Metric
 The cost of the route toward LocalRoute.Address expressed in units
 consistent with LocalRoute.MetricType.

 LocalRoute.State
 The last known state (Unconfirmed, Idle, Active, or Invalid) of
 the route.

 LocalRoute.Precursors (optional feature)
 A list of upstream neighbors using the route (see Section 10.2).

 There are four possible states for a LocalRoute:

 Unconfirmed
 A route learned from a Route Request message, which has not yet
 been confirmed as bidirectional. It is not able to be used for
 forwarding IP packets, and therefore it is not referred to as a
 valid route.

Perkins, et al. Expires July 21, 2016 [Page 13]

Internet-Draft AODVv2 January 2016

 Idle
 A route which has been learned from a route message, and has also
 been confirmed, but has not been used in the last ACTIVE_INTERVAL.
 It is able to be used for forwarding IP packets, and therefore it
 is referred to as a valid route.

 Active
 A route which has been learned from a route message, and has also
 been confirmed, and has been used in the last ACTIVE_INTERVAL. It
 is able to be used for forwarding IP packets, and therefore it is
 referred to as a valid route.

 Invalid
 A route which has expired or been lost. It is not able to be used
 for forwarding IP packets, and therefore it is not referred to as
 a valid route. Invalid routes contain sequence number information
 which allows incoming information to be assessed for freshness.

 When the Local Route State is stored separately from the Routing
 Information Base, routes are added to the Routing Information Base
 when LocalRoute.State is valid (set to Active or Idle), and removed
 from the Routing Information Base LocalRoute.State becomes Invalid.

 Changes to LocalRoute state are detailed in Section 6.9.1.

 An AODVv2 router MAY offer a route for a limited time. In this case,
 the route is referred to as a timed route. The length of time for
 which the route is valid is referred to as validity time, and is
 included in messages which advertise the route. The shortened
 validity time is reflected in LocalRoute.ExpirationTime. If a route
 is not timed, LocalRoute.ExpirationTime is INFINITY_TIME.

 Note that multiple entries for the same address, prefix length and
 metric type may exist in the Local Route Set, but only one will be a
 valid entry. Any others will be Unconfirmed, but may offer
 improvement to the existing valid route, if they can be confirmed as
 valid routes (see Section 6.2).

 Multiple valid routes for the same address and prefix length but for
 different metric types may exist in the Local Route Set, but the
 decision of which of these routes to install in the Routing
 Information Base to use for forwarding is outside the scope of
 AODVv2.

Perkins, et al. Expires July 21, 2016 [Page 14]

Internet-Draft AODVv2 January 2016

4.6. Multicast Route Message Table

 A route message (RteMsg) is either a Route Request or Route Reply
 message. RREQ messages are multicast by default and regenerated
 multiple times, and RREP messages may be multicast when the link to
 the next router is not known to be bidirectional. Multiple similar
 route messages might be received by any one router during one route
 discovery attempt. The AODVv2 router does not need to regenerate or
 respond to every one of these messages.

 The Multicast Route Message Table is a conceptual table which
 contains information about previously received multicast route
 messages, so that incoming route messages can be compared with
 previously received messages to determine if the incoming information
 is redundant, and the router can avoid sending redundant control
 traffic.

 Multicast Route Message Table entries MUST contain the following
 information:

 RteMsg.MessageType
 Either RREQ or RREP.

 RteMsg.OrigAddr
 The source address of the IP packet triggering the route request.

 RteMsg.OrigPrefixLen
 The prefix length associated with RteMsg.OrigAddr, originally from
 the Router Client entry on RREQ_Gen which includes
 RteMsg.OrigAddr.

 RteMsg.TargAddr
 The destination address of the IP packet triggering the route
 request.

 RteMsg.TargPrefixLen
 The prefix length associated with RteMsg.TargAddr, originally from
 the Router Client entry on RREP_Gen which includes
 RteMsg.TargAddr.

 RteMsg.OrigSeqNum
 The sequence number associated with the route to OrigAddr, if
 RteMsg is an RREQ.

 RteMsg.TargSeqNum
 The sequence number associated with the route to TargAddr, if
 present in the RteMsg.

Perkins, et al. Expires July 21, 2016 [Page 15]

Internet-Draft AODVv2 January 2016

 RteMsg.MetricType
 The metric type of the route requested.

 RteMsg.Metric
 The metric value received in the RteMsg.

 RteMsg.Timestamp
 The last time this Multicast Route Message Table entry was
 updated.

 RteMsg.RemoveTime
 The time at which this entry MUST be removed from the Multicast
 Route Message Table. This is set to CurrentTime +
 MAX_SEQNUM_LIFETIME, whenever the sequence number of this entry
 (RteMsg.OrigSeqNum for an RREQ, or RteMsg.TargSeqNum for an RREP)
 is updated.

 The Multicast Route Message Table is maintained so that no two
 entries have the same MessageType, OrigAddr, TargAddr, and
 MetricType. See Section 6.8 for details about updating this table.

5. Metrics

 Metrics measure a cost or quality associated with a route or a link,
 e.g., latency, delay, financial cost, energy, etc. Metric values are
 reported in Route Request and Route Reply messages.

 In Route Request messages, the metric describes the cost of the route
 from OrigAddr (and any other addresses included in the prefix length
 of RREQ_Gen's Router Client entry for OrigAddr) to the router sending
 the Route Request. For RREQ_Gen, this is the cost associated with
 the Router Client entry which includes OrigAddr. For routers which
 regenerate the RREQ, this is the cost from OrigAddr to the
 regenerating router, combining the metric value from the received
 RREQ message with knowledge of the link cost from the sender to the
 receiver, i.e., the incoming link cost. This updated route cost is
 included when regenerating the Route Request message, and used to
 install a route back toward OrigAddr.

 Similarly, in Route Reply messages, the metric reflects the cost of
 the route from TargAddr (and any other addresses included in the
 prefix length of RREP_Gen's Router Client entry for TargAddr) to the
 router sending the Route Reply. For RREP_Gen, this is the cost
 associated with the Router Client entry which includes TargAddr. For
 routers which regenerate the RREP, this is the cost from TargAddr to
 the regenerating router, combining the metric value from the received
 RREP message with knowledge of the link cost from the sender to the
 receiver, i.e., the incoming link cost. This updated route cost is

Perkins, et al. Expires July 21, 2016 [Page 16]

Internet-Draft AODVv2 January 2016

 included when regenerating the Route Reply message, and used to
 install a route back toward TargAddr.

 Assuming link metrics are symmetric, the cost of the routes installed
 in the Local Route Set at each router will be correct. The route
 discovered is optimised for the requesting router, and the return
 path may not be the optimal route.

 AODVv2 enables the use of multiple metric types. Each route
 discovery attempt indicates the metric type which is requested for
 the route. Only one metric type may be used in each route discovery
 attempt. However, routes to a single destination might be requested
 and created in the Local Route Set for multiple metric types. The
 decision of which of these routes to install in the Routing
 Information Base to use for forwarding is outside the scope of
 AODVv2.

 For each MetricType, AODVv2 requires:

 o A MetricType number, to indicate the metric type of a route.
 MetricType numbers allocated are detailed in Section 11.6.

 o A maximum value, denoted MAX_METRIC[MetricType]. If the cost of a
 route exceeds MAX_METRIC[MetricType], the route is ignored.
 AODVv2 cannot store routes that cost more than
 MAX_METRIC[MetricType].

 o A function for incoming link cost, denoted Cost(L). Using
 incoming link costs means that the route learned has a path
 optimized for the direction from OrigAddr to TargAddr.

 o A function for route cost, denoted Cost(R).

 o A function to analyze routes for potential loops based on metric
 information, denoted LoopFree(R1, R2). LoopFree verifies that a
 route R2 is not a sub-section of another route R1. An AODVv2
 router invokes LoopFree() as part of the process in Section 6.7.1,
 when an advertised route (R1) and an existing LocalRoute (R2) have
 the same destination address, metric type, and sequence number.
 LoopFree returns FALSE to indicate that an advertised route is not
 to be used to update a stored LocalRoute, as it may cause a
 routing loop. In the case where the existing LocalRoute is
 Invalid, it is possible that the advertised route includes the
 existing LocalRoute and came from a router which did not yet
 receive notification of the route becoming Invalid, so the
 advertised route should not be used to update the Local Route Set,
 in case it forms a loop to a broken route.

Perkins, et al. Expires July 21, 2016 [Page 17]

Internet-Draft AODVv2 January 2016

 AODVv2 currently supports cost metrics where Cost(R) is strictly
 increasing, by defining:

 o Cost(R) := Sum of Cost(L) of each link in the route

 o LoopFree(R1, R2) := (Cost(R1) <= Cost(R2))

 Implementers MAY consider other metric types, but the definitions of
 Cost and LoopFree functions for such types are undefined, and
 interoperability issues need to be considered.

6. AODVv2 Protocol Operations

 The AODVv2 protocol's operations include managing sequence numbers,
 monitoring next hop AODVv2 routers on discovered routes and updating
 the Neighbor Table, performing route discovery and dealing with
 requests from other routers, processing incoming route information
 and updating the Local Route Set, updating the Multicast Route
 Message Table and suppressing redundant messages, and reporting
 broken routes. These processes are discussed in detail in the
 following sections.

6.1. Initialization

 During initialization where an AODVv2 router does not have
 information about its previous sequence number, or if its sequence
 number is lost at any point, the router resets its sequence number to
 one (1). However, other AODVv2 routers may still hold sequence
 number information that this router previously issued. Since
 sequence number information is removed if there has been no update to
 the sequence number in MAX_SEQNUM_LIFETIME, the initializing router
 must wait for MAX_SEQNUM_LIFETIME before it creates any messages
 containing its new sequence number. It can then be sure that the
 information it sends will not be considered stale.

 Until MAX_SEQNUM_LIFETIME after its sequence number is reset, the
 router SHOULD NOT create RREQ or RREP messages.

 During this wait period, the router is permitted to do the following:

 o Process information in a received RREQ or RREP message to learn a
 route to the originator or target of that route discovery

 o Regenerate a received RREQ or RREP

 o Send an RREP_Ack

 o Maintain valid routes in the Local Route Set

Perkins, et al. Expires July 21, 2016 [Page 18]

Internet-Draft AODVv2 January 2016

 o Create, process and regenerate RERR messages

6.2. Next Hop Monitoring

 AODVv2 routers MUST NOT establish routes over uni-directional links.
 Consider the following. An RREQ is forwarded toward TargAddr, and
 intermediate routers create a LocalRoute entry in the Local Route Set
 for the addresses represented by OrigAddr and OrigPrefixLen. If, at
 one of the intermediate routers, this route was used to forward data
 traffic, but the link to the next hop toward OrigAddr was uni-
 directional, the data packets would be lost. Further, an RREP sent
 toward OrigAddr using this link would not reach the next hop, and
 would therefore never reach RREQ_Gen, so end-to-end route
 establishment will fail.

 AODVv2 routers MUST verify that the link to the next hop router is
 bidirectional before marking a route as valid in the Local Route Set.
 If link bidirectionality cannot be verified, this link MUST be
 excluded from the route discovery procedure. AODVv2 routers do not
 need to monitor bidirectionality for links to neighboring routers
 which are not used as next hops on routes in the Local Route Set.

 o For the next hop router on the route toward OrigAddr, the approach
 for testing bidirectional connectivity is to request
 acknowledgement of Route Reply messages. Receipt of an
 acknowledgement proves that bidirectional connectivity exists.
 All AODVv2 routers MUST support this process, which is explained
 in Section 7.2 and Section 7.3. A link to a neighbor is
 determined to be unidirectional if a requested acknowledgement is
 not received within RREP_Ack_SENT_TIMEOUT, or bidirectional if the
 acknowledgement is received within the timeout.

 o For the next hop router on the route toward TargAddr, receipt of
 the Route Reply message containing the route to TargAddr is
 confirmation of bidirectionality, since a Route Reply message is a
 reply to a Route Request message which previously crossed the link
 in the opposite direction.

 To assist with next hop monitoring, a Neighbor Table (Section 4.3) is
 maintained. When an RREQ or RREP is received from an IP address
 which does not already have an entry in the Neighbor Table, a new
 entry is created as described in Section 6.3. While the value of
 Neighbor.State is Unknown, acknowledgement of RREP messages sent to
 that neighbor MUST be requested. If an acknowledgement is not
 received within the timeout period, the neighbor MUST have
 Neighbor.State set to Blacklisted. If an acknowledgement is received
 within the timeout period, Neighbor.State is set to Confirmed. While

Perkins, et al. Expires July 21, 2016 [Page 19]

Internet-Draft AODVv2 January 2016

 the value of Neighbor.State is Confirmed, the request for an
 acknowledgement of any other RREP message is unnecessary.

 When routers perform other operations such as those from the list
 below, these MAY be used as additional indications of connectivity:

 o NHDP HELLO Messages [RFC6130]

 o Route timeout

 o Lower layer triggers, e.g. message reception or link status
 notifications

 o TCP timeouts

 o Promiscuous listening

 o Other monitoring mechanisms or heuristics

 If such an external process signals that the link to a neighbor is
 bidirectional, the AODVv2 router MAY update the matching Neighbor
 Table entry by changing the value of Neighbor.State to Confirmed. If
 an external process signals that a link is not bidirectional, the the
 value of Neighbor.State MAY be changed to Blacklisted. If an
 external process signals that the link might not be bidirectional,
 and the value of Neighbor.State is currently Confirmed, it MAY be set
 to Unknown.

 For example, receipt of a Neighborhood Discovery Protocol HELLO
 message with the receiving router listed as a neighbor is a signal of
 bidirectional connectivity. The AODVv2 router MAY update the
 matching Neighbor Table entry by changing the value of Neighbor.State
 to Confirmed.

 Similarly, if AODVv2 receives notification of a timeout, for example,
 from TCP or some other protocol, this may be due to a disconnection.
 The AODVv2 router MAY update the matching Neighbor Table entry by
 setting the value of Neighbor.State to Unknown.

6.3. Neighbor Table Update

 On receipt of an RREQ or RREP message, the Neighbor Table MUST be
 checked for an entry with Neighbor.IPAddress which matches the source
 IP address of the message. If no matching entry is found, a new
 entry is created.

