
INTERNET-DRAFT October 1998
draft-ietf-manet-cedar-spec-00.txt
Expires in six months

 Core Extraction Distributed Ad hoc Routing (CEDAR) Specification

 Raghupathy Sivakumar Prasun Sinha Vaduvur Bharghavan
 University of Illinois, Urbana-Champaign

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 To view the entire list of current Internet-Drafts, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), ftp.nordu.net (Northern
 Europe), ftp.nis.garr.it (Southern Europe), munnari.oz.au (Pacific
 Rim), ftp.ietf.org (US East Coast), or ftp.isi.edu (US West Coast).

Abstract

 This draft presents CEDAR, a Core-Extraction Distributed Ad
 hoc Routing algorithm for QoS routing in ad hoc network environments.
 CEDAR has three key components: (a) the establishment and
 maintenance of a self-organizing routing infrastructure, called
 the "core", for performing route computations, (b) the
 propagation of the link-state of stable high-bandwidth links in the
 core through "increase/decrease" waves, and (c) a QoS route
 computation algorithm that is executed at the core nodes using only
 locally available state.

https://datatracker.ietf.org/doc/html/draft-ietf-manet-cedar-spec-00.txt

Sivakumar, Sinha, Bharghavan [Page 1]

INTERNET-DRAFT CEDAR Specification October 1998

Table of Contents

1. Introduction . 3
2. Network Model . 5
3. CEDAR Architecture and the Core 7

 3a. Rationale for a Core-based Architecture in CEDAR 8
 3b. Generation and Maintenance of the Core in CEDAR 10
 3c. Core Broadcast and its Application to CEDAR 12

4. QoS State Propagation in CEDAR 14
 4a. Increase and Decrease Waves 15
 4b. Issues in link state propagation 19

5. QoS Routing in CEDAR 20
 5a. Establishment of the Core Path 20
 5b. QoS Route Computation 22
 5c. Dynamic QoS Route Recomputation for Ongoing Connections . 24

6. Performance Results 25
7. Conclusions . 26
8. References . 27
9 . Authors' Addresses . 28

Sivakumar, Sinha, Bharghavan [Page 2]

INTERNET-DRAFT CEDAR Specification October 1998

1. Introduction

 An ad hoc network is a dynamic multi-hop wireless network that is
 established by a group of mobile hosts on a shared wireless
 channel by virtue of their proximity t[o each other. These
 channels, typically being scarce and dynamic, make it difficult to
 perform efficient resource utilization or to execute critical
 applications. Hence, QoS routing, as opposed to non-QoS routing, is
 desirable in such environments. This draft focuses on a restricted
 QoS Routing problem: the satisfaction of minimum bandwidth
 requirements. Of course, since the network is highly dynamic, and
 transmissions are susceptible to fades, interference, and collisions
 from hidden/exposed stations, CEDAR cannot provide bandwidth
 guarantees for the computed routes. Rather, its goal is to provide
 routes that are highly likely to satisfy the bandwidth requirement of
 a route, so long as such routes exist [1].

 Given the nature of the network and the requirements of the
 applications, the following are the key goals of CEDAR.

 (a) Route computation must be distributed because centralized
 routing in a dynamic network is impossible even for fairly small
 networks. (b) Route computation should not involve the maintenance of
 global state, or even significant amounts of volatile non-local
 state. In particular, link state routing is not feasible for highly
 dynamic networks because of the significant state propagation
 overhead when the network topology changes. (c) As few nodes as
 possible must be involved in state propagation and route computation
 (without becoming single points of failure), since this involves
 monitoring and updating at least some state in the network. On the
 other hand, every host must have quick access to routes on-demand.
 (d) Each node must only care about the routes corresponding to its
 destination, and must not be involved in frequent topology updates
 for parts of the network to which it has no traffic. (e) Stale routes
 must be either avoided, or detected and eliminated quickly. (f)
 Broadcasts must be avoided as far as possible because broadcasts are
 highly unreliable in ad hoc networks. (g) If the topology stabilizes,
 then routes must converge to the optimal routes, and (h) It is
 desirable to have a backup route when the primary route has become
 stale and is being recomputed.

 QoS routing for ad hoc networks is relatively unchartered territory.
 In addition to the above, we have the following goals for QoS routing
 in ad hoc networks. (a) Applications provide a minimum bandwidth
 requirement for a connection, and the routing algorithm must
 efficiently compute a route that can satisfy the bandwidth
 requirement with high probability. (b) The amount of state
 propagation and topology update information must be kept to a

Sivakumar, Sinha, Bharghavan [Page 3]

INTERNET-DRAFT CEDAR Specification October 1998

 minimum. In particular, every change in available bandwidth should
 not result in updated state propagation. (c) Dynamic links (either
 unstable or low bandwidth links) must not cause state propagation
 throughout the network. Only stable high bandwidth link information
 must be propagated throughout the network, and (d) The QoS route
 computation algorithm should be simple and robust. Robustness, rather
 than optimality, is the key requirement.

 In order to achieve the above goals, this draft proposes the Core-
 Extraction Distributed Ad hoc Routing (CEDAR) algorithm for QoS
 routing in ad hoc networks. Briefly, CEDAR dynamically establishes a
 "core" of the network, and then incrementally propagates link state
 of stable high bandwidth links to the nodes of the core. Route
 computation is on-demand, and is performed by core hosts using local
 state only. CEDAR is proposed as a QoS routing algorithm for small
 to medium size ad hoc networks consisting of tens to hundreds of
 nodes. CEDAR does not compute optimal routes because of the
 minimalist approach to state management, but the trade-off of
 robustness and adaptation for optimality is believed to be well
 justified in ad hoc networks. The following is a brief description of
 the three key components of CEDAR.

 1. Establishment and Maintenance of a core using Local Core
 Extraction

 CEDAR does core extraction in order to extract a subset of nodes
 in the network that would be the only ones that perform state
 management and route computation. The core extraction is done
 dynamically by approximating a minimum dominating set of the ad
 hoc network using only local computation and local state. Each
 host in the core then establishes a virtual link (via a tunnel) to
 nearby core hosts (within the 3rd neighborhood in the ad hoc
 network). Each core host maintains the local topology of the hosts
 in its domain, and also performs route computation on behalf of
 these hosts. The core computation and core management upon change
 in the network topology are purely local computations to enable
 the core to adapt efficiently to the dynamics of the network.

