
Mobile Ad hoc Networking (MANET) T. Clausen
Internet-Draft LIX, Ecole Polytechnique, France
Expires: August 5, 2007 C. Dearlove
 BAE Systems Advanced Technology
 Centre
 P. Jacquet
 Project Hipercom, INRIA
 The OLSRv2 Design Team
 MANET Working Group
 February 2007

The Optimized Link State Routing Protocol version 2
draft-ietf-manet-olsrv2-03

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 5, 2007.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Clausen, et al. Expires August 5, 2007 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft OLSRv2 February 2007

Abstract

 This document describes version 2 of the Optimized Link State Routing
 (OLSRv2) protocol for mobile ad hoc networks. The protocol embodies
 an optimization of the classical link state algorithm tailored to the
 requirements of a mobile ad hoc network (MANET).

 The key optimization of OLSRv2 is that of multipoint relays,
 providing an efficient mechanism for network-wide broadcast of link
 state information (i.e. reducing the cost of performing a network-
 wide link state broadcast). A secondary optimization is that OLSRv2
 employs partial link state information: each node maintains
 information about all destinations, but only a subset of links.
 Consequently, only selected nodes diffuse link state advertisements
 (thus reducing the number of network-wide link state broadcasts) and
 these advertisements contain only a subset of links (thus reducing
 the size of network-wide link state broadcasts). The partial link
 state information thus obtained still allows each OLSRv2 node to at
 all times maintain optimal (in terms of number of hops) routes to all
 destinations in the network.

 OLSRv2 imposes minimum requirements on the network by not requiring
 sequenced or reliable transmission of control traffic. Furthermore,
 the only interaction between OLSRv2 and the IP stack is routing table
 management.

 OLSRv2 is particularly suitable for large and dense networks as the
 technique of MPRs works well in this context.

Clausen, et al. Expires August 5, 2007 [Page 2]

Internet-Draft OLSRv2 February 2007

Table of Contents

1. Introduction . 6
2. Terminology . 7
3. Applicability Statement 8
4. Protocol Overview and Functioning 9
5. Local Information Base . 11
5.1. Local Attached Network Set 11

6. Processing and Forwarding Repositories 12
6.1. Received Set . 12
6.2. Processed Set . 12
6.3. Forwarded Set . 13
6.4. Relay Set . 13

7. Packet Processing and Message Forwarding 14
7.1. Actions when Receiving an OLSRv2 Packet 14
7.2. Actions when Receiving an OLSRv2 Message 14
7.3. Message Considered for Processing 15
7.4. Message Considered for Forwarding 15

8. Information Repositories 18
8.1. Neighborhood Information Base 18
8.1.1. Link Set . 18
8.1.2. MPR Set . 18
8.1.3. MPR Selector Set 19

8.2. Topology Information Base 19
8.2.1. Advertised Neighbor Set 19
8.2.2. ANSN History Set 20
8.2.3. Topology Set . 20
8.2.4. Attached Network Set 20
8.2.5. Routing Set . 21

9. Control Message Structures 22
9.1. HELLO Messages . 22
9.1.1. HELLO Message TLVs 23
9.1.2. HELLO Message Address Block TLVs 23

9.2. TC Messages . 24
9.2.1. TC Message TLVs 24
9.2.2. TC Message Address Block TLVs 25

10. HELLO Message Generation 26
10.1. HELLO Message: Transmission 26

11. HELLO Message Processing 27
11.1. Populating the MPR Selector Set 27
11.2. Symmetric Neighborhood and 2-Hop Neighborhood Changes . . 28

12. TC Message Generation . 29
12.1. TC Message: Transmission 30

13. TC Message Processing . 32
13.1. Initial TC Message Processing 32
13.1.1. Populating the ANSN History Set 32
13.1.2. Populating the Topology Set 33
13.1.3. Populating the Attached Network Set 34

Clausen, et al. Expires August 5, 2007 [Page 3]

Internet-Draft OLSRv2 February 2007

13.2. Completing TC Message Processing 34
13.2.1. Purging the Topology Set 35
13.2.2. Purging the Attached Network Set 35

14. Populating the MPR Set . 36
15. Populating Derived Sets 37
15.1. Populating the Relay Set 37
15.2. Populating the Advertised Neighbor Set 37

16. Routing Table Calculation 38
17. Proposed Values for Constants 42
17.1. Neighborhood Discovery Constants 42
17.2. Message Intervals . 42
17.3. Holding Times . 42
17.4. Jitter Times . 42
17.5. Willingness . 42

18. Sequence Numbers . 43
19. IANA Considerations . 44
19.1. Message Types . 44
19.2. TLV Types . 44

20. References . 46
20.1. Normative References 46
20.2. Informative References 46

Appendix A. Node Configuration 47
Appendix B. Protocol and Port Number 48
Appendix C. Example Heuristic for Calculating MPRs 49
Appendix D. Packet and Message Layout 52
Appendix D.1. Packet and Message Options 52
Appendix D.2. Example HELLO Message 54
Appendix D.3. Example TC Message 55
Appendix E. Time TLVs . 58
E.1. Representing Time . 58
E.2. General Time TLV Structure 58
E.3. Message TLVs . 60
E.3.1. VALIDITY_TIME TLV 60
E.3.2. INTERVAL_TIME TLV 60

Appendix F. Message Jitter 61
F.1. Jitter . 61
F.1.1. Periodic message generation 61
F.1.2. Externally triggered message generation 62
F.1.3. Message forwarding 63
F.1.4. Maximum Jitter Determination 64

