
Internet Draft L. Ji, UMD
Expiration: January 12, 2001 M. S. Corson, UMD
 July 12, 2000
 Differential Destination Multicast (DDM) Specification
 <draft-ietf-manet-ddm-00.txt>

Status of this Memo

 This document is an Internet-Draft and is NOT offered in accordance
 with Section 10 of RFC2026, and the author does not provide the IETF
 with any rights other than to publish as an Internet-Draft. This
 document is a submission to the Mobile Ad-hoc Networks (manet)
 Working Group of the Internet Engineering Task Force (IETF). Comments
 should be submitted to the Working Group mailing list at
 "manet@itd.nrl.navy.mil". Distribution of this memo is unlimited.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Distribution of this memo is unlimited.

Abstract

 This draft describes a multicast routing protocol for mobile ad hoc
 networks (MANETs). The protocol---termed Differential Destination
 Multicast (DDM)---differs from common approaches proposed for ad hoc
 multicast routing in two ways. Firstly, instead of distributing
 membership control throughout the network, DDM concentrates this
 authority at the data sources (i.e. senders) thereby giving senders
 knowledge of group membership. Secondly, differentially-encoded,
 variable-length destination headers are inserted in data packets
 which are used in combination with unicast routing tables to forward
 multicast packets towards multicast receivers. Instead of requiring
 that multicast forwarding state be stored in participating nodes,

Ji and Corson [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-manet-ddm-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet Draft Differential Destination Multicast July 12, 2000

 this approach also provides the option of stateless multicasting.
 Each node independently has the choice of maintaining cached
 forwarding state, or requesting its upstream neighbor to insert this
 state into self-routed data packets, or some combination thereof.
 The protocol is best suited for use with small multicast groups
 operating in dynamic networks of any size.

1. Introduction

 The Differential Destination Multicast (DDM) protocol is designed
 with several goals in mind.

 The first goal is to minimize multicast routing protocol's
 communication channel use especially the number of channel access.
 Due to the fact that commonly all MANET nodes operate in broadcast
 media, the extra cost of each protocol channel access imposed by
 lower layers is very expensive compared to the case that protocols
 working primarily with point-to-point links.

 The second purpose of the design of DDM is to introduce a protocol
 which enables centralized group membership management. Most MANET
 multicast protocols [1,2,3,4] follow the footsteps of their wired
 network counterparts [5,6,7]. They distribute membership control (or
 lack thereof) over the network. The protocols themselves do not have
 the mechanism to prevent any party from joining the group. Thus, the
 sources have no way to control how its data is distributed. If a
 data source wants to limit the distribution scope, it has to use
 other external means such as key distribution. Even so, such
 external mechanisms do not prevent data being received by
 unauthorized parties. In many applications, especially for small
 multicast groups, a centralized approach is more in favor because it
 establishes a better ground for implementing security/pricing
 features.

 The third goal is to make the protocol as flexible as possible. Due
 to the highly dynamic nature of MANETs, the protocol should leave
 enough configuration space so each node may adaptively choose its own
 operation parameters according to its own behavior and local
 environment.

 The resultant protocol is significantly different from other MANET
 multicast protocols proposed to this group. Unlike in other
 protocols, DDM lets the sources control the membership. All
 membership changes need to be directed to the sources. Also
 different from traditional multicasting, DDM encodes multicast
 receiver (destination) addresses in multicast data packets using a
 special DDM Data Header. This way it is not necessary for each node
 to maintain per-session multicast forwarding states. Thus, it is

Ji and Corson [Page 2]

Internet Draft Differential Destination Multicast July 12, 2000

 more scalable with respect to the number of sessions. Although the
 number of multicast destinations of each session is limited by
 header/packet size, given the relatively small size (compared to the
 wired Internet) of MANETs, such approach may well serve a large
 population of applications.

2 Terminology

 Node: A device that implements IP.

 Multicast Session: The basic unit for multicasting organization.
 Each multicast session is identified by a group ID and a data source.

 Multicast Destinations: Each node with multicast data receiving
 application running is a multicast destination.

 Forwarding Set (FS): The address set each DDM node uses to record to
 which multicast destinations it needs to forward multicast data.

 Direction Set (DS): The address set each DDM node uses to record via
 a particular next hop, to which multicast destinations multicast data
 are forwarded.

3 Protocol Overview

3.1 Protocol Description

 The proposed approach is, motivated, in part, by the approach to
 unicast routing of Dynamic Source Routing (DSR) [10] and derived, in
 part, from the work of [8,9]. The latter has recently been named
 Explicit Multicasting (or xcast for short).

 In DDM, the source controls multicast group membership to ease
 certain aspects of security administration. More importantly, and a
 departure from all proposed MANET multicast protocols to date, DDM
 encodes the multicast destinations in each data packet header in a
 fashion different from [8,9]. This "in-band" information can be used
 to establish soft-state routing entries if desired. Using such an
 approach has two advantages for MANETs. Firstly, there is no control
 overhead expended when the group is idle; a characteristic shared
 with DSR. Since many multicast applications do not have continuous
 traffic flows, it can be expensive in terms of network control
 overhead to maintain multicast forwarding state in routers during
 idle periods. In-band control avoids this problem because if there
 is no data traffic, there is no need for any control information
 either. Secondly, it is not necessary for the nodes along the data
 forwarding paths to maintain multicast forwarding state. When one

Ji and Corson [Page 3]

Internet Draft Differential Destination Multicast July 12, 2000

 intermediate node receives a DDM data packet, it need only look at
 the DDM header to decide how to forward the packet; another
 similarity to DSR. Assuming that routers can handle this processing
 cost, this stateless mode can be very reactive and efficient. This
 stateless approach also avoids loading the network with pure
 signaling traffic; a third trait shared with DSR. In so doing, the
 hope is that the unicast algorithm can converge that much *faster*,
 with DDM then making immediate use of this knowledge.