 A new Neighbor Table entry is created as follows:

https://datatracker.ietf.org/doc/html/rfc6130

Perkins, et al. Expires July 21, 2016 [Page 20]

Internet-Draft AODVv2 January 2016

 o Neighbor.IPAddress := Source IP address of the received route
 message

 o Neighbor.State := Unknown

 o Neighbor.ResetTime := INFINITY_TIME

 If the message is an RREP which answers a recently sent RREQ, or an
 RREP_Ack which answers a recently sent RREP, the link to the neighbor
 is bidirectional. When the link to the neighbor is determined to be
 bidirectional, the Neighbor Table entry is updated as follows:

 o Neighbor.State := Confirmed

 o Neighbor.ResetTime := INFINITY_TIME

 If an RREP_Ack is not received within the expected time, the link is
 considered to be uni-directional. When the link to the neighbor is
 determined to be uni-directional, the Neighbor Table entry is updated
 as follows:

 o Neighbor.State := Blacklisted

 o Neighbor.ResetTime := CurrentTime + MAX_BLACKLIST_TIME

 When the Neighbor.ResetTime is reached, the Neighbor Table entry is
 updated as follows:

 o Neighbor.State := Unknown

 When a link to a neighbor is determined to be broken, the Neighbor
 Table entry SHOULD be removed.

 Route requests from neighbors with Neighbor.State set to Blacklisted
 are ignored to avoid persistent IP packet loss or protocol failures.
 However, Neighbor.ResetTime allows the neighbor to again be allowed
 to participate in route discoveries after MAX_BLACKLIST_TIME, in case
 the link between the routers has become bidirectional.

6.4. Interaction with the Forwarding Plane

 A reactive routing protocol reacts when a route is needed, i.e., when
 an application tries to send a packet and the forwarding plane has no
 route to the destination of the packet. The fundamental concept of
 reactive routing is to avoid creating routes that are not needed.

 AODVv2 requires signals from the forwarding plane:

Perkins, et al. Expires July 21, 2016 [Page 21]

Internet-Draft AODVv2 January 2016

 o A packet cannot be forwarded because a route is unavailable:
 AODVv2 needs to know the source and destination IP addresses of
 the packet, to determine if the source of the packet is configured
 as a Router Client, in which case the router should initiate route
 discovery. If it is not a Router Client, the router should create
 a Route Error message.

 o A packet is to be forwarded: AODVv2 needs to check the state of
 the route to deal with timeouts to ensure the route is still
 valid.

 o Packet forwarding succeeds: AODVv2 needs to update the record of
 when a route was last used to forward a packet.

 o Packet forwarding failure occurs: AODVv2 needs to create a Route
 Error message.

 AODVv2 needs to send signals to the forwarding plane:

 o A route discovery is in progress: buffering might be configured
 for packets requiring a route, while route discovery is attempted.

 o A route discovery failed: any buffered packets requiring that
 route should be discarded, and the source of the packet should be
 notified that the destination is unreachable (using an ICMP
 Destination Unreachable message). Route discovery fails if an
 RREQ cannot be generated because the control message generation
 limit has been reached, or if an RREP is not received within the
 expected time.

 o A route discovery is not permitted: any buffered packets requiring
 that route should be discarded. A route discovery will not be
 attempted if the source address of the packet needing a route is
 not configured as a Router Client.

 o A route discovery succeeded: install a corresponding route into
 the Routing Information Base and begin transmitting any buffered
 packets.

 o A route has been made invalid: remove the corresponding route from
 the Routing Information Base.

 o A route has been updated: update the corresponding route in the
 Routing Information Base.

 These are conceptual signals, and can be implemented in various ways.
 Conformant implementations of AODVv2 are not mandated to implement
 the forwarding plane separately from the control plane or data plane;

Perkins, et al. Expires July 21, 2016 [Page 22]

Internet-Draft AODVv2 January 2016

 these signals and interactions are identified simply as assistance
 for implementers who may find them useful.

6.5. Message Transmission

 AODVv2 sends [RFC5444] formatted messages using the parameters for
 port number and IP protocol specified in [RFC5498]. Mapping of
 AODVv2 data to [RFC5444] messages is detailed in Section 8. AODVv2
 multicast messages are sent to the link-local multicast address LL-
 MANET-Routers [RFC5498]. All AODVv2 routers MUST subscribe to LL-
 MANET-Routers [RFC5498] to receive AODVv2 messages. Note that
 multicast messages MAY be sent via unicast. For example, this may
 occur for certain link-types (non-broadcast media), for manually
 configured router adjacencies, or in order to improve robustness.

 When multiple interfaces are available, an AODVv2 router transmitting
 a multicast message to LL-MANET-Routers MUST send the message on all
 interfaces that have been configured for AODVv2 operation, as given
 in the AODVv2_INTERFACES list (Section 4.1). Similarly, AODVv2
 routers MUST subscribe to LL-MANET-Routers on all their AODVv2
 interfaces.

 To avoid congestion, each AODVv2 router's rate of message generation
 SHOULD be limited (CONTROL_TRAFFIC_LIMIT) and administratively
 configurable. To prioritize transmission of AODVv2 control messages
 in order to respect the CONTROL_TRAFFIC_LIMIT:

 o Highest priority SHOULD be given to RREP_Ack messages. This
 allows links between routers to be confirmed as bidirectional and
 avoids undesirable blacklisting of next hop routers.

 o Second priority SHOULD be given to RERR messages for undeliverable
 IP packets, so that broken routes that are still in use by other
 AODVv2 routers can be reported to those routers, to avoid IP data
 packets being repeatedly forwarded to AODVv2 routers which cannot
 forward them to their destination.

 o Third priority SHOULD be given to RREP messages in order that
 RREQs do not time out.

 o RREQ messages SHOULD be given priority over RERR messages for
 newly invalidated routes, since the invalidated routes may not
 still be in use, and if there is an attempt to use the route, a
 new RERR message will be generated.

 o Lowest priority SHOULD be given to RERR messages generated in
 response to RREP messages which cannot be regenerated. In this
 case the route request will be retried at a later point.

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5498
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5498
https://datatracker.ietf.org/doc/html/rfc5498

Perkins, et al. Expires July 21, 2016 [Page 23]

Internet-Draft AODVv2 January 2016

 Messages may travel a maximum of MAX_HOPCOUNT hops.

6.6. Route Discovery, Retries and Buffering

 AODVv2's RREQ and RREP messages are used for route discovery. RREQ
 messages are multicast to solicit an RREP, whereas RREP is unicast
 where possible. The constants used in this section are defined in

Section 11.

 When an AODVv2 router needs to forward an IP packet (with source
 address OrigAddr and destination address TargAddr) from one of its
 Router Clients, it needs a route to TargAddr in its Routing
 Information Base. If no route exists, the AODVv2 router generates
 and multicasts a Route Request message (RREQ) containing OrigAddr and
 TargAddr. The procedure for this is described in Section 7.1.1.
 Each generated RREQ results in an increment to the router's sequence
 number. The AODVv2 router generating an RREQ is referred to as
 RREQ_Gen.

 Buffering might be configured for IP packets awaiting a route for
 forwarding by RREQ_Gen, if sufficient memory is available. Buffering
 of IP packets might have both positive and negative effects. Real-
 time traffic, voice, and scheduled delivery may suffer if packets are
 buffered and subjected to delays, but TCP connection establishment
 will benefit if packets are queued while route discovery is performed
 [Koodli01]. If packets are not queued, no notification should be
 sent to the source. Determining which packets to discard first when
 the buffer is full is a matter of policy at each AODVv2 router.

 RREQ_Gen awaits reception of a Route Reply message (RREP) containing
 a route toward TargAddr. If a valid route to TargAddr is not learned
 within RREQ_WAIT_TIME, RREQ_Gen will retry the route discovery. To
 reduce congestion in a network, repeated attempts at route discovery
 for a particular target address utilize a binary exponential backoff:
 for each additional attempt, the time to wait for receipt of the RREP
 is multiplied by 2. If the requested route is not learned within the
 wait period, another RREQ is sent, up to a total of
 DISCOVERY_ATTEMPTS_MAX. This is the same technique used in AODV
 [RFC3561].

 The RREQ is received by neighboring AODVv2 routers, and processed and
 regenerated as described in Section 7.1. Routers learn a potential
 route to OrigAddr (and other addresses as indicated by OrigPrefixLen)
 from the RREQ and store it in the Local Route Set. The router
 responsible for TargAddr responds by generating a Route Reply message
 (RREP) and sends it back toward RREQ_Gen via the next hop on the
 potential route to OrigAddr. Each intermediate router learns the

https://datatracker.ietf.org/doc/html/rfc3561

Perkins, et al. Expires July 21, 2016 [Page 24]

Internet-Draft AODVv2 January 2016

 route to TargAddr (and other addresses as indicated by
 TargPrefixLen), regenerates the RREP and sends toward OrigAddr.

 Links which are not bidirectional cause problems. If a link is
 unavailable in the direction toward OrigAddr, an RREP is not received
 at the next hop, so cannot be regenerated, and it will never reach
 RREQ_Gen. However, since routers monitor bidirectionality to next
 hops (Section 6.2), the loss of the RREP will cause the last router
 which regenerated the RREP to blacklist the router which did not
 receive it. Later, a timeout occurs at RREQ_Gen, and a new RREQ is
 generated. If the new RREQ arrives via the blacklisted router, it
 will be ignored, enabling the RREQ, if also received from a different
 neighbor, to discover a different path toward TargAddr.

 Route discovery is considered to have failed after
 DISCOVERY_ATTEMPTS_MAX and the corresponding wait time for an RREP
 response to the final RREQ. After the attempted route discovery has
 failed, RREQ_Gen waits at least RREQ_HOLDDOWN_TIME before attempting
 another route discovery to the same destination, in order to avoid
 repeatedly generating control traffic that is unlikely to discover a
 route. Any IP packets buffered for TargAddr are also dropped and a
 Destination Unreachable ICMP message (Type 3) with a code of 1 (Host
 Unreachable Error) is delivered to the source of the packet, so that
 the application knows about the failure. The source might be an
 application on RREQ_Gen itself, or on a difference device.

 If RREQ_Gen does receive a route message containing a route to
 TargAddr within the timeout, it processes the message according to

Section 7. When a valid LocalRoute entry is created in the Local
 Route Set, the route is also installed in the Routing Information
 Base, and the router will begin sending the buffered IP packets. Any
 retry timers for the corresponding RREQ are then cancelled.

 During route discovery, all routers on the path learn a route to both
 OrigAddr and TargAddr, so that routes are constructed in both
 directions. The route is optimized for the forward route, and the
 return route uses the same path in reverse.

6.7. Processing Received Route Information

 All AODVv2 route messages contain a route. A Route Request (RREQ)
 contains a route toward OrigAddr (and other addresses as indicated by
 OrigPrefixLen), and a Route Reply (RREP) contains a route toward
 TargAddr (and other addresses as indicated by TargPrefixLen). All
 AODVv2 routers that receive a route message are able to store the
 route contained within it in their Local Route Set. Incoming
 information is first checked to verify that it is both safe to use
 and offers an improvement to existing information, as explained in

Perkins, et al. Expires July 21, 2016 [Page 25]

Internet-Draft AODVv2 January 2016

Section 6.7.1. The Local Route Set MAY then be updated according to
Section 6.7.2.

 In the processes below, RteMsg is used to denote the route message,
 AdvRte is used to denote the route contained within it, and
 LocalRoute denotes an existing entry in the Local Route Set which
 matches AdvRte on address, prefix length, and metric type.

 AdvRte has the following properties:

 o AdvRte.Address := network address given by combining
 RteMsg.OrigAddr and RteMsg.OrigPrefixLen (in RREQ) or
 RteMsg.TargAddr and RteMsg.TargPrefixLen (in RREP)

 o AdvRte.PrefixLength := RteMsg.OrigPrefixLen (in RREQ) or
 RteMsg.TargPrefixLen (in RREP). If no prefix length was included
 in RteMsg, prefix length is the address length, in bits, of
 RteMsg.OrigAddr (in RREQ) or RteMsg.TargAddr (in RREP)

 o AdvRte.SeqNum := RteMsg.OrigSeqNum (in RREQ) or RteMsg.TargSeqNum
 (in RREP)

 o AdvRte.NextHop := RteMsg.IPSourceAddress (an address of the router
 from which the RteMsg was received)

 o AdvRte.MetricType := RteMsg.MetricType

 o AdvRte.Metric := RteMsg.Metric

 o AdvRte.Cost := Cost(R) using the cost function associated with the
 route's metric type, i.e. Cost(R) = AdvRte.Metric + Cost(L), as
 described in Section 5, where L is the link from the advertising
 router

 o AdvRte.ValidityTime := RteMsg.ValidityTime, if included

6.7.1. Evaluating Route Information

 An incoming advertised route (AdvRte) is compared to existing
 LocalRoutes to determine whether the advertised route is to be used
 to update the AODVv2 Local Route Set. The incoming route information
 MUST be processed as follows:

 1. Search for a LocalRoute in the Local Route Set matching AdvRte's
 address, prefix length and metric type

 * If no matching LocalRoute exists, AdvRte MUST be used to
 update the Local Route Set.

Perkins, et al. Expires July 21, 2016 [Page 26]

Internet-Draft AODVv2 January 2016

 * If a matching LocalRoute exists, continue to Step 2.

 2. Compare sequence numbers using the technique described in
Section 4.4

 * If AdvRte is more recent, AdvRte MUST be used to update the
 Local Route Set.

 * If AdvRte is stale, AdvRte MUST NOT be used to update the
 Local Route Set.

 * If the sequence numbers are equal, continue to Step 3.

 3. Check that AdvRte is safe against routing loops (see Section 5)

 * If LoopFree(AdvRte, LocalRoute) returns FALSE, AdvRte MUST NOT
 be used to update the Local Route Set because using the
 incoming information might cause a routing loop.

 * If LoopFree(AdvRte, LocalRoute) returns TRUE, continue to Step
 4.

 4. Compare route costs

 * If AdvRte is better, it SHOULD be used to update the Local
 Route Set because it offers improvement. If it is not used to
 update the Local Route Set, the existing non-optimal
 LocalRoute will continue to be used, causing data traffic to
 use a non-optimal route.

 * If AdvRte is equal in cost and LocalRoute is valid, AdvRte MAY
 be used to update the Local Route Set but will offer no
 improvement.

 * If AdvRte is worse and LocalRoute is valid, AdvRte MUST NOT be
 used to update the Local Route Set because it does not offer
 any improvement.

 * If AdvRte is not better (i.e., it is worse or equal) but
 LocalRoute is Invalid or Unconfirmed, AdvRte SHOULD be used to
 update the Local Route Set because it can safely repair the
 existing Invalid LocalRoute or offer an alternative to the
 existing Unconfirmed route.

