
Mobile Ad hoc Networking (MANET) T. Clausen
Internet-Draft LIX, Ecole Polytechnique, France
Expires: December 28, 2006 C. Dearlove
 BAE Systems Advanced Technology
 Centre
 P. Jacquet
 Project Hipercom, INRIA
 The OLSRv2 Design Team
 MANET Working Group
 June 26, 2006

The Optimized Link-State Routing Protocol version 2
draft-ietf-manet-olsrv2-02

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 28, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document describes version 2 of the Optimized Link State Routing
 (OLSRv2) protocol for mobile ad hoc networks. The protocol embodies

Clausen, et al. Expires December 28, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft OLSRv2 June 2006

 an optimization of the classical link state algorithm tailored to the
 requirements of a mobile wireless LAN.

 The key optimization of OLSRv2 is that of multipoint relays,
 providing an efficient mechanism for network-wide broadcast of link-
 state information (i.e. reducing the cost of performing a network-
 wide link-state broadcast). A secondary optimization is that OLSRv2
 employs partial link-state information: each node maintains
 information about all destinations, but only a subset of links. This
 allows that only select nodes diffuse link-state advertisements (i.e.
 reduces the number of network-wide link-state broadcasts) and that
 these advertisements contain only a subset of links (i.e. reduces the
 size of each network-wide link-state broadcast). The partial link-
 state information thus obtained still allows each OLSRv2 node to at
 all times maintain optimal (in terms of number of hops) routes to all
 destinations in the network.

 OLSRv2 imposes minimum requirements to the network by not requiring
 sequenced or reliable transmission of control traffic. Furthermore,
 the only interaction between OLSRv2 and the IP stack is routing table
 management.

 OLSRv2 is particularly suitable for large and dense networks as the
 technique of MPRs works well in this context.

Clausen, et al. Expires December 28, 2006 [Page 2]

Internet-Draft OLSRv2 June 2006

Table of Contents

1. Introduction . 5
1.1. Terminology . 6
1.2. Applicability Statement 6

2. Protocol Overview and Functioning 8
2.1. Protocol Extensibility 10

3. Processing and Forwarding Repositories 11
3.1. Received Set . 11
3.2. Fragment Set . 11
3.3. Processed Set . 12
3.4. Forwarded Set . 12
3.5. Relay Set . 12

4. Packet Processing and Message Forwarding 14
4.1. Actions when Receiving an OLSRv2 Packet 14
4.2. Actions when Receiving an OLSRv2 Message 14
4.3. Message Considered for Processing 15
4.4. Message Considered for Forwarding 17

5. Information Repositories 20
5.1. Neighborhood Information Base 20
5.1.1. Link Set . 20
5.1.2. MPR Set . 21
5.1.3. MPR Selector Set 21

5.2. Topology Information Base 21
5.2.1. Advertised Neighbor Set 21
5.2.2. ANSN History Set 22
5.2.3. Topology Set . 22
5.2.4. Attached Network Set 23
5.2.5. Routing Set . 23

6. OLSRv2 Control Message Structures 24
6.1. General OLSRv2 Message TLVs 24
6.1.1. VALIDITY_TIME TLV 24

6.2. HELLO Messages . 25
6.2.1. HELLO Message OLSRv2 Message TLVs 26
6.2.2. HELLO Message OLSRv2 Address Block TLVs 26

6.3. TC Messages . 27
6.4. TC Message: OLSRv2 Address Block TLVs 27

7. HELLO Message Generation 29
7.1. HELLO Message: Transmission 29

8. HELLO Message Processing 30
8.1. Populating the MPR Selector Set 30
8.2. Symmetric Neighborhood and 2-Hop Neighborhood Changes . . 31

9. TC Message Generation . 32
9.1. TC Message: Transmission 33

10. TC Message Processing . 34
10.1. Single TC Message Processing 34
10.1.1. Populating the ANSN History Set 35
10.1.2. Populating the Topology Set 35

Clausen, et al. Expires December 28, 2006 [Page 3]

Internet-Draft OLSRv2 June 2006

10.1.3. Populating the Attached Network Set 36
10.2. Completed TC Message Processing 37
10.2.1. Purging the Topology Set 37
10.2.2. Purging the Attached Network Set 37

11. Populating the MPR Set . 38
12. Populating Derived Sets 39
12.1. Populating the Relay Set 39
12.2. Populating the Advertised Neighbor Set 39

13. Routing Table Calculation 40
14. Proposed Values for Constants 44
14.1. Neighborhood Discovery Constants 44
14.2. Message Intervals . 44
14.3. Holding Times . 44
14.4. Willingness . 44

15. Sequence Numbers . 45
16. IANA Considerations . 46
16.1. Multicast Addresses 46
16.2. Message Types . 46
16.3. TLV Types . 46

17. References . 48
17.1. Normative References 48
17.2. Informative References 48

Appendix A. Example Heuristic for Calculating MPRs 49
Appendix B. Heuristics for Generating Control Traffic 52
Appendix C. Protocol and Port Number 53
Appendix D. Packet and Message Layout 54
Appendix D.1. OLSRv2 Packet Format 54
Appendix E. Node Configuration 59
Appendix F. Jitter . 60
Appendix G. Security Considerations 63
Appendix G.1. Confidentiality 63
Appendix G.2. Integrity . 63
Appendix G.3. Interaction with External Routing Domains 64
Appendix G.4. Node Identity 65
Appendix H. Flow and Congestion Control 66
Appendix I. Contributors . 67
Appendix J. Acknowledgements 68

 Authors' Addresses . 69
 Intellectual Property and Copyright Statements 70

Clausen, et al. Expires December 28, 2006 [Page 4]

Internet-Draft OLSRv2 June 2006

1. Introduction

 The Optimized Link State Routing protocol version 2 (OLSRv2) is an
 update to OLSRv1 as published in RFC3626 [1]. Compared to RFC3626,
 OLSRv2 retains the same basic mechanisms and algorithms, while
 providing an even more flexible signaling framework and some
 simplification of the messages being exchanged. Also, OLSRv2 takes
 care to accommodate both IPv4 and IPv6 addresses in a compact
 fashion.

 OLSRv2 is developed for mobile ad hoc networks. It operates as a
 table driven, proactive protocol, i.e. it exchanges topology
 information with other nodes of the network regularly. Each node
 selects a set of its neighbor nodes as "MultiPoint Relays" (MPRs).
 Only nodes that are selected as such MPRs are then responsible for
 forwarding control traffic intended for diffusion into the entire
 network. MPRs provide an efficient mechanism for flooding control
 traffic by reducing the number of transmissions required.

 Nodes selected as MPRs also have a special responsibility when
 declaring link state information in the network. Indeed, the only
 requirement for OLSRv2 to provide shortest path routes to all
 destinations is that MPR nodes declare link-state information for
 their MPR selectors. Additional available link-state information may
 be utilized, e.g. for redundancy.

 Nodes which have been selected as multipoint relays by some neighbor
 node(s) announce this information periodically in their control
 messages. Thereby a node announces to the network that it has
 reachability to the nodes which have selected it as an MPR. Thus, as
 well as being used to facilitate efficient flooding, MPRs are also
 used for route calculation from any given node to any destination in
 the network.

 A node selects MPRs from among its one hop neighbors with
 "symmetric", i.e. bi-directional, linkages. Therefore, selecting
 routes through MPRs automatically avoids the problems associated with
 data packet transfer over uni-directional links (such as the problem
 of not getting link-layer acknowledgments for data packets at each
 hop, for link-layers employing this technique for unicast traffic).

 OLSRv2 is developed to work independently from other protocols.
 Likewise, OLSRv2 makes no assumptions about the underlying link-
 layer. However, OLSRv2 may use link-layer information and
 notifications when available and applicable.

 OLSRv2, as OLSRv1, inherits the concept of forwarding and relaying
 from HIPERLAN (a MAC layer protocol) which is standardized by ETSI

https://datatracker.ietf.org/doc/html/rfc3626
https://datatracker.ietf.org/doc/html/rfc3626

Clausen, et al. Expires December 28, 2006 [Page 5]

Internet-Draft OLSRv2 June 2006

 [6].

1.1. Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC2119 [2].

 MANET specific terminology is to be interpreted as described in [3]
 and [4].

 Additionally, this document uses the following terminology:

 node - A MANET router which implements the Optimized Link State
 Routing protocol version 2 as specified in this document.

 OLSRv2 interface - A MANET interface, running OLSRv2.

 symmetric strict 2-hop neighbor - A symmetric 2-hop neighbor which is
 not a symmetric 1-hop neighbor and is not a 2-hop neighbor only
 through a symmetric 1-hop neighbor with willingness WILL_NEVER.
 (If node Z is a symmetric 2-hop neighbor of node X then there is a
 node Y such that node Z is a symmetric 1-hop neighbor of node Y
 and node Y is a symmetric 1-hop neighbor of node X. If node Z is a
 symmetric strict 2-hop neighbor of node X then there is such a
 node Y with willingness which is not WILL_NEVER.)

 symmetric strict 2-hop neighborhood - The set of the symmetric strict
 2-hop neighbors of node X.

 multipoint relay (MPR) - A node which is selected by its symmetric
 1-hop neighbor, node X, to "re-transmit" all the broadcast
 messages that it receives from node X, provided that the message
 is not a duplicate, and that the hop limit field of the message is
 greater than one.

 MPR selector - A node which has selected its symmetric 1-hop
 neighbor, node X, as one of its MPRs is an MPR selector of node X.

1.2. Applicability Statement

 OLSRv2 is a proactive routing protocol for mobile ad hoc networks
 (MANETs) [7], [8]. It is well suited to large and dense networks of
 mobile nodes, as the optimization achieved using the MPRs works well
 in this context. The larger and more dense a network, the more
 optimization can be achieved as compared to the classic link state
 algorithm. OLSRv2 uses hop-by-hop routing, i.e. each node uses its
 local information to route packets.

https://datatracker.ietf.org/doc/html/rfc2119

Clausen, et al. Expires December 28, 2006 [Page 6]

Internet-Draft OLSRv2 June 2006

 As OLSRv2 continuously maintains routes to all destinations in the
 network, the protocol is beneficial for traffic patterns where the
 traffic is random and sporadic between a large subset of nodes, and
 where the [source, destination] pairs are changing over time: no
 additional control traffic need be generated in this situation since
 routes are maintained for all known destinations at all times. Also,
 since routes are maintained continuously, traffic is subject to no
 delays due to buffering/route-discovery. This continued route
 maintenance may be done using periodic message exchange, as detailed
 in this specification, or triggered by external events if available.

 OLSRv2 supports nodes which have multiple interfaces which
 participate in the MANET. OLSRv2, additionally, supports nodes which
 have non-MANET interfaces which can serve as (if configured to do so)
 gateways towards other networks.

 The message exchange format, contained in previous versions of this
 specification, has been factored out to an independent specification
 [3], which is used for carrying OLSRv2 control signals. OLSRv2 is
 thereby able to allow for extensions via "external" and "internal"
 extensibility. External extensibility implies that a protocol
 extension may specify and exchange new message types, formatted
 according to [3], which can be forwarded and delivered correctly.
 Internal extensibility implies that a protocol extension may define
 additional attributes to be carried embedded in the standard OLSRv2
 control messages detailed in this specification, using the TLV
 mechanism specified in [3], while OLSRv2 control messages with
 additional attributes can still be correctly understood by all OLSRv2
 nodes.

 The OLSRv2 neighborhood discovery protocol using HELLO messages has
 likewise been factored out to an independent specification [4]. This
 neighborhood discovery protocol serves to ensure that each OLSRv2
 node has available continuously updated information repositories
 describing the node's 1-hop and 2-hop neighbors. [4] uses the message
 format specified in [3], and hence is extensible as described above.

Clausen, et al. Expires December 28, 2006 [Page 7]

Internet-Draft OLSRv2 June 2006

2. Protocol Overview and Functioning

 OLSRv2 is a proactive routing protocol for mobile ad hoc networks.
 The protocol inherits the stability of a link state algorithm and has
 the advantage of having routes immediately available when needed due
 to its proactive nature. OLSRv2 is an optimization over the
 classical link state protocol, tailored for mobile ad hoc networks.
 The main tailoring and optimizations of OLSRv2 are:

 o periodic, unacknowledged transmission of all control messages;

 o optimized flooding for global link-state information diffusion;

 o partial topology maintenance - each node knows only a subset of
 the links in the network, sufficient for a minimum hop route to
 all destinations.