Appendix G. Security Considerations 65
Appendix G.1. Confidentiality 65
Appendix G.2. Integrity . 65
Appendix G.3. Interaction with External Routing Domains 66
Appendix G.4. Node Identity 67
Appendix H. Flow and Congestion Control 68
Appendix I. Contributors . 69
Appendix J. Acknowledgements 70

Clausen, et al. Expires August 5, 2007 [Page 4]

Internet-Draft OLSRv2 February 2007

 Authors' Addresses . 71
 Intellectual Property and Copyright Statements 72

Clausen, et al. Expires August 5, 2007 [Page 5]

Internet-Draft OLSRv2 February 2007

1. Introduction

 The Optimized Link State Routing protocol version 2 (OLSRv2) is an
 update to OLSRv1 as published in RFC3626 [1]. Compared to RFC3626,
 OLSRv2 retains the same basic mechanisms and algorithms, while
 providing a more flexible signaling framework and some simplification
 of the messages being exchanged. Also, OLSRv2 accommodates both IPv4
 and IPv6 addresses in a compact manner.

 OLSRv2 is developed for mobile ad hoc networks. It operates as a
 table driven, proactive protocol, i.e. it exchanges topology
 information with other nodes in the network regularly. Each node
 selects a set of its neighbor nodes as "MultiPoint Relays" (MPRs).
 Control traffic may be diffused through the network using hop by hop
 forwarding; a node only needs to forward control traffic directly
 received from its MPR selectors (nodes which have selected it as an
 MPR). MPRs thus provide an efficient mechanism for diffusing control
 traffic by reducing the number of transmissions required.

 Nodes selected as MPRs also have a special responsibility when
 declaring link state information in the network. A sufficient
 requirement for OLSRv2 to provide shortest path routes to all
 destinations is that nodes declare link state information for their
 MPR selectors, if any. Additional available link state information
 may be transmitted, e.g. for redundancy. Thus, as well as being used
 to facilitate efficient flooding, MPRs are also allow the reduction
 of the number and size of link state messages. MPRs are also thus
 used as intermediate nodes in multi-hop route calculations.

 A node selects MPRs from among its one hop neighbors connected by
 "symmetric", i.e. bi-directional, links. Therefore, selecting routes
 through MPRs automatically avoids the problems associated with data
 packet transfer over uni-directional links (such as the problem of
 not getting link layer acknowledgments at each hop, for link layers
 employing this technique).

 OLSRv2 is developed to work independently from other protocols.
 (Parts of OLSRv2 have been published separately as [3] and [4] for
 wider use.) Likewise, OLSRv2 makes no assumptions about the
 underlying link layer. However, OLSRv2 may use link layer
 information and notifications when available and applicable, as
 described in [4].

 OLSRv2, as OLSRv1, inherits its concept of forwarding and relaying
 from HIPERLAN (a MAC layer protocol) which is standardized by ETSI
 [6], [7].

https://datatracker.ietf.org/doc/html/rfc3626
https://datatracker.ietf.org/doc/html/rfc3626

Clausen, et al. Expires August 5, 2007 [Page 6]

Internet-Draft OLSRv2 February 2007

2. Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC2119 [2].

 MANET specific terminology is to be interpreted as described in [3]
 and [4].

 Additionally, this document uses the following terminology:

 Node - A MANET router which implements the Optimized Link State
 Routing protocol version 2 as specified in this document.

 OLSRv2 interface - A MANET interface, running OLSRv2.

 Symmetric strict 2-hop neighbor - A symmetric 2-hop neighbor which
 is not a symmetric 1-hop neighbor and is not a 2-hop neighbor only
 through a symmetric 1-hop neighbor with willingness WILL_NEVER.

 Symmetric strict 2-hop neighborhood - The set of the symmetric
 strict 2-hop neighbors of a node.

 Multipoint relay (MPR) - A node which is selected by its symmetric
 1-hop neighbor, node X, to "re-transmit" all the broadcast
 messages that it receives from node X, provided that the message
 is not a duplicate, and that the hop limit field of the message is
 greater than one.

 MPR selector - A node which has selected its symmetric 1-hop
 neighbor, node X, as one of its MPRs is an MPR selector of node X.

https://datatracker.ietf.org/doc/html/rfc2119

Clausen, et al. Expires August 5, 2007 [Page 7]

Internet-Draft OLSRv2 February 2007

3. Applicability Statement

 OLSRv2 is a proactive routing protocol for mobile ad hoc networks
 (MANETs). The larger and more dense a network, the more optimization
 can be achieved by using MPRs compared to the classic link state
 algorithm. OLSRv2 enables hop-by-hop routing, i.e. each node using
 its local information provided by OLSRv2 to route packets.

 As OLSRv2 continuously maintains routes to all destinations in the
 network, the protocol is beneficial for traffic patterns where the
 traffic is random and sporadic between a large subset of nodes, and
 where the [source, destination] pairs are changing over time: no
 additional control traffic need be generated in this situation since
 routes are maintained for all known destinations at all times. Also,
 since routes are maintained continuously, traffic is subject to no
 delays due to buffering or to route discovery.

 OLSRv2 supports nodes which have multiple interfaces which
 participate in the MANET using OLSRv2. As described in [4], each
 OLSRv2 interface may have one or more network addresses (which may
 have prefix lengths). OLSRv2, additionally, supports nodes which
 have non-OLSRv2 interfaces which can serve as gateways towards other
 networks.

 OLSRv2 uses the format specified in [3] for all messages and packets.
 OLSRv2 is thereby able to allow for extensions via "external" and
 "internal" extensibility. External extensibility allows a protocol
 extension to specify and exchange new message types, which can be
 forwarded and delivered correctly even by nodes which do not support
 that extension. Internal extensibility allows a protocol extension
 to define additional attributes to be carried embedded in the
 standard OLSRv2 control messages detailed in this specification (or
 any new message types defined by other protocol extensions) using the
 TLV mechanism specified in [3], while still allowing nodes not
 supporting that extension to forward messages including the extension
 and process messages ignoring the extension.