 If the advertised route is to be used to update the Local Route Set,
 the procedure in Section 6.7.2 MUST be followed. If not, non-optimal
 routes will remain in the Local Route Set.

Perkins, et al. Expires July 21, 2016 [Page 27]

Internet-Draft AODVv2 January 2016

6.7.2. Applying Route Updates

 After determining that AdvRte is to be used to update the Local Route
 Set (as described in Section 6.7.1), the following procedure applies.

 If AdvRte is learned from an RREQ message, the link to the next hop
 neighbor may not be confirmed as bidirectional (see Section 4.3).
 The route will offer improvement to the Local Route Set if the
 neighbor can be confirmed. If there is no existing matching route,
 AdvRte allows a corresponding RREP to be sent. If a matching entry
 already exists, AdvRte offers potential improvement.

 The route update is applied as follows:

 1. If no existing entry in the Local Route Set matches AdvRte's
 address, prefix length and metric type, continue to Step 3 and
 create a new entry in the Local Route Set.

 2. If a matching entry (LocalRoute) exists in the Local Route Set:

 * If AdvRte has a different next hop to LocalRoute, and both
 AdvRte.NextHop's Neighbor.State is Unknown and
 LocalRoute.State is Active or Idle, the current route is valid
 but the advertised route may offer improvement, if the link to
 the next hop can be confirmed as bidirectional. AdvRte SHOULD
 be stored as an additional entry in the Local Route Set, with
 LocalRoute.State set to Unconfirmed. Continue processing from
 Step 3 to create a new LocalRoute.

 * If AdvRte.NextHop's Neighbor.State is Unknown and
 LocalRoute.State is Invalid, the advertised route can replace
 the existing LocalRoute. Continue processing from Step 4 to
 update the existing LocalRoute.

 * If AdvRte.NextHop's Neighbor.State is Confirmed, continue
 processing from Step 4 to update the existing LocalRoute.

 * If the existing LocalRoute.State is Unconfirmed, continue
 processing from Step 3 to create a new LocalRoute.

 3. Create an entry in the Local Route Set and initialize as follows:

 * LocalRoute.Address := AdvRte.Address

 * LocalRoute.PrefixLength := AdvRte.PrefixLength

 * LocalRoute.MetricType := AdvRte.MetricType

Perkins, et al. Expires July 21, 2016 [Page 28]

Internet-Draft AODVv2 January 2016

 4. Update the LocalRoute as follows:

 * LocalRoute.SeqNum := AdvRte.SeqNum

 * LocalRoute.NextHop := AdvRte.NextHop

 * LocalRoute.NextHopInterface := interface on which RteMsg was
 received

 * LocalRoute.Metric := AdvRte.Cost

 * LocalRoute.LastUsed := CurrentTime

 * LocalRoute.LastSeqNumUpdate := CurrentTime

 * LocalRoute.ExpirationTime := CurrentTime + AdvRte.ValidityTime
 if a validity time exists, otherwise INFINITY_TIME

 5. If a new LocalRoute was created, or if the existing
 LocalRoute.State is Invalid or Unconfirmed, update LocalRoute as
 follows:

 * LocalRoute.State := Unconfirmed (if the next hop's
 Neighbor.State is Unknown) or Idle (if the next hop's
 Neighbor.State is Confirmed)

 6. If an existing LocalRoute.State changed from Invalid or
 Unconfirmed to become Idle, any matching LocalRoute with worse
 metric value SHOULD be expunged.

 7. If this update results in LocalRoute.State of Active or Idle,
 which matches a route request which is still in progress, the
 associated route request retry timers can be cancelled.

 If this update to the Local Route Set results in multiple LocalRoutes
 to the same address, the best LocalRoute will be Unconfirmed. In
 order to improve the route used for forwarding, the router SHOULD try
 to determine if the link to the next hop of that LocalRoute is
 bidirectional, by using that LocalRoute to forward future RREPs and
 request acknowledgements (see Section 7.2.1).

6.8. Suppressing Redundant Messages Using the Multicast Route Message
 Table

 When route messages are flooded in a MANET, an AODVv2 router may
 receive multiple similar messages. Regenerating every one of these
 gives little additional benefit, and generates unnecessary signaling
 traffic and might generate unnecessary interference.

Perkins, et al. Expires July 21, 2016 [Page 29]

Internet-Draft AODVv2 January 2016

 Each AODVv2 router stores information about recently received route
 messages in the AODVv2 Multicast Route Message Table (Section 4.6).

 To create a Multicast Route Message Table Entry:

 o RteMsg.MessageType := RREQ or RREP

 o RteMsg.OrigAddr := OrigAddr from the message

 o RteMsg.OrigPrefixLen := the prefix length associated with OrigAddr

 o RteMsg.TargAddr := TargAddr from the message

 o RteMsg.TargPrefixLen := the prefix length associated with TargAddr

 o RteMsg.OrigSeqNum := the sequence number associated with OrigAddr,
 if present in the message

 o RteMsg.TargSeqNum := the sequence number associated with TargAddr,
 if present in the message

 o RteMsg.MetricType := the metric type of the route requested

 o RteMsg.Metric := the metric value associated with OrigAddr in an
 RREQ or TargAddr in an RREP

 o RteMsg.Timestamp := CurrentTime

 o RteMsg.RemoveTime := CurrentTime + MAX_SEQNUM_LIFETIME

 Entries in the Multicast Route Message Table SHOULD be maintained for
 at least RteMsg_ENTRY_TIME after the last Timestamp update in order
 to account for long-lived RREQs traversing the network. An entry
 MUST be deleted when the sequence number is no longer valid, i.e.,
 after MAX_SEQNUM_LIFETIME. Memory-constrained devices MAY remove the
 entry before this time.

 Received route messages are tested against previously received route
 messages, and if determined to be redundant, regeneration or response
 can be avoided.

 To determine if a received message is redundant:

 1. Search for an entry in the Multicast Route Message Table with the
 same MessageType, OrigAddr, TargAddr, and MetricType

 * If there is no entry, the message is not redundant.

Perkins, et al. Expires July 21, 2016 [Page 30]

Internet-Draft AODVv2 January 2016

 * If there is an entry, continue to Step 2.

 2. Compare sequence numbers using the technique described in
Section 4.4

 * For RREQ messages, use OrigSeqNum of the entry for comparison.
 For RREP messages, use TargSeqNum of the entry for comparison.

 * If the entry has an older sequence number than the received
 message, the message is not redundant.

 * If the entry has a newer sequence number than the received
 message, the message is redundant.

 * If the entry has the same sequence number, continue to Step 3.

 3. Compare the metric values

 * If the entry has a Metric value that is worse than or equal to
 the metric in the received message, the message is redundant.

 * If the entry has a Metric value that is better than the metric
 in the received message, the message is not redundant.

 If the message is redundant, update the Timestamp and RemoveTime on
 the entry, since matching route messages are still traversing the
 network and this entry should be maintained. This message SHOULD NOT
 be regenerated or responded to.

 If the message is not redundant, create an entry or update the
 existing entry.

 To update a Multicast Route Message Table entry, set:

 o RteMsg.OrigSeqNum := the sequence number associated with OrigAddr,
 if present in the received message

 o RteMsg.TargSeqNum := the sequence number associated with TargAddr,
 if present in the received message

 o RteMsg.Metric := the metric value associated with OrigAddr in a
 received RREQ or TargAddr in a received RREP

 o RteMsg.Timestamp := CurrentTime

 o RteMsg.RemoveTime := CurrentTime + MAX_SEQNUM_LIFETIME

Perkins, et al. Expires July 21, 2016 [Page 31]

Internet-Draft AODVv2 January 2016

 Where the message is determined not redundant before Step 3, it MUST
 be regenerated or responded to. Where the message is determined not
 redundant in Step 3, it MAY be suppressed to avoid extra control
 traffic. However, since the processing of the message will result in
 an update to the Local Route Set, the message SHOULD be regenerated
 or responded to, to ensure other routers have up-to-date information
 and the best metrics. If not regenerated, the best route may not be
 found. Where necessary, regeneration or response is performed using
 the processes in Section 7.

6.9. Local Route Set Maintenance

 Route maintenance involves monitoring LocalRoutes in the Local Route
 Set, updating LocalRoute.State to handle route timeouts and reporting
 routes that become Invalid.

6.9.1. Local Route State Changes

 During normal operation, AODVv2 does not require any explicit
 timeouts to manage the lifetime of a route. At any time, any
 LocalRoute MAY be examined and updated according to the rules below.
 If timers are not used to prompt updates of LocalRoute.State, the
 LocalRoute.State MUST be checked before IP packet forwarding and
 before any operation based on LocalRoute.State.

 Route timeout behaviour is as follows:

 o An Unconfirmed route MUST be expunged at MAX_SEQNUM_LIFETIME after
 LocalRoute.LastSeqNumUpdate.

 o An Idle route MUST become Active when used to forward an IP
 packet. If the route is not used to forward an IP packet within
 MAX_IDLETIME, LocalRoute.State MUST become Invalid.

 o An Active route which is a timed route (i.e., with
 LocalRoute.ExpirationTime not equal to INFINITY_TIME) remains
 Active until LocalRoute.ExpirationTime, after which it MUST become
 Invalid. If it it not a timed route, it MUST become Idle if the
 route is not used to forward an IP packet within ACTIVE_INTERVAL.

 o An Invalid route SHOULD remain in the Local Route Set, since
 LocalRoute.SeqNum is used to classify future information about
 LocalRoute.Address as stale or fresh.

 o In all cases, if the time since LocalRoute.LastSeqNumUpdate
 exceeds MAX_SEQNUM_LIFETIME, LocalRoute.SeqNum must be set to
 zero. This is required to ensure that any AODVv2 routers
 following the initialization procedure can safely begin routing

Perkins, et al. Expires July 21, 2016 [Page 32]

Internet-Draft AODVv2 January 2016

 functions using a new sequence number, and that their messages
 will not be classified as stale and ignored. A LocalRoute with
 LocalRoute.State set to Active or Idle can remain in the Local
 Route Set after removing the sequence number, but if
 LocalRoute.State is Invalid, or later becomes Invalid, the
 LocalRoute MUST be expunged from the Local Route Set.

 LocalRoutes can become Invalid before a timeout occurs:

 o If a link breaks, all LocalRoutes using that link for
 LocalRoute.NextHop MUST immediately have LocalRoute.State set to
 Invalid.

 o If a Route Error (RERR) message containing the route is received,
 either from LocalRoute.NextHop, or with PktSource set to a Router
 Client address, LocalRoute.State MUST immediately be set to
 Invalid.

 LocalRoutes are also updated when Neighbor.State is updated:

 o While the value of Neighbor.State is set to Unknown, any routes in
 the Local Route Set using that neighbor as a next hop MUST have
 LocalRoute.State set to Unconfirmed.

 o When the value of Neighbor.State is set to Confirmed, the
 Unconfirmed routes in the Local Route Set using that neighbor as a
 next hop MUST have LocalRoute.State set to Idle. Any other
 matching LocalRoutes with metric values worse than
 LocalRoute.Metric MUST be expunged from the Local Route Set.

 o When the value of Neighbor.State is set to Blacklisted, any valid
 routes in the Local Route Set using that neighbor for their next
 hop MUST have LocalRoute.State set to Invalid.

 o When a Neighbor Table entry is removed, all routes in the Local
 Route Set using that neighbor as next hop MUST have
 LocalRoute.State set to Invalid.

 In some cases, by setting LocalRoute.State to Confirmed when
 Neighbor.State is set to Confirmed, an issue can occur if data
 packets are forwarded to LocalRoute.Address before the links that
 form the rest of the route are confirmed as bidirectional.
 Intermediate routers will not have a valid route to forward these
 data packets, and will generate a Route Error message. This in turn
 results in routes to that destination being removed from other
 routers. However, subsequent data packets will cause a new route
 discovery attempt to be initiated by the router with the source
 address of the data packet configured as a Router Client.

Perkins, et al. Expires July 21, 2016 [Page 33]

Internet-Draft AODVv2 January 2016

 Memory constrained devices MAY choose to expunge routes from the
 AODVv2 Local Route Set before LocalRoute.ExpirationTime, but MUST
 adhere to the following rules:

 o An Active route MUST NOT be expunged, as it is in use. If
 deleted, IP traffic forwarded to this router will prompt
 generation of a Route Error message, and it will be necessary for
 a Route Request to be generated by the originator's router to re-
 establish the route.

 o An Idle route SHOULD NOT be expunged, as it is still valid for
 forwarding IP traffic. If deleted, this could result in dropped
 IP packets and a Route Request could be generated to re-establish
 the route.

 o Any Invalid route MAY be expunged. Least recently used Invalid
 routes SHOULD be expunged first, since the sequence number
 information is less likely to be useful.

 o An Unconfirmed route MUST NOT be expunged if it was installed
 within the last RREQ_WAIT_TIME, because it may correspond to a
 route discovery in progress. A Route Reply message might be
 received which needs to use the LocalRoute.NextHop information.
 Otherwise, it MAY be expunged.

6.9.2. Reporting Invalid Routes

 When LocalRoute.State changes from Active to Invalid as a result of a
 broken link or a received Route Error (RERR) message, other AODVv2
 routers MUST be informed by sending an RERR message containing
 details of the invalidated route.

 An RERR message MUST also be sent when an AODVv2 router receives an
 IP packet to forward on behalf of another router but does not have a
 valid route in its Routing Information Base for the destination of
 the packet.

 An RERR message MUST also be sent when an AODVv2 router receives an
 RREP message to regenerate, but the LocalRoute to the OrigAddr in the
 RREP has been lost or is marked as Invalid.

 The packet or message triggering the RERR MUST be discarded.

 Generation of an RERR message is described in Section 7.4.1.

Perkins, et al. Expires July 21, 2016 [Page 34]

Internet-Draft AODVv2 January 2016

7. AODVv2 Protocol Messages

 AODVv2 defines four message types: Route Request (RREQ), Route Reply
 (RREP), Route Reply Acknowledgement (RREP_Ack), and Route Error
 (RERR).

 Each AODVv2 message is defined as a set of data. Rules for the
 generation, reception and regeneration of each message type are
 described in the following sections. Section 8 discusses how the
 data is mapped to [RFC5444] Message TLVs, Address Blocks, and Address
 TLVs.