 Using the message exchange format [3] and the neighborhood discovery
 protocol [4], OLSRv2 also contains the following main components:

 o a TLV, to be included within the HELLO messages of [4], allowing a
 node to signal MPR selection;

 o an optimized flooding mechanism for global information exchange,
 denoted "MPR flooding";

 o a specification of global signaling, denoted TC (Topology Control)
 messages. TC messages in OLSRv2 serve to:

 * inject link-state information into the entire network;

 * inject addresses of hosts and networks for which they may serve
 as a gateway into the entire network.

 TC messages are emitted periodically, thereby allowing nodes to
 continuously track global changes in the network.

 The use of [4] allows a node to continuously track changes to its
 local topology up to two hops away. This allows a node to make
 provisions for ensuring optimized flooding, denoted "MPR flooding",
 as well as injection of link-state information into the network.
 This is done through the notion of MultiPoint Relays (MPRs).

 The idea of MPRs is to minimize the overhead of flooding messages in
 the network by reducing redundant retransmissions of messages in the
 same region. Each node in the network selects an MPR Set, a set of
 nodes in its symmetric 1-hop neighborhood which may retransmit its
 messages. The 1-hop neighbors of a node which are not in its MPR set

Clausen, et al. Expires December 28, 2006 [Page 8]

Internet-Draft OLSRv2 June 2006

 receive and process broadcast messages, but do not retransmit
 broadcast messages received from that node. The MPR Set of a node X
 may be any subset of its symmetric 1-hop neighborhood such that every
 node in its symmetric strict 2-hop neighborhood has a symmetric link
 to a node in the MPR Set of node X. The MPR Set of a node may thus be
 said to "cover" the node's symmetric strict 2-hop neighborhood. The
 smaller a MPR Set, the fewer times messages are forwarded and the
 less resulting control traffic overhead. [8] gives an analysis and
 example of MPR selection algorithms. Note that as long as the
 condition above is satisfied, any algorithm selecting MPR Sets is
 acceptable in terms of implementation interoperability.

 Each node maintains information about the set of symmetric 1-hop
 neighbors that have selected it as MPR. This set is called the MPR
 Selector Set of the node. A node obtains this information from an
 MPR TLV which is inserted into the HELLO message exchange of [4].

 Each node also maintains a Relay Set, which is the set of nodes for
 which a node is to relay broadcast traffic. The Relay Set is derived
 from the MPR Selector Set in that the Relay Set MUST contain all the
 nodes in the MPR Selector set and MAY contain additional nodes.

 Using the MPR flooding mechanism, link-state information can be
 injected into the network. For this purpose, a node maintains an
 Advertised Neighbor Set which MUST contain all the nodes in the MPR
 selector set and MAY contain additional nodes. If the Advertised
 Neighbor Set of a node is non-empty, it is reported in TC messages
 generated by that node. If the Advertised Neighbor Set is empty, TC
 messages are not generated by that node, unless needed for gateway
 reporting, or for a short period to accelerate the removal of
 unwanted links.

 OLSRv2 is designed to work in a completely distributed manner and
 does not depend on any central entity. The protocol does not require
 reliable transmission of control messages: each node sends control
 messages periodically, and can therefore sustain a reasonable loss of
 some such messages. Such losses may occur frequently in radio
 networks due to collisions or other transmission problems.

 OLSRv2 does not require sequenced delivery of messages. Each control
 message contains a sequence number which is incremented for each
 message. Thus the recipient of a control message can, if required,
 easily identify which information is more recent - even if messages
 have been re-ordered while in transmission.

 OLSRv2 does not require any changes to the format of IP packets, any
 existing IP stack can be used as is: OLSRv2 only interacts with
 routing table management. OLSR sends its control messages using UDP.

Clausen, et al. Expires December 28, 2006 [Page 9]

Internet-Draft OLSRv2 June 2006

2.1. Protocol Extensibility

 OLSRv2 uses the neighborhood discovery mechanism of [4], and
 specifies additionally one message type, TC, and a number of TLVs.
 All messages exchanged by [4] and by OLSRv2 use and comply with the
 extensible message exchange format of [3], thus OLSR provides both
 "external" extensibility (addition of new message types as in OLSRv1
 [1]) and "internal" extensibility (addition of information to
 existing messages through TLVs) as described in [3].

 Those nodes which do not recognize a new message type ("external
 extensibility") will ignore this message type for processing, but
 will correctly forward the message, if specified in the message
 header. Those nodes which do not recognize a newly defined TLV type
 ignore the added TLV, but process (if the message type is recognized)
 the message correctly, as well as forwards the message, if specified
 in the message header.

Clausen, et al. Expires December 28, 2006 [Page 10]

Internet-Draft OLSRv2 June 2006

3. Processing and Forwarding Repositories

 The following data structures are employed in order to ensure that a
 message is processed at most once and is forwarded at most once per
 interface of a node, and that fragmented content is treated
 correctly.

3.1. Received Set

 Each node maintains, for each OLSRv2 interface, a set of signatures
 of messages, which have been received over that interface, in the
 form of "Received Tuples":

 (RX_type, RX_orig_addr, RX_seq_number, RX_time)

 where:

 RX_type is the received message type, or zero if the received message
 sequence number is not type-specific;

 RX_orig_addr is the originator address of the received message;

 RX_seq_number is the message sequence number of the received message;

 RX_time specifies the time at which this Received Tuple expires and
 MUST be removed.

 In a node, this is denoted the "Received Set" for that interface.

3.2. Fragment Set

 Each node stores messages containing fragmented content until all
 fragments are received and the message processing can be completed,
 in the form of "Fragment Tuples":

 (FG_message, FG_time)

 where:

 FG_message is the message containing fragmented content;

 FG_time specifies the time at which this Fragment Tuple expires and
 MUST be removed.

 In a node, this is denoted the "Fragment Set".

Clausen, et al. Expires December 28, 2006 [Page 11]

Internet-Draft OLSRv2 June 2006

3.3. Processed Set

 Each node maintains a set of signatures of messages which have been
 processed by the node, in the form of "Processed Tuples":

 (P_type, P_orig_addr, P_seq_number, P_time)

 where:

 P_type is the processed message type, or zero if the processed
 message sequence number is not type-specific;

 P_orig_addr is the originator address of the processed message;

 P_seq_number is the message sequence number of the processed message;

 P_time specifies the time at which this Processed Tuple expires and
 MUST be removed.

 In a node, this is denoted the "Processed Set".

3.4. Forwarded Set

 Each node maintains a set of signatures of messages which have been
 retransmitted/forwarded by the node, in the form of "Forwarded
 Tuples":

 (FW_type, FW_orig_addr, FW_seq_number, FW_time)

 where:

 FW_type is the forwarded message type, or zero if the forwarded
 message sequence number is not type-specific;

 FW_orig_addr is the originator address of the forwarded message;

 FW_seq_number is the message sequence number of the forwarded
 message;

 FW_time specifies the time at which this Forward Tuple expires and
 MUST be removed.

 In a node, this is denoted the "Forwarded Set".

3.5. Relay Set

 Each node maintains a set of neighbor interface addresses for which
 it is to relay flooded messages, in the form of "Relay Tuples":

Clausen, et al. Expires December 28, 2006 [Page 12]

Internet-Draft OLSRv2 June 2006

 (RY_iface_addr)

 where:

 RY_iface_addr is the address of a neighbor interface for which the
 node SHOULD relay flooded messages. This MUST include a prefix
 length.

 In a node, this is denoted the "Relay Set".

Clausen, et al. Expires December 28, 2006 [Page 13]

Internet-Draft OLSRv2 June 2006

4. Packet Processing and Message Forwarding

 On receiving a basic packet, as defined in [3], a node examines each
 of the message headers. If the message type is known to the node,
 the message is processed locally according to the specifications for
 that message type. The message is also independently evaluated for
 forwarding.

4.1. Actions when Receiving an OLSRv2 Packet

 On receiving a packet, a node MUST perform the following tasks:

 1. The packet may be fully parsed on reception, or the packet and
 its messages may be parsed only as required. (It is possible to
 parse the packet header, or determine its absence, without
 parsing any messages. It is possible to divide the packet into
 messages without even fully parsing their headers. It is
 possible to determine whether a message is to be forwarded, and
 to forward it, without parsing its body. It is possible to
 determine whether a message is to be processed without parsing
 its body. It is possible to determine if that processing may be
 delayed because the message is a fragment by inspecting the first
 few octets of the message body without fully parsing it.)

 2. If parsing fails at any point the relevant entity (packet or
 message) MUST be silently discarded, other parts of the packet
 (up to the whole packet) MAY be silently discarded;

 3. Otherwise if the packet header is present and it contains a
 packet TLV block, then each TLV in it is processed according to
 its type;

 4. Otherwise each message in the packet, if any, is treated
 according to Section 4.2.

4.2. Actions when Receiving an OLSRv2 Message

 A node MUST perform the following tasks for each received OLSRv2
 message:

 1. If the received OLSRv2 message header cannot be correctly parsed
 according to the specification in [3], or if the node recognizes
 from the originator address of the message that the message is
 one which the receiving node itself originated, then the message
 MUST be silently discarded;

 2. Otherwise:

Clausen, et al. Expires December 28, 2006 [Page 14]

Internet-Draft OLSRv2 June 2006

 1. If the received message is of a known type then the message
 is considered for processing according to Section 4.3, AND;

 2. If for the received message (<hop-limit> + <hop-count>) > 1,
 then the message is considered for forwarding according to

Section 4.4.

4.3. Message Considered for Processing

 If a message (the "current message") is considered for processing,
 the following tasks MUST be performed:

 1. If an entry exists in the Processed Set where:

 * P_type == the message type of the current message, or 0 if the
 typedep bit in the message semantics octet (in the message
 header) of the current message is cleared ('0'), AND;

 * P_orig_addr == the originator address of the current message,
 AND;

 * P_seq_number == the message sequence number of the current
 message.

 then the current message MUST NOT be processed.

 2. Otherwise:

 1. Create an entry in the Processed Set with:

 + P_type = the message type of the current message, or 0 if
 the typedep bit in the message semantics octet (in the
 message header) of the current message is cleared ('0');

 + P_orig_addr = originator address of the current message;

 + P_seq_number = sequence number of the current message;

 + P_time = current time + P_HOLD_TIME.

 2. If the current message does not contain a valid message TLV
 with Type == FRAGMENTATION (or if it does and the indicated
 number of fragments is one) then process the message fully
 according to its type.

 3. Otherwise:

Clausen, et al. Expires December 28, 2006 [Page 15]

Internet-Draft OLSRv2 June 2006

 1. If the current message does not contain a valid message
 TLV with Type == CONT_SEQ_NUM then the current message
 MUST be silently discarded;

 2. Otherwise if the current message is "partially or wholly
 self-contained", as indicated by the notselfcont bit in
 the Value field of the TLV with Type == FRAGMENTATION
 being cleared ('0'), then process the current message as
 far as possible according to its type;

 3. If the Fragment Set includes any Fragment Tuples with:

 - either the typedepseq bit in the Value field of the
 TLV with Type == FRAGMENTATION in the current message
 is cleared ('0') OR message type of FG_message ==
 message type of current message, AND;

 - originator address of FG_message == originator address
 of current message, AND;

 - content sequence number (the Value field of the
 message TLV with Type == CONT_SEQ_NUM) of FG_message
 == content sequence number of current message; AND

 - either fragment number (from the Value field of the
 TLV with Type == FRAGMENTATION) in FG_message ==
 fragment number of current message OR number of
 fragments (from the Value field of the TLV with Type
 == FRAGMENTATION) of FG_message != number of fragments
 of current message;

 then remove these Fragment Tuples from the Fragment Set;

 4. If the Fragment Set includes Fragment Tuples containing
 all the remaining fragments of the same overall message
 as the current message, i.e. if the number of Fragment
 Tuples such that:

 - either the typedepseq bit in the Value field of the
 TLV with Type == FRAGMENTATION in the current message
 is cleared ('0') OR message type of FG_message ==
 message type of current message, AND;

 - originator address of FG_message == originator address
 of current message, AND;

 - content sequence number (the Value field of the
 message TLV with Type == CONT_SEQ_NUM) of FG_message

Clausen, et al. Expires December 28, 2006 [Page 16]

Internet-Draft OLSRv2 June 2006

 == content sequence number of current message

 is equal to (number of fragments of current message, less
 one) then all of these Fragment Tuples are removed from
 the Fragment Set and their messages processed according
 to their type (taking account of any previous processing
 of any which are partially or wholly self-contained);

 5. Otherwise, a Fragment Tuple is added to the Fragment Set
 with

 - FG_message = current message;

 - FG_time = current time + FG_HOLD_TIME;

 possibly replacing a previously received instance of the
 same fragment.