 While the fixed network and MANETs can benefit from stateless,
 explicit multicasting because of its savings in storage complexity,
 it is desirable to follow this approach in MANETs for other reasons
 as well. Firstly, media access is expensive in wireless broadcast
 channels. Although packing routing information together with data
 traffic will enlarge data packet size, it reduces the total number of
 channel accesses because it reduces the number of control packets
 generated by the protocol. Therefore such approach can be more
 efficient overall in many scenarios. Secondly in broadcast networks,
 when a node needs to send to more than one neighbor, it only needs to
 broadcast the packet once. So this approach has better bandwidth
 consumption and channel access properties in broadcast networks than
 in point-to-point networks. Lastly, one argument against explicit
 multicasting in the wired Internet is that the relatively complex
 header processing prevents fast path forwarding at routers.
 Presently in MANETs, the effect of per-packet processing on
 forwarding rate is not significant relative to bandwidth and energy
 constraints.

 In scenarios where the stateless approach is not favorable, DDM may
 also operate in a "soft-state" mode. It is here that DDM markedly
 departs from the work of [8,9]. In this mode, as data packets with
 in-band information are routed through the network, each node along
 the forwarding path remembers the destinations to which it forwarded
 the last time and how the data was forwarded (i.e. which next hop was
 used for each destination). By storing this information, the
 protocol no longer needs to list all the destinations in every data
 packet header. When changes occur in the underlying unicast routing,
 an upstream node only needs to inform its downstream neighbors (i.e.
 its next hops) regarding the *differences* in destination forwarding
 since the last packet; hence, the name "Differential Destination"
 Multicast. Reporting only these differences significantly reduces
 DDM header sizes. Ideally, in a stable network where the topology
 and membership remain unchanged, only the first data packet needs to
 contain destination addresses and all subsequent packets would
 contain no DDM routing information. In practice, the state kept at
 each node along the forwarding paths is "soft". Each time data
 forwarding occurs, this state is refreshed. Stale state eventually
 times-out and is removed.

Ji and Corson [Page 4]

Internet Draft Differential Destination Multicast July 12, 2000

 Also different from Explicit Multicasting, DDM takes advantage of the
 broadcasting medium. Multiple DDM blocks, which is the per next hop
 forwarding information unit, may be aggregated together so one data
 packet transmission can forward data to multiple neighbors (next
 hops). On the other hand, DDM again provides the flexibility for
 each forwarding node to choose by itself. In an environment
 discriminates against broadcasting but in favor of unicasting, if
 high data throughput is critical to the application, forwarding nodes
 may decide not to aggregate DDM Blocks together. In this case,
 multicast data is forwarded in unicast envelop to each next hop.
 Within each such packet, the DDM header only contains the DDM
 Block(s) for the intended receiver.

 DDM is not a general purpose multicast protocol in the conventional
 sense. The header-encoded destination mechanism does not scale well
 with group size. The stateless mode (in common with other xcast-
 based approaches), however, does scale well with the number of
 multicast groups, as no per-group state is required in any routers.
 In MANETs, if the number of multicast groups is small enough to
 permit state storage, then the soft-state version using
 differentially-encoded header processing can be used to reduce
 average packet header size and save bandwidth. This approach,
 however, has essentially little applicability to fixed networks as
 the complexity of the differentially-encoded header processing would
 significantly slow down forwarding rates in high-speed networks.

3.2 Route Correctness

 DDM replies on the underlying unicast routing protocol to provide the
 "next hop" information. DDM is loop-free as long as the underlying
 unicast routing is loop-free. Since the DDM routing (FS to DS
 partition) calculation is carried out for every data packet, only the
 most recent unicast routing information is used. Transient loops are
 still possible during unicast routing convergence period, but will
 disappear as the unicast protocol recovers. Some data packets may
 have been errantly sent using erroneous route information. In this
 case, these data packets will either dropped when the IP TTL reaches
 zero, or will exit the loop and head towards the destination when
 some forwarding node finally corrects the loop.

 The same argument holds for broken routes. In many other
 multicasting protocols, broken links, if used by the protocol
 forwarding topology, should be discovered as soon as possible so they
 can be repaired. In DDM, it is not necessary to inform DDM when a
 link used in multicast forwarding goes down. The old DS and the old
 FS on either end of a broken link are left alone to be deleted on
 time-out. As soon as the unicast routing recovers, DDM will use the
 new next hops (if available) when forwarding the next multicast data

Ji and Corson [Page 5]

Internet Draft Differential Destination Multicast July 12, 2000

 packet. With these new next hops, DDM will use new and likely
 different DS's.

 When there is new link to be added, DDM does not react either. In
 fact, DDM is not aware of the change if this new link is not used in
 DDM routing. Only after the unicast routing protocol designates this
 link as a next hop for some DDM destination will DDM utilize the new
 link. DDM will when set up a new DS for this new link.