 2. Link State Propagation using Increase/Decrease waves

 While it is possible to execute ad hoc routing algorithms using
 only local topology information at the core nodes, QoS routing in
 CEDAR is achieved by propagating, in the core, the bandwidth
 availability information of stable links. The basic idea is that
 the information about stable high-bandwidth links can be made
 known to core nodes far away in the network, while information
 about dynamic links or low bandwidth links should remain local. By
 means of this link state propagation mechanism, CEDAR approximates

Sivakumar, Sinha, Bharghavan [Page 4]

INTERNET-DRAFT CEDAR Specification October 1998

 a minimalist local state algorithm in highly dynamic networks
 while it approaches the maximalist link state algorithm in highly
 stable networks. The propagation of link-state is achieved through
 slow-moving 'increase' waves (which denote increase of bandwidth)
 and fast-moving 'decrease' waves (which denote decrease of
 bandwidth), which traverse the core. The key questions to answer
 in link state propagation are: when should an increase/decrease
 wave be initiated, how far should a wave propagate, and how fast
 should a wave propagate.

 3. Route Computation

 Route computation first establishes a core path from the domain of
 the source to the domain of the destination. This initial phase
 involves probing on the core, and the resultant core path is
 cached for future use. The core path provides the directionality
 of the route from the source to the destination. Using this
 directional information, CEDAR iteratively tries to find a partial
 route from the source to the domain of the furthest possible node
 in the core path (which then becomes the source for the next
 iteration) which can satisfy the requested bandwidth, using only
 local information. Effectively, the computed route is a
 concatenation of the shortest-widest-furthest (the least hop path
 among the maximum bandwidth paths) paths found locally using the
 core path as the guideline.

 Several algorithms have been proposed for routing in ad hoc networks.
 The ad hoc routing algorithms proposed in [2,3,4] provide a single
 route in response to a route query from a source. Previous work on
 tactical packet radio networks had led to many of the fundamental
 results in ad hoc networks. [3] has proposed an architecture similar
 to the "core" called the linked clusterhead architecture but it uses
 gateways for communication between clusterheads and does not attempt
 to minimize the size of the core infrastructure. The multipath
 routing algorithms proposed in [6,7,8] are more robust than the
 single route on demand algorithms, at the cost of higher memory and
 message requirements.

2. Network Model

 This section describes the network model and the terminology used in
 this draft.

 Network Model

 CEDAR assumes that all the hosts communicate on the same shared

Sivakumar, Sinha, Bharghavan [Page 5]

INTERNET-DRAFT CEDAR Specification October 1998

 logical wireless channel. CEDAR assumes that each transmitter has
 a fixed transmission range, and that neighborhood is a commutative
 property (i.e. if A can hear B, then B can hear A). Because of the
 local nature of transmissions, hidden and exposed stations abound
 in an ad hoc network. CEDAR assumes the use of a CSMA/CA like
 algorithm for reliable unicast communication, and for solving the
 problem of hidden/exposed stations. Essentially, data transmission
 is preceded by a control packet handoff, and the sequence of
 packets exchanged in a communication is the following: RTS (from
 sender to receiver) - CTS (from receiver to sender) - Data (from
 sender to receiver) - ACK (from receiver to sender). The RTS and
 CTS packets avoid collisions from the exposed stations and the
 hidden stations respectively. Local broadcasts are not guaranteed
 to be reliable (because it is unreasonable to expect a CTS from
 every receiver before commencing data transmission), and are
 typically quite unreliable due to the presence of hidden and
 exposed stations.

 CEDAR assumes small to medium networks ranging upto to hundreds of
 hosts. For larger networks, we believe that a clustering algorithm
 [6] can be used to reduce the cluster size and apply CEDAR
 hierarchically within each cluster, for a cluster of clusters,
 etc. CEDAR also assumes that mobility and extended fades are the
 main causes of link failures and topology changes. We assume that
 the change in network topology is frequent, but not frequent
 enough to render any sort of route computation useless. Note that
 CEDAR only cares about the relative mobility of the hosts, not the
 absolute mobility of the hosts. In particular, even if all the
 hosts are moving, the ad hoc network would be considered to be
 stable so long as the neighborhood of each host does not change.

 As in most QoS routing algorithms, CEDAR assumes that the MAC/link
 layer can estimate the available link bandwidth. Because all the
 hosts in a region share the same channel, each host must share the
 link bandwidth with the hosts in its second neighborhood [7]. In
 related work on providing QoS in wireless channels, a mechanism is
 provided for each host to fairly access a shared channel, and
 claim at least B/N bandwidth, where B is the effective channel
 bandwidth and N is the number of hosts locally contending for the
 bandwidth [8]. This work is currently being extended to ad hoc
 networks. While details of bandwidth sharing and estimation are
 beyond the scope of this draft, it is assumed that each host can
 estimate the available bandwidth of its links using some link-
 level mechanisms.

 CEDAR assumes a close coordination between the MAC layer and the
 routing layer. In particular, it uses the reception of RTS and CTS
 control messages at the MAC layer in order to improve the behavior

Sivakumar, Sinha, Bharghavan [Page 6]

INTERNET-DRAFT CEDAR Specification October 1998

 of the routing layer, as explained in Section 3.

 Finally, bandwidth is the QoS parameter of interest in this draft.
 When an application requests a connection, it specifies the
 required bandwidth for the connection. The goal of CEDAR is then
 to find a short stable route that can satisfy the bandwidth
 requirement of the connection.

 Graph Terminology

 The ad hoc network is represented by means of an undirected graph
 G=(V,E), where V is the set of nodes in the graph (hosts in the
 network), and E is the set of edges in the graph (links in the
 network). The i-th open neighborhood, Ni(x) of node x is the set
 of nodes whose distance from x is not greater than i, except node
 x itself. The i-th closed neighborhood Ni[x] of node x is N(i) U
 {x}.

 A dominating set S (a subset of V) is a set such that every node
 in V is either in S or is a neighbor of a node in S. A dominating
 set with minimum cardinality is called a minimum dominating set
 (MDS). A virtual link [u,v] between two nodes in the dominating
 set S is a path in G from u to v. The draft uses the term tunnel
 interchangeably with virtual link.

 Given an MDS Vc of graph G, define a core of the graph C=(Vc, Ec),
 where Ec = { [u,v] u in Vc, v in Vc, u in N3(v) } . Thus, the core
 graph consists of the MDS nodes Vc, and a set of virtual links
 between every two nodes in Vc that are within a distance 3 of each
 other in G. Two nodes u and v which have a virtual link [u,v] in
 the core are said to be "nearby" nodes.

 For a connected graph G, consider any dominating set S. If the
 diameter of G is greater than 2, then for each node v in S, there
 must be at least one other node of S in N3(v) (otherwise there is
 at least one node in G which is neither in S nor has a neighbor in
 S). From the definition of the core, if G is connected, then a
 core C of G must also be connected (via virtual links).