4.4. Message Considered for Forwarding

 If a message is considered for forwarding, and it is either of a
 message type defined in this document or of an unknown message type,
 then it MUST use the following algorithm. A message type not defined
 in this document MAY specify the use of this, or another algorithm.
 (Such an other algorithm MAY use the Received Set for the receiving
 interface, it SHOULD use the Forwarded Set similarly to the following
 algorithm.)

 If a message is considered for forwarding according to this
 algorithm, the following tasks MUST be performed:

 1. If the sending interface (as indicated by the source interface of
 the IP datagram containing the message) does not match (taking
 into account any address prefix of) any N_neighbor_iface_addr in
 any Symmetric Neighbor Tuple, then the message MUST be silently
 discarded.

 2. Otherwise:

 1. If an entry exists in the Received Set for the receiving
 interface, where:

 + RX_type == the message type, or 0 if the typedep bit in
 the message semantics octet (in the message header) is
 cleared ('0'), AND;

 + RX_orig_addr == the originator address of the received
 message, AND;

Clausen, et al. Expires December 28, 2006 [Page 17]

Internet-Draft OLSRv2 June 2006

 + RX_seq_number == the sequence number of the received
 message.

 then the message MUST be silently discarded.

 2. Otherwise:

 1. Create an entry in the Received Set for the receiving
 interface with:

 - RX_type = the message type, or 0 if the typedep bit in
 the message semantics octet (in the message header) is
 cleared ('0');

 - RX_orig_addr = originator address of the message;

 - RX_seq_number = sequence number of the message;

 - RX_time = current time + RX_HOLD_TIME.

 2. If an entry exists in the Forwarded Set where:

 - FW_type == the message type, or 0 if the typedep bit
 in the message semantics octet (in the message header)
 is cleared ('0');

 - FW_orig_addr == the originator address of the received
 message, AND;

 - FW_seq_number == the sequence number of the received
 message.

 then the message MUST be silently discarded.

 3. Otherwise if a Relay Tuple exists whose RY_iface_addr
 matches (taking into account any address prefix) the
 sending interface (as indicated by the source interface
 of the IP datagram containing the message):

 1. Create an entry in the Forwarded Set with:

 o FW_type = the message type, or 0 if the typedep
 bit in the message semantics octet (in the message
 header) is cleared ('0');

 o FW_orig_addr = originator address of the message;

Clausen, et al. Expires December 28, 2006 [Page 18]

Internet-Draft OLSRv2 June 2006

 o FW_seq_number = sequence number of the message;

 o FW_time = current time + FW_HOLD_TIME.

 2. The message header is modified as follows:

 o Decrement <hop-limit> in the message header by 1;

 o Increment <hop-count> in the message header by 1;

 3. Transmit the message on all OLSRv2 interfaces of the
 node.

 Messages are retransmitted in the format specified by [3] with the
 ALL-MANET-NEIGHBORS address (see Section 16.1) as destination IP
 address.

Clausen, et al. Expires December 28, 2006 [Page 19]

Internet-Draft OLSRv2 June 2006

5. Information Repositories

 The purpose of OLSRv2 is to determine the Routing Set, which may be
 used to update IP's Routing Table, providing "next hop" routing
 information for IP datagrams. In order to accomplish this, OLSRv2
 uses a number of protocol sets: the Neighborhood Information Base,
 provided by [4], is in OLSRv2 augmented by information allowing MPR
 selection and signaling. Additionally, OLSRv2 specifies a Topology
 Information Base, which describes the information used for and
 acquired through TC message exchange - in other words: the topology
 base represents the network topology graph as seen from each node.

 Addresses (other than originator addresses) recorded in the
 Neighborhood Information Base and the Topology Information Base MUST
 all be recorded with prefix lengths, in order to allow comparison
 with addresses received in HELLO and TC messages. For the Topology
 Information Base this applies to A_neighbor_iface_addr,
 T_dest_iface_addr, T_last_iface_addr, AN_net_addr, AN_gw_iface_addr,
 R_dest_addr, R_dest_addr, R_next_iface_addr and R_local_iface_addr,
 but not AH_orig_addr. For the Neighborhood Information Base see [4].

5.1. Neighborhood Information Base

 The neighborhood information base stores information about links
 between local interfaces and interfaces on adjacent nodes. In
 addition to the sets described in [4], OLSRv2 adds an element to each
 Link Tuple to allow a node to record the willingness of a 1-hop
 neighbor node to be selected as an MPR. Also, OLSRv2 adds an MPR Set
 and an MPR Selector Set to the Neighborhood Information Base. The
 MPR Set is used by a node to record which of its symmetric 1-hop
 neighbors are selected as MPRs, and the MPR Selector Set is used by a
 node to record which of its symmetric 1-hop neighbors have selected
 it as MPR. Thus the MPR Set is used, in addition to what is
 specified in [4], when generating HELLO messages, and the MPR
 Selector Set is populated, in addition to what is specified in [4]
 when processing HELLO messages.

5.1.1. Link Set

 The Link Tuples, specified in [4] are augmented by an element,
 L_willingness:

 L_willingness is the node's willingness to be selected as an MPR;

 The remaining elements of the Link Tuples are as specified in [4].

Clausen, et al. Expires December 28, 2006 [Page 20]

Internet-Draft OLSRv2 June 2006

5.1.2. MPR Set

 A node maintains a set of all of the OLSRv2 interface addresses with
 which the node has a symmetric link and which are of 1-hop symmetric
 neighbors which the node has selected as MPRs. This is denoted the
 "MPR Set".

5.1.3. MPR Selector Set

 A node maintains a set of "MPR Selector Tuples" containing all of the
 OLSRv2 interface addresses with which the node has a symmetric link
 and which are of 1-hop symmetric neighbors which have selected the
 node as an MPR.

 (MS_neighbor_iface_addr, MS_time)

 MS_neighbor_iface_addr specifies an OLSRv2 interface address with
 which the node has a symmetric link and which is of a 1-hop
 symmetric neighbor which has selected the node as an MPR;

 MS_time specifies the time at which this MPR Selector Tuple expires
 and *MUST* be removed.

 In a node, the set of MPR Selector Tuples is denoted the "MPR
 Selector Set".

5.2. Topology Information Base

 The Topology Information Base stores information, required for the
 generation and processing of TC messages. The Advertised Neighbor
 Set contains OLSRv2 interface addresses of symmetric 1-hop neighbors
 which are to be reported in TC messages. The Topology Set and
 Attached Network Set both record information received through TC
 messages. Thus the Advertised Neighbor Set is used for generating TC
 messages, while the Topology Set and Attached Network Set are
 populated when processing TC messages.

 Additionally, a Routing Set is maintained, derived from the
 information recorded in the Neighborhood Information Base, Topology
 Set and Attached Network Set.

5.2.1. Advertised Neighbor Set

 A node maintains a set of OLSRv2 interface addresses of symmetric
 1-hop neighbors, which are to be advertised through TC messages:

 (A_neighbor_iface_addr)

Clausen, et al. Expires December 28, 2006 [Page 21]

Internet-Draft OLSRv2 June 2006

 For this set, an Advertised Neighbor Set Sequence Number (ANSN) is
 maintained. Each time the Advertised Neighbor Set is updated, the
 ANSN MUST be incremented. The ANSN MUST also be incremented if any
 locally advertised attached networks are added or removed.

5.2.2. ANSN History Set

 A node records a set of "ANSN History Tuples", recording information
 about the freshness of the topology information received from each
 other node:

 (AH_orig_addr, AH_seq_number, AH_time)

 AH_orig_addr is the originator address of a received TC message;

 AH_seq_number is the highest ANSN in any TC message received which
 originated from AH_orig_addr;

 AH_time is the time at which this ANSN History Tuple expires and
 MUST be removed.

 In a node, the set of ANSN History Tuples is denoted the "ANSN
 History Set".

5.2.3. Topology Set

 Each node in the network maintains topology information about the
 network in the form of "Topology Tuples":

 (T_dest_iface_addr, T_last_iface_addr, T_seq_number, T_time)

 T_dest_iface_addr is an OLSRv2 interface address of a destination
 node, which may be reached in one hop from the node with the
 OLSRv2 interface address T_last_iface_addr;

 T_last_iface_addr is, conversely, an OLSRv2 interface address of a
 node which is the last hop on a path towards the node with OLSRv2
 interface address T_dest_iface_addr. Typically, the node with
 OLSRv2 interface address T_last_iface_addr is a MPR of the node
 with OLSRv2 interface address T_dest_iface_addr;

 T_seq_number is the highest received ANSN associated with the
 information contained in this Topology Tuple;

 T_time specifies the time at which this Topology Tuple expires and
 MUST be removed.

 In a node, the set of Topology Tuples is denoted the "Topology Set".

Clausen, et al. Expires December 28, 2006 [Page 22]

Internet-Draft OLSRv2 June 2006

5.2.4. Attached Network Set

 Each node in the network maintains information about attached
 networks in the form of "Attached Network Tuples":

 (AN_net_addr, AN_gw_iface_addr, AN_seq_number, AN_time)

 AN_net_addr is the network address (including prefix length) of an
 attached network, which may be reached via the node with the
 OLSRv2 interface address AN_gw_iface_addr;

 AN_gw_iface_addr is the address of an OLSRv2 interface of a node
 which can act as gateway to the network identified by AN_net_addr;

 AN_seq_number is the highest received ANSN associated with the
 information contained in this Attached Network Tuple;

 AN_time specifies the time at which this Attached Network Tuple
 expires and *MUST* be removed.

 In a node, the set of Attached Network Tuples is denoted the
 "Attached Network Set".

5.2.5. Routing Set

 A node records a set of "Routing Tuples" describing the selected path
 to each destination in the network for which a route is known:

 (R_dest_addr, R_next_iface_addr, R_dist, R_local_iface_addr)

 R_dest_addr is the address of the destination, either the address of
 an OLSRv2 interface of a destination node, or the network address
 of an attached network;

 R_next_iface_addr is the OLSRv2 interface address of the "next hop"
 on the selected path to the destination;

 R_dist is the number of hops on the selected path to the destination;

 R_local_iface_addr is the address of the local interface over which a
 packet MUST be sent to reach the destination.

 In a node, the set of Routing Tuples is denoted the "Routing Set".

Clausen, et al. Expires December 28, 2006 [Page 23]

Internet-Draft OLSRv2 June 2006

6. OLSRv2 Control Message Structures

 Nodes using OLSRv2 exchange information through messages. One or
 more messages sent by a node at the same time are combined into a
 packet. These messages may have originated at the sending node, or
 have originated at another node and forwarded by the sending node.
 Messages with different originators may be combined in the same
 packet.

 The packet and message format used by OLSRv2 is defined in [3].
 However this specification contains some options which are not used
 by OLSRv2. In particular (using the syntactical elements defined in
 the packet format specification):

 o All OLSRv2 packets, not limited to those defined in this document,
 include a <packet-header>.

 o All OLSRv2 packets, not limited to those defined in this document,
 have the pseqnum bit of <packet-semantics> cleared ('0'), i.e.
 they include a packet sequence number.

 o OLSRv2 packets MAY include packet TLVs, however OLSRv2 itself does
 not specify any packet TLVs.

 o All OLSRv2 messages, not limited to those defined in this
 document, include a full <msg-header> and hence have the noorig
 and nohops bits of <msg-semantics> cleared ('0').

 o All OLSRv2 message defined in this document have the typedep bit,
 and all reserved bits of <msg-semantics> cleared ('0').

 Other options defined in [3] may be freely used, in particular any
 other values of <packet-semantics> or <tlv-semantics> consistent with
 its specification.

 OLSRv2 messages are sent using UDP, see Appendix C.

 The remainder of this section defines, within the framework of [3],
 message types and TLVs specific to OLSRv2.

6.1. General OLSRv2 Message TLVs

 This document specifies two message TLVs, which can be applied to any
 OLSRv2 control messages, VALIDITY_TIME and INTERVAL_TIME.