 Data packets may be lost during transmission. When nodes are
 opearting in "statefree" mode, each data packet is processed
 independently from the previous packets. Therefore the loss does not
 affect the forwarding correctness of future packets. When operating
 "soft-state" mode, if the lost packet does not contain any multicast
 destination updates, it is simply a data loss. No future forwarding
 will be affected eiother. If the packet does contain updates, the
 loss may de-synchronize the FS sets on the receiving ends from the
 matching DS sets on the sending ends. However, since all packets
 contain DDM Block Sequence Number, the receiving end of the lossy
 link will discover the loss of an informative DDM header when
 receiving the next data packet. A RSYNC is then sent back asking for
 a R packet to re-synchronize the FS sets and the DS sets.

4 DDM Protocol Specification

 DDM asumes that there is a unicast routing protocol running on each
 MANET node. Through this unicast routing protocol, DDM can obtain
 the "next hop" information for a particular destination. Also DDM
 may use this unicast routing protocol to deliver unicast packets.

4.1 Data Structures

 At each source node, there is a Member List. This list is used to
 keep track of the admitted members for each session the source is
 originating data. It contains the addresses of all the multicast
 group members who have successfully joined the session.

 At each node, there is one Forwarding Set (FS) for each multicast
 session. It records to which destinations this node forwards
 multicast data. At the source node, the FS contains the same set of
 node addresses as the ML. At other nodes, the FS is actually the
 union of several subsets. Each subset FS_k records the multicast
 destinations included in data packets received from upstream neighbor
 k. After receiving a data packet from an upstream neighbor k, the
 receiving node will update the corresponding subset FS_k set and then
 the unioned set FS is recalculated.

Ji and Corson [Page 6]

Internet Draft Differential Destination Multicast July 12, 2000

 Associated with each set FS_k, there is one sequence number
 SEQ(FS)_k. This is used to record the last DDM Block Sequence Number
 seen in a received DDM data packet from upstream neighbor k. The
 reason for this sequence number is to detect the loss of DDM data
 packets containing forwarding set updates. For each multicast
 session, there is a data sequence number cache kept by each node. It
 is used to record recently seen data sequence numbers. This cache is
 used to avoid duplicated forwarding of the same data packet. In
 addition, each node needs to remember if itself is a receiver member
 of a particular multicast session.

 When a node is forwarding a data packet received from an upstream
 neighbor k, it duplicates the data packet (if forwarding to multiple
 neighbors is necessary) and sends the packet(s) to the next-hop
 neighbor(s). The FS contains all the multicast destinations for this
 session to which this node needs to forward. However, these
 destinations may be reached via different paths (i.e. next hops).
 Therefore, the FS needs to be partitioned into subsets according to
 the next hops these destinations require. The destinations in the FS
 who use the same downstream neighbor (next hop) will be put into the
 same subset. These subsets resulting from partitioning the FS are
 called Direction Sets (DS) (a DS_l exists for each downstream
 neighbor l). For each DS_l there is also a sequence number
 SEQ(DS)_l. It is initialized to 0 when the DS_l is created for the
 first time. Each DS_l contains a "Forced Refreshing" (FR) flag.
 This flag has three states: no forcing, forcing once and forcing
 always. The use of this flag will be explained in sections 4.4 and
 4.5.

4.2 Packet Formats

 DDM employs two types of packets: control packets and data packets,
 where it is understood that data packets may also contain control
 information. There are five types of control packets: JOIN, ACK,
 LEAVE, RSYNC, and CTRL_DATA. All of them are unicast IP packets.
 The first three are used only by the membership control part of the
 algorithm. The fourth is used to coordinate between a pair of
 neighboring nodes. The last one is used to encapsulate multicast
 data so it can be delivered to a particular multicast destination via
 unicast routing. Regular multicast data packets are D-class IP
 packets with DDM Data Header. However, multicast data may also be
 encapsulated within unicast IP packets to be forwarded to the next
 hop neighbors if uncasting is used as the primary data transmission
 means. This encapsulation is different from the CTRL_DATA because it
 is only for downstream neighbors one hop away.

Ji and Corson [Page 7]

Internet Draft Differential Destination Multicast July 12, 2000

4.2.1 Base DDM Control Packet Format
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Multicast Group Address |
 +-+
 | Ver | Type | Unused |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 All DDM control messages contain this common base. Depending on the
 control message type, certain extensions may follow. The "Ver" field
 contains the DDM version number. The "Type" field contains the
 control message type. The "Multicast Group Address" contains the ID
 of the multicast group of interest.

4.2.2 JOIN Packet

 This packet is used to express a node's interest towards a particular
 multicast session. This packet is a unicast IP packet sent from the
 joining node to the multicast session source. The "Type" field of
 the base format is set to 0. The joiner's address is used as the
 source address of the IP packet. The multicast session source's
 address is used as the destination address of the IP packet. The TTL
 field of the IP packet is set to the estimated NETWORK_DIAMETER.

4.2.3 ACK Packet

 This packet serves as a notification of admission to a particular
 multicast session. It is a unicast IP packet sent from the multicast
 session source to the interested joining node. The "Type" field of
 the base format is set to 1. The joiner's IP address is used as the
 destination address of the IP packet. The multicast session source's
 ID is used as the source address of the IP packet. The TTL field of
 the IP packet is set to the estimated NETWORK_DIAMETER.

4.2.3 LEAVE Packet

 This packet serves as a resignation from a particular multicast
 session. It is a unicast IP packet sent from the multicast member
 node to the multicast session source. The "Type" field of the base
 format is set to 2. The leaving node's address is used as the source
 address of the IP packet. The multicast session source's address is
 used as the destination address of the IP packet. The TTL field of
 the IP packet is set to the estimated NETWORK_DIAMETER.