 The OLSRv2 neighborhood discovery protocol using HELLO messages is
 specified in [4]; note that all references to MANET interfaces in [4]
 refer to OLSRv2 interfaces when using [4] as part of OLSRv2. This
 neighborhood discovery protocol serves to ensure that each OLSRv2
 node has available continuously updated information repositories
 describing the node's 1-hop and symmetric 2-hop neighbors. This
 neighborhood discovery protocol, which also uses [3], is extended in
 this document by the addition of MPR information.

Clausen, et al. Expires August 5, 2007 [Page 8]

Internet-Draft OLSRv2 February 2007

4. Protocol Overview and Functioning

 OLSRv2 is a proactive routing protocol for mobile ad hoc networks.
 The protocol inherits the stability of a link state algorithm and has
 the advantage of having routes immediately available when needed due
 to its proactive nature. OLSRv2 is an optimization of the classical
 link state protocol, tailored for mobile ad hoc networks. The main
 tailoring and optimizations of OLSRv2 are:

 o periodic, unacknowledged transmission of all control messages;

 o optimized flooding for global link state information diffusion;

 o partial topology maintenance - each node knows only a subset of
 the links in the network, sufficient for a minimum hop route to
 all destinations.

 The optimized flooding and partial topology maintenance are based on
 the concept on MultiPoint Relays (MPRs), selected independently by
 nodes based on the symmetric 1-hop and 2-hop neighbor information
 maintained using [4].

 Using the message exchange format [3] and the neighborhood discovery
 protocol [4], OLSRv2 also contains the following main components:

 o A TLV, to be included within the HELLO messages of [4], allowing a
 node to signal MPR selection.

 o An optimized flooding mechanism for global information exchange,
 denoted "MPR flooding".

 o A specification of global signaling, denoted TC (Topology Control)
 messages. TC messages in OLSRv2 serve to:

 * inject link state information into the entire network;

 * inject addresses of hosts and networks for which they may serve
 as a gateway into the entire network.

 TC messages are emitted periodically, thereby allowing nodes to
 continuously track global changes in the network. Incomplete TC
 messages may be used to report additions to advertised information
 without repeating unchanged information. Some TC messages may be
 flooded over only part of the network, allowing a node to ensure
 that nearer nodes are kept more up to date than distant nodes.

 Each node in the network selects an MPR Set. The MPR Set of a node X
 may be any subset of its symmetric 1-hop neighborhood such that every

Clausen, et al. Expires August 5, 2007 [Page 9]

Internet-Draft OLSRv2 February 2007

 node in the symmetric strict 2-hop neighborhood of node X has a
 symmetric link to a node in the MPR Set of node X. The MPR Set of a
 node may thus be said to "cover" the node's symmetric strict 2-hop
 neighborhood. Each node also maintains information about the set of
 symmetric 1-hop neighbors that have selected it as MPR. This set is
 called the MPR Selector Set of the node.

 Note that as long as the condition above is satisfied, any algorithm
 selecting MPR Sets is acceptable in terms of implementation
 interoperability. However if smaller MPR Sets are selected then the
 greater the efficiency gains that are possible. Note that [8] gives
 an analysis and example of MPR selection algorithms.

 In OLSRv2, actual efficiency gains are based on the sizes of each
 node's Relay Set, the set of symmetric 1-hop neighbors for which it
 is to relay broadcast traffic, and its Advertised Neighbor Set, the
 set of symmetric 1-hop neighbors for which it is to advertise link
 state information into the network in TC messages. Each of these
 sets MUST contain all the nodes in the MPR Selector Set and MAY
 contain additional nodes. If the Advertised Neighbor Set is empty,
 TC messages are not generated by that node, unless needed for gateway
 reporting, or for a short period to accelerate the removal of
 unwanted links.

 OLSRv2 is designed to work in a completely distributed manner and
 does not depend on any central entity. The protocol does not require
 reliable transmission of control messages: each node sends control
 messages periodically, and can therefore sustain a reasonable loss of
 some such messages. Such losses may occur frequently in radio
 networks due to collisions or other transmission problems. OLSRv2
 may use "jitter", randomized adjustments to message transmission
 times, to reduce the incidence of collisions.

 OLSRv2 does not require sequenced delivery of messages. Each control
 message contains a sequence number which is incremented for each
 message. Thus the recipient of a control message can, if required,
 easily identify which information is more recent - even if messages
 have been re-ordered while in transmission.

 OLSRv2 does not require any changes to the format of IP packets, any
 existing IP stack can be used as is: OLSRv2 only interacts with
 routing table management. OLSR sends its control messages using UDP.

Clausen, et al. Expires August 5, 2007 [Page 10]

Internet-Draft OLSRv2 February 2007

5. Local Information Base

 A node maintains a Local Information Base that records information
 about its OLSRv2 interfaces, and its non-OLSRv2 interfaces that can
 serve as gateways to other networks. The former is maintained using
 a Local Interface Set, as described in [4]. The latter is maintained
 using a Local Attached Network Set. All addresses in the Local
 Information Base have an associated prefix length; if an address
 otherwise does not have a prefix length then it is set equal to the
 address length. Two addresses are considered equal if and only if
 their associated prefix lengths are also equal.