6.1.1. VALIDITY_TIME TLV

 All OLSRv2 messages specified in this document MUST include a

Clausen, et al. Expires December 28, 2006 [Page 24]

Internet-Draft OLSRv2 June 2006

 VALIDITY_TIME TLV, specifying a period following receipt of a
 message, after which the receiving node MUST consider the message
 content to no longer be valid (unless repeated in a later message).
 The validity time of a message MAY be specified to depend on the
 distance from the originator (i.e. the <hop-count> field in the
 message header as defined in [3]). Thus, a VALIDITY_TIME TLV's value
 field MAY contain a sequence of pairs (time, hop limit) in increasing
 hop limit order; it MUST contain a final default value.

 This is an extended, and compatible, version of the VALIDITY_TIME TLV
 defined in [4].

 Thus, an instance of a VALIDITY_TIME TLV MAY have the following value
 field:

 <t_1><hl_1><t_2><hl_2> ... <t_i><hl_i> <t_n><hl_n><t_default>

 Which would mean that the message carrying this VALIDITY_TIME TLV
 would have the following validity times:

 o <t_1> in the interval from 0 (exclusive) to <hl_1> (inclusive)
 hops away from the originator;

 o <t_i> in the interval from <hl_(i-1)> (exclusive) to <hl_i>
 (inclusive) hops away from the originator;

 o <t_default> in the interval from <hl_n> (exclusive) to 255
 (inclusive) hops away from the originator.

 The VALIDITY_TIME message TLV specification is given in Table 1.

 +----------------+------+-------------------+-----------------------+
 | Name | Type | Length | Value |
 +----------------+------+-------------------+-----------------------+
 | VALIDITY_TIME | TBD | (2*n+1) * 8 bits | {<time><hop_limit>}* |
 | | | | <t_default> |
 +----------------+------+-------------------+-----------------------+

 Table 1

 where n is the number of (time, hop_limit) pairs in the TLV (i.e. is
 equal to (<length>-1)/2, where <length> is the length of the TLV
 value field) and where <time> and <t_default> are represented as
 specified in [3].

6.2. HELLO Messages

 A HELLO message in OLSRv2 is generated as specified in [4].

Clausen, et al. Expires December 28, 2006 [Page 25]

Internet-Draft OLSRv2 June 2006

 Additionally, an OLSRv2 node:

 o MUST include TLV(s) with Type == MPR associated with all OLSRv2
 interface addresses included in the HELLO message with a TLV with
 Type == LINK_STATUS and Value == SYMMETRIC if that address is also
 included in the node's MPR Set (if there is more than one copy of
 the address, this applies to the specific copy of the address to
 which the TLV is associated);

 o MUST NOT include any TLVs with Type == MPR associated with any
 other addresses;

 o MAY include a message TLV with Type == WILLINGNESS, indicating the
 node's willingness to be selected as MPR.

6.2.1. HELLO Message OLSRv2 Message TLVs

 In a HELLO message, a node MAY include a WILLINGNESS message TLV as
 specified in Table 2.

 +----------------+------+-------------------+-----------------------+
 | Name | Type | Length | Value |
 +----------------+------+-------------------+-----------------------+
WILLINGNESS	TBD	8 bits	The node's
			willingness to be
			selected as MPR, any
			unused bits (based on
			the maximum
			willingness value
			WILL_ALWAYS) are
			RESERVED and SHOULD
			be set to zero.
 +----------------+------+-------------------+-----------------------+

 Table 2

 A node's willingness to be selected as MPR ranges from WILL_NEVER
 (indicating that a node MUST NOT be selected as MPR by any node) to
 WILL_ALWAYS (indicating that a node MUST always be selected as MPR).

 If a node does not advertise a Willingness TLV in HELLO messages, the
 node MUST be assumed to have a willingness of WILL_DEFAULT.

6.2.2. HELLO Message OLSRv2 Address Block TLVs

 In a HELLO message, a node MAY include MPR address block TLV(s) as
 specified in Table 3.

Clausen, et al. Expires December 28, 2006 [Page 26]

Internet-Draft OLSRv2 June 2006

 +----------------+------+-------------------+-----------------------+
 | Name | Type | Length | Value |
 +----------------+------+-------------------+-----------------------+
 | MPR | TBD | 0 bits | No value, i.e. |
 | | | | novalue bit ([3]) set |
 +----------------+------+-------------------+-----------------------+

 Table 3

6.3. TC Messages

 A TC message MUST contain:

 o a message TLV with Type == CONT_SEQ_NUM, as specified in [3];

 o a message TLV with Type == VALIDITY_TIME, as specified in
Section 6.1.1;

 o a first address block containing all of the node's OLSRv2
 interface addresses. This is similar to the Local Interface Block
 specified in [4], however these addresses MUST be included in the
 same order in all copies of a given TC message, regardless of
 which interface it is transmitted on, and no OTHER_IF address
 block TLV(s) are required;

 o additional address block(s) containing all addresses in the
 Advertised Address Set and Attached Network Set, the latter (only)
 with associated GATEWAY address block TLV(s), as specified in

Section 6.4, both with associated PREFIX_LENGTH TLV(s), as
 specified in [3], as necessary.

 A TC message MAY contain:

 o a message TLV INTERVAL_TIME, as specified in [4].

6.4. TC Message: OLSRv2 Address Block TLVs

 In a TC message, a node MAY include GATEWAY address block TLV(s) as
 specified in Table 4.

Clausen, et al. Expires December 28, 2006 [Page 27]

Internet-Draft OLSRv2 June 2006

 +----------------+------+-------------------+-----------------------+
 | Name | Type | Length | Value |
 +----------------+------+-------------------+-----------------------+
 | GATEWAY | TBD | 0 bits | No value, i.e. |
 | | | | novalue bit ([3]) set |
 +----------------+------+-------------------+-----------------------+

 Table 4

Clausen, et al. Expires December 28, 2006 [Page 28]

Internet-Draft OLSRv2 June 2006

7. HELLO Message Generation

 An OLSRv2 HELLO message is composed as defined in [4], with the
 following TLVs added:

 o a message TLV with Type == WILLINGNESS and Value == the node's
 willingness to act as an MPR, MAY be included in the message;

 o for each symmetric 1-hop neighbor OLSRv2 interface address which
 is included in the HELLO message with an associated TLV with Type
 == LINK_STATUS and is selected as an MPR (i.e. is present in the
 MPR Set), an address TLV with Type == MPR MUST be included, this
 SHOULD be associated with the same copy of the address as the TLV
 with Type == LINK_STATUS;

 o for each 1-hop neighbor OLSRv2 interface address which is included
 in the HELLO message but is not selected as an MPR (i.e. is not
 present in the MPR Set), an address TLV with Type == MPR MUST NOT
 be included.

7.1. HELLO Message: Transmission

 Messages are retransmitted in the packet/message format specified by
 [3] with the ALL-MANET-NEIGHBORS address as destination IP address
 and with TTL (IPv4) or hop limit (IPv6) equal to 1.

Clausen, et al. Expires December 28, 2006 [Page 29]

Internet-Draft OLSRv2 June 2006

8. HELLO Message Processing

 Subsequent to the processing of HELLO messages, as specified in [4],
 the node MUST:

 1. Determine the willingness of the originating node to be an MPR
 by:

 * if the HELLO message contains a message TLV with Type ==
 WILLINGNESS then the willingness is the value of that TLV,
 ignoring the reserved bits in that field;

 * otherwise the willingness is WILL_DEFAULT.

 2. Update each Link Tuple whose L_neighbor_iface_addr is present in
 the Local Interface Block of the HELLO message, with:

 * L_willingness = the willingness of the originating node;

 3. Update its MPR Selector Set, according to Section 8.1.

8.1. Populating the MPR Selector Set

 On receiving a HELLO message, a node MUST:

 1. If a node finds one of its own interface addresses with an
 associated TLV with Type == MPR in the HELLO message (indicating
 that the originator node has selected the receiving node as an
 MPR), the MPR Selector Set MUST be updated as follows:

 1. For each address, henceforth neighbor address, in the Local
 Interface Block of the received HELLO message, where the
 neighbor address is present as an N_neighbor_iface_addr in a
 Symmetric Neighbor Tuple with N_STATUS == SYMMETRIC:

 1. If there exists no MPR Selector Tuple with:

 - MS_neighbor_iface_addr == neighbor address

 then a new MPR Selector Tuple is created with:

 - MS_neighbor_iface_addr = neighbor address

 2. The MPR Selector Tuple (new or otherwise) with:

 - MS_neighbor_iface_addr == neighbor address

 is then modified as follows:

Clausen, et al. Expires December 28, 2006 [Page 30]

Internet-Draft OLSRv2 June 2006

 - MS_time = current time + validity time

 2. Otherwise if a node finds one of its own interface addresses with
 an associated TLV with Type == LINK_STATUS and Value == SYMMETRIC
 in the HELLO message (indicating, since there is no TLV with Type
 == MPR, that originator node has de-selected the receiving node
 as an MPR), the MPR Selector Set MUST be updated as follows:

 1. All MPR Selector Tuples whose N_neighbor_iface_addr is in the
 Local Interface Block of the HELLO message are removed.

 MPR Selector Tuples are also removed upon expiration of MS_time, or
 upon symmetric link breakage as described in Section 8.2.

8.2. Symmetric Neighborhood and 2-Hop Neighborhood Changes

 A node MUST also perform the following:

 1. If a Link Tuple with L_STATUS == SYMMETRIC is removed, or its
 L_STATUS changes from SYMMETRIC to HEARD or LOST, and if that
 Link Tuple's L_neighbor_iface_addr is an MS_iface_addr of an MPR
 Selector Tuple, then that MPR Selector Tuple MUST be removed.

 2. If any of:

 * a Link Tuple is added with L_STATUS == SYMMETRIC, OR;

 * a Link Tuple with L_STATUS == SYMMETRIC is removed, or its
 L_STATUS changes from SYMMETRIC to HEARD or LOST, or vice
 versa, OR;

 * a 2-Hop Neighbor Tuple is added or removed, OR;

 * the Neighbor Address Association Set is changed such that the
 subset of any NA_neighbor_iface_addr_list consisting of those
 addresses which are the L_neighbor_iface_addr of a Link Tuple
 with L_STATUS == SYMMETRIC is changed, including the cases of
 removal or addition of a Neighbor Address Association Tuple
 containing any such addresses;

 then the MPR Set MUST be recalculated.

 An additional HELLO message MAY be sent when the MPR Set changes, in
 addition to the cases specified in [4], and subject to the same
 constraints.

Clausen, et al. Expires December 28, 2006 [Page 31]

Internet-Draft OLSRv2 June 2006

9. TC Message Generation

 A node with one or more OLSRv2 interfaces, and with a non-empty
 Advertised Neighbor Set or which acts as a gateway to an associated
 network which is to be advertised in the MANET, MUST generate TC
 messages. A node with an empty Advertised Neighbor Set and which is
 not acting as such a gateway SHOULD also generate "empty" TC messages
 for a period A_HOLD_TIME after it last generated a non-empty TC
 message. TC messages (non-empty and empty) are generated according
 to the following:

 1. the TC message MUST contain a message TLV with Type ==
 CONT_SEQ_NUM and Value == ANSN from the Advertised Neighbor Set;

 2. the TC message MUST contain a message TLV with Type ==
 VALIDITY_TIME and Value == T_HOLD_TIME as specified in

Section 6.1.1;

 3. the TC message MAY contain a message TLV with Type ==
 INTERVAL_TIME and Value == TC_INTERVAL as specified in [4];

 4. the TC message MUST contain the addresses of all of its OLSRv2
 interfaces in its first address block, note that the TC message
 generated on all OLSRv2 interfaces MUST be identical (including
 having identical message sequence number) and hence these
 addresses are not ordered or otherwise identified according to
 the interface on which the TC message is transmitted;

 5. the TC message MUST contain, in address blocks other than its
 first:

 1. A_neighbor_iface_addr from each Advertised Neighbor Tuple;

 2. the addresses of all associated hosts and networks for which
 this node is to act as a gateway and which is to be
 advertised in the MANET, each associated with a TLV with Type
 == GATEWAY.

 6. the TC message MAY be fragmented, only by its originator. It
 SHOULD be fragmented only if necessary; if the TC message is
 fragmented, a FRAGMENTATION TLV MUST be included, and each
 fragment SHOULD be indicated as "partially or wholly self
 contained" in it, and MUST indicate that the content sequence
 number (ANSN) is message type specific.