4.2.3 RSYNC Packet

Ji and Corson [Page 8]

Internet Draft Differential Destination Multicast July 12, 2000

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Multicast Session Source Address |
 +-+
 | DDM Blk Seq | FR| Unused |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 RSYNC extension
 RSYNC (Request to Synchronization) packet is used to synchronize the
 multicast destination address sets between a pair of neighboring
 nodes. It is unicast IP packet sent from the downstream neighbor to
 the upstream neighbor. The communicating neighbors are used as the
 source and destination fields of the IP header. The TTL field of the
 IP header is set to 1. The "Type" field of the base format is set to
 3. Other than the common base, RSYNC packet also contains the above
 extension. In this extension, the re-synchronization requester needs
 to specify the multicast session source and the DDM Block Sequence
 Number. The "FR" (Force Refreshing) flag can have the value of "no
 forcing", forcing once", and "forcing always".

4.2.3 CTRL_DATA Packet

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Multicast Session Source Address |
 +-+

 CTRL_DATA extension

 This packet is used to encapsulate multicast data in a unicast packet
 so it can be forwarding via unicasting to reach a particular
 multicast destination. It is a unicast IP packet sent from the
 forwarding node who needs to forward the data to the multicast
 destination. The TTL field of the IP packet is set to the estimated
 NETWORK_DIAMETER. The "Type" field of the base format is set to 4.
 It also carries the above extension so upon receiving such packet,
 the multicast destination can identify to which multicast session the
 data belongs.

4.2.4 DATA Packet

Ji and Corson [Page 9]

Internet Draft Differential Destination Multicast July 12, 2000

 |0 1 2 3 4 5 6 7|8 9 0 1 2 3 4 5|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | DDM Blk Seq | type |Num Adr|
 +---------------+---------------+

 DDM Block

 0 1 2 3
 |0 1 2 3 4 5 6 7|8 9 0 1 2 3 4 5|6 7 8 9 0 1 2 3|4 5 6 7 8 9 0 1|
 +-----+
 | Ver |P| Len | TOL | Data Sequence Number |Summary
 +-+
 | Multicast Group Address |Section
 +-+
 | Multicast Session Source Address |
 +-----+
 | DDM Block 0 | DDM Block 1 |
 +-----+
 | Destination (member) 0 for Receiver 0 | D |
 +-+ D |
 | Destination (member) 1 for Receiver 0 | M |
 +-+ |
 | | B |
 ~ ~ L |
 +-+ K |
 | Destination (member) m_1 - 1 for Receiver 0 | 0 |
 +-----|
 | Destination (member) 0 for Receiver 1 | D |
 +-+ D |
 | Destination (member) 1 for Receiver 1 | M |
 +-+ |
 | | B |
 ~ ~ L |
 +-+ K |
 | Destination (member) m_1 - 1 for Receiver 1 | 1 |
 +-----+

 DDM Data Header Format (Unicast)

Ji and Corson [Page 10]

Internet Draft Differential Destination Multicast July 12, 2000

 0 1 2 3
 |0 1 2 3 4 5 6 7|8 9 0 1 2 3 4 5|6 7 8 9 0 1 2 3|4 5 6 7 8 9 0 1|
 +-----+
 | Ver |P| Len | TOL | Data Sequence Number |Summary
 +-+
 | Sender |Section
 +-----+
 | DDM Block 0 | DDM Block 1 |
 +-+
 ~ ~
 +-+
 | DDM Block n-1 | Padding |
 +-----+
 | Receiver 0 | |
 +-+ D |
 | Destination (member) 0 for Receiver 0 | D |
 +-+ M |
 | Destination (member) 1 for Receiver 0 | |
 +-+ B |
 | | L |
 ~ ~ K |
 +-+ |
 | Destination (member) m_1 - 1 for Receiver 0 | 0 |
 +-----+
 | Receiver 1 | |
 +-+ D |
 | Destination (member) 0 for Receiver 1 | D |
 +-+ M |
 | Destination (member) 1 for Receiver 1 | |
 +-+ B |
 | | L |
 ~ ~ K |
 +-+ |
 | Destination (member) m_1 - 1 for Receiver 1 | 1 |
 +-----+
 | |
 ~ ~ ~
 | |
 +-----+
 | Receiver n-1 | |
 +-+ D |
 | Destination (member) 0 for Receiver n-1 | D |
 +-+ M |
 | Destination (member) 1 for Receiver n-1 | |
 +-+ B |
 | | L |
 | | K |
 +-+ |

Ji and Corson [Page 11]

Internet Draft Differential Destination Multicast July 12, 2000

 | Destination (member) m_(n-1) - 1 for Receiver n-1 | n-1 |
 +-----+

 DDM Data Header Format (Multicast)

 The above are the formats for DDM Data Header. This header is
 inserted into data packets before the data payload. The IP data
 packet's destination address may be set to the multicast group
 address while the multicast session source address is used as the
 source address of the IP packet. This is shown in "DDM Data Header
 Format (Multicast)". Or, when forwarding node chooses to use unicast
 to forward a data packet to a next hop, it needs to use its own
 address as the IP source and the next hop address as the IP
 destination address. The group address and the multicast session
 source address are hidden in the DDM Data Header. This is shown in
 "DDM Data Header Format (Unicast)".