 The Local Information Base is not modified by this protocol. This
 protocol may respond to changes of this Local Information Base which
 MUST reflect corresponding changes in the node's status. It is not
 the responsibility of OLSRv2 to maintain routes to networks recorded
 in the Local Attached Network Set in that node.

5.1. Local Attached Network Set

 A node's Local Attached Network Set records its local non-OLSRv2
 interfaces. that can act as gateways to other networks. It consists
 of Local Attached Network Tuples:

 (AL_net_addr, AL_dist)

 where:

 AL_net_addr is the network address of an attached network which can
 be reached via this node.

 AL_dist is the number of hops to the network with address
 AL_net_addr from this node.

 Attached networks with AL_dist == 0 MUST be local to this node and
 MUST NOT be attached to any other node. Attached networks with
 AL_dist > 0 MAY be attached to other nodes.

 Attached networks with AL_dist > 0 MUST be advertised in TC messages
 generated by this node, this may result in the node originating TC
 messages when it has no other reason to do so. Attached networks
 with AL_dist == 0 MAY be advertised in HELLO messages (which causes
 the MPRs of this node to advertise them in their TC messages) or MAY
 be advertised in TC messages; they MUST be advertised in one type of
 message and SHOULD NOT be advertised in both. If a node is sending
 TC messages for any other reason, then advertising attached networks
 in TC messages is more efficient. A node MAY decide which form of
 advertisement to use depending on its circumstances.

Clausen, et al. Expires August 5, 2007 [Page 11]

Internet-Draft OLSRv2 February 2007

6. Processing and Forwarding Repositories

 The following data structures are employed in order to ensure that a
 message is processed at most once and is forwarded at most once per
 interface of a node.

6.1. Received Set

 A node's Received Sets, one per OLSRv2 interface, each record the
 signatures of messages which have been received over that interface.
 Each consists of Received Tuples:

 (RX_type, RX_orig_addr, RX_seq_number, RX_time)

 where:

 RX_type is the received message type, or zero if the received
 message sequence number is not type-specific;

 RX_orig_addr is the originator address of the received message;

 RX_seq_number is the message sequence number of the received
 message;

 RX_time specifies the time at which this Tuple expires and MUST be
 removed.

6.2. Processed Set

 A node's Processed Set records signatures of messages which have been
 processed by the node. It consists of Processed Tuples:

 (P_type, P_orig_addr, P_seq_number, P_time)

 where:

 P_type is the processed message type, or zero if the processed
 message sequence number is not type-specific;

 P_orig_addr is the originator address of the processed message;

 P_seq_number is the message sequence number of the processed
 message;

 P_time specifies the time at which this Tuple expires and MUST be
 removed.

Clausen, et al. Expires August 5, 2007 [Page 12]

Internet-Draft OLSRv2 February 2007

6.3. Forwarded Set

 A node's Forwarded Set records signatures of messages which have been
 processed by the node. It consists of Forwarded Tuples:

 (F_type, F_orig_addr, F_seq_number, F_time)

 where:

 F_type is the forwarded message type, or zero if the forwarded
 message sequence number is not type-specific;

 F_orig_addr is the originator address of the forwarded message;

 F_seq_number is the message sequence number of the forwarded
 message;

 F_time specifies the time at which this Tuple expires and MUST be
 removed.

6.4. Relay Set

 A node's Relay Set records the neighbor interface addresses for which
 it is to relay flooded messages. It consists of Relay Tuples:

 (RY_iface_addr)

 where:

 RY_iface_addr is the address of a neighbor interface for which the
 node SHOULD relay flooded messages. This MUST include a prefix
 length.

Clausen, et al. Expires August 5, 2007 [Page 13]

Internet-Draft OLSRv2 February 2007

7. Packet Processing and Message Forwarding

 On receiving a packet, as defined in [3], a node examines the packet
 header and each of the message headers. If the message type is known
 to the node, the message is processed locally according to the
 specifications for that message type. The message is also
 independently evaluated for forwarding.

7.1. Actions when Receiving an OLSRv2 Packet

 On receiving a packet, a node MUST perform the following tasks:

 1. The packet MAY be fully parsed on reception, or the packet and
 its messages MAY be parsed only as required. (It is possible to
 parse the packet header, or determine its absence, without
 parsing any messages. It is possible to divide the packet into
 messages without even fully parsing their headers. It is
 possible to determine whether a message is to be forwarded, and
 to forward it, without parsing its body. It is possible to
 determine whether a message is to be processed without parsing
 its body.)

 2. If parsing fails at any point the relevant entity (packet or
 message) MUST be silently discarded, other parts of the packet
 (up to the whole packet) MAY be silently discarded;

 3. Otherwise if the packet header is present and it contains a
 packet TLV block, then each TLV in it is processed according to
 its type if recognized, otherwise the TLV is ignored;

 4. Otherwise each message in the packet, if any, is treated
 according to Section 7.2.

7.2. Actions when Receiving an OLSRv2 Message

 A node MUST perform the following tasks for each received OLSRv2
 message:

 1. If the received OLSRv2 message header cannot be correctly parsed
 according to the specification in [3], or if the node recognizes
 from the originator address of the message that the message is
 one which the receiving node itself originated, then the message
 MUST be silently discarded;

 2. Otherwise:

 1. If the received message is of a known type then the message
 is considered for processing according to Section 7.3, AND;

Clausen, et al. Expires August 5, 2007 [Page 14]

Internet-Draft OLSRv2 February 2007

 2. If for the received message (<hop-limit> + <hop-count>) > 1,
 then the message is considered for forwarding according to

Section 7.4.