Clausen, et al. Expires December 28, 2006 [Page 32]

Internet-Draft OLSRv2 June 2006

9.1. TC Message: Transmission

 TC messages are generated and transmitted periodically on all OLSRv2
 interfaces, with a default interval between two consecutive TC
 emissions by the same node of TC_INTERVAL. TC messages MAY be
 generated in response to a change of contents (a change in ANSN, due
 to a change in the Advertised Neighbor Set or the advertised locally
 attached networks) but a node must respect a minimum interval of
 TC_MIN_INTERVAL between generated TC messages.

 TC messages SHOULD be generated with a message hop limit [3] greater
 than or equal to the expected network diameter (by default with a hop
 limit of 255).

 TC messages are transmitted with the ALL-MANET-NEIGHBORS multicast
 address as destination IP address and are forwarded according to the
 specification in Section 4.4.

Clausen, et al. Expires December 28, 2006 [Page 33]

Internet-Draft OLSRv2 June 2006

10. TC Message Processing

 When according to Section 4.3 a TC message is to be processed
 according to its type, this means that processing is carried out
 according to Section 10.1 and Section 10.2. The timing of this
 processing depends on whether the TC message is a fragment, and if so
 whether it is "partially or wholly self-contained":

 o if the message is not a fragment, then first Section 10.1 and then
Section 10.2 are carried out when the message is received;

 o if the message is a fragment which is "partially or wholly self-
 contained", then processing according to Section 10.1 is carried
 out when the message is received, and processing according to

Section 10.2 is carried out when all matching fragments have been
 received and all processing according to Section 10.1 has been
 carried out;

 o if the message is a fragment which is not "partially or wholly
 self-contained", then processing according to Section 10.1 is
 carried out when all matching fragments have been received, and
 processing according to Section 10.2 is carried out when all
 matching fragments have been received and all processing according
 to Section 10.1 has been carried out.

 For all processing purposes, "ANSN" is defined as being the value of
 the message TLV with Type == CONT_SEQ_NUM in the TC message. If a TC
 message has no such TLV then the processing of Section 10.1 and

Section 10.2 MUST NOT be carried out. (Note that if the message is a
 fragment it will have already been discarded according to

Section 4.3.) If more than one TC message is processed according to
Section 10.2 then these must have the same ANSN to be recognized as

 fragments of the same message.

10.1. Single TC Message Processing

 For the purpose of this section, note the following:

 o "validity time" is calculated from the VALIDITY_TIME message TLV
 in the TC message according to the specification in Section 6.1.1;

 o "originator address" refers to the originator address in the TC
 message header;

 o comparisons of sequence numbers are carried out as specified in
Section 15.

 The TC message is processed as follows:

Clausen, et al. Expires December 28, 2006 [Page 34]

Internet-Draft OLSRv2 June 2006

 1. the ANSN History Set is updated according to Section 10.1.1; if
 the TC message is indicated as discarded in that processing then
 the following steps are not carried out;

 2. the Topology Set is updated according to Section 10.1.2;

 3. the Attached Network Set is updated according to Section 10.1.3.

10.1.1. Populating the ANSN History Set

 The node MUST update its ANSN History Set as follows:

 1. if there is an ANSN History Tuple with:

 * AH_orig_addr == originator address; AND

 * AH_seq_number > ANSN

 then the TC message MUST be discarded;

 2. otherwise create a new ANSN History Tuple with:

 * AH_orig_addr = originator address;

 * AH_seq_number = ANSN;

 * AH_time = current time + validity time.

 possibly replacing an existing ANSN History Tuple with the same
 AH_orig_addr.

10.1.2. Populating the Topology Set

 The node SHOULD update its Topology Set as follows:

 1. for each address, henceforth local address, in the first address
 block in the TC message:

 1. for each address, henceforth advertised address, in an
 address block other than the first in the TC message, and
 which does not have an associated TLV with Type == GATEWAY:

 1. if there is a Topology Tuple with:

 T_dest_iface_addr == advertised address; AND

Clausen, et al. Expires December 28, 2006 [Page 35]

Internet-Draft OLSRv2 June 2006

 T_last_iface_addr == local address

 then update this Topology Tuple to have:

 T_seq_number = ANSN;

 T_time = current time + validity time

 2. otherwise create a new Topology Tuple with:

 T_dest_iface_addr = advertised address;

 T_last_iface_addr = local address;

 T_seq_number = ANSN;

 T_time = current time + validity time.

10.1.3. Populating the Attached Network Set

 The node SHOULD update its Attached Network Set as follows:

 1. for each address, henceforth gateway address, in the first
 address block in the TC message:

 1. for each address, henceforth network address, in an address
 block other than the first in the TC message, and which has
 an associated TLV with Type == GATEWAY:

 1. if there is a Attached Network Tuple with:

 AN_net_addr == network address; AND

 AN_gw_iface_addr == gateway address

 then update this Attached Network Tuple to have:

 AN_seq_number = ANSN;

 AN_time = current time + validity time

 2. otherwise create a new Attached Network Tuple with:

 AN_net_addr = network address;

Clausen, et al. Expires December 28, 2006 [Page 36]

Internet-Draft OLSRv2 June 2006

 AN_gw_iface_addr = gateway address

 AN_seq_number = ANSN;

 AN_time = current time + validity time

10.2. Completed TC Message Processing

 The TC message(s) are processed as follows:

 1. the Topology Set is updated according to Section 10.2.1;

 2. the Attached Network Set is updated according to Section 10.2.2.

10.2.1. Purging the Topology Set

 The Topology Set MUST be updated as follows:

 1. for each address, henceforth local address, in the first address
 block of any of the TC messages, all Topology Tuples with:

 T_last_iface_addr == local address; AND

 T_seq_number < ANSN

 MUST be removed.

10.2.2. Purging the Attached Network Set

 The Attached Network Set MUST be updated as follows:

 1. for each address, henceforth local address, in the first address
 block of any of the TC messages, all Attached Network Tuples
 with:

 AN_gw_iface_addr == local address; AND

 AN_seq_number < ANSN

 MUST be removed.

Clausen, et al. Expires December 28, 2006 [Page 37]

Internet-Draft OLSRv2 June 2006

11. Populating the MPR Set

 Each node MUST select, from among its symmetric 1-hop neighbors, a
 subset of nodes as MPRs. This subset MUST be selected such that a
 message transmitted by the node, and retransmitted by all its MPRs,
 will be received by all of its symmetric strict 2-hop neighbors.

 Each node selects its MPR Set individually, utilizing the information
 in the Symmetric Neighbor Set, the 2-Hop Neighbor Set and the
 Neighborhood Address Association Set. Initially these sets will be
 empty, as will be the MPR Set. A node SHOULD recalculate its MPR Set
 when a relevant change is made to the Symmetric Neighbor Set, the
 2-Hop Neighbor Set or the Neighborhood Address Association Set.

 More specifically, a node MUST calculate MPRs per interface, the
 union of the MPR Sets of each interface make up the MPR Set for the
 node. All OLSRv2 interfaces of nodes selected as MPRs with which the
 node has a symmetric link MUST be added to the MPR Set. Also
 symmetric 1-hop neighbor nodes with willingness WILL_NEVER (as
 recorded in the Link Set) MUST NOT be considered as MPRs.

 MPRs are used to flood control messages from a node into the network
 while reducing the number of retransmissions that will occur in a
 region. Thus, the concept of MPR is an optimization of a classical
 flooding mechanism. While it is not essential that the MPR Set is
 minimal, it is essential that all symmetric strict 2-hop neighbors
 can be reached through the selected MPR nodes. A node MUST select an
 MPR Set such that any strict 2-hop neighbor is "covered" by at least
 one MPR node. A node MAY select additional MPRs beyond the minimum
 set. Keeping the MPR Set small ensures that the overhead of OLSRv2
 is kept at a minimum.

Appendix A contains an example heuristic for selecting MPRs.

Clausen, et al. Expires December 28, 2006 [Page 38]

Internet-Draft OLSRv2 June 2006

12. Populating Derived Sets

 The Relay Set and the Advertised Neighbor Set of OLSRv2 are denoted
 derived sets, since updates to these sets are not directly a function
 of message exchanges, but rather are derived from updates to other
 sets, in particular the MPR Selector Set.

12.1. Populating the Relay Set

 The Relay Set contains the set of neighbor addresses, for which a
 node is supposed to relay broadcast traffic. This set SHOULD at
 least contain all addresses in the MPR Selector Set. This set MAY
 contain additional symmetric 1-hop neighbor addresses.

12.2. Populating the Advertised Neighbor Set

 The Advertised Neighbor Set contains the set of OLSRv2 interface
 addresses of those 1-hop neighbors to which a node advertises a
 symmetric link in TC messages. This set SHOULD at least contain all
 of the OLSRv2 interface addresses of the nodes in the MPR Selector
 Set (i.e. all addresses associated with an MPR Selector node through
 the Neighborhood Address Association Set, that is, appearing in the
 same NA_neighbor_iface_addr_list as any MS_neighbor_iface_addr).
 This set MAY also contain OLSRv2 interface addresses of other
 symmetric 1-hop neighbors.

 Whenever an address is removed from the Advertised Neighbor Set, the
 ANSN MUST be incremented. Whenever an address is added to the
 Advertised Neighbor Set, the ANSN MUST be incremented.

Clausen, et al. Expires December 28, 2006 [Page 39]

Internet-Draft OLSRv2 June 2006

13. Routing Table Calculation

 The Routing Set is updated when a change (an entry appearing or
 disappearing, or changing between SYMMETRIC and LOST) is detected in:

 o the Link Set, OR;

 o the Neighbor Address Association Set, OR;

 o the 2-Hop Neighbor Set, OR;

 o the Topology Set, OR;

 o the Attached Network Set.

 Note that some changes to these sets do not necessitate a change to
 the Routing Set, in particular changes to the Link Set which do not
 involve Link Tuples with L_STATUS == SYMMETRIC (either before or
 after the change), similar changes to the Neighbor Address
 Association Set. A node MAY avoid updating the Routing Set in such
 cases.

 Updates to the Routing Set does not generate or trigger any messages
 to be transmitted. The state of the Routing Set SHOULD, however, be
 reflected in the IP routing table by adding and removing entries from
 the routing table as appropriate.

 To construct the Routing Set of node X, a shortest path algorithm is
 run on the directed graph containing

 o the arcs X -> Y where there exists a Link Tuple with Y as
 L_neighbor_iface_addr and L_STATUS == SYMMETRIC (i.e. Y is a
 symmetric 1-hop neighbor of X), AND;

 o the arcs Y -> Z where Y is added as above and the Link Tuple with
 Y as L_neighbor_iface_addr has L_willingness not equal to
 WILL_NEVER, and there exists a 2-Hop Neighbor Tuple with Y as
 N2_neighbor_iface_addr and Z as N2_2hop_iface_addr (i.e. Z is a
 symmetric 2-hop neighbor of Z through Y, which does not have
 willingness WILL_NEVER), AND;

 o the arcs U -> V, where there exists a Topology Tuple with U as
 T_last_iface_addr and V as T_dest_iface_addr (i.e. this is an
 advertised link in the network).

 The graph is complemented with:

Clausen, et al. Expires December 28, 2006 [Page 40]

Internet-Draft OLSRv2 June 2006

 o arcs Y -> W where there exists a Link Tuple with Y as
 L_neighbor_iface_addr and L_STATUS == SYMMETRIC and a Neighborhood
 Address Association Tuple with Y and W both contained in
 NA_neighbor_iface_addr_list (i.e. Y and W are both addresses of
 the same symmetric 1-hop neighbor), AND;

 o arcs U -> T where there exists an Attached Network Tuple with U as
 AN_net_addr and T as AN_gw_iface_addr (i.e. U is a gateway to
 network T).

 The following procedure is given as an example for (re-)calculating
 the Routing Set using a variation of Dijkstra's algorithm. Thus:

 1. All Routing Tuples are removed.

 2. For each Link Tuple with L_STATUS == SYMMETRIC, a new Routing
 Tuple is added with:

 * R_dest_addr = L_neighbor_iface_addr of the Link Tuple;

 * R_next_iface_addr = L_neighbor_iface_addr of the Link Tuple;

 * R_dist = 1;

 * R_local_iface_addr = L_local_iface_addr of the Link Tuple.