 At the beginning of the DDM Data Header it is the summary section.
 In the summary section, after the DDM version field, it is the POLL
 flag for membership refreshing. The "Len" field indicates how many
 DDM Blocks there are in the header. The "TOL" (Time Of Life) field
 indicates the life time of the FS set on the intended receivers of
 this packet. Then it is followed by the DDM data sequence number.
 The next is the address of the packet sender (the forwarding node).
 In the case of unicasting, the packet sender is in the IP source
 field. Instead, the summary section contains the multicast group
 address and the session source address.

 The rest of the header contains all the DDM Blocks and the addresses
 used by them. Each DDM Block contains a Block Sequence Number, a
 Block Type, and a Number of Addresses field. There are four types of
 DDM Blocks. They are Empty (E), Replace (R), Incremental Difference
 (Di), and Decremental Difference (Dd) blocks, and their types are 0,
 1, 2, and 3 respectively. E Block does not list any multicast
 destination. R block lists all multicast destinations to which the
 receiving node needs to forward. Di and Dd Blocks (both may be
 referred as D blocks in the rest of the draft) contain different
 destination addresses from the last forwarding. The multicast
 destination lists used by the blocks will be referred as L list (for
 R header), L_i list (for Di Block), or L_d list (for Dd Block).
 Since R and D Blocks contain destination list updates, they may be
 referred as "informative" in the rest of the description.

 When a node uses broadcast to forward data to next hops, the first
 node address used by any DDM Block is always the intended receiver
 for this DDM Block. However, when a node uses unicast to forward
 data to individual next hop, this intended receiver field is omitted
 since the intended receiver is the IP destination. Other addresses

Ji and Corson [Page 12]

Internet Draft Differential Destination Multicast July 12, 2000

 used by a DDM Block are the multicast destinations to whom data needs
 to be forwarded by the intended receiver of this DDM block. To align
 the header better, all DDM Blocks are concatenated together, then
 followed by an archive of all the addresses used by all the DDM
 blocks. These addresses are serialized in the same order as the DDM
 Blocks using them.

4.3 Membership Management

 In contrast with traditional multicast algorithms, a multicast data
 source plays an important role in the DDM protocol. The protocol
 proceeds independently for each source sending to a multicast group,
 and the remaining description applies to a single source. The source
 acts as an admission controller for the information it is sending.
 When a node (the "joiner") is interested in a particular multicast
 session, it needs to join the session by unicasting a JOIN message to
 the source for that session. This JOIN message include the ID of the
 group to which the node wants to join. The joiner's ID and the
 source ID are used as the source and destination fields of the IP
 header of the JOIN message. After receiving the JOIN message and
 verifying its own role of being the source for the interested
 multicast session, the source decides if the JOIN can be accepted.
 The admission policies and protocols are beyond the scope of this
 draft.

 Upon receiving a JOIN message, if the joiner passes the session's
 admission requirements, the source adds the ID of the "joiner" into
 its Member List (ML). The source then acknowledges the JOIN message
 by unicasting an ACK message back to the joiner.

 Back at the joiner, after the JOIN message is sent, the joiner waits
 for one JOIN_WAITING_PERIOD. If it has not received an ACK till the
 end of this period, the joiner needs to resend the JOIN message.
 When sending the JOIN messages, the waiting period is exponentially
 backed off for every consequent JOIN sent. That is, the waiting
 period for the i-th JOIN message is:

 (2 ** (i - 1)) * JOIN_WAITING_PERIOD

 The sending of JOIN messages is stopped when either an ACK message is
 received or MAX_JOIN_RETRY JOIN messages have been sent and the
 waiting period for the last JOIN message has passed. The first case
 indicates a successful join while the latter indicates failure.
 Reception of a DDM data packet intended for this joiner prior to
 reception of an ACK may or may not indicate a successful join,
 depending on the security mechanism (if any) in use and whether or
 not an ACK is required as part of this mechanism. Security-related
 mechanisms are beyond the scope of this draft. This draft

Ji and Corson [Page 13]

Internet Draft Differential Destination Multicast July 12, 2000

 essentially describes an insecure session. When a join process is
 successfully completed on ACK reception, any activate join waiting
 timer is canceled and no further JOIN messages are generated.

 The ML kept at the source node needs to be refreshed from time to
 time to maintain up-to-date membership information. Due to the
 dynamic nature of wireless networks, node reachability may change
 unpredictably. The source needs to be able to purge stale members.
 In DDM member refreshing is source-initiated. Once every
 MEMBERSHIP_REFRESH_PERIOD data packets, the source sets the POLL flag
 in the next outgoing data packet. Upon receiving such data packet, a
 multicast session member needs to unicast a JOIN message again to the
 source to express its continued interest. If after
 MAX_REFRESH_TIMEOUT such polling data packets have been sent and
 there is still no JOIN message received from one member, the source
 assumes that this member has left the multicast session. This member
 is then removed from the ML and excluded from future forwarding
 computations. JOIN "implosion" at the sender is not expected to be a
 problem due to small expected group sizes and different hop distance
 between members and the source. If necessary, random delay jitter
 may be added to the transmission times of JOINs sent in response to
 POLL packets to reduce congestive effects at the source.