7.1. Route Request (RREQ) Message

 Route Request messages are used in route discovery operations to
 request a route to a specified target address. RREQ messages have
 the following contents:

 +---+
 | msg_hop_limit, (optional) msg_hop_count |
 +---+
 | AddressList |
 +---+
 | PrefixLengthList (optional) |
 +---+
 | OrigSeqNum, (optional) TargSeqNum |
 +---+
 | MetricType |
 +---+
 | OrigMetric |
 +---+
 | ValidityTime (optional) |
 +---+

 Figure 1: RREQ message contents

 msg_hop_limit
 The remaining number of hops allowed for dissemination of the RREQ
 message.

 msg_hop_count
 The number of hops already traversed during dissemination of the
 RREQ message.

 AddressList
 Contains OrigAddr and TargAddr, the source and destination
 addresses of the IP packet for which a route is requested.
 OrigAddr and TargAddr MUST be routable unicast addresses.

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires July 21, 2016 [Page 35]

Internet-Draft AODVv2 January 2016

 PrefixLengthList
 Contains OrigPrefixLen, i.e., the length, in bits, of the prefix
 associated with the Router Client entry which includes OrigAddr.
 If omitted, the prefix length is equal to OrigAddr's address
 length in bits.

 OrigSeqNum
 The sequence number associated with OrigAddr.

 TargSeqNum
 A sequence number associated with an existing Invalid route to
 TargAddr. This MAY be included if available, and is useful for
 the optional Intermediate RREP feature (see Section 10.3).

 MetricType
 The metric type associated with OrigMetric.

 OrigMetric
 The metric value associated with the LocalRoute to OrigAddr (and
 to any other addresses included in the given prefix length), as
 seen from the sender of the message.

 ValidityTime
 The length of time that the message sender is willing to offer a
 route toward OrigAddr (and any other addresses included in the
 given prefix length). Omitted if no time limit is imposed.

7.1.1. RREQ Generation

 An RREQ is generated when an IP packet needs to be forwarded for a
 Router Client, and no valid route currently exists for the packet's
 destination in the Routing Information Base.

 Before creating an RREQ, the router SHOULD check if an RREQ has
 recently been sent for the requested destination. If so, and the
 wait time for a reply has not yet been reached, the router SHOULD
 continue to await a response without generating a new RREQ. If the
 timeout has been reached, a new RREQ MAY be generated. If buffering
 is configured, incoming IP packets awaiting this route SHOULD be
 buffered until the route discovery is completed.

 If the limit for the rate of AODVv2 control message generation has
 been reached, no message SHOULD be generated. If approaching the
 limit, the message should be sent if the priorities in Section 6.5
 allow it.

 To generate the RREQ, the router (referred to as RREQ_Gen) follows
 this procedure:

Perkins, et al. Expires July 21, 2016 [Page 36]

Internet-Draft AODVv2 January 2016

 1. Set msg_hop_limit := MAX_HOPCOUNT

 2. Set msg_hop_count := 0, if including it

 3. Set AddressList := {OrigAddr, TargAddr}

 4. For the PrefixLengthList:

 * If OrigAddr is part of an address range configured as a Router
 Client, set PrefixLengthList := {RouterClient.PrefixLength,
 null}. This allows receiving routers to learn a route to all
 the addresses included by the prefix length, not only to
 OrigAddr.

 * Otherwise, omit PrefixLengthList.

 5. For OrigSeqNum:

 * Increment the router SeqNum as specified in Section 4.4.

 * Set OrigSeqNum := SeqNum.

 6. For TargSeqNum:

 * If an Invalid route exists in the Local Route Set matching
 TargAddr using longest prefix matching and has a valid
 sequence number, set TargSeqNum := LocalRoute.SeqNum.

 * If no Invalid route exists in the Local Route Set matching
 TargAddr, or the route doesn't have a sequence number, omit
 TargSeqNum.

 7. Include MetricType and set the type accordingly

 8. Set OrigMetric := RouterClient.Cost for the Router Client entry
 which includes OrigAddr

 9. Include ValidityTime if advertising that the route to OrigAddr
 (and any other addresses included in the given prefix length) via
 this router is offered for a limited time, and set ValidityTime
 accordingly

 This AODVv2 message is used to create a corresponding [RFC5444]
 message (see Section 8) which is multicast, by default, to LL-MANET-
 Routers on all interfaces configured for AODVv2 operation.

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires July 21, 2016 [Page 37]

Internet-Draft AODVv2 January 2016

7.1.2. RREQ Reception

 Upon receiving a Route Request, an AODVv2 router performs the
 following steps:

 1. Update the Neighbor Table according to Section 6.3

 * If the sender has Neighbor.State set to Blacklisted after the
 update, ignore this RREQ for further processing.

 2. Verify that the message hop count, if included, hasn't exceeded
 MAX_HOPCOUNT

 * If so, ignore this RREQ for further processing.

 3. Verify that the message contains the required data:
 msg_hop_limit, OrigAddr, TargAddr, OrigSeqNum, and OrigMetric,
 and that OrigAddr and TargAddr are valid addresses (routable and
 unicast)

 * If not, ignore this RREQ for further processing.

 4. Check that the MetricType is supported and configured for use

 * If not, ignore this RREQ for further processing.

 5. Verify that the cost of the advertised route will not exceed the
 maximum allowed metric value for the metric type (Metric <=
 MAX_METRIC[MetricType] - Cost(L))

 * If it will, ignore this RREQ for further processing.

 6. Process the route to OrigAddr (and any other addresses included
 in the given prefix length) as specified in Section 6.7

 7. Check if the information in the message is redundant by comparing
 to entries in the Multicast Route Message table, following the
 procedure in Section 6.8

 * If redundant, ignore this RREQ for further processing.

 * If not redundant, continue processing.

 8. Check if the TargAddr belongs to one of the Router Clients

 * If so, generate an RREP as specified in Section 7.2.1.

 * If not, continue to RREQ regeneration.

Perkins, et al. Expires July 21, 2016 [Page 38]

Internet-Draft AODVv2 January 2016

7.1.3. RREQ Regeneration

 By regenerating an RREQ, a router advertises that it will forward IP
 packets to the OrigAddr contained in the RREQ (and to other addresses
 included in the given prefix length) according to the information
 enclosed. The router MAY choose not to regenerate the RREQ, for
 example if the router is heavily loaded or low on energy and
 therefore unwilling to advertise routing capability for more traffic.
 This could, however, decrease connectivity in the network or result
 in non-optimal paths.

 The RREQ SHOULD NOT be regenerated if the limit for the rate of
 AODVv2 control message generation has been reached. If approaching
 the limit, the message should be sent if the priorities in

Section 6.5 allow it.

 The procedure for RREQ regeneration is as follows:

 1. Set msg_hop_limit := received msg_hop_limit - 1

 2. If msg_hop_limit is now zero, do not continue the regeneration
 process

 3. Set msg_hop_count := received msg_hop_count + 1, if included,
 otherwise omit msg_hop_count

 4. Set AddressList, PrefixLengthList, sequence numbers and
 MetricType to the values in the received RREQ

 5. Set OrigMetric := LocalRoute[OrigAddr].Metric

 6. If the received RREQ contains a ValidityTime, or if the
 regenerating router wishes to limit the time that it offers a
 route to OrigAddr (and any other addresses included in the given
 prefix length), the regenerated RREQ MUST include ValidityTime

 * The ValidityTime is either the time limit the previous AODVv2
 router specified, or the time limit this router wishes to
 impose, whichever is lower.

 This AODVv2 message is used to create a corresponding [RFC5444]
 message (see Section 8) which is multicast, by default, to LL-MANET-
 Routers on all interfaces configured for AODVv2 operation. However,
 the regenerated RREQ can be unicast to the next hop address of the
 LocalRoute toward TargAddr, if known.

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires July 21, 2016 [Page 39]

Internet-Draft AODVv2 January 2016

7.2. Route Reply (RREP) Message

 When a Route Request message is received, requesting a route to a
 target address (TargAddr) which is configured as part of a Router
 Client entry, a Route Reply message is sent in response. The RREP
 offers a route to TargAddr (and any other addresses included in the
 prefix length).

 RREP messages have the following contents:

 +---+
 | msg_hop_limit, (optional) msg_hop_count |
 +---+
 | AckReq (optional) |
 +---+
 | AddressList |
 +---+
 | PrefixLengthList (optional) |
 +---+
 | TargSeqNum |
 +---+
 | MetricType |
 +---+
 | TargMetric |
 +---+
 | ValidityTime (optional) |
 +---+

 Figure 2: RREP message contents

 msg_hop_limit
 The remaining number of hops allowed for dissemination of the RREP
 message.

 msg_hop_count
 The number of hops already traversed during dissemination of the
 RREP message.

 AckReq
 The address of the intended next hop of the RREP. This is
 included when the link to the next hop toward OrigAddr is not
 known to be bidirectional. It indicates that an acknowledgement
 of the RREP is requested by the sender from the intended next hop
 (see Section 6.2).

 AddressList

Perkins, et al. Expires July 21, 2016 [Page 40]

Internet-Draft AODVv2 January 2016

 Contains OrigAddr and TargAddr, the source and destination
 addresses of the IP packet for which a route is requested.
 OrigAddr and TargAddr MUST be routable unicast addresses.

 PrefixLengthList
 Contains TargPrefixLen, i.e., the length, in bits, of the prefix
 associated with the Router Client entry which includes TargAddr.
 If omitted, the prefix length is equal to TargAddr's address
 length, in bits.

 TargSeqNum
 The sequence number associated with TargAddr.

 MetricType
 The metric type associated with TargMetric.

 TargMetric
 The metric value associated with the LocalRoute to TargAddr (and
 any other addresses included in the given prefix length), as seen
 from the sender of the message.

 ValidityTime
 The length of time that the message sender is willing to offer a
 route toward TargAddr (and any other addresses included in the
 given prefix length). Omitted if no time limit is imposed.

7.2.1. RREP Generation

 A Route Reply message is generated when a Route Request arrives,
 requesting a route to an address which is configured as a Router
 Client of the AODVv2 router.

 Before creating an RREP, the router SHOULD check if the corresponding
 RREQ is redundant, i.e., a Route Reply has already been generated in
 response to the RREQ, or if the limit for the rate of AODVv2 control
 message generation has been reached. If so, the RREP SHOULD NOT be
 created. If approaching the limit, the message should be sent if the
 priorities in Section 6.5 allow it.

 The RREP will follow the path of the route to OrigAddr. If the best
 route to OrigAddr in the Local Route Set is Unconfirmed, the link to
 the next hop neighbor is not yet confirmed as bidirectional (as
 described in Section 6.2). In this case the RREP MUST include AckReq
 set to the intended next hop address. The AckReq indicates that an
 acknowledgement to the RREP is requested from the intended next hop
 router in the form of a Route Reply Acknowledgement (RREP_Ack). If
 the best route to OrigAddr in the Local Route Set is valid, the link

Perkins, et al. Expires July 21, 2016 [Page 41]

Internet-Draft AODVv2 January 2016

 to the next hop neighbor is already confirmed as bidirectional, and
 the AckReq can be omitted.

 Implementations MAY allow a number of retries of the RREP if a
 requested acknowledgement is not received within
 RREP_Ack_SENT_TIMEOUT, doubling the timeout with each retry, up to a
 maximum of RREP_RETRIES, using the same exponential backoff described
 in Section 6.6 for RREQ retries. The acknowledgement MUST be
 considered to have failed after the wait time for an RREP_Ack
 response to the final RREP.

 To generate the RREP, the router (also referred to as RREP_Gen)
 follows this procedure:

 1. Set msg_hop_limit := msg_hop_count from the received RREQ
 message, if it was included, or MAX_HOPCOUNT if it was not
 included

 2. Set msg_hop_count := 0, if including it

 3. If the link to the next hop router toward OrigAddr is not known
 to be bidirectional, include the AckReq with the address of the
 intended next hop router

 4. Set Address List := {OrigAddr, TargAddr}

 5. For the PrefixLengthList:

 * If TargAddr is part of an address range configured as a Router
 Client, set PrefixLengthList := {null,
 RouterClient.PrefixLength}. This allows receiving routers to
 learn a route to all the addresses included by the prefix
 length, not only to TargAddr.

 * Otherwise, omit PrefixLengthList.

 6. For the TargSeqNum:

 * Increment the router SeqNum as specified in Section 4.4.

 * Set TargSeqNum := SeqNum.

 7. Include MetricType and set the type to match the MetricType in
 the received RREQ message

 8. Set TargMetric := RouterClient.Cost for the Router Client entry
 which includes TargAddr

Perkins, et al. Expires July 21, 2016 [Page 42]

Internet-Draft AODVv2 January 2016

 9. Include ValidityTime if advertising that the route to TargAddr
 (and any other addresses included in the given prefix length) via
 this router is offered for a limited time, and set ValidityTime
 accordingly

 This AODVv2 message is used to create a corresponding [RFC5444]
 message (see Section 8). If the Neighbor Table contains an entry for
 the neighbor stored as LocalRoute[OrigAddr].NextHop, with
 Neighbor.State set to Confirmed, the RREP is sent by unicast to
 LocalRoute[OrigAddr].NextHop. Otherwise, the RREP is sent multicast
 to LL-MANET-Routers.

7.2.2. RREP Reception

 Upon receiving a Route Reply, an AODVv2 router performs the following
 steps:

 1. Update the Neighbor Table according to Section 6.3

 2. Verify that the message hop count, if included, hasn't exceeded
 MAX_HOPCOUNT

 * If so, ignore this RREQ for further processing.

 3. Verify that the message contains the required data:
 msg_hop_limit, OrigAddr, TargAddr, TargSeqNum, and TargMetric,
 and that OrigAddr and TargAddr are valid addresses (routable and
 unicast)

 * If not, ignore this RREP for further processing.

 4. Check that the MetricType is supported and configured for use

 * If not, ignore this RREP for further processing.

 5. Verify that the cost of the advertised route does not exceed the
 maximum allowed metric value for the metric type (Metric <=
 MAX_METRIC[MetricType] - Cost(L))

 * If it does, ignore this RREP for further processing.

 6. If the AckReq is present, check the intended recipient of the
 received RREP

 * If the receiving router is the intended recipient, send an
 acknowledgement as specified in Section 7.3 and continue
 processing.

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires July 21, 2016 [Page 43]

Internet-Draft AODVv2 January 2016

 * If the receiving router is not the intended recipient, ignore
 this RREP for further processing.

 7. Process the route to TargAddr (and any other addresses included
 in the given prefix length) as specified in Section 6.7

 8. Check if the message is redundant by comparing to entries in the
 Multicast Route Message table (Section 6.8)

 * If redundant, ignore this RREP for further processing.