3. CEDAR Architecture and the Core

 This section focuses on the establishment and maintenance of the
 core. Briefly, CEDAR extracts the core of the ad hoc network by
 approximating the minimum dominating set (MDS) of the ad hoc network.
 The nodes in the MDS comprise the core nodes of the network. Each
 core node establishes a unicast virtual link (via a tunnel) with
 nearby core nodes that are a distance of 3 or less away from it in
 the ad hoc network. This guarantees that the core is connected so

Sivakumar, Sinha, Bharghavan [Page 7]

INTERNET-DRAFT CEDAR Specification October 1998

 long as the network is connected. The core nodes then collect local
 topology information and information about stable high-bandwidth
 links far away and perform routing for the nodes in their domain (or
 immediate neighborhood). Each node that is not in the core chooses a
 core neighbor as its dominator, i.e. the node which performs route
 computations on its behalf. The core is merely an infrastructure for
 facilitating route computation, and is itself independent of the
 routing algorithm. In particular, it is possible to use any of the
 well known ad hoc routing algorithms such as DSR [2], LMR [4], TORA
 [5], DSDV [9], etc. in the core graph.

 In the following subsections, the motivation for choosing a core-
 based routing architecture is first described, then a low overhead
 mechanism to generate and maintain the core of the network is
 presented, and finally an efficient mechanism to accomplish a 'core
 broadcast' using local unicast transmissions is described. The core
 broadcast is used both for propagation of increase/decrease waves,
 and for the establishment of the core path in the route computation
 phase.

 3a. Rationale for a Core-based Architecture in CEDAR

 Many contemporary proposals for ad hoc networking require every
 node in the ad hoc network to perform route computations and
 topology management [2,6,19,20]. However, CEDAR uses a core-based
 infrastructure for QoS routing due to two compelling reasons.

 1. QoS route computation involves maintaining local and some
 non-local link-state, and monitoring and reacting to some
 topology changes. Clearly, it is beneficial to have as few
 nodes in the network performing state management and route
 computation as possible.

 2. Local broadcasts are highly unreliable in ad hoc networks
 due to the abundance of hidden and exposed stations. The
 problem of local broadcasts in ad hoc networks has also been a
 recent subject of discussion in the MANET working group.
 Topology information propagation [19,20] and route probes [2,6]
 are inevitable in order to establish routes and will, of
 necessity, need to be broadcast if every node performs route
 computation. On the other hand, if only a core subset of nodes
 in the ad hoc network perform route computations, it is
 possible to set up reliable unicast channels between nearby
 core nodes and accomplish both the topology updates and route
 probes much more effectively.

 The issues with having only a core subset of nodes performing

Sivakumar, Sinha, Bharghavan [Page 8]

INTERNET-DRAFT CEDAR Specification October 1998

 route computations are threefold. First, nodes in the ad hoc
 network that do not perform route computation must have easy
 access to a nearby core node so that they can quickly request
 routes to be setup. Second, the establishment of the core must be
 a purely local computation. In particular, no core node must need
 to know the topology of the entire core graph. Third, a change in
 the network topology may cause a recomputation of the core graph.
 Recomputation of the core graph must only occur in the locality of
 the topology change, and must not involve a global recomputation
 of the core graph. On the other hand, the locally recomputed core
 graph must still only comprise of a small number of core nodes -
 otherwise the benefit of restricting route computation to a small
 core graph is lost.

Sivakumar, Sinha, Bharghavan [Page 9]

INTERNET-DRAFT CEDAR Specification October 1998

 o o
 | |
 | |
 o *
 / \ / \
 / \ / \
 o----o-----o----o o----*-----*----o
 | | | |
 o o o o
 | | | |
 | o | o
 | | | |
 o----o-----o----o o----*-----*----o
 | | | |
 | | | |
 o-----o o-----o

 (a) (b)

 o nodes -- link
 * core nodes

 Figure 1 : (a) The example network (b) The example network with
 core nodes chosen

 3b. Generation and Maintenance of the Core in CEDAR

 Ideally, the core comprises of the nodes in a minimum dominating
 set Vc of the ad hoc network G=(V,E). While a greedy algorithm
 can be used to generate the best known approximation for the MDS,
 CEDAR uses a robust and simple, constant time algorithm which
 requires only local computations and generates good approximations
 for the MDS in the average case.

 Consider a node u, with first open neighborhood N1(u), degree d(u)
 = |N1(u)|, dominator dom(u), and effective degree d*(u), where
 d*(u) is the number of nodes in the closed neighborhood N1[u], who
 have chosen u as their dominator. The core computation algorithm,
 which is performed periodically, works as follows at node u.

 1. u broadcasts a beacon which contains the following
 information pertaining to the core computation:

 | u | d*(u) | d(u) | dom(u) |

 2. u sets dom(u) <- v, where v is the node in N1[u] with the

Sivakumar, Sinha, Bharghavan [Page 10]

INTERNET-DRAFT CEDAR Specification October 1998

 largest value for <d*(v), d(v)>, in lexicographic order. Note
 that u may choose itself as the dominator.

 3. u then sends v a unicast message including the following
 information:
 --
 | u | {(w, dom(w)) : for all w in N1(u)} |
 --

 Upon reception of the message, v increments d*(v) if u is not
 already in v's dominated list.

 4. If d*(u) > 0, then u joins the core.

 Essentially, each node that needs to find a dominator selects the
 highest degree node with the maximum effective degree in its first
 closed neighborhood. Ties are broken by node id.

 When a node u joins the core, it issues a 'piggybacked broadcast'
 in N3(u). A piggybacked broadcast is accomplished as follows. In
 its beacon, u transmits a message:

 | u | DOM | 3 | path_traversed=null |

 When node w hears a beacon that contains a message
 <u, DOM, i, path_traversed>, it piggybacks the message

 | u | DOM | i-1 | path_traversed+w |

 in its own beacon if (i-1 > 0). Thus, the piggybacked broadcast of
 a core node advertises its presence in its third neighborhood. As
 mentioned in Section 2, this guarantees that each core node
 identifies its nearby core nodes, and can set up virtual links to
 these nodes using the path_traversed field in the broadcast
 messages. The state that is contained in a core node u is the
 following:

 1. its nearby core nodes (i.e. the core nodes in N3(u))
 2. N*(u), the nodes that it dominates
 3. for each node v in N*(u), <forall w in N1(v), <w, dom(w)>>

 Thus each core node has enough local topology information to reach
 the domain of its nearby nodes and set up virtual links. However,
 no core node has knowledge of the core graph. In particular, no

Sivakumar, Sinha, Bharghavan [Page 11]

INTERNET-DRAFT CEDAR Specification October 1998

 non-local state needs to be maintained by core nodes for the
 construction or maintenance of the core. Note from steps 2 and 4
 that over a period of time, the core graph prunes itself because
 nodes have a propensity to choose their core neighbor with the
 highest effective degree as their dominator. Figure 1 shows an
 example network and the corresponding core for the network.