 This "polled" membership refreshment is used as a secondary mechanism
 to detect an absent member. An explicit LEAVE message is defined as
 the preferred way for a session member to leave the source's ML. It
 is a unicast message sent from the leaving member to the session
 source. When received by the source, this LEAVE message terminates
 the member's membership. The member is removed from the ML and is
 excluded from future forwarding computations. To increase
 robustness, instead of sending just one message, MAX_LEAVE_RETRY
 LEAVE messages may be unicast to the source when a node leaves the
 session. After these transmissions, a member node removes any
 information associated with the multicast session. The source may
 also dismiss a receiver by removing it from the ML at any time if its
 security mechanism suggests so.

4.4 Forwarding Processing

 Most of the processing consists of set operations. The computation
 complexity on each participating node is bounded by O(n log n), with
 n being the number of members in the multicast session.

 When a node receives a multicast DDM data packet from an upstream
 neighbor k, it first tries to locate the "DDM Block" intended for
 itself. Walking through the DDM Blocks in the DDM Data Header, the
 receiving node matches the 1st node address used by each DDM Block

Ji and Corson [Page 14]

Internet Draft Differential Destination Multicast July 12, 2000

 (the intended receiver) with its own. If it is indeed the intended
 receiver of one of the DDM Blocks, the processing continues.
 Otherwise, the data packet is dropped and the forwarding processing
 stops. If the received data is unicast, this step is not necessary
 because only the intended receiver will receive such data packet.

 After finding the DDM block, the receiving node compares the Data
 Sequence Number in the summary section of the DDM Data Header with
 the local data sequence number cache for the same multicast session.
 If this packet has been seen before, it is discarded and no further
 processing is needed. If the packet is new, its data sequence number
 is inserted into the cache. DDM also needs to see if itself is a
 multicast destination. If so, a copy of the data packet is made and
 the DDM Data Header is striped off from this data packet. The
 restored data is re-injected into the network kernel of the node for
 local delivery.

 The receiving node extracts all multicast destination addresses for
 the DDM Block from the header. The upstream neighbor is also
 identified, either from the "Sender" field of the summary section or
 the IP source of the packet depending on if the data packet is
 received as D-class data packet. Then the receiving node accesses
 the FS_k set for this upstream neighbor k. If no such set is found
 and the received DDM Block is a R block, a new FS_k is create. The
 newly created set is initialized to empty. The SEQ(FS)_k number is
 initialized to be 1 lower than the DDM Block Sequence Number in the
 received DDM Block. However, if the block is E or D-type, this means
 that the FS_k set is out of synchronization with the Direction Set on
 the upstream sender end. In this case, the receiving node sends a
 RSYNC packet back to the sending upstream neighbor and the data
 packet is dropped. In this RSYNC message, the "DDM Block Sequence
 Number" field is set to the same sequence number as the received DDM
 Block's. The "Forced Refreshing (FR)" flag is set to "forcing once"
 unless the node is operating in "statefree" mode, which will be
 described later in section 4.6.

 Before a node proceeds further, it compares its SEQ(FS)_k value with
 the "DDM Block Sequence Number" in the received DDM block. The
 reason for this step is to detect destination set update losses.
 Because of the differential approach, it is very important to quickly
 detect any packet losses which contain destination list updates.
 When a node sends out a DDM Block, it stamps the block with a DDM
 Block Sequence Number. This sequence number is incremented by one
 every time a node sends out an informative DDM Block. The sending of
 E headers does not change the sequence number since there is no
 change in the destination list. Still, an E header carries the
 current sequence number so a receiving node may detect previous
 losses.

Ji and Corson [Page 15]

Internet Draft Differential Destination Multicast July 12, 2000

 If the packet "DDM Block Sequence Number" is at least one greater
 than the SEQ(FS)_k and the DDM block is an E or at least two greater
 and the DDM block is a D, the receiving node knows that at least one
 packet was lost and the packet(s) contains destination list updates.
 So the receiving node sends a RSYNC packet back to the sending
 upstream neighbor, and the data packet is dropped. This check is
 unnecessary for R blocks since they contain the entire multicast
 destination list for this node to forward.

 After verifying the DDM Block Sequence Number, the SEQ(FS)_k value is
 updated to the DDM Block sequence number in the packet. If the
 received data packet has an E header, the receiving node only needs
 to forward one copy of the data packet to each downstream neighbor l
 whose current DS_l is not empty.

 If the data packet has a R block, the node replaces its FS_k by the
 list L in the header.

 FS_k = L

 When a node receives a Di or Dd block, it updates the corresponding
 FS_k according to the D header: removing the addresses in the L_d
 from its FS_k then adding the addresses in the L_i into its FS_k set.
 If the received block is a Dd block, the receiving node needs to look
 one block beyond to see if the next block following the Dd is a Di
 block for itself. If so, the L_i list in that D_i block needs to be
 processed together.

 FS_k = (FS_k - L_d) U L_i

 After updating the FS_k, the receiving node updates the union FS.
 Then it partitions the new overall FS set into DS'_l sets according
 to the "next hops" l used by the unicast routes towards the
 destinations in the FS. All destinations in the same DS'_l share a
 common "next hop" l.

 By comparing the contents of the new DS' sets and the existing DS
 sets, the node assembles new DDM Blocks for the outgoing DDM Data
 Header. If there is a DS'_l but there is no matching DS_l for a
 particular "next hop" l, an R-type DDM Block is constructed for l.
 The DDM Block Sequence Number for this DDM Block is set to 0.
 Alternatively, if there is one DS_l set but there is no DS'_l, no DDM
 Block is constructed.