 3. For each Neighbor Address Association Tuple, for which two
 addresses A1 and A2 are in NA_neighbor_iface_addr_list where:

 * there is a Routing Tuple with:

 + R_dest_addr == A1

 * and there is no Routing Tuple with:

 + R_dest_addr == A2

 then a Routing Tuple is added with:

 * R_dest_addr = A2;

 * R_next_iface_addr = R_next_iface_addr of the Routing Tuple in
 which R_dest_addr == A1;

 * R_dist = 1;

 * R_local_iface_addr = R_local_iface_addr of the Routing Tuple
 in which R_dest_addr == A1.

Clausen, et al. Expires December 28, 2006 [Page 41]

Internet-Draft OLSRv2 June 2006

 4. The following procedure, which adds Routing Tuples for
 destination nodes h+1 hops away, MUST be executed for each value
 of h, starting with h=2 and incrementing by 1 for each iteration.
 The execution MUST stop if no new Routing Tuples are added in an
 iteration.

 1. For each Topology Tuple, if

 + T_dest_iface_addr is not equal to R_dest_addr of any
 Routing Tuple, AND;

 + T_last_iface_addr is equal to R_dest_addr of a Routing
 Tuple whose R_dist == h;

 then a new Routing Tuple MUST be added, with:

 + R_dest_addr = T_dest_iface_addr;

 + R_next_iface_addr = R_next_iface_addr of the Routing Tuple
 whose R_dest_addr == T_last_iface_addr;

 + R_dist = h+1;

 + R_local_iface_addr = R_local_iface_addr of the Routing
 Tuple whose R_dest_addr == T_last_iface_addr.

 Several Topology Tuples may be used to select a next hop
 R_next_iface_addr for reaching the address R_dest_addr. When
 h == 1, ties should be broken such that nodes with highest
 willingness are preferred, and between nodes of equal
 willingness, MPR selectors are preferred over non-MPR
 selectors.

 2. After the above iteration has completed, if h == 1, for each
 2-Hop Neighbor Tuple where:

 + N2_2hop_iface_addr is not equal to R_dest_addr of any
 Routing Tuple, AND;

 + N2_neighbor_iface_addr has a willingness (i.e. the
 L_willingness of the Link Tuple of which
 L_neighbor_iface_addr == N2_neighbor_iface_addr) which is
 not equal to WILL_NEVER;

 a Routing Tuple is added with:

 + R_dest_addr = N2_2hop_iface_addr of the 2-Hop Neighbor
 Tuple;

Clausen, et al. Expires December 28, 2006 [Page 42]

Internet-Draft OLSRv2 June 2006

 + R_next_iface_addr = R_next_iface_addr of the Routing Tuple
 in which R_dest_addr == N2_neighbor_iface_addr;

 + R_dist = 2;

 + R_local_iface_addr = R_local_iface_addr of the Routing
 Tuple in which R_dest_addr == N2_neighbor_iface_addr.

 5. For each Attached Network Tuple, if

 * AN_net_addr is not equal to R_dest_addr of any Routing Tuple,
 AND;

 * AN_gw_iface_addr is equal to R_dest_addr of a Routing Tuple;

 then a new Routing Tuple MUST be added, with:

 * R_dest_addr = AN_net_addr;

 * R_next_iface_addr = R_next_iface_addr of the Routing Tuple
 whose R_dest_addr == AN_gw_iface_addr;

 * R_dist = R_dist of the Routing Tuple whose R_dest_addr ==
 AN_gw_iface_addr;

 * R_local_iface_addr = R_local_iface_addr of the Routing Tuple
 whose R_dest_addr == AN_gw_iface_addr.

 If more than one Attached Network Tuple has the same AN_net_addr,
 then more than one Routing Tuple MUST NOT be added, and the added
 Routing Tuple MUST have minimum R_dist.

Clausen, et al. Expires December 28, 2006 [Page 43]

Internet-Draft OLSRv2 June 2006

14. Proposed Values for Constants

 This section list the values for the constants used in the
 description of the protocol.

14.1. Neighborhood Discovery Constants

 The constants HELLO_INTERVAL, REFRESH_INTERVAL, HELLO_MIN_INTERVAL,
 H_HOLD_TIME, L_HOLD_TIME, N_HOLD_TIME and C are used as in [4].

14.2. Message Intervals

 o TC_INTERVAL = 5 seconds

 o TC_MIN_INTERVAL = TC_INTERVAL/4

14.3. Holding Times

 o T_HOLD_TIME = 3 x TC_INTERVAL

 o A_HOLD_TIME = T_HOLD_TIME

 o P_HOLD_TIME = 30 seconds

 o FG_HOLD_TIME = 30 seconds

 o RX_HOLD_TIME = 30 seconds

 o FW_HOLD_TIME = 30 seconds

14.4. Willingness

 o WILL_NEVER = 0

 o WILL_DEFAULT = 3

 o WILL_ALWAYS = 7

Clausen, et al. Expires December 28, 2006 [Page 44]

Internet-Draft OLSRv2 June 2006

15. Sequence Numbers

 Sequence numbers are used in OLSRv2 with the purpose of discarding
 "old" information, i.e. messages received out of order. However with
 a limited number of bits for representing sequence numbers, wrap-
 around (that the sequence number is incremented from the maximum
 possible value to zero) will occur. To prevent this from interfering
 with the operation of OLSRv2, the following MUST be observed when
 determining the ordering of sequence numbers.

 The term MAXVALUE designates in the following one more than the
 largest possible value for a sequence number. For a 16 bit sequence
 number (as are those defined in this specification) MAXVALUE is
 65536.

 The sequence number S1 is said to be "greater than" the sequence
 number S2 if:

 o S1 > S2 AND S1 - S2 <= MAXVALUE/2 OR

 o S2 > S1 AND S2 - S1 > MAXVALUE/2

 Thus when comparing two messages, it is possible - even in the
 presence of wrap-around - to determine which message contains the
 most recent information.

Clausen, et al. Expires December 28, 2006 [Page 45]

Internet-Draft OLSRv2 June 2006

16. IANA Considerations

16.1. Multicast Addresses

 A well-known multicast address, ALL-MANET-NEIGHBORS, must be
 registered and defined for both IPv6 and IPv4. The addressing scope
 is link-local, i.e. this address is similar to the all nodes/routers
 multicast address of IPv6 in that it targets all OLSRv2 capable nodes
 adjacent to the originator of an IP datagram.

16.2. Message Types

 OLSRv2 defines one message type, which must be allocated from the
 "Assigned Message Types" repository of [3]

 +--------------------+-------+--------------------------------------+
 | Mnemonic | Value | Description |
 +--------------------+-------+--------------------------------------+
 | TC | TBD | Topology Control (global signaling) |
 +--------------------+-------+--------------------------------------+

 Table 5

16.3. TLV Types

 OLSRv2 defines one Message TLV type, which must be allocated from the
 "Assigned message TLV Types" repository of [3]

 +--------------------+-------+--------------------------------------+
 | Mnemonic | Value | Description |
 +--------------------+-------+--------------------------------------+
WILLINGNESS	TBD	Specifies a node's willingness to
		act as a relay and to partake in
		network formation
 +--------------------+-------+--------------------------------------+

 Table 6

Clausen, et al. Expires December 28, 2006 [Page 46]

Internet-Draft OLSRv2 June 2006

 OLSRv2 defines one Address Block TLV type, which must be allocated
 from the "Assigned address block TLV Types" repository of [3]

 +--------------------+-------+--------------------------------------+
 | Mnemonic | Value | Description |
 +--------------------+-------+--------------------------------------+
 | MPR | TBD | Specifies that a given address is |
 | | | selected as MPR |
 +--------------------+-------+--------------------------------------+

 Table 7

Clausen, et al. Expires December 28, 2006 [Page 47]

Internet-Draft OLSRv2 June 2006

17. References

17.1. Normative References

 [1] Clausen, T. and P. Jacquet, "The Optimized Link State Routing
 Protocol", RFC 3626, October 2003.

 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", RFC 2119, BCP 14, March 1997.

 [3] Clausen, T., Dean, J., Dearlove, C., and C. Adjih, "Generalized
 MANET Packet/Message Format", work in
 progress draft-ietf-manet-packetbb-01.txt, June 2006.

 [4] Clausen, T., Dean, J., and C. Dearlove, "MANET Neighborhood
 Discovery Protocol (NHDP)", work in
 progress draft-ietf-manet-nhdp-00.txt, June 2006.

17.2. Informative References

 [5] Atkins, D., Stallings, W., and P. Zimmermann, "PGP Message
 Exchange Formats", RFC 1991, August 1996.

 [6] ETSI, "ETSI STC-RES10 Committee. Radio equipment and systems:
 HIPERLAN type 1, functional specifications ETS 300-652",
 June 1996.

 [7] Jacquet, P., Minet, P., Muhlethaler, P., and N. Rivierre,
 "Increasing reliability in cable free radio LANs: Low level
 forwarding in HIPERLAN.", 1996.

 [8] Qayuum, A., Viennot, L., and A. Laouiti, "Multipoint relaying:
 An efficient technique for flooding in mobile wireless
 networks.", 2001.

https://datatracker.ietf.org/doc/html/rfc3626
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/draft-ietf-manet-packetbb-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-manet-nhdp-00.txt
https://datatracker.ietf.org/doc/html/rfc1991

Clausen, et al. Expires December 28, 2006 [Page 48]

Internet-Draft OLSRv2 June 2006

Appendix A. Example Heuristic for Calculating MPRs

 The following specifies a proposed heuristic for selection of MPRs.

 In graph theory terms, MPR computation is a "set cover" problem,
 which is a difficult optimization problem, but for which an easy and
 efficient heuristics exist: the so-called "Greedy Heuristic", a
 variant of which is described here. In simple terms, MPR computation
 constructs an MPR Set that enables a node to reach any symmetric
 2-hop neighbors by relaying through an MPR node.

 There are several peripheral issues that the algorithm needs to
 address. The first one is that some nodes have some willingness
 WILL_NEVER. The second one is that some nodes may have several
 interfaces.

 The algorithm hence can be summarized by:

 o All 1-hop neighbor nodes with willingness equal to WILL_NEVER MUST
 ignored in the following algorithm: they are not considered as
 1-hop neighbors (hence not used as MPRs).

 o Because link sensing is performed by interface, the local network
 topology is best described in terms of links: hence the algorithm
 is considering 1-hop neighbor OLSRv2 interfaces, and 2-hop
 neighbor OLSRv2 interfaces (and their addresses). Additionally,
 asymmetric links are ignored. This is reflected in the
 definitions below.

 o MPR computation is performed on each interface of the node: on
 each interface I, the node MUST select some neighbor interfaces,
 so that all 2-hop neighbor interfaces are reached.

 From now on, MPR calculation will be described for one interface I on
 the node, and the following terminology will be used in describing
 the heuristics:

 neighbor interface (of I) - An OLSRv2 interface of a 1-hop neighbor
 to which there exist a symmetric link using interface I.

 N - the set of such neighbor interfaces

 2-hop neighbor interface (of I) An interface of a symmetric strict
 2-hop neighbor which can be reached from a neighbor interface for
 I.

Clausen, et al. Expires December 28, 2006 [Page 49]

Internet-Draft OLSRv2 June 2006

 N2 - the set of such 2-hop neighbor interfaces

 D(y): - the degree of a 1-hop neighbor interface y (where y is a
 member of N), is defined as the number of symmetric neighbor
 interfaces of node y which are in N2

 MPR Set - the set of the neighbor interfaces selected as MPRs.

 The proposed heuristic selects iteratively some interfaces from N as
 MPRs in order to cover 2-hop neighbor interfaces from N2, as follows:

 1. Start with an MPR Set made of all members of N with L_willingness
 equal to WILL_ALWAYS

 2. Calculate D(y), where y is a member of N, for all interfaces in
 N.

 3. Add to the MPR Set those interfaces in N, which are the *only*
 nodes to provide reachability to an interface in N2. For
 example, if interface B in N2 can be reached only through a
 symmetric link to interface A in N, then add interface B to the
 MPR Set. Remove the interfaces from N2 which are now covered by a
 interface in the MPR Set.

 4. While there exist interfaces in N2 which are not covered by at
 least one interface in the MPR Set:

 1. For each interface in N, calculate the reachability, i.e.,
 the number of interfaces in N2 which are not yet covered by
 at least one node in the MPR Set, and which are reachable
 through this neighbor interface;

 2. Select as an MPR the interface with highest L_willingness
 among the interfaces in N with non-zero reachability. In
 case of multiple choice select the interface which provides
 reachability to the maximum number of interfaces in N2. In
 case of multiple interfaces providing the same amount of
 reachability, select the interface as MPR whose D(y) is
 greater. Remove the interfaces from N2 which are now covered
 by an interface in the MPR Set.