 Maintaining the core in the presence of network dynamics is very
 simple as the periodic computation of the original core
 computation algorithm ensures nomination of an appropriate
 dominator for each node that loses connectivity with its dominator
 during mobility.

 3c. Core Broadcast and its Application to CEDAR

 As mentioned earlier, broadcasts do not work well in an ad hoc
 network (because of hidden and exposed stations). Hence, CEDAR
 uses a unicast based mechanism for achieving a 'core broadcast'.
 Note that it is reasonable to assume a unicast based mechanism to
 achieve broadcast in the core, because each core node is expected
 to have few nearby core nodes. Besides, the core broadcast
 mechanism ensures that each core node does not transmit a
 broadcast packet to every nearby core node, as described before.
 CEDAR uses a close coordination between the medium access layer
 and the routing layer in order to achieve efficient core
 broadcast.

 Recall that a virtual link is a unicast path of length 1, 2, or 3.
 Recall also, that CSMA/CA protocols use an RTS-CTS-Data-ACK
 handshake sequence to achieve reliable unicast packet
 transmission. Our goal is to use the MAC state in order to
 achieve efficient core broadcast using O(|V|) messages, where |V|
 is the number of nodes in the network.

 In order to achieve efficient core broadcast, it is assumed that
 each node temporarily caches every RTS and CTS packet that it
 hears on the channel for core broadcast packets only. Each core
 broadcast message M that is transmitted to a core node i has the
 unique tag <M, i>. This tag is put in the RTS and CTS packets of
 the core broadcast packet, and is cached for a short period of
 time by any node that receives (or overhears) these packets on the
 channel. Consider that a core node u has heard a CTS(<M, v>) on
 the channel. Then, it estimates that its nearby node v has
 received M, and does not forward M to node v. Now suppose that u
 and v are a distance 2 apart, and the virtual channel [u,v] passes
 through a node w. Since w is a neighbor of v, w hears CTS(<M, v>).
 Thus, when u sends a RTS(<M, v>) to w, w sends back a NACK to u.
 If u and v are a distance 3 apart, using the same argument there

Sivakumar, Sinha, Bharghavan [Page 12]

INTERNET-DRAFT CEDAR Specification October 1998

 will be atmost one extra message. Essentially, the idea is to
 monitor the RTS and CTS packets in the channel in order to
 discover when the intended receiver of a core broadcast packet has
 already received the packet from another node, and suppress the
 duplicate transmission of this packet.

 o
 |
 |
 *
 # \
 # \
 S o----*#####*----o
 # |
 # |
 # |
 # |
 # |
 o----*#####*----o D
 | |
 | |
 o-----o

 S:source; D:destination; #:tunnels used in the core broadcast

 Figure 2 : A core broadcast initiated by dom(S) for finding a
 route to D

 Note that the core broadcast has the following properties:

 1. The core nodes do not explicitly maintain a source-based
 tree. However, the core broadcast dynamically (and implicitly)
 establishes a source-based tree (using the MAC-based broadcast
 suppression), which is typically a breadth-first search tree
 for the source of the core broadcast.

 2. The number of messages is O(|V|) in the worst case, and
 O(|Vc|) in the average case. In particular, the only case
 extra messages are transmitted is when two nearby core nodes
 are a distance 3 apart.

 3. Since the trees are not explicitly maintained, different
 messages may establish different trees. Likewise, changes in
 the network topology do not require any explicit recomputation
 of the implicitly generated source tree. However, the
 coordination of the MAC layer and the routing layer ensures

Sivakumar, Sinha, Bharghavan [Page 13]

INTERNET-DRAFT CEDAR Specification October 1998

 that the core broadcast establishes a tree, and that a core
 node typically does not receive duplicates for a core
 broadcast.

 While the core broadcast in CEDAR has low overhead and adapts
 easily to topology changes, the RTS and CTS packets corresponding
 to a core broadcast need to be cached for some time after their
 reception. Figure 2 illustrates a core broadcast in an example
 network. Notice that all tunnels need not be used for core
 broadcast, as the core broadcast dynamically establishes a
 source-based tree, as mentioned above.

 Core broadcast finds applicability in two key aspects of CEDAR:
 discovery of the core path, and propagation of increase/decrease
 waves. The discovery of the core path is broadcast because the
 sender may not know the location of the receiver. It initiates a
 core broadcast to find the location of the receiver, and
 simultaneously, discover the core path.

4. QoS State Propagation in CEDAR

Section 3 described the core routing infrastructure of CEDAR. Since
 each core node uses only the locally cached state to compute the
 shortest-widest furthest path along the core path in the route
 computation phase, the focus is now turned to the nature of state
 that is stored in each core node. At one extreme is the minimalist
 approach of only storing local topology information at each core
 node. This approach results in a poor routing algorithm (i.e. the
 routing algorithm may fail to compute an admissible route even if
 such routes exist in the ad hoc network) but has a very low overhead
 for dynamic networks. At the other extreme is the maximalist approach
 of storing the entire link state of the ad hoc network at each core
 node. This approach may compute optimal routes but incurs a high
 state management overhead for dynamic networks, and potentially
 computes stale routes based on out-of-date cached state when the
 network dynamics is high.

 The problem with having only local state is that core nodes are
 unable to compute good routes in the absence of link-state
 information about stable high-bandwidth remote links, while the
 problem of having global state is that it is useless to maintain the
 link state corresponding to low-bandwidth and highly dynamic links
 that are far away because the cached state is likely to be stale
 anyway. Fundamentally, each core node needs to have the up-to-date
 state about its local topology, and also the link-state corresponding
 to relatively stable high-bandwidth links further away. Providing for
 such a link-state propagation mechanism ensures that CEDAR approaches

Sivakumar, Sinha, Bharghavan [Page 14]

INTERNET-DRAFT CEDAR Specification October 1998

 the minimalist local state algorithm in highly dynamic networks, and
 approaches the maximalist link-state algorithm in highly stable
 networks. CEDAR achieves the goal of having stability and bandwidth
 based link-state propagation using increase and decrease waves, as
 described in this section.