 * If not redundant, save the information in the Multicast Route
 Message table to identify future redundant RREP messages and
 continue processing.

 9. Check if the OrigAddr belongs to one of the Router Clients

 * If so, no further processing is necessary.

 * If not, continue to Step 10.

 10. Check if a valid (Active or Idle) or Unconfirmed LocalRoute
 exists to OrigAddr

 * If so, continue to RREP regeneration.

 * If not, a Route Error message SHOULD be transmitted to
 TargAddr according to Section 7.4.1 and the RREP SHOULD be
 discarded and not regenerated.

7.2.3. RREP Regeneration

 A received Route Reply message is regenerated toward OrigAddr.
 Unless the router is prepared to advertise the route contained within
 the received RREP, it halts processing. By regenerating a RREP, a
 router advertises that it will forward IP packets to TargAddr (and
 any other addresses included in the given prefix length) according to
 the information enclosed. The router MAY choose not to regenerate
 the RREP, in the same way it MAY choose not to regenerate an RREQ
 (see Section 7.1.3), though this could decrease connectivity in the
 network or result in non-optimal paths.

 The RREP SHOULD NOT be regenerated if the limit for the rate of
 AODVv2 control message generation has been reached. If approaching
 the limit, the message should be sent if the priorities in

Section 6.5 allow it.

Perkins, et al. Expires July 21, 2016 [Page 44]

Internet-Draft AODVv2 January 2016

 If the link to the next hop neighbor on the LocalRoute to OrigAddr is
 not yet confirmed as bidirectional (as described in Section 6.2), the
 RREP MUST include AckReq set to the intended next hop address, in
 order to perform next hop monitoring. If bidirectionality is already
 confirmed, the AckReq can be omitted. The AckReq indicates that an
 acknowledgement to the RREP is requested in the form of a Route Reply
 Acknowledgement (RREP_Ack) from the intended next hop router, within
 RREP_Ack_SENT_TIMEOUT.

 The procedure for RREP regeneration is as follows:

 1. Set msg_hop_limit := received msg_hop_limit - 1

 2. If msg_hop_limit is now zero, do not continue the regeneration
 process

 3. Set msg_hop_count := received msg_hop_count + 1, if it was
 included, otherwise omit msg_hop_count

 4. If the link to the next hop router toward OrigAddr is not known
 to be bidirectional, include the AckReq with the address of the
 intended next hop router

 5. Set AddressList, PrefixLengthList, TargSeqNum and MetricType to
 the values in the received RREP

 6. Set TargMetric := LocalRoute[TargAddr].Metric

 7. If the received RREP contains a ValidityTime, or if the
 regenerating router wishes to limit the time that it will offer a
 route to TargAddr (and any other addresses included in the given
 prefix length), the regenerated RREP MUST include ValidityTime

 * The ValidityTime is either the time limit the previous AODVv2
 router specified, or the time limit this router wishes to
 impose, whichever is lower.

 This AODVv2 message is used to create a corresponding [RFC5444]
 message (see Section 8). If the Neighbor Table contains an entry for
 the neighbor stored as LocalRoute[OrigAddr].NextHop, with
 Neighbor.State set to Confirmed, the RREP is sent by unicast to
 LocalRoute[OrigAddr].NextHop. Otherwise, the RREP is sent multicast
 to LL-MANET-Routers.

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires July 21, 2016 [Page 45]

Internet-Draft AODVv2 January 2016

7.3. Route Reply Acknowledgement (RREP_Ack) Message

 The Route Reply Acknowledgement is a response to a Route Reply
 message. When the RREP_Ack message is received by the sender of the
 RREP, it confirms that the link between the two routers is
 bidirectional (see Section 6.2). The RREP_Ack has no further data.

7.3.1. RREP_Ack Generation

 An RREP_Ack MUST be generated if a received Route Reply includes an
 AckReq with an address matching one of the receiving router's IP
 addresses. The RREP_Ack SHOULD NOT be generated if the limit for the
 rate of AODVv2 control message generation has been reached.

 There is no further data in an RREP_Ack. The [RFC5444]
 representation is discussed in Section 8. The RREP_Ack is unicast,
 by default, to the source IP address of the RREP message that
 requested it.

7.3.2. RREP_Ack Reception

 Upon receiving an RREP_Ack, an AODVv2 router performs the following
 steps:

 1. Update the Neighbor Table according to Section 6.3

 * If the sender has Neighbor.State set to Blacklisted after the
 update, ignore this RREQ for further processing.

 2. Check if the RREP_Ack was expected from the IP source address of
 the RREP_Ack, in response to an RREP sent previously by this
 router

 * If it was expected, the router cancels any associated
 timeouts.

 * If it was not expected, no actions are required.

7.4. Route Error (RERR) Message

 A Route Error message is generated by an AODVv2 router to notify
 other AODVv2 routers of routes that are no longer available. An RERR
 message has the following contents:

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires July 21, 2016 [Page 46]

Internet-Draft AODVv2 January 2016

 +---+
 | msg_hop_limit |
 +---+
 | PktSource (optional) |
 +---+
 | AddressList |
 +---+
 | PrefixLengthList (optional) |
 +---+
 | SeqNumList (optional) |
 +---+
 | MetricTypeList |
 +---+

 Figure 3: RERR message contents

 msg_hop_limit
 The remaining number of hops allowed for dissemination of the RERR
 message.

 PktSource
 The source address of the IP packet triggering the RERR. If the
 RERR is triggered by a broken link, PktSource is not required.

 AddressList
 The addresses of the routes not available through RERR_Gen.

 PrefixLengthList
 The prefix lengths, in bits, associated with the routes not
 available through RERR_Gen. These values indicate whether routes
 represent a single device or an address range.

 SeqNumList
 The sequence numbers of the routes not available through RERR_Gen
 (where known).

 MetricTypeList
 The metric types associated with the routes not available through
 RERR_Gen.

7.4.1. RERR Generation

 A Route Error message is generated when an AODVv2 router (also
 referred to as RERR_Gen) needs to report that a destination is not
 reachable. There are three events that cause this response:

 o When an IP packet that has been forwarded from another router, but
 cannot be forwarded further because there is no valid route in the

Perkins, et al. Expires July 21, 2016 [Page 47]

Internet-Draft AODVv2 January 2016

 Routing Information Base for its destination, the source of the
 packet needs to be informed that the route to the destination of
 the packet does not exist. The RERR generated MUST include
 PktSource set to the source address of the IP packet, and MUST
 contain only one unreachable address in the AddressList, i.e., the
 destination address of the IP packet. RERR_Gen MUST discard the
 IP packet that triggered generation of the RERR. The prefix
 length and sequence number MAY be included if known from an
 Invalid LocalRoute entry to PktSource. The MetricTypeList MUST
 also be included if a MetricType can be determined from the IP
 packet or an existing Invalid LocalRoute to the unreachable
 address.

 o When an RREP message cannot be regenerated because the LocalRoute
 to OrigAddr has been lost or is Invalid, RREP_Gen needs to be
 informed that the route to OrigAddr does not exist. The RERR
 generated MUST include PktSource set to the TargAddr of the RREP,
 and MUST contain only one unreachable address in the AddressList,
 the OrigAddr from the RREP. RERR_Gen MUST discard the RREP
 message that triggered generation of the RERR. The prefix length,
 sequence number and metric type SHOULD be included if known from
 an Invalid LocalRoute to the unreachable address.

 o When a link breaks, multiple LocalRoutes may become Invalid, and
 the RERR generated MAY contain multiple unreachable addresses.
 The RERR MUST include MetricTypeList. PktSource is omitted. All
 previously Active LocalRoutes that used the broken link MUST be
 reported. The AddressList, PrefixLengthList, SeqNumList, and
 MetricTypeList will contain entries for each LocalRoute which has
 become Invalid. An RERR message is only sent if an Active
 LocalRoute becomes Invalid, though an AODVv2 router can also
 include Idle LocalRoutes that become Invalid if the configuration
 parameter ENABLE_IDLE_IN_RERR is set (see Section 11.3).

 In order to avoid flooding the network with RERR messages when a
 stream of IP packets to an unreachable address arrives, an AODVv2
 router SHOULD determine whether an RERR has recently been sent with
 the same unreachable address and PktSource, and SHOULD avoid creating
 duplicate RERR messages.

 The RERR SHOULD NOT be generated if the limit for the rate of AODVv2
 control message generation has been reached. If approaching the
 limit, the message should be sent if the priorities in Section 6.5
 allow it.

 Incidentally, if an AODVv2 router receives an ICMP error packet to or
 from the address of one of its Router Clients, it forwards the ICMP

Perkins, et al. Expires July 21, 2016 [Page 48]

Internet-Draft AODVv2 January 2016

 packet in the same way as any other IP packet, and will not generate
 any RERR message based on the contents of the ICMP packet.

 To generate the RERR, the router follows this procedure:

 1. Set msg_hop_limit := MAX_HOPCOUNT

 2. If necessary, include PktSource and set the value as given above

 3. For each LocalRoute that needs to be reported:

 * Insert LocalRoute.Address into the AddressList.

 * Insert LocalRoute.PrefixLength into PrefixLengthList, if known
 and not equal to the address length.

 * Insert LocalRoute.SeqNum into SeqNumList, if known.

 * Insert LocalRoute.MetricType into MetricTypeList.

 The AODVv2 message is used to create a corresponding [RFC5444]
 message (see Section 8).

 If the RERR is sent in response to an undeliverable IP packet or RREP
 message, i.e., if PktSource is included, the RERR SHOULD be sent
 unicast to the next hop on the route to PktSource, or alternatively,
 if there is no route to PktSource, the RERR MUST be multicast to LL-
 MANET-Routers. If the RERR is sent in response to a broken link,
 i.e., PktSource is not included, the RERR is, by default, multicast
 to LL-MANET-Routers.

Section 10.2 describes processing steps when the optional precursor
 lists feature is enabled.

7.4.2. RERR Reception

 Upon receiving a Route Error, an AODVv2 router performs the following
 steps:

 1. Verify that the message contains the required data: msg_hop_limit
 and at least one unreachable address

 * If not, ignore this RERR for further processing.

 2. For each address in the AddressList, check that:

 * The address is valid (routable and unicast)

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires July 21, 2016 [Page 49]

Internet-Draft AODVv2 January 2016

 * The MetricType is supported and configured for use

 * There is a valid LocalRoute with the same MetricType matching
 the address using longest prefix matching

 * Either the LocalRoute's next hop is the sender of the RERR and
 the next hop interface is the interface on which the RERR was
 received, or PktSource is present in the RERR and is a Router
 Client address

 * The unreachable address' sequence number is either unknown, or
 is greater than the LocalRoute's sequence number

 If any of the above are false, a matching LocalRoute MUST NOT be
 made Invalid and the unreachable address MUST NOT be advertised
 in a regenerated RERR.

 If all of the above are true, the LocalRoute is no longer valid.
 If the LocalRoute was previously Active, it MUST be reported in a
 regenerated RERR. If the LocalRoute was previously Idle, it MAY
 be reported in a regenerated RERR, if ENABLE_IDLE_IN_RERR is
 configured. The Local Route Set MUST be updated according to
 these rules:

 * If the LocalRoute's prefix length is the same as the
 unreachable address' prefix length, set LocalRoute.State to
 Invalid.

 * If the LocalRoute's prefix length is longer than the
 unreachable address' prefix length, the LocalRoute MUST be
 expunged from the Local Route Set, since it is a sub-route of
 the route which is reported to be Invalid.

 * If the prefix length is different, create a new LocalRoute
 with the unreachable address, and its prefix length and
 sequence number, and set LocalRoute.State to Invalid.

 * Update the sequence number on the existing LocalRoute, if the
 reported sequence number is determined to be newer using the
 comparison technique described in Section 4.4.

 3. Check if there are unreachable addresses which MUST be reported
 in a regenerated RERR

 * If so, regenerate the RERR as detailed in Section 7.4.3.

 * If not, take no further action.

Perkins, et al. Expires July 21, 2016 [Page 50]

Internet-Draft AODVv2 January 2016

7.4.3. RERR Regeneration

 The Route Error message SHOULD NOT be regenerated if the limit for
 the rate of AODVv2 control message generation has been reached. If
 approaching the limit, the message should be sent if the priorities
 in Section 6.5 allow it.

 The procedure for RERR regeneration is as follows:

 1. Set msg_hop_limit := received msg_hop_limit - 1

 2. If msg_hop_limit is now zero, do not continue the regeneration
 process

 3. If PktSource was included in the original RERR, and PktSource is
 not a Router Client, copy it into the regenerated RERR

 4. For each LocalRoute that needs to be reported:

 * Insert LocalRoute.Address into the AddressList.

 * Insert LocalRoute.PrefixLength into PrefixLengthList, if known
 and not equal to the address length.

 * Insert LocalRoute.SeqNum into SeqNumList, if known.

 * Insert LocalRoute.MetricType into MetricTypeList.

 The AODVv2 message is used to create a corresponding [RFC5444]
 message (see Section 8). If the RERR contains PktSource, the
 regenerated RERR SHOULD be sent unicast to the next hop on the
 LocalRoute to PktSource, or alternatively if there is no route to
 PktSource, or PktSource is a Router Client, it MUST be multicast to
 LL-MANET-Routers. If the RERR is sent in response to a broken link,
 the RERR is, by default, multicast to LL-MANET-Routers.

8. RFC 5444 Representation

 AODVv2 specifies that all control messages between routers MUST use
 the Generalized Mobile Ad Hoc Network Packet/Message Format
 [RFC5444], and therefore AODVv2's route messages comprise data which
 is mapped to message elements in [RFC5444].

 [RFC5444] provides a multiplexed transport for multiple protocols.
 An [RFC5444] multiplexer MAY choose to optimize the content of
 certain message elements to reduce control message overhead.

 A brief summary of the [RFC5444] format:

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires July 21, 2016 [Page 51]

Internet-Draft AODVv2 January 2016

 1. A packet contains zero or more messages

 2. A message contains a Message Header, one Message TLV Block, zero
 or more Address Blocks, and one Address Block TLV Block per
 Address Block

 3. The Message TLV Block MAY contain zero or more Message TLVs

 4. An Address Block TLV Block MAY include zero or more Address Block
 TLVs

 5. Each TLV value in an Address Block TLV Block can be associated
 with all of the addresses, or with a contiguous set of addresses,
 or with a single address in the Address Block

 AODVv2 does not require access to the [RFC5444] packet header.