 Other algorithms, as well as improvements over this algorithm, are
 possible. For example:

 o Assume that in a multiple interface scenario there exists more
 than one link between nodes 'a' and 'b'. If node 'a' has selected
 node 'b' as MPR for one of its interfaces, then node 'b' can be
 selected as MPR with minimal performance loss by any other

Clausen, et al. Expires December 28, 2006 [Page 50]

Internet-Draft OLSRv2 June 2006

 interfaces on node 'a'.

 o In a multiple interface scenario MPRs are selected for each
 interface of the selecting node, providing full coverage of all
 2-hop nodes accessible through that interface. The overall MPR
 Set is then the union of these sets. These sets do not however
 have to be selected independently, if a node is selected as an MPR
 for one interface it may be automatically added to the MPR
 selection for other interfaces.

Clausen, et al. Expires December 28, 2006 [Page 51]

Internet-Draft OLSRv2 June 2006

Appendix B. Heuristics for Generating Control Traffic

 A node creates HELLO messages and TC messages as specified in
Section 7 and Section 9, the former being a modification of the

 specification in [4]. The heuristics for creation of HELLO messages
 in [4] remain applicable, with the division of the address TLVs with
 Type == LINK_STATUS and Value == SYMMETRIC into separate ranges with
 and without an associated TLV with Type == MPR. The heuristics for
 collection of addresses are also generally applicable to TC messages,
 excepting that the first address block is not sorted as the Local
 Interface Block of a HELLO message is, and that other addresses
 recorded in TC messages are divided into those with and without a TLV
 with Type == GATEWAY. These should be ordered so that the range of
 addresses without that TLV is continuous (and it is suggested that
 the range without is also continuous).

Clausen, et al. Expires December 28, 2006 [Page 52]

Internet-Draft OLSRv2 June 2006

Appendix C. Protocol and Port Number

 Packets in OLSRv2 are communicated using UDP. Port 698 has been
 assigned by IANA for exclusive usage by the OLSR (v1 and v2)
 protocol.

Clausen, et al. Expires December 28, 2006 [Page 53]

Internet-Draft OLSRv2 June 2006

Appendix D. Packet and Message Layout

 This section specifies the translation from the abstract descriptions
 of packets employed in the protocol specification, and the bit-layout
 packets actually exchanged between the nodes.

Appendix D.1. OLSRv2 Packet Format

 The basic layout of an OLSRv2 packet is as described in [3]. However
 the following points should be noted.

 OLSRv2 uses only packets with a packet header including a packet
 sequence number, either with or without a packet TLV block. Thus all
 OLSRv2 packets have the layout of either

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 0 0 0| Reserved |0|0| Packet Sequence Number |
 +-+
 | |
 | Message + Padding |
 | |
 +-+
 | |
 : ... :
 | |
 +-+
 | |
 | Message + Padding |
 | |
 +-+

 or

Clausen, et al. Expires December 28, 2006 [Page 54]

Internet-Draft OLSRv2 June 2006

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 0 0 0| Reserved |1|0| Packet Sequence Number |
 +-+
 | |
 | Packet TLV Block |
 | |
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | Padding |
 +-+
 | |
 | Message + Padding |
 | |
 +-+
 | |
 : ... :
 | |
 +-+
 | |
 | Message + Padding |
 | |
 +-+

 The reserved bits marked Resv SHOULD be cleared ('0'). The octets
 indicated as Padding are optional and MAY be omitted; if not omitted
 they SHOULD be used to pad to a 32 bit boundary and MUST all be zero.

 OLSRv2 uses only messages with a complete message header. Thus all
 OLSRv2 messages, plus padding if any, have the following layout.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Message Type | Resv |N|0|0| Message Size |
 +-+
 | Originator Address |
 +-+
 | Hop Limit | Hop Count | Message Sequence Number |
 +-+
 | |
 | Message Body |
 | |
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

Clausen, et al. Expires December 28, 2006 [Page 55]

Internet-Draft OLSRv2 June 2006

 The reserved bits marked Resv SHOULD be cleared ('0'). In standard
 OLSRv2 messages (HELLO and TC) the type dependent sequence number bit
 marked N SHOULD also be cleared ('0').

 The layouts of the message body, address block, TLV block and TLV are
 as in [3], allowing all options. Standard (HELLO and TC) messages
 contain a first address block which contains local interface address
 information, all other address blocks contain neighbor interface
 address information (or for a TC message address information for
 which it is a gateway) specific to the message type.

 An example HELLO message, using IPv4 (four octet) addresses is as
 follows. The overall message length is 56 octets (it does not need
 padding). The message has a hop limit of 1 and a hop count of 0, as
 sent by its originator.

 The message has a message TLV block with content length 12 octets
 containing three message TLVs. These TLVs represent message validity
 time, message interval time and willingness. Each uses a TLV with
 semantics value 4, indicating no start and stop indexes are included,
 and each has a value length of 1 octet.

 The first address block contains a 1 local interface address, with
 head length 4. This is equal to the address length, thus no tail or
 mid sections of the address are included. This address block has no
 TLVs (the TLV block content length is 0 octets).

 The second, and last, address block reports 4 neighbor interface
 addresses, with address head length 3 octets, and no tail octet (zero
 tail length). Thus each mid address section is of length one octet.
 The following address TLV block (content length 11 octets) includes
 two TLVs.

 The first of these TLVs reports the link status of all four neighbors
 in a single multivalue TLV, the first two addresses are HEARD, the
 last two addresses are SYMMETRIC. The TLV semantics value of 12
 indicates, in addition to that this is a multivalue TLV, that no
 start index and stop index are included, hence values for all
 addresses are included. The TLV value length of 4 octets indicates
 one octet per value per address.

 The second of these TLV indicates that the last address (start index
 3, stop index 3) is an MPR. This TLV has no value, or value length,
 fields, as indicated by its semantics octet being equal to 1.

Clausen, et al. Expires December 28, 2006 [Page 56]

Internet-Draft OLSRv2 June 2006

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | HELLO |0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0|
 +-+
 | Originator Address |
 +-+
 |0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0| Message Sequence Number |
 +-+
 |0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0| VALIDITY_TIME |0 0 0 0 0 1 0 0|
 +-+
 |0 0 0 0 0 0 0 1| Value | INTERVAL_TIME |0 0 0 0 0 1 0 0|
 +-+
 |0 0 0 0 0 0 0 1| Value | WILLINGNESS |0 0 0 0 0 1 0 0|
 +-+
 |0 0 0 0 0 0 0 1| Value |0 0 0 0 0 0 0 1|0 0 0 0 0 1 0 0|
 +-+
 | Head |
 +-+
 |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 0 0 0 1 0 0|0 0 0 0 0 0 1 1|
 +-+
 | Head | Mid |
 +-+
 | Mid | Mid | Mid |0 0 0 0 0 0 0 0|
 +-+
 |0 0 0 0 1 0 1 1| LINK_STATUS |0 0 0 0 1 1 0 0|0 0 0 0 0 1 0 0|
 +-+
 | HEARD | HEARD | SYMMETRIC | SYMMETRIC |
 +-+
 | MPR |0 0 0 0 0 0 0 1|0 0 0 0 0 0 1 1|0 0 0 0 0 0 1 1|
 +-+

 An example TC message, using IPv4 (four octet) addresses, is as
 follows. The overall message length is 64 octets, it also does not
 need padding.

 The message has a message TLV block with content length 13 octets
 containing three TLVs. The first TLV is a content sequence number
 TLV used to carry the 2 octet ANSN. The semantics value is 4
 indicating that no index fields are included. The other two TLVs are
 validity and interval times as for the HELLO message above.

 The message has three address blocks. The first address block
 contains 3 local interface addresses (with common head length 2
 octets) and has a TLV block with content length 0 octets.

 The other two address blocks contain neighbor interface addresses.

Clausen, et al. Expires December 28, 2006 [Page 57]

Internet-Draft OLSRv2 June 2006

 The first contains 3 addresses and has an empty TLV block (content
 length 0 octets). The second contains 1 address. The head octet
 (hex 82) indicates a head length of two octets and the presence of a
 tail octet. The tail octet (hex 82) indicates a tail length of two
 octets, all zero bits and not included. The following TLV block
 (content length 6 octets) includes two TLVs, the first (semantics
 value 4 indicating no indexes are needed) indicates that the address
 has a netmask, with length given by the value (of length 1 octet) of
 16. Thus this address is Head.0.0/16. The second TLV indicates that
 the originating node is a gateway to this network, the TLV semantics
 value of 5 indicates that neither indexes nor value are needed.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | TC |0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0|
 +-+
 | Originator Address |
 +-+
 | Hop Limit | Hop Count | Message Sequence Number |
 +-+
 |0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1| CONT_SEQ_NUM |0 0 0 0 0 1 0 0|
 +-+
 |0 0 0 0 0 0 1 0| Value (ANSN) | VALIDITY_TIME |
 +-+
 |0 0 0 0 0 1 0 0|0 0 0 0 0 0 0 1| Value | INTERVAL_TIME |
 +-+
 |0 0 0 0 0 1 0 0|0 0 0 0 0 0 0 1| Value |0 0 0 0 0 0 1 1|
 +-+
 |0 0 0 0 0 0 1 0| Head | Mid |
 +-+
 | Mid (cont) | Mid | Mid |
 +-+
 | Mid (cont) |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 0 0 0 0 1 1|
 +-+
 |0 0 0 0 0 0 1 0| Head | Mid |
 +-+
 | Mid (cont) | Mid | Mid |
 +-+
 | Mid (cont) |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 1|
 +-+
 |1 0 0 0 0 0 1 0| Head |1 0 0 0 0 0 1 0|
 +-+
 |0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0| PREFIX_LENGTH |0 0 0 0 0 1 0 0|
 +-+
 |0 0 0 0 0 0 0 1|0 0 0 1 0 0 0 0| GATEWAY |0 0 0 0 0 1 0 1|
 +-+

Clausen, et al. Expires December 28, 2006 [Page 58]

Internet-Draft OLSRv2 June 2006

Appendix E. Node Configuration

 OLSRv2 does not make any assumption about node addresses, other than
 that each node is assumed to have at least one a unique and routable
 IP address for each interface that it has which participates in the
 MANET.

 When applicable, a recommended way of connecting an OLSRv2 network to
 an existing IP routing domain is to assign an IP prefix (under the
 authority of the nodes/gateways connecting the MANET with the routing
 domain) exclusively to the OLSRv2 area, and to configure the gateways
 statically to advertise routes to that IP sequence to nodes in the
 existing routing domain.

Clausen, et al. Expires December 28, 2006 [Page 59]

Internet-Draft OLSRv2 June 2006

Appendix F. Jitter

 In a wireless network, simultaneous packet transmission by nearby
 nodes is undesirable as, depending on the medium access control and
 other lower layer mechanisms, the interference between these messages
 may cause at best increased delay, and at worst complete packet loss
 by both nodes. This is often particularly true when using a
 broadcast mechanism, such as is used by OLSRv2 packets.

 The problems of simultaneous packet transmission in OLSRv2 are
 increased by the following features of the protocol:

 o If two nodes send packets containing regularly scheduled messages
 of the same type at the same time, then if, as is typical, they
 are using the same message interval, further transmissions of
 these messages will also be at the same time, and will also
 interfere. This node synchronization could even result in
 complete operational failure of these nodes.

 o OLSRv2 allows nodes to respond to changes in their circumstances,
 usually changes in the neighborhood, with immediate messages of
 appropriate types. Nearby nodes will have overlapping
 neighborhoods, and may respond to the same change in
 circumstances. For example a single link failure can result in a
 node having to change its MPR Set, and then two or more of its
 neighbors having changed MPR status responding simultaneously with
 revised TC messages, whose packets may interfere.

 o When a node sends such a responsive message, there is no apparent
 reason why it should not restart its message schedule of the
 appropriate type of message. This results in nodes responding to
 the same change not just sending single simultaneous packets, but
 becoming synchronized.

 o Nodes also forward messages they receive from other nodes. Two
 nearby nodes will thus commonly receive and forward the same
 message. The consequent packet transmissions can easily interfere
 with each other.