 In the rest of this section, the draft first describes the mechanics
 of the increase and decrease waves, and then answers the three key
 questions pertaining to these waves: when should a wave be generated,
 how fast should a wave propagate, and how far should a wave
 propagate.

 4a. Increase and Decrease Waves

 For every link l=(a,b), the node b is responsible for monitoring
 the available bandwidth on l and informing a of the same if l is
 bi-directional. b and a in turn notify their respective
 dominators for initiating the increase or decrease waves, when the
 bandwidth changes by some threshold value. These waves are then
 propagated by the dominators (core nodes) to a subset of core
 nodes via core broadcasts. Each core node has two queues: the
 "ito-queue" that contains the pending core broadcast messages for
 increase waves, and the "dto-queue" that contains the pending core
 broadcast messages for decrease waves. For each link l about which
 a core node caches link-state, the core node contains the cached
 available bandwidth bav(l).

Sivakumar, Sinha, Bharghavan [Page 15]

INTERNET-DRAFT CEDAR Specification October 1998

 The following is the sequence of actions for an increase wave:

 1. When a new link l=(a,b) comes up, or when the available
 bandwidth b(a, b) increases beyond a threshold value, then the
 two end-points of l inform their dominators for initiating a
 core broadcast for an increase wave:

 ito(<a, b, dom(a), dom(b), b(a,b), ttl(b)>)

 where ito (increase to) denotes the type of the wave, (a,b)
 identifies the link, dom(a) denotes the dominator of a, dom(b)
 denotes the dominator of b, b(a, b) denotes the available
 bandwidth on the link, and ttl(b) is a 'time-to-live' field
 that denotes the maximum distance to which this wave can be
 propagated as an increase wave. The ids of the dominators of
 the link end-points are required by the routing algorithm.
 ttl(b) is an increasing function of the available bandwidth, as
 described in Section 4c.

 2. When a core node u receives an ito wave

 ito(<a, b, dom(a), dom(b), b(a, b), ttl>),

 1 if u has no state cached for (a,b),
 2 bav(a,b) <- b(a,b)
 3 if (ttl > 0), then add the following message
 to the ito-queue:
 4 ito(<a, b, dom(a), dom(b), b(a,b), ttl - 1>)
 5 else if u has cached state for (a,b) and (ttl > 0),
 6 if (bav(a,b) < b(a,b))
 7 bav(a,b) <- b(a,b)
 8 delete any pending ito/dto message for (a,b) from the
 9 ito-queue and dto-queue.
 10 add the following message to the ito-queue:
 11 ito(<a, b, dom(a), dom(b), b(a,b), ttl - 1>)
 12 else if (bav(a,b) > b(a,b)),
 13 bav(a,b) <- b(a,b)
 14 delete any pending ito/dto message for (a,b) from the
 15 ito-queue and dto-queue.
 16 add the following message to the dto-queue:
 17 dto(<a, b, dom(a), dom(b), b(a,b), ttl - 1>)
 18 else if u has cached state for (a,b) and (ttl = 0),
 19 bav(a,b) <- b(a,b)
 20 delete any pending ito/dto message for (a,b) from the
 ito-queue and dto-queue.
 21 add the following message to the dto-queue:
 22 dto(<a, b, dom(a), dom(b), 0, infinity>)

Sivakumar, Sinha, Bharghavan [Page 16]

INTERNET-DRAFT CEDAR Specification October 1998

 The ito-queue and the dto-queues are flushed periodically,
 depending on the speed of propagation of the increase/decrease
 waves.

 The following is the sequence of actions for a decrease wave:

 1. When a link l=(a,b) goes down, or when the available
 bandwidth b(a, b) decreases beyond a threshold value, then the
 two end-points of l inform their dominators for initiating a
 core broadcast for a decrease wave:

 dto(<a, b, dom(a), dom(b), b(a,b), ttl(b)>),

 where dto (decrease to) denotes the type of the wave, and the
 other parameters are as defined before.

 2. When a core node u receives a dto wave

 dto(<a, b, dom(a), dom(b), b(a,b), ttl>),

 1 if u has no state cached for (a,b) and (b(a,b) = 0),
 2 the wave is killed.
 3 else if u has no state cached for (a,b) and (b(a,b) > 0),
 4 bav(a,b) <- b(a,b)
 5 if (ttl > 0), then add the following message
 to the ito-queue:
 6 ito(<a, b, dom(a), dom(b), b(a,b), ttl - 1>)
 7 else if u has cached state for (a,b) and (ttl > 0),
 8 if (bav(a,b) < b(a,b)),
 9 bav(a,b) <- b(a,b)
 10 delete any pending ito/dto message for (a,b) from the
 11 ito-queue and dto-queue.
 12 add ito(<a, b, dom(a), dom(b), b(a,b), ttl - 1>) to
 13 the ito-queue.
 14 else if (bav(a,b) > b(a,b)),
 15 bav(a,b) <- b(a,b)
 16 delete any pending ito/dto message for (a,b) from the
 17 ito-queue and dto-queue.
 18 add the following message to the dto-queue.
 19 dto(<a, b, dom(a), dom(b), b(a,b), ttl - 1>)
 20 else if u has cached state for (a,b) and (ttl = 0),
 21 bav(a,b) <- b(a,b)
 22 delete any pending ito/dto message for (a,b) from the
 23 ito-queue and dto-queue.
 24 add the following message to the dto-queue.
 25 dto(<a, b, dom(a), dom(b), 0, infinity>)

 There are several key points in the above algorithm. First, the

Sivakumar, Sinha, Bharghavan [Page 17]

INTERNET-DRAFT CEDAR Specification October 1998

 way that the ito-queue and the dto-queue are flushed ensures that
 the decrease waves propagate much faster than the increase waves
 and suppress state propagation for unstable links. Second, waves
 are converted between ito and dto on-the-fly, depending on whether
 the cached value for the available bandwidth is lesser than the
 new update (ito wave generated) or not (dto wave generated).
 Third, after a distance of ttl (which depends on the current
 available bandwidth of the link), the dto(<a, b, dom(a), dom(b),
 0, infinity>) message ensures that all other core nodes which had
 state cached for this link now destroy that state. However, the
 dto(<a, b, dom(a), dom(b), 0, infinity>) wave does not propagate
 throughout the network - it is suppressed as soon as it hits the
 core nodes which do not have link state for (a,b) cached (line 2
 in decrease wave propagation). The increase/decrease waves use the
 efficient core broadcast mechanism for propagation. Figure 3
 illustrates a decrease wave cancelling a previously generated
 increase wave for a link l.