 In the message header, AODVv2 uses <msg-hop-limit>, <msg-hop-count>,
 <msg-type> and <msg-addr-length>. The <msg-addr-length> field
 indicates the length of any addresses in the message, using <msg-
 addr-length> := (address length in octets - 1), i.e. 3 for IPv4 and
 15 for IPv6.

 The addresses in an Address Block MAY appear in any order, and values
 in a TLV in the Address Block TLV Block must be associated with the
 correct address in the Address Block by the [RFC5444] implementation.
 To indicate which value is associated with each address, the AODVv2
 message representation uses lists where the order of the addresses in
 the AODVv2 AddressList matches the order of values in other data
 lists, e.g., the order of SeqNums in the SeqNumList in an RERR.
 [RFC5444] maps this information to Address Block TLVs associated with
 the relevant addresses in the Address Block.

 Each address included in the Address Block is identified as OrigAddr,
 TargAddr, PktSource, or Unreachable Address by including an
 ADDRESS_TYPE TLV in the Address Block TLV Block.

 The following sections show how AODVv2 data is represented in
 [RFC5444] messages. AODVv2 makes use of the VALIDITY_TIME TLV from
 [RFC5497], and defines (in Section 12) a number of new TLVs.

 Where the extension type of a TLV is set to zero, this is the default
 [RFC5444] value and the extension type will not be included in the
 message.

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5497
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires July 21, 2016 [Page 52]

Internet-Draft AODVv2 January 2016

8.1. Route Request Message Representation

8.1.1. Message Header

 +---------------+-----------------+---------------------------------+
 | Data | Header Field | Value |
 +---------------+-----------------+---------------------------------+
None	<msg-type>	RREQ
msg_hop_limit	<msg-hop-limit>	MAX_HOPCOUNT, reduced by number
		of hops traversed so far by the
		message.
msg_hop_count	<msg-hop-count>	Number of hops traversed so far
		by the message.
 +---------------+-----------------+---------------------------------+

8.1.2. Message TLV Block

 An RREQ contains no Message TLVs.

8.1.3. Address Block

 An RREQ contains two addresses, OrigAddr and TargAddr, and each
 address has an associated prefix length. If the prefix length has
 not been included in the AODVv2 message, it is equal to the address
 length in bits.

 +-------------------------+------------------------------+
 | Data | Address Block |
 +-------------------------+------------------------------+
 | OrigAddr/OrigPrefixLen | <address> + <prefix-length> |
 | TargAddr/TargPrefixLen | <address> + <prefix-length> |
 +-------------------------+------------------------------+

8.1.4. Address Block TLV Block

 Address Block TLVs are always associated with one or more addresses
 in the Address Block. The following sections show the TLVs that
 apply to each address.

8.1.4.1. Address Block TLVs for OrigAddr

Perkins, et al. Expires July 21, 2016 [Page 53]

Internet-Draft AODVv2 January 2016

 +--------------+---------------+------------+-----------------------+
 | Data | TLV Type | Extension | Value |
 | | | Type | |
 +--------------+---------------+------------+-----------------------+
None	ADDRESS_TYPE	0	ADDRTYPE_ORIGADDR
OrigSeqNum	SEQ_NUM	0	Sequence number of
			RREQ_Gen, the router
			which initiated route
			discovery.
OrigMetric	PATH_METRIC	MetricType	Metric value for the
/MetricType			route to OrigAddr,
			using MetricType.
ValidityTime	VALIDITY_TIME	0	ValidityTime for
			route to OrigAddr.
 +--------------+---------------+------------+-----------------------+

8.1.4.2. Address Block TLVs for TargAddr

 +------------+--------------+-------------+-------------------------+
 | Data | TLV Type | Extension | Value |
 | | | Type | |
 +------------+--------------+-------------+-------------------------+
None	ADDRESS_TYPE	0	ADDRTYPE_TARGADDR
TargSeqNum	SEQ_NUM	0	The last known
			TargSeqNum for
			TargAddr.
 +------------+--------------+-------------+-------------------------+

8.2. Route Reply Message Representation

8.2.1. Message Header

 +---------------+-----------------+---------------------------------+
 | Data | Header Field | Value |
 +---------------+-----------------+---------------------------------+
None	<msg-type>	RREP
msg_hop_limit	<msg-hop-limit>	<msg-hop-count> from
		corresponding RREQ, reduced by
		number of hops traversed so far
		by the message.
msg_hop_count	<msg-hop-count>	Number of hops traversed so far
		by the message.
 +---------------+-----------------+---------------------------------+

Perkins, et al. Expires July 21, 2016 [Page 54]

Internet-Draft AODVv2 January 2016

8.2.2. Message TLV Block

 An RREP contains no Message TLVs.

8.2.3. Address Block

 An RREP contains a minimum of two addresses, OrigAddr and TargAddr,
 and each address has an associated prefix length. If the prefix
 length has not been included in the AODVv2 message, it is equal to
 the address length in bits.

 It MAY also contain the address of the intended next hop, in order to
 request acknowledgement to confirm bidirectionality of the link, as
 described in Section 6.2. The prefix length associated with this
 address is equal to the address length in bits.

 +-------------------------+------------------------------+
 | Data | Address Block |
 +-------------------------+------------------------------+
 | OrigAddr/OrigPrefixLen | <address> + <prefix-length> |
 | TargAddr/TargPrefixLen | <address> + <prefix-length> |
 | AckReq | <address> + <prefix-length> |
 +-------------------------+------------------------------+

8.2.4. Address Block TLV Block

 Address Block TLVs are always associated with one or more addresses
 in the Address Block. The following sections show the TLVs that
 apply to each address.

8.2.4.1. Address Block TLVs for OrigAddr

 +-------+---------------+-----------------+--------------------+
 | Data | TLV Type | Extension Type | Value |
 +-------+---------------+-----------------+--------------------+
 | None | ADDRESS_TYPE | 0 | ADDRTYPE_ORIGADDR |
 +-------+---------------+-----------------+--------------------+

8.2.4.2. Address Block TLVs for TargAddr

Perkins, et al. Expires July 21, 2016 [Page 55]

Internet-Draft AODVv2 January 2016

 +--------------+---------------+------------+-----------------------+
 | Data | TLV Type | Extension | Value |
 | | | Type | |
 +--------------+---------------+------------+-----------------------+
None	ADDRESS_TYPE	0	ADDRTYPE_TARGADDR
TargSeqNum	SEQ_NUM	0	Sequence number of
			RREP_Gen, the router
			which created the
			RREP.
TargMetric	PATH_METRIC	MetricType	Metric value for the
/MetricType			route to TargAddr,
			using MetricType.
ValidityTime	VALIDITY_TIME	0	ValidityTime for
			route to TargAddr.
 +--------------+---------------+------------+-----------------------+

8.2.4.3. Address Block TLVs for AckReq Intended Recipient Address

 +-------+---------------+-----------------+------------------+
 | Data | TLV Type | Extension Type | Value |
 +-------+---------------+-----------------+------------------+
 | None | ADDRESS_TYPE | 0 | ADDRTYPE_INTEND |
 +-------+---------------+-----------------+------------------+

8.3. Route Reply Acknowledgement Message Representation

8.3.1. Message Header

 +-------+---------------+-----------+
 | Data | Header Field | Value |
 +-------+---------------+-----------+
 | None | <msg-type> | RREP_Ack |
 +-------+---------------+-----------+

8.3.2. Message TLV Block

 An RREP_Ack contains no Message TLVs.

8.3.3. Address Block

 An RREP_Ack contains no Address Block.

8.3.4. Address Block TLV Block

 An RREP_Ack contains no Address Block TLV Block.

Perkins, et al. Expires July 21, 2016 [Page 56]

Internet-Draft AODVv2 January 2016

8.4. Route Error Message Representation

 Route Error Messages MAY be split into multiple [RFC5444] messages
 when the desired contents would exceed the MTU. However, all of the
 resulting messages MUST have the same message header as described
 below. If PktSource is included in the AODVv2 message, it MUST be
 included in all of the resulting [RFC5444] messages.

8.4.1. Message Header

 +---------------+-----------------+---------------------------------+
 | Data | Header Field | Value |
 +---------------+-----------------+---------------------------------+
None	<msg-type>	RERR
msg_hop_limit	<msg-hop-limit>	MAX_HOPCOUNT, reduced by number
		of hops traversed so far by the
		message.
 +---------------+-----------------+---------------------------------+

8.4.2. Message TLV Block

 An RERR contains no Message TLVs.

8.4.3. Address Block

 The Address Block in an RERR MAY contain PktSource, the source
 address of the IP packet triggering RERR generation, as detailed in

Section 7.4. The prefix length associated with PktSource is equal to
 the address length in bits.

 Address Block always contains one address per route that is no longer
 valid, and each address has an associated prefix length. If a prefix
 length has not been included for this address, it is equal to the
 address length in bits.

 +------------------------------+------------------------------------+
 | Data | Address Block |
 +------------------------------+------------------------------------+
PktSource	<address> + <prefix-length> for
	PktSource
AddressList/PrefixLengthList	<address> + <prefix-length> for
	each unreachable address in
	AddressList
 +------------------------------+------------------------------------+

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires July 21, 2016 [Page 57]

Internet-Draft AODVv2 January 2016

8.4.4. Address Block TLV Block

 Address Block TLVs are always associated with one or more addresses
 in the Address Block. The following sections show the TLVs that
 apply to each type of address in the RERR.

8.4.4.1. Address Block TLVs for PktSource

 +------------+---------------+----------------+---------------------+
 | Data | TLV Type | Extension Type | Value |
 +------------+---------------+----------------+---------------------+
 | PktSource | ADDRESS_TYPE | 0 | ADDRTYPE_PKTSOURCE |
 +------------+---------------+----------------+---------------------+

8.4.4.2. Address Block TLVs for Unreachable Addresses

 +----------------+--------------+------------+----------------------+
 | Data | TLV Type | Extension | Value |
 | | | Type | |
 +----------------+--------------+------------+----------------------+
None	ADDRESS_TYPE	0	ADDRTYPE_UNREACHABLE
SeqNumList	SEQ_NUM	0	Sequence number
			associated with
			invalid route to the
			unreachable address.
MetricTypeList	PATH_METRIC	MetricType	None. Extension Type
			set to MetricType of
			the route to the
			unreachable address.
 +----------------+--------------+------------+----------------------+

9. Simple External Network Attachment

 Figure 4 shows a stub (i.e., non-transit) network of AODVv2 routers
 which is attached to an external network via a single External
 Network Access Router (ENAR). The interface to the external network
 MUST NOT be configured in the AODVv2_INTERFACES list.

 As in any externally-attached network, AODVv2 routers and Router
 Clients that wish to be reachable from the external network MUST have
 IP addresses within the ENAR's routable and topologically correct
 prefix (i.e., 191.0.2.0/24 in Figure 4). This AODVv2 network and
 networks attached to routers within it will be advertised to the
 external network using procedures which are out of scope for this
 specification.

Perkins, et al. Expires July 21, 2016 [Page 58]

Internet-Draft AODVv2 January 2016

 /-------------------------\
 / +----------------+ \
 / | AODVv2 Router | \
 | | 191.0.2.2/32 | |
 | +----------------+ | Routable
 | +-----+--------+ Prefix
 | | ENAR | /191.0.2.0/24
 | | AODVv2 Router| /
 | | 191.0.2.1 |/ /---------------\
 | | serving net +------+ External \
 | | 191.0.2.0/24 | \ Network /
 | +-----+--------+ \---------------/
 | +----------------+ |
 | | AODVv2 Router | |
 | | 191.0.2.3/32 | |
 \ +----------------+ /
 \ /
 \-------------------------/

 Figure 4: Simple External Network Attachment Example

 When an AODVv2 router within the AODVv2 MANET wants to discover a
 route toward an address on the external network, it uses the normal
 AODVv2 route discovery for that IP Destination Address. The ENAR
 MUST respond to RREQ on behalf of all external network destinations,
 i.e., destinations not on the configured 191.0.2.0/24 network. RREQs
 for addresses inside the AODVv2 network, i.e. destinations on the
 configured 191.0.2.0/24 network, are handled using the standard
 processes described in Section 7.

 When an IP packet from an address on the external network destined
 for an address in the AODVv2 MANET reaches the ENAR, if the ENAR does
 not have a route toward that exact destination in its Routing
 Information Base, it will perform normal AODVv2 route discovery for
 that destination.

 Configuring the ENAR as a default router is outside the scope of this
 specification.

10. Optional Features

 A number of optional features for AODVv2, associated initially with
 AODV, MAY be useful in networks with greater mobility or larger
 populations, or networks requiring reduced latency for application
 launches. These features are not required by minimal
 implementations.

Perkins, et al. Expires July 21, 2016 [Page 59]

Internet-Draft AODVv2 January 2016

10.1. Expanding Rings Multicast

 For multicast RREQ, msg_hop_limit MAY be set in accordance with an
 expanding ring search as described in [RFC3561] to limit the RREQ
 propagation to a subset of the local network and possibly reduce
 route discovery overhead.

10.2. Precursor Lists

 This section specifies an interoperable enhancement to AODVv2
 enabling more economical Route Error notifications.

 There can be several sources of traffic for a certain destination.
 Each source of traffic and each upstream router between the
 forwarding AODVv2 router and the traffic source is known as a
 "precursor" for the destination. For each destination, an AODVv2
 router MAY choose to keep track of precursors that have provided
 traffic for that destination. Route Error messages about that
 destination can be sent unicast to these precursors instead of
 multicast to all AODVv2 routers.

 Since an RERR will be regenerated if it comes from a next hop on a
 valid LocalRoute, the RERR SHOULD ideally be sent backwards along the
 route that the source of the traffic uses, to ensure it is
 regenerated at each hop and reaches the traffic source. If the
 reverse path is unknown, the RERR SHOULD be sent toward the source
 along some other route. Therefore, the options for saving precursor
 information are as follows:

 o Save the next hop on an existing route to the IP packet's source
 address as the precursor. In this case, it is not guaranteed that
 an RERR that is sent will follow the reverse of the source's
 route. In rare situations, this may prevent the route from being
 invalidated at the source of the data traffic.

 o Save the IP packet's source address as the precursor. In this
 case, the RERR can be sent along any existing route to the source
 of the data traffic, and SHOULD include PktSource to ensure that
 the route will be invalidated at the source of the traffic, in
 case the RERR does not follow the reverse of the source's route.

 o By inspecting the MAC address of each forwarded IP packet,
 determine which router forwarded the packet, and save the router
 address as a precursor. This ensures that when an RERR is sent to
 the precursor router, the route will be invalidated at that
 router, and the RERR will be regenerated toward the source of the
 IP packet.

https://datatracker.ietf.org/doc/html/rfc3561

Perkins, et al. Expires July 21, 2016 [Page 60]

Internet-Draft AODVv2 January 2016

 During normal operation, each AODVv2 router maintaining precursor
 lists for a LocalRoute must update the precursor list whenever it
 uses this route to forward traffic to the destination. Precursors
 are classified as Active if traffic has recently been forwarded by
 the precursor. The precursor is marked with a timestamp to indicate
 the time it last forwarded traffic on this route.