7.3. Message Considered for Processing

 If a message (the "current message") is considered for processing,
 the following tasks MUST be performed:

 1. If an entry exists in the Processed Set where:

 * P_type == the message type of the current message, or 0 if the
 typedep bit in the message semantics octet (in the message
 header) of the current message is cleared ('0'), AND;

 * P_orig_addr == the originator address of the current message,
 AND;

 * P_seq_number == the message sequence number of the current
 message.

 then the current message MUST NOT be processed.

 2. Otherwise:

 1. Create an entry in the Processed Set with:

 + P_type = the message type of the current message, or 0 if
 the typedep bit in the message semantics octet (in the
 message header) of the current message is cleared ('0');

 + P_orig_addr = originator address of the current message;

 + P_seq_number = sequence number of the current message;

 + P_time = current time + P_HOLD_TIME.

 2. Process the message according to its type.

7.4. Message Considered for Forwarding

 If a message is considered for forwarding, and it is either of a
 message type defined in this document or of an unknown message type,
 then it MUST use the following algorithm. A message type not defined
 in this document MAY specify the use of this, or another algorithm.
 (Such an other algorithm MAY use the Received Set for the receiving
 interface, it SHOULD use the Forwarded Set similarly to the following
 algorithm.)

Clausen, et al. Expires August 5, 2007 [Page 15]

Internet-Draft OLSRv2 February 2007

 If a message is considered for forwarding according to this
 algorithm, the following tasks MUST be performed:

 1. If the sending interface (as indicated by the source interface of
 the IP datagram containing the message) does not match (taking
 into account any address prefix of) any N_neighbor_iface_addr in
 any Symmetric Neighbor Tuple, then the message MUST be silently
 discarded.

 2. Otherwise:

 1. If an entry exists in the Received Set for the receiving
 interface, where:

 + RX_type == the message type, or 0 if the typedep bit in
 the message semantics octet (in the message header) is
 cleared ('0'), AND;

 + RX_orig_addr == the originator address of the received
 message, AND;

 + RX_seq_number == the sequence number of the received
 message.

 then the message MUST be silently discarded.

 2. Otherwise:

 1. Create an entry in the Received Set for the receiving
 interface with:

 - RX_type = the message type, or 0 if the typedep bit in
 the message semantics octet (in the message header) is
 cleared ('0');

 - RX_orig_addr = originator address of the message;

 - RX_seq_number = sequence number of the message;

 - RX_time = current time + RX_HOLD_TIME.

 2. If an entry exists in the Forwarded Set where:

 - F_type == the message type, or 0 if the typedep bit in
 the message semantics octet (in the message header) is
 cleared ('0');

Clausen, et al. Expires August 5, 2007 [Page 16]

Internet-Draft OLSRv2 February 2007

 - F_orig_addr == the originator address of the received
 message, AND;

 - F_seq_number == the sequence number of the received
 message.

 then the message MUST be silently discarded.

 3. Otherwise if a Relay Tuple exists whose RY_iface_addr
 matches (taking into account any address prefix) the
 sending interface (as indicated by the source interface
 of the IP datagram containing the message):

 1. Create an entry in the Forwarded Set with:

 o F_type = the message type, or 0 if the typedep bit
 in the message semantics octet (in the message
 header) is cleared ('0');

 o F_orig_addr = originator address of the message;

 o F_seq_number = sequence number of the message;

 o F_time = current time + F_HOLD_TIME.

 2. The message header is modified as follows:

 o Decrement <hop-limit> in the message header by 1;

 o Increment <hop-count> in the message header by 1;

 3. Transmit the message on all OLSRv2 interfaces of the
 node.

 Messages are retransmitted in the format specified by [3] with the
 ALL-MANET-NEIGHBORS address (see [4]) as destination IP address.

Clausen, et al. Expires August 5, 2007 [Page 17]

Internet-Draft OLSRv2 February 2007

8. Information Repositories

 The purpose of OLSRv2 is to determine the Routing Set, which may be
 used to update IP's Routing Table, providing "next hop" routing
 information for IP datagrams. In order to accomplish this, OLSRv2
 uses a number of protocol sets: the Neighborhood Information Base,
 provided by [4], is in OLSRv2 augmented by information allowing MPR
 selection and signaling. Additionally, OLSRv2 specifies a Topology
 Information Base, which describes the information used for and
 acquired through TC message exchange - in other words: the Topology
 Information Base represents the network topology graph as seen from
 each node.

 Addresses (other than originator addresses) recorded in the
 Neighborhood Information Base and the Topology Information Base MUST
 all be recorded with prefix lengths, in order to allow comparison
 with addresses received in HELLO and TC messages.

8.1. Neighborhood Information Base

 The Neighborhood Information Base stores information about links
 between local interfaces and interfaces on adjacent nodes. In
 addition to the sets described in [4], OLSRv2 adds an element to each
 Link Tuple to allow a node to record the willingness of a 1-hop
 neighbor node to be selected as an MPR. Also, OLSRv2 adds an MPR Set
 and an MPR Selector Set to the Neighborhood Information Base. The
 MPR Set is used by a node to record which of its symmetric 1-hop
 neighbors are selected as MPRs, and the MPR Selector Set is used by a
 node to record which of its symmetric 1-hop neighbors have selected
 it as MPR. Thus, in addition to what is specified in [4], the MPR
 Set is used when generating HELLO messages, and the MPR Selector Set
 is populated when processing HELLO messages.