 ^
 |
 |
 | increase wave
 ^ | nullified
 | | + -
 | | + -
 | + -
 # of hops | + -
 from | + -
 l | + -
 | + -
 | + -
 | + -
 | + -
 | + -
 | + -
 -|----X-----------------X---------------->
 | increase wave decrease wave
 | for l generated for l generated

 time ->

 Figure 3 : A decrease wave cancelling an increase wave for l

 Essentially, the above algorithm ensures that the link-state
 information for stable high-bandwidth links gets propagated
 throughout the core, while the link-state information for unstable
 and low-bandwidth links remains local - which is the goal of the
 CEDAR state propagation algorithm.

Sivakumar, Sinha, Bharghavan [Page 18]

INTERNET-DRAFT CEDAR Specification October 1998

 4b. Issues in link state propagation

 In this subsection, the three key questions pertaining to the
 propagation of increase/decrease waves are discussed: when should
 a wave be generated, how fast should a wave propagate, and how far
 should a wave propagate.

 When is a wave generated ?

 To avoid a large overhead, CEDAR generates waves only when the
 bandwidth has changed by some threshold value. We suggest the
 use of a constant threshold when the bandwidth request sizes
 are comparable to the available bandwidth and a logarithmic
 scale [10] for the threshold when the typical request sizes are
 an order of a magnitude less than the available bandwidths. The
 advantage of the logarithmic update is that it does not
 wastefully generate increase/decrease waves when the change in
 link capacity is unlikely to alter the probability of computing
 admissible routes. Further work is needed to substantiate the
 above heuristics.

 How Far does a Increase/Decrease Wave Propagate?

 The goal is to propagate link bandwidth information to a number
 of nodes that is proportional to the amount of bandwidth being
 propagated. The motivation for this approach is the fact that
 every node that has knowledge about a particular link would
 potentially contend for the link, and a higher percentage of
 requests can be satisfied if the contention on a link is
 proportional to its bandwidth. Hence we suggest that the
 maximum distance that the link state travels (time to live -
 ttl) be an increasing function of the available bandwidth of
 the link. Although the current CEDAR simulation uses a linear
 function of the available bandwidth for computing the ttl, a
 fluid model analysis of an ad hoc network suggests that in
 general, the ttl should be a function of b^(1/k), where k is a
 small number between 1 and 3.

 How Fast does a Increase/Decrease Wave Propagate?

 An increase wave waits for a fixed timeout period (which is a
 system parameter that should be approximately twice the
 expected inter-arrival time between the generation of two
 successive waves for any link in the network) at each node
 before being forwarded to its neighbors (using the core
 broadcast). Thus, increase waves propagate slowly. A decrease
 wave is immediately forwarded to its neighbors (using the core
 broadcast). Thus decrease waves move much faster and can kill

Sivakumar, Sinha, Bharghavan [Page 19]

INTERNET-DRAFT CEDAR Specification October 1998

 increase waves for unstable links.

5. QoS Routing in CEDAR

 The previous two sections have described the core infrastructure
 (i.e. which nodes in the ad hoc network perform route computation and
 how they communicate among themselves) and the state propagation
 algorithm (i.e. what state does each core node contain). This
 section completes the description of CEDAR by specifying how the core
 nodes use the state information to compute QoS routes.

 The QoS route computation in CEDAR consists of three key components:
 (a) discovery of the location of the destination and establishment of
 the core path to the destination, (b) establishment of a short stable
 admissible QoS route from the source to the destination using the
 core path as a directional guideline, and (c) dynamic re-
 establishment of routes for ongoing connections upon link failures
 and topology changes in the ad hoc network.

 5a. Establishment of the Core Path

 The establishment of a core path takes place when s requests
 dom(s) to set up a route to d, and dom(s) does not know the
 identity of dom(d) or does not have a core path to dom(d).
 Establishment of a core path consists of the following steps.

 1. dom(s) initiates a core broadcast to set up a core path with
 the following message: <core_path_req, dom(s), d, b, P = null>.

 2. When a core node u receives the core path request message
 <core_path_req, dom(s), d, b, P>, it appends u to P, and
 forwards the message to each of its nearby core nodes
 (according to the core broadcast algorithm) to whose domain
 there exists atleast one path (from u's domain) satisfying
 bandwidth b.

 3. When dom(t) receives the core path request message
 <core_path_req, dom(s), d, b, P>, it sends back a source rooted
 unicast core_path_ack message to dom(s) along the inverse path
 recorded in P. The response message also contains P, the core
 path from dom(s) to dom(d).

 Upon reception of the core_path_ack message from dom(d), dom(s)
 completes the core path establishment phase and enters the QoS
 route computation phase.

 Note that by virtue of the core broadcast algorithm, the core path

Sivakumar, Sinha, Bharghavan [Page 20]

INTERNET-DRAFT CEDAR Specification October 1998

 request traverses an implicitly (and dynamically) established
 source routed tree from dom(s) which is typically a breadth-first
 search tree. Thus, the core path is approximately the shortest
 admissible path in the core graph from dom(s) to dom(d), and hence
 provides a good directional guideline for the QoS route
 computation phase. Figure 4 shows an example for a core path. The
 example assumes that the link marked with 0.5 has an available
 bandwidth of 0.5 units, whereas all other links have 1 unit of
 bandwidth available. The route request has a QoS requirement of 1
 unit.

Sivakumar, Sinha, Bharghavan [Page 21]

INTERNET-DRAFT CEDAR Specification October 1998

 o
 |
 |1
 *
 1 / \ 1
 1 / \ 1
 S o----*-----*----o
 + |
 + |
 1 + | 1
 + |
 1 + 0.5 | 1
 o----*+++++*----o D
 | |
 1 | | 1
 o-----o 1

 + core path S source D destination

 Figure 4 : Core path from dom(S) to dom(D)

 5b. QoS Route Computation

 After the core path establishment, dom(s) knows dom(d) and the
 core path from dom(s) to dom(d). Recall from Section 3 that dom(s)
 has the local topology - which includes all the nodes in its
 domain, and for each dominated node u, the bandwidth of each link
 incident on u, the adjacency list of u and the dominator of each
 of the neighbors of u. Recall from Section 4 that dom(s) has the
 information gathered about remote links through increase/decrease
 waves, and for each such link (u, v), the bandwidth of (u,v),
 dom(u), and dom(v). dom(s) thus has a partial knowledge of the ad
 hoc network topology, which consists of the up-to-date local
 topology, and some possibly out-of-date information about remote
 stable high-bandwidth links in the network. The following is the
 sequence of events in QoS route computation.