 For the case that there are both a DS'_l and a DS_l, the processing
 checks if the DS_l's "Forced Refreshing" flag is set to either
 "forcing once" or "forcing always". If so, a R block is constructed
 which contains all destination addresses in the DS'_l. Otherwise the

Ji and Corson [Page 16]

Internet Draft Differential Destination Multicast July 12, 2000

 contents of them need to be compared. If the DS'_l set is the same
 as the DS_l set, an E block is used since there is no change.
 Otherwise, R or D block(s) is constructed. By default D block(s) are
 tried first. All destination addresses that are in the DS'_l (new
 Direction Set) but not in the DS_l (old Direction Set) form the
 incremental list L_i. All addresses that are in the DS_l but no
 longer in the DS'_l form the decremental list L_d. Addresses that
 are common in both sets appear in neither list. If the total length
 of the L_i and L_d lists is not shorter than the destination list in
 DS'_l, a R block is used instead to cut down number of addresses in
 header. Otherwise, a Dd Block is constructed then followed by a Di
 Block. Of course when either L_i or L_d list is empty, its
 corresponding DDM Block is not needed. For D or R-type DDM Blocks,
 the SEQ(DS)_l is incremented by one while it remains the same for E
 blocks. The final SEQ(DS)_l is used as the DDM Block Sequence Number
 in the constructed DDM Block.

 R header: L = DS_l or

 D header: L_i = DS_l - DS'_l
 L_d = DS'_l - DS_l

 After the DDM Block is ready it is packed into the header of the data
 packet. The multicast destination list of the DS_l set are replaced
 by the one of DS'_l set and kept in memory for the next forwarding
 computation. After the construction of the outgoing DDM Block, the
 "forced refreshing" flag of the DS_l set is reset to "no forcing" if
 the current value if "forcing once".

 If DDM header aggregation is not in use, the data packet can be
 forwarded to the downstream neighbor using unicasting right away.
 Otherwise, more DDM Blocks will be packed into the same DDM Data
 Header until the number of DDM Blocks in the DDM Data Header exceeds
 MAX_DDM_BLOCKS. The above DDM Block construction is repeated until
 all DS' sets are processed. New DDM Blocks are inserted into the
 packet header if the header size does not exceed the limit.
 Otherwise, the filled data packet is sent out, and a new data packet
 with the same payload is allocated. New DDM Blocks are inserted into
 the header of this new data packet.

4.5 Forwarding Set Synchronization

 When operating in soft-state mode, usually only the differences of
 the multicast destination lists are included in data packet headers.
 It is very important to keep the Direction Set on the upstream side
 and the Forwarding Set on the downstream side synchronized. The DDM
 algorithm uses a DDM Block Sequence Number to maintain

Ji and Corson [Page 17]

Internet Draft Differential Destination Multicast July 12, 2000

 synchronization. The sequence number on the DS (upstream) side must
 match with the sequence number of the FS (downstream) side.

 This sequence number is carried inside each DDM Block and its
 advertisement is data-driven. Only nodes which are not exchanging
 data may remain out of synchronization for extended periods. If the
 receiver detects missing sequence numbers, it knows that some data
 messages containing informative DDM Blocks for it have been lost and
 its Forwarding Set is out of synchronization with the Direction Set
 on the upstream neighbor. It needs to notify its upstream neighbor
 using a RSYNC message. When used for resynchronization purpose, this
 message contains a flag telling the upstream neighbor to set the
 "Forced Refreshing" flag for the Direction Set to "forcing once".
 The message is unicast to the upstream neighbor.

 On the upstream end, upon receiving a RSYNC message, it locates the
 DS set used for the sender of this RSYNC message and sets the "forced
 refresh" flag to what the message's FR flag says. When the upstream
 neighbor is forwarding the next data packet, if it sees the "forced
 refresh" flag is set for a DS set, a R Block is constructed. Since R
 block contains the full list, upon reception the downstream neighbor
 will have its FS set synchronized again.

4.6 Timers and Dual Modes of DDM

 DDM is a dual-mode algorithm where each participating node can
 operate in "stateless" mode or "soft-state" mode. Timers, the
 "Forced Refresh" flag, and the TOL field in each DDM Data Header are
 the mode control parameters.

 There are timers associated with each set (both FS_k sets and DS_l
 sets). When any of the timers expires, the corresponding set is
 removed. Every time there is a packet received from neighbor k, the
 timer associated with the FS_k is reset to expire in TOL seconds as
 specified in the received DDM Data Header.

 FS_k timer value = TOL

 Every time a DS_l set is used for forwarding, the forwarding node
 picks an expiration period for the timer associated with this DS_l.
 Then in the outgoing packet, its TOL field is set to:

 TOL = DS_l life timer value * R (R > 1)

 This action helps ensuring that, over a given link, the timer for the
 Direction Set on the upstream side expires before the timer for the
 Forwarding Set on the downstream side. Otherwise if the DS set lives
 longer than its downstream FS set, the upstream neighbor may use an E

Ji and Corson [Page 18]

Internet Draft Differential Destination Multicast July 12, 2000

 or a D header and the downstream node will only transmit an unneeded
 RSYNC packet. Although the timer setting scheme does not avoid this
 from happening completely (packet loss may still cause the same
 problem), it should sufficiently reduce the probability of this
 undesired event. Also, by making the timer value for the DS sets a
 local decision, nodes are given the opportunity to adapt the timer
 values to their local environment. For example, if a node moves
 rapidly relative to its surrounding nodes, it is reasonable to choose
 a smaller timer value.