 Because interference can easily occur, is self-reinforcing, and is
 anything from undesirable to catastrophic, mechanisms to minimize it,
 and to break synchronization of nodes, SHOULD be used in OLSRv2.
 These all make a deliberate adjustment to the timing, known as
 "jitter". Three cases exist:

 o When a node generates a control message periodically, it would
 normally wait for a delay equal to MESSAGE_INTERVAL (e.g.
 HELLO_INTERVAL for HELLO messages or TC_INTERVAL for TC messages)

Clausen, et al. Expires December 28, 2006 [Page 60]

Internet-Draft OLSRv2 June 2006

 between two transmissions of messages of that type. This delay
 SHOULD be mitigated by subtracting a jitter time, so that the
 delay between consecutive transmissions of a messages of the same
 type SHOULD be equal to MESSAGE_INTERVAL - jitter, where jitter is
 a random value whose generation is discussed below. Note that
 this is a deliberately asymmetric process. It ensures that the
 message interval does not exceed MESSAGE_INTERVAL (which leaves
 MESSAGE_INTERVAL an appropriate value for reporting in an
 INTERVAL_TIME message TLV) and also allows different nodes to
 become completely desynchronized as each interval is based on the
 previous actual transmission time, not on a fixed clock of period
 MESSAGE_INTERVAL.

 o When a node responds to an externally triggered change in
 circumstances, it SHOULD delay the transmission of a message in
 response by a random jitter time. It MAY restart its schedule of
 messages of the appropriate type based on that new time. If such
 a message is delayed due to the need to respect the appropriate
 MESSAGE_MIN_INTERVAL (e.g. HELLO_MIN_INTERVAL for HELLO messages
 or TC_MIN_INTERVAL for TC messages) then the node MAY reduce this
 minimum interval by a jitter time as the normal message interval
 is reduced (thus allowing MESSAGE_MIN_INTERVAL to equal
 MESSAGE_INTERVAL even when using jitter).

 o When a node forwards a message, it SHOULD delay the message
 retransmission by a random jitter time.

 In the first and second cases above, the maximum jitter time may be
 specified by a parameter MAXJITTER. It is necessary only that this
 be significantly less than each MESSAGE_INTERVAL, and less than each
 MESSAGE_MIN_INTERVAL. Normally the actual value of the jitter
 (reduction in message interval or delay of responsive message) SHOULD
 be uniformly generated in the interval 0 <= jitter <= MAXJITTER,
 however this may be modified as indicated below.

 In the third case above, a message SHOULD be delayed by a jitter
 value which is significantly less than the originating node's message
 interval. This MAY be available in an INTERVAL_TIME message TLV in
 the message to be forwarded. If not so available, a node MAY
 estimate an acceptable maximum jitter by any other means available to
 it, which may be by use of its own MAXJITTER parameter for as long as
 this works. In a network in which this is likely to be unsuccessful,
 nodes SHOULD include an INTERVAL_TIME message TLV in messages which
 are to be forwarded.

 In all cases, as well as constraints imposed by message intervals and
 message minimum intervals, the maximum jitter delay SHOULD only be as
 large as is required to achieve the required objective of minimizing

Clausen, et al. Expires December 28, 2006 [Page 61]

Internet-Draft OLSRv2 June 2006

 interference due to synchronization. This is because all jitter, and
 forwarding jitter in particular, is undesirable for otherwise ideal
 functioning of the network.

 Because of differing parameters, or due to responsive messages with a
 small minimum message interval, a node may receive a message from an
 originating node while still waiting to forward an earlier message of
 the same type originating from the same node. The forwarding node
 SHOULD NOT allow forwarding jitter delay to reorder these messages.
 A node MAY discard the earlier message, transmitting the later
 message no later than the earlier message was due to be
 retransmitted, if, and only if, it can guarantee that this will not
 have any adverse effect.

 OLSRv2 messages are transmitted in potentially multi-message packets.
 Whilst a packet is a hop by hop construct and it is the messages in
 it which are forwarded, if a number of messages are received in the
 same packet, they SHOULD (if their maximum jitter delays are
 compatible) be permitted to be forwarded in the same new packet.
 This may be accomplished by generating the same random delay for all
 messages received in a single packet. Furthermore, the opportunity
 to combine messages to be forwarded from different sources, and
 locally generated messages in a single packet SHOULD be allowed even
 when this means adjusting (forwards or backwards) the strictly
 uniformly generated random jitter times, however these SHOULD NOT be
 allowed to exceed their maximum value, nor allow a message interval
 to be exceeded, nor compromise the purpose of jitter. (It is for
 this reason that messages in the same packet should be given the same
 random jitter, as giving them independent jitter values but then, for
 example, allowing all to be sent with the earliest would reduce the
 mean jitter delay.)

Clausen, et al. Expires December 28, 2006 [Page 62]

Internet-Draft OLSRv2 June 2006

Appendix G. Security Considerations

 Currently, OLSRv2 does not specify any special security measures. As
 a proactive routing protocol, OLSRv2 makes a target for various
 attacks. The various possible vulnerabilities are discussed in this
 section.

Appendix G.1. Confidentiality

 Being a proactive protocol, OLSRv2 periodically diffuses topological
 information. Hence, if used in an unprotected wireless network, the
 network topology is revealed to anyone who listens to OLSRv2 control
 messages.

 In situations where the confidentiality of the network topology is of
 importance, regular cryptographic techniques, such as exchange of
 OLSRv2 control traffic messages encrypted by PGP [5] or encrypted by
 some shared secret key, can be applied to ensure that control traffic
 can be read and interpreted by only those authorized to do so.

Appendix G.2. Integrity

 In OLSRv2, each node is injecting topological information into the
 network through transmitting HELLO messages and, for some nodes, TC
 messages. If some nodes for some reason, malicious or malfunction,
 inject invalid control traffic, network integrity may be compromised.
 Therefore, message authentication is recommended.

 Different such situations may occur, for instance:

 1. a node generates TC messages, advertising links to non-neighbor
 nodes;

 2. a node generates TC messages, pretending to be another node;

 3. a node generates HELLO messages, advertising non-neighbor nodes;

 4. a node generates HELLO messages, pretending to be another node;

 5. a node forwards altered control messages;

 6. a node does not forward control messages;

 7. a node does not select multipoint relays correctly;

 8. a node forwards broadcast control messages unaltered, but does
 not forward unicast data traffic;

Clausen, et al. Expires December 28, 2006 [Page 63]

Internet-Draft OLSRv2 June 2006

 9. a node "replays" previously recorded control traffic from another
 node.

 Authentication of the originator node for control messages (for
 situations 2, 4 and 5) and on the individual links announced in the
 control messages (for situations 1 and 3) may be used as a
 countermeasure. However to prevent nodes from repeating old (and
 correctly authenticated) information (situation 9) temporal
 information is required, allowing a node to positively identify such
 delayed messages.

 In general, digital signatures and other required security
 information may be transmitted as a separate OLSRv2 message type,
 thereby allowing that "secured" and "unsecured" nodes can coexist in
 the same network, if desired, or signatures and security information
 may be transmitted within the OLSRv2 HELLO and TC messages, using the
 TLV mechanism.

 Specifically, the authenticity of entire OLSRv2 control messages can
 be established through employing IPsec authentication headers,
 whereas authenticity of individual links (situations 1 and 3) require
 additional security information to be distributed.

 An important consideration is, that all control messages in OLSRv2
 are transmitted either to all nodes in the neighborhood (HELLO
 messages) or broadcast to all nodes in the network (TC messages).

 For example, a control message in OLSRv2 is always a point-to-
 multipoint transmission. It is therefore important that the
 authentication mechanism employed permits that any receiving node can
 validate the authenticity of a message. As an analogy, given a block
 of text, signed by a PGP private key, then anyone with the
 corresponding public key can verify the authenticity of the text.

Appendix G.3. Interaction with External Routing Domains

 OLSRv2 does, through the use of TC messages, provide a basic
 mechanism for injecting external routing information to the OLSRv2
 domain. Appendix E also specifies that routing information can be
 extracted from the topology table or the routing table of OLSRv2 and,
 potentially, injected into an external domain if the routing protocol
 governing that domain permits.

 Other than as described in Appendix E, when operating nodes,
 connecting OLSRv2 to an external routing domain, care MUST be taken
 not to allow potentially insecure and untrustworthy information to be
 injected from the OLSRv2 domain to external routing domains. Care
 MUST be taken to validate the correctness of information prior to it

Clausen, et al. Expires December 28, 2006 [Page 64]

Internet-Draft OLSRv2 June 2006

 being injected as to avoid polluting routing tables with invalid
 information.

 A recommended way of extending connectivity from an existing routing
 domain to an OLSRv2 routed MANET is to assign an IP prefix (under the
 authority of the nodes/gateways connecting the MANET with the exiting
 routing domain) exclusively to the OLSRv2 MANET area, and to
 configure the gateways statically to advertise routes to that IP
 sequence to nodes in the existing routing domain.

Appendix G.4. Node Identity

 OLSRv2 does not make any assumption about node addresses, other than
 that each node is assumed to have at least one a unique and routable
 IP address for each interface that it has which participates in the
 MANET.

Clausen, et al. Expires December 28, 2006 [Page 65]

Internet-Draft OLSRv2 June 2006

Appendix H. Flow and Congestion Control

 TBD

Clausen, et al. Expires December 28, 2006 [Page 66]

Internet-Draft OLSRv2 June 2006

Appendix I. Contributors

 This specification is the result of the joint efforts of the
 following contributors -- listed alphabetically.

 o Cedric Adjih, INRIA, France, <Cedric.Adjih@inria.fr>

 o Emmanuel Baccelli, Hitachi Labs Europe, France,
 <Emmanuel.Baccelli@inria.fr>

 o Thomas Heide Clausen, PCRI, France<T.Clausen@computer.org>

 o Justin Dean, NRL, USA<jdean@itd.nrl.navy.mil>

 o Christopher Dearlove, BAE Systems, UK,
 <Chris.Dearlove@baesystems.com>

 o Satoh Hiroki, Hitachi SDL, Japan, <h-satoh@sdl.hitachi.co.jp>

 o Philippe Jacquet, INRIA, France, <Philippe.Jacquet@inria.fr>

 o Monden Kazuya, Hitachi SDL, Japan, <monden@sdl.hitachi.co.jp>

 o Kenichi Mase, Niigata University, Japan, <mase@ie.niigata-u.ac.jp>

 o Ryuji Wakikawa, KEIO University, Japan, <ryuji@sfc.wide.ad.jp>

Clausen, et al. Expires December 28, 2006 [Page 67]

Internet-Draft OLSRv2 June 2006

Appendix J. Acknowledgements

 The authors would like to acknowledge the team behind OLSRv1,
 specified in RFC3626, including Anis Laouiti, Pascale Minet, Laurent
 Viennot (all at INRIA, France), and Amir Qayuum (Center for Advanced
 Research in Engineering, Pakistan) for their contributions.

 The authors would like to gratefully acknowledge the following people
 for intense technical discussions, early reviews and comments on the
 specification and its components: Li Li (CRC), Louise Lamont (CRC),
 Joe Macker (NRL), Alan Cullen (BAE Systems), Philippe Jacquet
 (INRIA), Khaldoun Al Agha (LRI), Richard Ogier (SRI), Song-Yean Cho
 (Samsung Software Center), Shubhranshu Singh (Samsung AIT) and the
 entire IETF MANET working group.

https://datatracker.ietf.org/doc/html/rfc3626

Clausen, et al. Expires December 28, 2006 [Page 68]

Internet-Draft OLSRv2 June 2006

Authors' Addresses

 Thomas Heide Clausen
 LIX, Ecole Polytechnique, France

 Phone: +33 6 6058 9349
 Email: T.Clausen@computer.org
 URI: http://www.lix.polytechnique.fr/Labo/Thomas.Clausen/

 Christopher M. Dearlove
 BAE Systems Advanced Technology Centre

 Phone: +44 1245 242194
 Email: chris.dearlove@baesystems.com
 URI: http://www.baesystems.com/ocs/sharedservices/atc/

 Philippe Jacquet
 Project Hipercom, INRIA

 Phone: +33 1 3963 5263
 Email: philippe.jacquet@inria.fr
 URI: http://hipercom.inria.fr/test/Jacquet.htm

 The OLSRv2 Design Team
 MANET Working Group

http://www.lix.polytechnique.fr/Labo/Thomas.Clausen/
http://www.baesystems.com/ocs/sharedservices/atc/
http://hipercom.inria.fr/test/Jacquet.htm

Clausen, et al. Expires December 28, 2006 [Page 69]

Internet-Draft OLSRv2 June 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Clausen, et al. Expires December 28, 2006 [Page 70]