8.1.1. Link Set

 Link Tuples are as specified in [4], augmented with:

 L_willingness is the node's willingness to be selected as an MPR;

8.1.2. MPR Set

 A node's MPR Set contains OLSRv2 interface addresses with which the
 node has a symmetric link and which are of 1-hop symmetric neighbors
 which the node has selected as MPRs:

 (MP_neighbor_iface_addr)

Clausen, et al. Expires August 5, 2007 [Page 18]

Internet-Draft OLSRv2 February 2007

8.1.3. MPR Selector Set

 A node's MPR Selector Set records the nodes which have selected this
 node as an MPR. It consists of MPR Selector Tuples:

 (MS_neighbor_iface_addr, MS_time)

 where:

 MS_neighbor_iface_addr is an OLSRv2 interface address with which
 this node has a symmetric link and which is of a 1-hop symmetric
 neighbor which has selected this node as an MPR;

 MS_time specifies the time at which this Tuple expires and MUST be
 removed.

8.2. Topology Information Base

 The Topology Information Base stores information, required for the
 generation and processing of TC messages. The Advertised Neighbor
 Set contains OLSRv2 interface addresses of symmetric 1-hop neighbors
 which are to be reported in TC messages. The Topology Set and
 Attached Network Set both record information received through TC
 messages. Thus the Advertised Neighbor Set is used for generating TC
 messages, while the Topology Set and Attached Network Set are
 populated when processing TC messages.

 Additionally, a Routing Set is maintained, derived from the
 information recorded in the Neighborhood Information Base, Topology
 Set and Attached Network Set.

8.2.1. Advertised Neighbor Set

 A node's Advertised Neighbor Set contains OLSRv2 interface addresses
 of symmetric 1-hop neighbors which are to be advertised through TC
 messages:

 (A_neighbor_iface_addr)

 In addition, an Advertised Neighbor Set Sequence Number (ANSN) is
 maintained. Each time the Advertised Neighbor Set is updated, the
 ANSN MUST be incremented. The ANSN MUST also be incremented if there
 is a change to the set of Local Attached Network Tuples that are to
 be advertised in the node's TC messages.

Clausen, et al. Expires August 5, 2007 [Page 19]

Internet-Draft OLSRv2 February 2007

8.2.2. ANSN History Set

 A node's ANSN History Set records information about the freshness of
 the topology information received from each other node. It consists
 of ANSN History Tuples:

 (AH_orig_addr, AH_seq_number, AH_time)

 where:

 AH_orig_addr is the originator address of a received TC message,
 note that this does not include a prefix length;

 AH_seq_number is the highest ANSN in any TC message received which
 originated from AH_orig_addr;

 AH_time is the time at which this Tuple expires and MUST be removed.

8.2.3. Topology Set

 A node's Topology Set records topology information about the network.
 It consists of Topology Tuples:

 (T_dest_iface_addr, T_last_iface_addr, T_seq_number, T_time)

 where:

 T_dest_iface_addr is an OLSRv2 interface address of a destination
 node, which may be reached in one hop from the node with the
 OLSRv2 interface address T_last_iface_addr;

 T_last_iface_addr is, conversely, an OLSRv2 interface address of a
 node which is the last hop on a path towards the node with OLSRv2
 interface address T_dest_iface_addr.

 T_seq_number is the highest received ANSN associated with the
 information contained in this Topology Tuple;

 T_time specifies the time at which this Tuple expires and MUST be
 removed.

8.2.4. Attached Network Set

 A node's Attached Network Set records information about networks
 attached to other nodes. It consists of Attached Network Tuples:

 (AN_net_addr, AN_gw_iface_addr, AN_dist, AN_seq_number, AN_time)

Clausen, et al. Expires August 5, 2007 [Page 20]

Internet-Draft OLSRv2 February 2007

 where:

 AN_net_addr is the network address of an attached network, which may
 be reached via the node with the OLSRv2 interface address
 AN_gw_iface_addr;

 AN_gw_iface_addr is the address of an OLSRv2 interface of a node
 which can act as gateway to the network with address AN_net_addr;

 AN_dist is the number of hops to the network with address
 AL_net_addr from the node with address AN_gw_iface_addr.

 AN_seq_number is the highest received ANSN associated with the
 information contained in this Attached Network Tuple;

 AN_time specifies the time at which this Tuple expires and MUST be
 removed.

8.2.5. Routing Set

 A node's Routing Set records the selected path to each destination
 for which a route is known. It consists of Routing Tuples:

 (R_dest_addr, R_next_iface_addr, R_dist, R_local_iface_addr)

 where:

 R_dest_addr is the address of the destination, either the address of
 an OLSRv2 interface of a destination node, or the network address
 of an attached network;

 R_next_iface_addr is the OLSRv2 interface address of the "next hop"
 on the selected path to the destination;

 R_dist is the number of hops on the selected path to the
 destination;

 R_local_iface_addr is the address of the local interface over which
 a packet MUST be sent to reach the destination.

Clausen, et al. Expires August 5, 2007 [Page 21]

Internet-Draft OLSRv2 February 2007

9. Control Message Structures

 Nodes using OLSRv2 exchange information through messages. One or
 more messages sent by a node at the same time SHOULD be combined into
 a single packet. These messages may have originated at the sending
 node, or have originated at another node and are forwarded by the
 sending node. Messages with different originators may be combined in
 the same packet.

 The packet and message format used by OLSRv2 is defined in [3].
 However this specification contains some options which are not used
 by OLSRv2. In particular (using the syntactical entities defined in
 [3]):

 o All OLSRv2 packets, not limited to those defined in this document,
 include a <packet-header>.

 o All OLSRv2 packets, not limited to those defined in this document,
 have the pseqnum bit of <packet-semantics> cleared ('0'), i.e.
 they include a packet sequence number.

 o OLSRv2 packets MAY include packet TLVs, however OLSRv2 itself does
 not specify any packet TLVs.

 o All OLSRv2 messages, not limited to those defined in this
 document, include a full <msg-header> and hence have the noorig
 and nohops bits of <msg-semantics> cleared ('0').

 o All OLSRv2 message defined in this document have the typedep bit
 of <msg-semantics> cleared ('0').