 When an AODVv2 router detects that one or more LocalRoutes are
 broken, it MAY notify each Active precursor using a unicast Route
 Error message instead of creating multicast traffic. Unicast is
 applicable when there are few Active precursors compared to the
 number of neighboring AODVv2 routers. However, the default multicast
 behavior is still preferable when there are many precursors, since
 fewer message transmissions are required.

 When an AODVv2 router supporting precursor lists receives an RERR
 message, it MAY identify the list of its own affected Active
 precursors for the routes in the RERR, and choose to send a unicast
 RERR to those, rather than send a multicast RERR.

 When a LocalRoute is expunged, any precursor list associated with it
 MUST also be expunged.

10.3. Intermediate RREP

 Without iRREP, only the AODVv2 router responsible for the target
 address can respond to an RREQ. Using iRREP, route discoveries can
 be faster and create less control traffic. This specification has
 been published as a separate Internet Draft [I-D.perkins-irrep].

10.4. Message Aggregation Delay

 The aggregation of multiple messages into a packet is specified in
 [RFC5444].

 Implementations MAY choose to briefly delay transmission of messages
 for the purpose of aggregation (into a single packet) or to improve
 performance by using jitter [RFC5148].

11. Configuration

 AODVv2 uses various parameters which can be grouped into the
 following categories:

 o Timers

 o Protocol constants

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5148

Perkins, et al. Expires July 21, 2016 [Page 61]

Internet-Draft AODVv2 January 2016

 o Administrative parameters and controls

 This section show the parameters along with their definitions and
 default values (if any).

 Note that several fields have limited size (bits or bytes). These
 sizes and their encoding may place specific limitations on the values
 that can be set.

11.1. Timers

 AODVv2 requires certain timing information to be associated with
 Local Route Set entries and message replies. The default values are
 as follows:

 +------------------------+----------------+
 | Name | Default Value |
 +------------------------+----------------+
 | ACTIVE_INTERVAL | 5 second |
 | MAX_IDLETIME | 200 seconds |
 | MAX_BLACKLIST_TIME | 200 seconds |
 | MAX_SEQNUM_LIFETIME | 300 seconds |
 | RteMsg_ENTRY_TIME | 12 seconds |
 | RREQ_WAIT_TIME | 2 seconds |
 | RREP_Ack_SENT_TIMEOUT | 1 second |
 | RREQ_HOLDDOWN_TIME | 10 seconds |
 +------------------------+----------------+

 Table 2: Timing Parameter Values

 The above timing parameter values have worked well for small and
 medium well-connected networks with moderate topology changes. The
 timing parameters SHOULD be administratively configurable. Ideally,
 for networks with frequent topology changes the AODVv2 parameters
 SHOULD be adjusted using experimentally determined values or dynamic
 adaptation. For example, in networks with infrequent topology
 changes MAX_IDLETIME MAY be set to a much larger value.

 If MAX_SEQNUM_LIFETIME was configured differently across the network,
 and any of the routers lost their sequence number or rebooted, this
 could result in their next route messages being classified as stale
 at any AODVv2 router using a greater value for MAX_SEQNUM_LIFETIME.
 This would delay route discovery from and to the re-initializing
 router.

Perkins, et al. Expires July 21, 2016 [Page 62]

Internet-Draft AODVv2 January 2016

11.2. Protocol Constants

 AODVv2 protocol constants typically do not require changes. The
 following table lists these constants, along with their values and a
 reference to the section describing their use.

 +------------------------+---------+--------------------------------+
 | Name | Default | Description |
 +------------------------+---------+--------------------------------+
DISCOVERY_ATTEMPTS_MAX	3	Section 6.6
RREP_RETRIES	2	Section 7.2.1
MAX_METRIC[MetricType]	[TBD]	Section 5
MAX_METRIC[HopCount]	255	Section 5 and Section 7
MAX_HOPCOUNT	20	Limit to number of hops an
		AODVv2 message can traverse
INFINITY_TIME	[TBD]	Maximum expressible clock time
		(Section 6.7.2)
 +------------------------+---------+--------------------------------+

 Table 3: AODVv2 Constants

 Note that <msg-hop-count> is an 8-bit field in the [RFC5444] message
 header and therefore MAX_HOPCOUNT cannot be larger than 255.

 MAX_METRIC[MetricType] MUST always be the maximum expressible metric
 value of type MetricType. Field lengths associated with metric
 values are found in Section 11.6.

 These protocol constants MUST have the same values for all AODVv2
 routers in the ad hoc network. If the values were configured
 differently, the following consequences may be observed:

 o DISCOVERY_ATTEMPTS_MAX: Routers with higher values are likely to
 be more successful at finding routes, at the cost of additional
 control traffic.

 o RREP_RETRIES: Routers with lower values are more likely to
 blacklist neighbors when there is a

 o MAX_METRIC[MetricType]: No interoperability problems due to
 variations on different routers, but routers with lower values may
 exhibit overly restrictive behavior during route comparisons.
 temporary fluctuation in link quality.

 o MAX_HOPCOUNT: Routers with a value too small would not be able to
 discover routes to distant addresses.

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires July 21, 2016 [Page 63]

Internet-Draft AODVv2 January 2016

 o INFINITY_TIME: No interoperability problems due to variations on
 different routers, but if a lower value is used, route state
 management may exhibit overly restrictive behavior.

11.3. Local Settings

 The following table lists AODVv2 parameters which SHOULD be
 administratively configured for each router:

 +------------------------+------------------------+--------------+
 | Name | Default Value | Description |
 +------------------------+------------------------+--------------+
 | AODVv2_INTERFACES | | Section 3 |
 | BUFFER_SIZE_PACKETS | 2 | Section 6.6 |
 | BUFFER_SIZE_BYTES | MAX_PACKET_SIZE [TBD] | Section 6.6 |
 | CONTROL_TRAFFIC_LIMIT | [TBD - 50 pkts/sec?] | Section 7 |
 +------------------------+------------------------+--------------+

 Table 4: Configuration for Local Settings

11.4. Network-Wide Settings

 The following administrative controls MAY be used to change the
 operation of the network. The same settings SHOULD be used across
 the network. Inconsistent settings at different routers in the
 network will not result in protocol errors, but poor performance may
 result.

 +----------------------+-----------+----------------+
 | Name | Default | Description |
 +----------------------+-----------+----------------+
 | ENABLE_IDLE_IN_RERR | Disabled | Section 7.4.1 |
 +----------------------+-----------+----------------+

 Table 5: Configuration for Network-Wide Settings

11.5. Optional Feature Settings

 These options are not required for correct routing behavior, although
 they may reduce AODVv2 protocol overhead in certain situations. The
 default behavior is to leave these options disabled.

Perkins, et al. Expires July 21, 2016 [Page 64]

Internet-Draft AODVv2 January 2016

 +---------------------------+----------+----------------------------+
 | Name | Default | Description |
 +---------------------------+----------+----------------------------+
PRECURSOR_LISTS	Disabled	Local setting (Section
		10.2)
MSG_AGGREGATION	Disabled	Local setting (Section
		10.4)
ENABLE_IRREP	Disabled	Network-wide setting
		(Section 10.3)
EXPANDING_RINGS_MULTICAST	Disabled	Network-wide setting
		(Section 10.1)
 +---------------------------+----------+----------------------------+

 Table 6: Configuration for Optional Features

11.6. MetricType Allocation

 The metric types used by AODVv2 are identified according to the
 assignments in [RFC6551]. All implementations MUST use these values.

 +---------------------+----------+--------------------+
 | Name of MetricType | Type | Metric Value Size |
 +---------------------+----------+--------------------+
 | Unassigned | 0 | Undefined |
 | Hop Count | 3 [TBD] | 1 octet |
 | Unallocated | 9 - 254 | TBD |
 | Reserved | 255 | Undefined |
 +---------------------+----------+--------------------+

 Table 7: AODVv2 Metric Types

11.7. AddressType Allocation

 These values are used in the [RFC5444] Address Type TLV discussed in
Section 8. All implementations MUST use these values.

 +-----------------------+--------+
 | Address Type | Value |
 +-----------------------+--------+
 | ADDRTYPE_ORIGADDR | 0 |
 | ADDRTYPE_TARGADDR | 1 |
 | ADDRTYPE_UNREACHABLE | 2 |
 | ADDRTYPE_PKTSOURCE | 3 |
 | ADDRTYPE_INTEND | 4 |
 | ADDRTYPE_UNSPECIFIED | 255 |
 +-----------------------+--------+

 Table 8: AODVv2 Address Types

https://datatracker.ietf.org/doc/html/rfc6551
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires July 21, 2016 [Page 65]

Internet-Draft AODVv2 January 2016

12. IANA Considerations

 This section specifies several [RFC5444] message types and address
 tlv-types required for AODVv2.

12.1. RFC 5444 Message Types

 This specification defines four Message Types, to be allocated from
 the 0-223 range of the "Message Types" namespace defined in
 [RFC5444], as specified in Table 9.

 +---+-----------+
 | Name of Message | Type |
 +---+-----------+
 | Route Request (RREQ) | 10 (TBD) |
 | Route Reply (RREP) | 11 (TBD) |
 | Route Error (RERR) | 12 (TBD) |
 | Route Reply Acknowledgement (RREP_Ack) | 13 (TBD) |
 +---+-----------+

 Table 9: AODVv2 Message Types

12.2. RFC 5444 Address Block TLV Types

 This specification defines three Address Block TLV Types, to be
 allocated from the "Address Block TLV Types" namespace defined in
 [RFC5444], as specified in Table 10.

 +------------------------+----------+---------------+---------------+
 | Name of TLV | Type | Length | Reference |
 | | | (octets) | |
 +------------------------+----------+---------------+---------------+
PATH_METRIC	10 (TBD)	depends on	Section 7
		MetricType	
SEQ_NUM	11 (TBD)	2	Section 7
ADDRESS_TYPE	15 (TBD)	1	Section 8
 +------------------------+----------+---------------+---------------+

 Table 10: AODVv2 Address Block TLV Types

13. Security Considerations

 This section describes various security considerations and potential
 avenues to secure AODVv2 routing. The objective of the AODVv2
 protocol is for each router to communicate reachability information
 about addresses for which it is responsible, and for routes it has
 learned from other AODVv2 routers. Positive routing information
 (i.e. a route exists) is distributed via RREQ and RREP messages.

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires July 21, 2016 [Page 66]

Internet-Draft AODVv2 January 2016

 AODVv2 routers store the information contained in these messages in
 order to properly forward IP packets, and they generally provide this
 information to other AODVv2 routers. Negative routing information
 (i.e. a route does not exist) is distributed via RERR messages.
 AODVv2 routers process these messages and remove routes, and forward
 this information to other AODVv2 routers.

 Networks using AODVv2 to maintain connectivity and establish routes
 on demand may be vulnerable to certain well-known types of threats.
 Flooding attacks using RREQ amount to a denial of service for route
 discovery. Valid route table entries can be replaced by maliciously
 constructed RREQ and RREP messages. Links could be erroneously
 treated as bidirectional if malicious unsolicited RREP or RREP_Ack
 messages were to be accepted. Replay attacks using RERR messages
 could, in some circumstances, be used to disrupt active routes.
 Passive inspection of AODVv2 control messages could enable
 unauthorized devices to gain information about the network topology,
 since exchanging such information is the main purpose of AODVv2.

 The on-demand nature of AODVv2 route discovery reduces the
 vulnerability to route disruption. Since control traffic for
 updating route tables is diminished, there is less opportunity for
 failure. Processing requirements for AODVv2 are typically quite
 small, and would typically be dominated by calculations to verify
 integrity. This has the effect of reducing (but by no means
 eliminating) AODVv2's vulnerability to denial of service attacks.

 Encryption MAY be used for AODVv2 messages. If the routers share a
 packet-level security association, the message data can be encrypted
 prior to message transmission. The establishment of such security
 associations is outside the scope of this specification. Encryption
 will not only protect against unauthorized devices obtaining
 information about network topology but will ensure that only trusted
 routers participate in routing operations.

 Message integrity checking is enabled by the Integrity Check Value
 mechanisms defined in [RFC7182]. The data contained in AODVv2
 routing protocol messages SHOULD be verified using ICV values, to
 avoid the use of message data if the message has been tampered with
 or replayed. Otherwise, it would be possible to disrupt
 communications by injecting nonexistent or malicious routes into the
 route tables of routers within the ad hoc network. This can result
 in loss of data or message processing by unauthorized devices.

 The remainder of this section provides specific recommendations for
 the use of the integrity checking and timestamp functions defined in
 [RFC7182] to ensure the integrity of each AODVv2 message. The
 calculation used for the Integrity Check Value will depend on the

https://datatracker.ietf.org/doc/html/rfc7182
https://datatracker.ietf.org/doc/html/rfc7182

Perkins, et al. Expires July 21, 2016 [Page 67]

Internet-Draft AODVv2 January 2016

 message type. Sequence numbers can be used as timestamps to protect
 against replay, since they are known to be strictly increasing.

 RREQ messages advertise a route to OrigAddr, and impose very little
 processing requirement for receivers. The main threat presented by
 sending an RREQ message with false information is that traffic to
 OrigAddr could be disrupted. Since RREQ is multicast and likely to
 be received by all routers in the ad hoc network, this threat could
 have serious impact on applications communicating by way of OrigAddr.
 The actual threat to disrupt routes to OrigAddr is reduced by the
 AODVv2 mechanism of marking RREQ-derived routes as "Unconfirmed"
 until the link to the next hop is confirmed. If AODVv2 routers
 always verify the integrity of the RREQ message data, then the threat
 of disruption is minimized. The ICV mechanisms offered in [RFC7182]
 are sufficient for this purpose. Since OrigAddr is included in the
 RREQ, the ICV can be calculated and verified using message contents.
 The ICV SHOULD be verified at every step along the dispersal path of
 the RREQ to mitigate the threat. Since RREQ_Gen's sequence number is
 incremented for each new RREQ, replay protection is already afforded
 and no extra timestamp mechanism is required.