 1. Using the local topology, dom(s) tries to find a path from s
 to the domain of the furthest possible core node in the core
 path (say dom(t)) that can provide at least a bandwidth of b
 (bandwidth of the connection request). The bandwidth that can
 be provided on a path is the minimum of the individual
 available link bandwidths that comprise the path.

 2. Among all the admissible paths (known using local state) to
 the domain of the furthest possible core node in the core path,
 dom(s) picks the shortest-widest path using a two phase
 Dijkstra's algorithm [11]. The first phase is used to find the

Sivakumar, Sinha, Bharghavan [Page 22]

INTERNET-DRAFT CEDAR Specification October 1998

 available bandwidth B of the widest path. In the subsequent
 phase, links with available bandwidth less than B are
 eliminated before computing the shortest path in the resulting
 graph.

 3. Let t be the end point of the chosen path and p(s, t) denote
 the path. dom(s) sends dom(t) the following message: < s, d,
 b, P, p(s, t), dom(s), t>, where s, d, and t are the source,
 destination, and intermediate node in the partially computed
 path, b is the required bandwidth, P is the core path, and p(s,
 t) is the partial path.

 4. dom(t) then performs the QoS route computation using its
 local state identical to the computation described above.

 5. Eventually, either there is an admissible path to d or the
 local route computation will fail to produce a path at some
 core node. The concatenation of the partial paths computed by
 the core nodes provides an end-to-end path that can satisfy the
 bandwidth requirement of the connection with high probability.
 Figure 5 shows how the core path found in Figure 4 is used to
 find a QoS route satisfying the 1 unit bandwidth request. As
 mentioned earlier, all links except the one indicated with 0.5,
 have an available bandwidth of 1 unit. This example also
 illustrates that the QoS route found in CEDAR can be non-
 optimal as it uses a core path as the guiding direction (the
 path along the core has 7 hops whereas there is another
 feasible path - not along the chosen core path - with 6 hops).

 The core path is computed in one round trip, and the QoS route
 computation algorithm also takes one round trip. Thus, the route
 discovery and computation algorithms together take two round trips
 if the core path is not cached and one round trip otherwise.

 Note that while the QoS route is being computed, packets may be
 sent from s to d using the core path. The core path thus provides
 a simple backup route while the primary route is being computed.

Sivakumar, Sinha, Bharghavan [Page 23]

INTERNET-DRAFT CEDAR Specification October 1998

 o
 |
 |
 *
 / \
 / \
 S o....*-----*----o
 : |
 o o
 : |
 : o
 : 0.5 |
 o----*-----*....o D
 : :
 : :
 o.....o

 Figure 5 : QoS route from S to D satisfying a bandwidth
 requirement of 1 unit.

 5c. Dynamic QoS Route Recomputation for Ongoing Connections

 Route recomputations may be required for ongoing connections under
 two circumstances: the end host moves, and there is some
 intermediate link failure (possibly caused by the mobility of an
 intermediate router or by a reduction in available bandwidth on
 that link such that the connection can no longer be served). End
 host mobility can be thought of as a special case of link failure,
 wherein the last link fails.

 CEDAR has two mechanisms to deal with link failures and reduce the
 impact of failures on ongoing flows: dynamic recomputation of an
 admissible route from the point of failure, and notification back
 to the source for source-initiated route recomputation. These two
 mechanisms work in concert and enable us to provide seamless
 mobility.

 1. QoS Route Recomputation at the Failure Point: Consider that
 a link (u, v) fails on the path of an ongoing connection from s
 to t. The node nearest to the sender, u, then initiates a local
 route recomputation similar to the algorithm in Section 5b.
 Once the route is recomputed, u updates the source route in all
 packets from s to t accordingly. If the link failure happens
 near the destination, then dynamic route recomputation at the
 intermediate node works very well because the route
 recomputation time to the destination is expected to be small,
 and packets in-flight are re-routed seamlessly.

Sivakumar, Sinha, Bharghavan [Page 24]

INTERNET-DRAFT CEDAR Specification October 1998

 2. QoS Route Recomputation at the Source: Consider that a link
 (u, v) fails on the path of an ongoing connection from s to t.
 The node nearest to the sender, u, then notifies s that the
 link (u, v) has failed. Upon receiving the notification, u
 stops its packet transmission, initiates a QoS route
 computation as in Section 5b, and resumes transmission upon
 the successful re-establishment of an admissible route. If the
 link failure happens near the source, then source-initiated
 recomputation is effective, because the source can quickly
 receive the link-failure notification and temporarily stop
 transmission.

 The combination of these two mechanisms is effective in supporting
 seamless communication inspite of mobility and dynamic topology
 changes. Basically, CEDAR uses source-initiated recomputation as
 the long-term solution to handling link failure, while the short-
 term solution to handle packets in-flight is through the dynamic
 recomputation of routes from the intermediate nodes. Recomputation
 at the failure point is not really effective if the failure
 happens close to the source, but in this case, the number of
 packets in flight from s to u is small.

6. Performance Results

 We have evaluated the performance of CEDAR via both implementation
 and simulation. Our implementation consists of a small ad hoc network
 consisting of six mobile nodes that use Photonics (Data Technology) 1
 Mbps infrared network. We have customized the Linux 2.0.31 kernel to
 build our ad hoc network environment (written partly in user mode and
 partly in kernel mode). While the testbed shows proof of concept and
 has exposed some difficulties in implementing CEDAR, our detailed
 performance evaluation [12] has been using a simulator that
 faithfully implements the CEDAR algorithms.

 While the entire gamut of results obtained from the tests are not
 presented due to space constraints, the rest of this section briefly
 summarizes the performance of CEDAR as observed from these tests. For
 tests in a best-effort environment we assume the optimal performance
 to be the performance of a global algorithm that does shortest path
 computation, while in a QoS environment we assume this to be the
 performance of a global algorithm doing a shortest widest path
 computation. The metrics used for comparison in these results are:
 (i) stretch - the ratio of the number of hops in a route computed by
 CEDAR to the number of hops in a route computed by the global
 algorithm, (ii) bandwidth - the ratio of bandwidth available on the
 routes computed by CEDAR to that of the global algorithm, (iii)
 message complexity, (iv) time complexity and (v) crankbacks - the
 ratio of the number of rejects to the number of connection requests.