 Other options defined in [3] may be freely used, in particular any
 other values of <packet-semantics>, <addr-semantics> or <tlv-
 semantics> consistent with its specification.

 The remainder of this section defines, within the framework of [3],
 message types and TLVs specific to OLSRv2.

9.1. HELLO Messages

 A HELLO message in OLSRv2 is generated as specified in [4].
 Additionally, an OLSRv2 node:

 o MUST include TLV(s) with Type == MPR associated with all OLSRv2
 interface addresses included in the HELLO message with a TLV with
 Type == LINK_STATUS and Value == SYMMETRIC if that address is also
 included in the node's MPR Set (if there is more than one copy of
 the address, this applies to the specific copy of the address to

Clausen, et al. Expires August 5, 2007 [Page 22]

Internet-Draft OLSRv2 February 2007

 which the LINK_STATUS TLV is associated);

 o MUST NOT include any TLVs with Type == MPR associated with any
 other addresses;

 o MAY include a message TLV with Type == WILLINGNESS, indicating the
 node's willingness to be selected as an MPR.

9.1.1. HELLO Message TLVs

 In a HELLO message, a node MAY include a WILLINGNESS message TLV as
 specified in Table 1.

 +----------------+------+-------------------+-----------------------+
 | Name | Type | Length | Value |
 +----------------+------+-------------------+-----------------------+
WILLINGNESS	TBD	8 bits	The node's
			willingness to be
			selected as MPR;
			unused bits (based on
			the maximum
			willingness value
			WILL_ALWAYS) are
			RESERVED and SHOULD
			be set to zero
 +----------------+------+-------------------+-----------------------+

 Table 1

 A node's willingness to be selected as MPR ranges from WILL_NEVER
 (indicating that a node MUST NOT be selected as MPR by any node) to
 WILL_ALWAYS (indicating that a node MUST always be selected as MPR).

 If a node does not advertise a Willingness TLV in HELLO messages, the
 node MUST be assumed to have a willingness of WILL_DEFAULT.

9.1.2. HELLO Message Address Block TLVs

 In a HELLO message, a node MAY include MPR address block TLV(s) as
 specified in Table 2.

Clausen, et al. Expires August 5, 2007 [Page 23]

Internet-Draft OLSRv2 February 2007

 +----------------+------+-------------------+----------------------+
 | Name | Type | Length | Value |
 +----------------+------+-------------------+----------------------+
 | MPR | TBD | 0 bits | None |
 +----------------+------+-------------------+----------------------+

 Table 2

9.2. TC Messages

 A TC message MUST contain:

 o A message TLV with Type == CONT_SEQ_NUM, as specified in
Section 9.2.1.

 o A message TLV with Type == VALIDITY_TIME, as specified in
Appendix E.

 o A first address block containing all of the node's OLSRv2
 interface addresses. This is similar to the Local Interface Block
 included in HELLO messages as specified in [4], however in a TC
 message these addresses MUST be included in the same order in all
 copies of a given TC message, regardless of which OLSRv2 interface
 it is transmitted on, and no OTHER_IF address block TLVs are
 required.

 o Additional address block(s) containing all addresses in the
 Advertised Address Set and selected addresses in the Local
 Attached Network Set, the latter (only) with associated GATEWAY
 address block TLV(s), as specified in Section 9.2.2.

 A TC message MAY contain:

 o A message TLV with Type == INTERVAL_TIME, as specified in
Appendix E.

 o A message TLV with Type == INCOMPLETE, as specified in
Section 9.2.1.

9.2.1. TC Message TLVs

 In a TC message, a node MUST include a CONT_SEQ_NUM message TLV, and
 MAY contain an INCOMPLETE message TLV, as specified in Table 3.

Clausen, et al. Expires August 5, 2007 [Page 24]

Internet-Draft OLSRv2 February 2007

 +----------------+------+-------------------+-----------------------+
 | Name | Type | Length | Value |
 +----------------+------+-------------------+-----------------------+
CONT_SEQ_NUM	TBD	8 bits	The ANSN contained in
			the Advertised
			Neighbor Set
INCOMPLETE	TBD	0 bits	None
 +----------------+------+-------------------+-----------------------+

 Table 3

9.2.2. TC Message Address Block TLVs

 In a TC message, a node MAY include GATEWAY address block TLV(s) as
 specified in Table 4.

 +----------------+------+-------------------+-----------------------+
 | Name | Type | Length | Value |
 +----------------+------+-------------------+-----------------------+
 | GATEWAY | TBD | 8 bits | Number of hops to |
 | | | | attached network |
 +----------------+------+-------------------+-----------------------+

 Table 4

Clausen, et al. Expires August 5, 2007 [Page 25]

Internet-Draft OLSRv2 February 2007

10. HELLO Message Generation

 An OLSRv2 HELLO message is composed as defined in [4], with the
 following additions:

 o A message TLV with Type == WILLINGNESS and Value == the node's
 willingness to act as an MPR, MAY be included.

 o For each address which is included in the message with an
 associated TLV with Type == LINK_STATUS, and is of an MPR (i.e. is
 an MP_neighbor_iface_addr), an address TLV with Type == MPR MUST
 be included; this TLV MUST be associated with the same copy of the
 address as is the TLV with Type == LINK_STATUS.

 o For address which is included in the message and is not of an MPR
 (i.e. is not an MP_neighbor_iface_addr) or is not associated with
 a TLV with Type == LINK_STATUS, an address TLV with Type == MPR
 MUST NOT be included.

 o For each Local Attached Tuple with AL_dist == 0, a node MAY
 include AL_net_addr in the Local Interface Block of the message,
 with an associated TLV with Type == OTHER_IF.