 RREP messages advertise a route to TargAddr, and impose very little
 processing requirement for receivers. The main threat presented by
 sending an RREP message with false information is that traffic to
 TargAddr could be disrupted. Since RREP is unicast, this threat is
 restricted to receivers along the path from OrigAddr to TargAddr. If
 AODVv2 routers always verify the integrity of the RREP message data,
 then this threat is minimized. This facility is offered by the ICV
 mechanisms in [RFC7182]. Since TargAddr is included as a Data
 Element of the RREP, the ICV can be calculated and verified using
 message contents. The ICV SHOULD be verified at every step along the
 unicast path of the RREP. Since RREP_Gen's sequence number is
 incremented for each new RREP, replay protection is afforded and no
 extra timestamp mechanism is required.

 RREP_Ack messages are intended to verify bidirectional neighbor
 connectivity, and impose very little processing requirement for
 receivers. The main threat presented by sending an RREP_Ack message
 with false information is that the route advertised to a target
 address in an RREP might be erroneously accepted even though the
 route would contain a unidirectional link and thus not be suitable
 for most traffic. Since RREP_Ack is unicast, this threat is strictly
 local to the RREP transmitter expecting the acknowledgement. A
 malicious router could also attempt to send an unsolicited RREP_Ack
 to convince another router that a bidirectional link exists and
 subsequently use further messages to divert traffic along a route
 which is not valid. If AODVv2 routers always verify the integrity of
 the RREP_Ack message data, then this threat is minimized. This

https://datatracker.ietf.org/doc/html/rfc7182
https://datatracker.ietf.org/doc/html/rfc7182

Perkins, et al. Expires July 21, 2016 [Page 68]

Internet-Draft AODVv2 January 2016

 facility is offered by the ICV mechanisms in [RFC7182]. The RREP_Gen
 SHOULD use the source IP address of the RREP_Ack to identify the
 sender, and so the ICV SHOULD be calculated using the message
 contents and the IP source address. The message must also include
 the Timestamp defined in [RFC7182] to protect against replay attacks,
 using TargSeqNum from the RREP as the value in the TIMESTAMP TLV.

 RERR messages remove routes, and impose very little processing
 requirement for receivers. The main threat presented by sending an
 RERR message with false information is that traffic to the advertised
 destinations could be disrupted. Since RERR is multicast and can be
 received by many routers in the ad hoc network, this threat could
 have serious impact on applications communicating by way of the
 sender of the RERR message. However, since the sender of the RERR
 message with erroneous information MAY be presumed to be either
 malicious or broken, it is better that such routes not be used
 anyway. Another threat is that a malicious RERR message MAY be sent
 with a PktSource included, to disrupt PktSource's ability to send to
 the addresses contained in the RERR. If AODVv2 routers always verify
 the integrity of the RERR message data, then this threat is reduced.
 This facility is offered by the ICV mechanisms in [RFC7182]. The
 receiver of the RERR SHOULD use the source IP address of the RERR to
 identify the sender. The message must also include the Timestamp
 defined in [RFC7182] to protect against replay attacks, using SeqNum
 from RERR_Gen as the value in the TIMESTAMP TLV.

14. Acknowledgments

 AODVv2 is a descendant of the design of previous MANET on-demand
 protocols, especially AODV [RFC3561] and DSR [RFC4728]. Changes to
 previous MANET on-demand protocols stem from research and
 implementation experiences. Thanks to Elizabeth Belding and Ian
 Chakeres for their long time authorship of AODV. Additional thanks
 to Derek Atkins, Emmanuel Baccelli, Abdussalam Baryun, Ramon Caceres,
 Thomas Clausen, Justin Dean, Christopher Dearlove, Ulrich Herberg,
 Henner Jakob, Luke Klein-Berndt, Lars Kristensen, Tronje Krop,
 Koojana Kuladinithi, Kedar Namjoshi, Keyur Patel, Alexandru Petrescu,
 Henning Rogge, Fransisco Ros, Pedro Ruiz, Christoph Sommer, Romain
 Thouvenin, Richard Trefler, Jiazi Yi, Seung Yi, and Cong Yuan, for
 their reviews of AODVv2 and DYMO, as well as numerous specification
 suggestions.

15. References

https://datatracker.ietf.org/doc/html/rfc7182
https://datatracker.ietf.org/doc/html/rfc7182
https://datatracker.ietf.org/doc/html/rfc7182
https://datatracker.ietf.org/doc/html/rfc7182
https://datatracker.ietf.org/doc/html/rfc3561
https://datatracker.ietf.org/doc/html/rfc4728

Perkins, et al. Expires July 21, 2016 [Page 69]

Internet-Draft AODVv2 January 2016

15.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3561] Perkins, C., Belding-Royer, E., and S. Das, "Ad hoc On-
 Demand Distance Vector (AODV) Routing", RFC 3561, DOI
 10.17487/RFC3561, July 2003,
 <http://www.rfc-editor.org/info/rfc3561>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <http://www.rfc-editor.org/info/rfc4291>.

 [RFC5082] Gill, V., Heasley, J., Meyer, D., Savola, P., Ed., and C.
 Pignataro, "The Generalized TTL Security Mechanism
 (GTSM)", RFC 5082, DOI 10.17487/RFC5082, October 2007,
 <http://www.rfc-editor.org/info/rfc5082>.

 [RFC5444] Clausen, T., Dearlove, C., Dean, J., and C. Adjih,
 "Generalized Mobile Ad Hoc Network (MANET) Packet/Message
 Format", RFC 5444, DOI 10.17487/RFC5444, February 2009,
 <http://www.rfc-editor.org/info/rfc5444>.

 [RFC5497] Clausen, T. and C. Dearlove, "Representing Multi-Value
 Time in Mobile Ad Hoc Networks (MANETs)", RFC 5497, DOI
 10.17487/RFC5497, March 2009,
 <http://www.rfc-editor.org/info/rfc5497>.

 [RFC5498] Chakeres, I., "IANA Allocations for Mobile Ad Hoc Network
 (MANET) Protocols", RFC 5498, DOI 10.17487/RFC5498, March
 2009, <http://www.rfc-editor.org/info/rfc5498>.

 [RFC6551] Vasseur, JP., Ed., Kim, M., Ed., Pister, K., Dejean, N.,
 and D. Barthel, "Routing Metrics Used for Path Calculation
 in Low-Power and Lossy Networks", RFC 6551, DOI 10.17487/

RFC6551, March 2012,
 <http://www.rfc-editor.org/info/rfc6551>.

 [RFC7182] Herberg, U., Clausen, T., and C. Dearlove, "Integrity
 Check Value and Timestamp TLV Definitions for Mobile Ad
 Hoc Networks (MANETs)", RFC 7182, DOI 10.17487/RFC7182,
 April 2014, <http://www.rfc-editor.org/info/rfc7182>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3561
http://www.rfc-editor.org/info/rfc3561
https://datatracker.ietf.org/doc/html/rfc4291
http://www.rfc-editor.org/info/rfc4291
https://datatracker.ietf.org/doc/html/rfc5082
http://www.rfc-editor.org/info/rfc5082
https://datatracker.ietf.org/doc/html/rfc5444
http://www.rfc-editor.org/info/rfc5444
https://datatracker.ietf.org/doc/html/rfc5497
http://www.rfc-editor.org/info/rfc5497
https://datatracker.ietf.org/doc/html/rfc5498
http://www.rfc-editor.org/info/rfc5498
https://datatracker.ietf.org/doc/html/rfc6551
https://datatracker.ietf.org/doc/html/rfc6551
http://www.rfc-editor.org/info/rfc6551
https://datatracker.ietf.org/doc/html/rfc7182
http://www.rfc-editor.org/info/rfc7182

Perkins, et al. Expires July 21, 2016 [Page 70]

Internet-Draft AODVv2 January 2016

15.2. Informative References

 [I-D.perkins-irrep]
 Perkins, C., "Intermediate RREP for dynamic MANET On-
 demand (AODVv2) Routing", draft-perkins-irrep-03 (work in
 progress), May 2015.

 [Koodli01]
 Koodli, R. and C. Perkins, "Fast handovers and context
 transfers in mobile networks", Proceedings of the ACM
 SIGCOMM Computer Communication Review 2001, Volume 31
 Issue 5, 37-47, October 2001.

 [Perkins94]
 Perkins, C. and P. Bhagwat, "Highly Dynamic Destination-
 Sequenced Distance-Vector Routing (DSDV) for Mobile
 Computers", Proceedings of the ACM SIGCOMM '94 Conference
 on Communications Architectures, Protocols and
 Applications, London, UK, pp. 234-244, August 1994.

 [Perkins99]
 Perkins, C. and E. Royer, "Ad hoc On-Demand Distance
 Vector (AODV) Routing", Proceedings of the 2nd IEEE
 Workshop on Mobile Computing Systems and Applications, New
 Orleans, LA, pp. 90-100, February 1999.

 [RFC2501] Corson, S. and J. Macker, "Mobile Ad hoc Networking
 (MANET): Routing Protocol Performance Issues and
 Evaluation Considerations", RFC 2501, DOI 10.17487/

RFC2501, January 1999,
 <http://www.rfc-editor.org/info/rfc2501>.

 [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
 Addresses", RFC 4193, DOI 10.17487/RFC4193, October 2005,
 <http://www.rfc-editor.org/info/rfc4193>.

 [RFC4728] Johnson, D., Hu, Y., and D. Maltz, "The Dynamic Source
 Routing Protocol (DSR) for Mobile Ad Hoc Networks for
 IPv4", RFC 4728, DOI 10.17487/RFC4728, February 2007,
 <http://www.rfc-editor.org/info/rfc4728>.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 DOI 10.17487/RFC4861, September 2007,
 <http://www.rfc-editor.org/info/rfc4861>.

https://datatracker.ietf.org/doc/html/draft-perkins-irrep-03
https://datatracker.ietf.org/doc/html/rfc2501
https://datatracker.ietf.org/doc/html/rfc2501
http://www.rfc-editor.org/info/rfc2501
https://datatracker.ietf.org/doc/html/rfc4193
http://www.rfc-editor.org/info/rfc4193
https://datatracker.ietf.org/doc/html/rfc4728
http://www.rfc-editor.org/info/rfc4728
https://datatracker.ietf.org/doc/html/rfc4861
http://www.rfc-editor.org/info/rfc4861

Perkins, et al. Expires July 21, 2016 [Page 71]

Internet-Draft AODVv2 January 2016

 [RFC5148] Clausen, T., Dearlove, C., and B. Adamson, "Jitter
 Considerations in Mobile Ad Hoc Networks (MANETs)", RFC

5148, DOI 10.17487/RFC5148, February 2008,
 <http://www.rfc-editor.org/info/rfc5148>.

 [RFC6130] Clausen, T., Dearlove, C., and J. Dean, "Mobile Ad Hoc
 Network (MANET) Neighborhood Discovery Protocol (NHDP)",

RFC 6130, DOI 10.17487/RFC6130, April 2011,
 <http://www.rfc-editor.org/info/rfc6130>.

 [Sholander02]
 Sholander, P., Coccoli, P., Oakes, T., and S. Swank, "A
 Portable Software Implementation of a Hybrid MANET Routing
 Protocol", 2002.

Appendix A. AODVv2 Draft Updates

 This section lists the changes between AODVv2 revisions ...-12.txt
 and ...-13.txt.

 o Updated uses of host and node.

 o Removed use of Data Element.

 o Added explanation of self-healing issue of hop-by-hop
 acknowledgements.

 o Moved appendix on relocation of routing prefix to a different
 router into the main draft.

 o Added notes on forwarding plane to the Overview and added to text
 in the Applicability Statement.

 o Separated AODVv2's Local Route Set from the Routing Information
 Base.

 o Updated Adjacency Monitoring to Next Hop Monitoring.

 o Added extra description in Multicast Route Message Table section.

 o Added extra notes on possible implementations of Local Route Set.

 o Added short description of reactive routing protocols to
 Applicability Statement.

 o Added extra note in Applicability Statement about multiple IP
 addresses per router interface.

https://datatracker.ietf.org/doc/html/rfc5148
https://datatracker.ietf.org/doc/html/rfc5148
http://www.rfc-editor.org/info/rfc5148
https://datatracker.ietf.org/doc/html/rfc6130
http://www.rfc-editor.org/info/rfc6130

Perkins, et al. Expires July 21, 2016 [Page 72]

Internet-Draft AODVv2 January 2016

 o Used clear references to Neighbor.State and LocalRoute.State.

 o Added reference for text aboute buffering TCP packets.

 o Updated text about Route.State to be clear which routes may be
 copied to a Routing Information Base.

 o Added explanation of when a route discovery might not be attempted
 and action taken instead.

 o Added text to explain that routes to prefixes are learned when
 prefix lengths are included in AODVv2 messages.

 o Changed rule for adding new route if current routes to the same
 address have Route.State set to Unconfirmed.

 o Changed text about reporting broken routes to use MUST instead of
 SHOULD.

 o Updated message processing algorithms to refer to Neighbor
 Table updates.

 o Added extra explanation for use of AckReq in RREP message.

 o Added extra explanation for RREP_Ack handling.

 o Removed references to MTU in RERR section and updated processing
 rules.

 o Removed reference to RFC 6621.

 o Removed appendix about multi-homing.

 o Removed appendix containing pseudo-code.

 o Minor editorial improvements.

Authors' Addresses

 Charles E. Perkins
 Futurewei Inc.
 2330 Central Expressway
 Santa Clara, CA 95050
 USA

 Phone: +1-408-330-4586
 Email: charliep@computer.org

https://datatracker.ietf.org/doc/html/rfc6621

Perkins, et al. Expires July 21, 2016 [Page 73]

Internet-Draft AODVv2 January 2016

 Stan Ratliff
 Idirect
 13861 Sunrise Valley Drive, Suite 300
 Herndon, VA 20171
 USA

 Email: ratliffstan@gmail.com

 John Dowdell
 Airbus Defence and Space
 Celtic Springs
 Newport, Wales NP10 8FZ
 United Kingdom

 Email: john.dowdell@airbus.com

 Lotte Steenbrink
 HAW Hamburg, Dept. Informatik
 Berliner Tor 7
 D-20099 Hamburg
 Germany

 Email: lotte.steenbrink@haw-hamburg.de

 Victoria Mercieca
 Airbus Defence and Space
 Celtic Springs
 Newport, Wales NP10 8FZ
 United Kingdom

 Email: victoria.mercieca@airbus.com

Perkins, et al. Expires July 21, 2016 [Page 74]