Sivakumar, Sinha, Bharghavan [Page 25]

INTERNET-DRAFT CEDAR Specification October 1998

 In a best-effort environment, CEDAR performs reasonably well before
 the introduction of ito/dto waves, and progressively converges to a
 near optimal performance once these waves are introduced. In
 particular, for dynamic networks we observed a stretch of around 1.2
 before the waves were introduced. The stretch came down to 1.1 once
 the waves were introduced. For stable networks, the stretch observed
 was 1. Additionally, the message and time complexities of CEDAR were
 also comparable to the optimal performance [12].

 In a QoS environment, CEDAR was compared to the optimal algorithm in
 terms of the number of hops and the bandwidth available on the
 computed path. In terms of bandwidth, CEDAR's performance was worse
 than the optimal performance by an average of 3%. For the number of
 hops on the computed path, CEDAR in fact performed better in some
 cases (the global algorithm could pick a longer path with a higher
 bandwidth). When the number of crank-backs was observed in these
 tests, CEDAR had 30% more crank-backs than the optimal algorithm
 before the introduction of waves, while after the introduction of
 ito/dto waves, the number of crank-backs were the same in both CEDAR
 and the optimal algorithm.

 For detailed performance results, please refer to [12].

7. Conclusions

 This draft presents CEDAR, a core-Extraction Distributed Ad hoc
 Routing algorithm for providing QoS in ad hoc network environments.
 CEDAR has three key components: (a) the establishment and
 maintenance of a self-organizing routing infrastructure, called
 the "core", for performing route computations, (b) the
 propagation of the link-state of stable high-bandwidth links in the
 core through "increase/decrease" waves, and (c) a QoS route
 computation algorithm that is executed at the core nodes using only
 locally available state. While the core provides an efficient and
 low-overhead infrastructure to perform routing and broadcasts in an
 ad hoc network, the increase/decrease wave based state propagation
 mechanism ensures that the core nodes have the important link-state
 they need for route computation without incurring the high overhead
 of state maintenance for dynamic links. The QoS routing algorithm is
 robust and uses only local state for route computation at each core
 node.

 CEDAR is a robust and adaptive algorithm that reacts quickly and
 efficiently to the dynamics of the network while still approximating
 link-state performance for stable networks. Our simulations show that
 CEDAR produces good stable admissible routes with a high probability
 if such routes exist. Furthermore, CEDAR does not require high
 maintenance overhead even for highly dynamic networks. Ongoing work

Sivakumar, Sinha, Bharghavan [Page 26]

INTERNET-DRAFT CEDAR Specification October 1998

 on CEDAR is focusing on three areas. (a) While it is shown that CEDAR
 is effective for small to medium size networks, work is being done on
 a hierarchically clustered version of CEDAR that can provide QoS
 routing in large ad hoc networks. (b) While this draft has only
 considered bandwidth as the QoS parameter in this work, current work
 is extending CEDAR to include delay as a QoS parameter and (c) The
 heuristics mentioned in Section 4 need more study and are in the
 process of being refined.

8. References

 [1] R. Nair, B. Rajagopalan, H. Sandick, and E. Crawley. "A
 framework for QoS-based routing in the Internet." Internet
 Draft draft-ietf-qosr-framework-05.txt, May 1998.

 [2] D. B. Johnson and D. A. Maltz. "Dynamic source routing in ad
 hoc wireless networks". In Mobile Computing, (ed. T. Imielinski
 and H. Korth), Kluwer Academic Publishers, 1996.

 [3] A. Ephremides, J. E. Wieselthier, and D. J. Baker. "A design
 concept for reliable mobile radio networks with frequency
 hopping signaling". In Proceedings of the IEEE, pages 56--73,
 January 1987.

 [4] M. S. Corson and A. Ephremides. "A highly adaptive distributed
 routing algorithm for mobile wireless networks". ACM/Baltzer
 Wireless Networks Journal, 1(1):61--81, February 1995.

 [5] V. D. Park and M. S. Corson. "A highly adaptive distributed
 routing algorithm for mobile wireless networks". In Proceedings
 of 1997 IEEE Conference on Computer Communications, April 1997.

 [6] R. Sivakumar, B. Das, and V. Bharghavan. "Spine routing in ad
 hoc networks". ACM/Baltzer Cluster Computing Journal (special
 issue on Mobile Computing). To appear, 1998.

 [7] V. Bharghavan, S. Shenker A. Demers, and L. Zhang. "MACAW: A
 medium access protocol for wireless LANs". In Proceedings of
 ACM SIGCOMM}, London, England, August 1994.

https://datatracker.ietf.org/doc/html/draft-ietf-qosr-framework-05.txt

Sivakumar, Sinha, Bharghavan [Page 27]

INTERNET-DRAFT CEDAR Specification October 1998

 [8] S. Lu, V. Bharghavan, and R. Srikant. "Fair queuing in wireless
 packet networks". In Proceedings of ACM SIGCOMM '97, Cannes,
 France, September 1997.

 [9] C. E. Perkins and P. Bhagwat. "Highly dynamic destination-
 sequenced distance-vector routing (DSDV) for mobile computers".
 In Proceedings of ACM SIGCOMM, pages 234--244, London, England,
 August 1994.

 [10] B. Awerbuch, Yi Du, B. Khan, and Y. Shavitt. "Routing through
 networks with topology aggregation". In IEEE Symposium on
 Computers and Communications, Athens, Greece, June 1998.

 [11] Q. Ma and P. Steenkiste. "On path selection for traffic with
 bandwidth guarantees". In Proceedings of Fifth IEEE
 International Conference on Network Protocols, Atlanta, October
 1997.

 [12] R. Sivakumar, P. Sinha and V. Bharghavan. "CEDAR: a Core-
 Extraction Distributed Ad hoc Routing algorithm". TIMELY Group
 Technical Report,http://www.timely.crhc.uiuc.edu/Papers/cedar.ps

9. Author's Addresses

 Raghupathy Sivakumar
 458 C&SRL, Coordinated Science Lab
 University of Illinois, Urbana-Champaign
 1308 W. Main St., Urbana, IL 61801
 USA
 Email: sivakumr@timely.crhc.uiuc.edu

 Prasun Sinha
 458 C&SRL, Coordinated Science Lab
 University of Illinois, Urbana-Champaign
 1308 W. Main St., Urbana, IL 61801
 USA
 Email: prasun@timely.crhc.uiuc.edu

 Vaduvur Bharghavan
 457 C&SRL, Coordinated Science Lab
 University of Illinois, Urbana-Champaign
 1308 W. Main St., Urbana, IL 61801
 USA
 Email: bharghav@timely.crhc.uiuc.edu

Sivakumar, Sinha, Bharghavan [Page 28]

INTERNET-DRAFT CEDAR Specification October 1998

Sivakumar, Sinha, Bharghavan [Page 29]