 The preceding applies to "soft-state" operation. If "stateless"
 forwarding is desired at a node, it needs to inform its upstream
 neighbor about its decision. If the upstream neighbor is also
 operating in "stateless" mode, there will be no need to do so since
 all DDM Blocks coming from it are R-type. If the upstream neighbor
 is in "soft-state" mode, when receiving an E or D header the
 downstream "stateless" node needs to send back a RSYNC message with
 the "force refreshing" flag set to "forcing always". After receiving
 such RSYNC message the upstream neighbor only sends R-Blocks from the
 next data packet onwards since the DS block corresponding to this
 "stateless" downstream neighbor has a "forcing always" flag. In a
 "stateless" node, all FS and DS set timers are set to zero so that
 none of the sets are kept. Later on, if a "stateless" node ever
 wants to switch back to "soft-state" again, it needs to send another
 RSYNC message to its upstream neighbor to cause the latter to reset
 its "force refreshing" flag to "no forcing".

 Using a combination of RSYNC message, TOL, and "force refreshing"
 flag, neighboring nodes can operate in different modes but still work
 together.

4.6 Multicast Data Encapsulation

 During the partition of the overall Forwarding Set, DDM needs to
 query the unicast routing protocol for the next hop information. In
 the case when there is no route, or the underlying unicast protocol
 is on-demand, such next hop information may not be available
 immediately. In this case DDM will encapsulate the multicast data
 packet in a CTRL_DATA control message. This message is a unicast
 message from this forwarding node to the multicast destination to
 whom the next hop is unknown. This message is passed to the unicast
 routing protocol for forwarding. During the forwarding of this
 unicast packet, the underlying unicast routing protocol will
 construct the route. This way, soon the next hop information will
 become available for DDM. In the case such multicast destination is
 unreachable, the data packet will eventually be dropped by the
 unicast routing protocol.

Ji and Corson [Page 19]

Internet Draft Differential Destination Multicast July 12, 2000

 When a node receives a valid CTRL_DATA message, it decapsulates the
 original multicast data packet. Then it uses the information stored
 in CTRL_DATA header to restore the D-class IP header for the data
 packet. Finally, the restored multicast data packet is loop-back to
 the IP kernel of the same node for local delivery.

5 Conclusion

 This draft proposes a multicast routing protocol intended for use
 with small multicast groups in ad hoc networks of any size. The
 protocol is source-initiated and controlled, and uses in-band,
 destination-encoded data packet headers to control a distributed
 routing computation. The result is a simple, efficient, and robust
 protocol suitable for small multicast groups. The protocol offers
 the option of choosing between "stateless" and "soft-state" modes.

 Simulation shows that DDM is efficient both in terms of bandwidth and
 channel access. It is nearly ideal for multicasting to small groups
 in networks that already have unicast routing support. Also DDM is
 highly robust and flexible.

 Ongoing work on DDM is focusing in 2 areas: (a) more simulation
 studies to explore different modes and options of the DDM and (b) a
 Linux multicasting daemon implementation to study DDM's performance
 in real system.

6. ACKNOWLEDGMENTS

 This work was performed under a grant from the Army Research Lab
 (ARL) ATIRP program.

Ji and Corson [Page 20]

Internet Draft Differential Destination Multicast July 12, 2000

 References

 [1] J. J. Garcia-Luna-Aceves and E. Madruga, "A Multicast Routing Protocol
 for Ad-Hoc Networks", Proceedings of IEEE INFOCOM'99, March, 1999.

 [2] S. Lee, W. Su and M. Gerla, "On-Demand Multicast Routing Protocol
 (ODMRP)", Internet Draft draft-ietf-manet-odmrp-02.txt, work in progress,
 January, 2000.

 [3] E. Royer and C. Perkins, "Multicast using Ad hoc On-Demand Distance
 Vector Routing", Proceedings of ACM/IEEE MOBICOM '99, 1999.

 [4] L. Ji and M. Corson, "Light-weight Adaptive Multicast", In Proceedings
 of IEEE GLOBECOM '98, November, 1998.

 [5] J. Moy, "Multicast Extensions to OSPF", RFC1584, March, 1994.

 [6] A. Ballardie, "Core Based Trees (CBT version 2) Multicast Routing --
 Protocol Specification", RFC2189, September, 1997.

 [7] D. Estrin et al, "Protocol Independent Multicast-Sparse Mode (PIM-SM):
 Protocol Specification", RFC2362, June, 1998.

 [8] R. Boivie, "A New Multicast Scheme for Small Groups", IBM Research
 Report RC21512(97046), June, 1999.

 [9] D. Ooms and W. Livens, "Connectionless Multicast", Internet Draft
draft-ooms-cl-multicast-01.txt, October, 1999.

 [10] D. Johnson and D. Maltz, "Dynamic Source Routing in Ad Hoc Wireless
 Networks", Mobile Computing, 1996.

 Author's Addresses

 Lusheng Ji, M. Scott Corson
 Institute for Systems Research
 University of Maryland
 College Park, MD 20742
 (301) 405-6630
 {lji,corson}@isr.umd.edu

https://datatracker.ietf.org/doc/html/draft-ietf-manet-odmrp-02.txt
https://datatracker.ietf.org/doc/html/rfc1584
https://datatracker.ietf.org/doc/html/rfc2189
https://datatracker.ietf.org/doc/html/rfc2362
https://datatracker.ietf.org/doc/html/draft-ooms-cl-multicast-01.txt

Ji and Corson [Page 21]