10.1. HELLO Message: Transmission

 HELLO messages are included in packets as specified in [3]. These
 packets may contain other messages, including TC messages.

Clausen, et al. Expires August 5, 2007 [Page 26]

Internet-Draft OLSRv2 February 2007

11. HELLO Message Processing

 Subsequent to the processing of HELLO messages, as specified in [4],
 the node MUST:

 1. Determine the willingness of the originating node to be an MPR
 by:

 * if the HELLO message contains a message TLV with Type ==
 WILLINGNESS then the willingness is the value of that TLV,
 ignoring the reserved bits in that field;

 * otherwise the willingness is WILL_DEFAULT.

 2. Update each Link Tuple for which any address in its
 L_neighbor_iface_addr_list is present in the Local Interface
 Block of the HELLO message, with:

 * L_willingness = the willingness of the originating node.

 3. Update its MPR Selector Set, according to Section 11.1.

11.1. Populating the MPR Selector Set

 On receiving a HELLO message:

 1. If a node finds one of its OLSRv2 interface addresses with an
 associated TLV with Type == MPR in the HELLO message (indicating
 that the originator node has selected the receiving node as an
 MPR), the MPR Selector Set MUST be updated as follows:

 1. For each address, henceforth neighbor address, in the Local
 Interface Block of the received HELLO message, where the
 neighbor address is present as an N_neighbor_iface_addr in a
 Symmetric Neighbor Tuple with N_STATUS == SYMMETRIC:

 1. If there exists no MPR Selector Tuple with:

 - MS_neighbor_iface_addr == neighbor address

 then a new MPR Selector Tuple is created with:

 - MS_neighbor_iface_addr = neighbor address

 2. The MPR Selector Tuple (new or otherwise) with:

 - MS_neighbor_iface_addr == neighbor address

Clausen, et al. Expires August 5, 2007 [Page 27]

Internet-Draft OLSRv2 February 2007

 is then modified as follows:

 - MS_time = current time + validity time

 2. Otherwise if a node finds one of its own interface addresses with
 an associated TLV with Type == LINK_STATUS and Value == SYMMETRIC
 in the HELLO message, the MPR Selector Set MUST be updated as
 follows:

 1. All MPR Selector Tuples whose MS_neighbor_iface_addr is in
 the Local Interface Block of the HELLO message are removed.

 MPR Selector Tuples are also removed upon expiration of MS_time, or
 upon symmetric link breakage as described in Section 11.2.

11.2. Symmetric Neighborhood and 2-Hop Neighborhood Changes

 A node MUST also perform the following:

 1. If a Link Tuple with L_STATUS == SYMMETRIC is removed, or its
 L_STATUS changes from SYMMETRIC to HEARD or LOST, and for each
 address in that Link Tuple's L_neighbor_iface_addr_list, if it is
 an MS_neighbor_iface_addr of an MPR Selector Tuple, then that MPR
 Selector Tuple MUST be removed.

 2. If any of:

 * a Link Tuple is added with L_STATUS == SYMMETRIC, OR;

 * a Link Tuple with L_STATUS == SYMMETRIC is removed, or its
 L_STATUS changes from SYMMETRIC to HEARD or LOST, or vice
 versa, OR;

 * a 2-Hop Neighbor Tuple is added or removed, OR;

 * the Neighbor Address Association Set is changed such that the
 subset of any NA_neighbor_iface_addr_list consisting of those
 addresses which are in the L_neighbor_iface_addr_list of a
 Link Tuple with L_STATUS == SYMMETRIC is changed, including
 the cases of removal or addition of a Neighbor Address
 Association Tuple containing any such addresses;

 then the MPR Set MUST be recalculated.

 An additional HELLO message MAY be sent when the MPR Set changes, in
 addition to the cases specified in [4], and subject to the same
 constraints.

Clausen, et al. Expires August 5, 2007 [Page 28]

Internet-Draft OLSRv2 February 2007

12. TC Message Generation

 A node with one or more OLSRv2 interfaces, and with a non-empty
 Advertised Neighbor Set or which acts as a gateway to an associated
 network which is to be advertised in the MANET, MUST generate TC
 messages. A node with an empty Advertised Neighbor Set and which is
 not acting as such a gateway SHOULD also generate "empty" TC messages
 for a period A_HOLD_TIME after it last generated a non-empty TC
 message. TC messages (non-empty and empty) are generated according
 to the following:

 1. The message hop count MUST be set to zero.

 2. The message hop limit MAY be set to any positive value, this
 SHOULD be at least two. A node MAY:

 * use the same hop limit in all TC messages, this MUST be at
 least equal to the network diameter in hops, a value of 255 is
 RECOMMENDED in this case; OR

 * use different hop limits in TC messages, this MUST regularly
 include messages with hop limit at least equal to the network
 diameter, a value of 255 is RECOMMENDED for these messages;
 other hop limits SHOULD use a regular pattern with a regular
 interval at any given number of hops distance.

 3. The message MUST contain a message TLV with Type == CONT_SEQ_NUM
 and Value == ANSN from the Advertised Neighbor Set.

 4. The message MUST contain a message TLV with Type ==
 VALIDITY_TIME, as specified in Appendix E.2. If all TC messages
 are sent with the same hop limit (usually 255) then this TLV MUST
 have Value == T_HOLD_TIME. If TC messages are sent with
 different hop limits, then this TLV MUST specify times which vary
 with the number of hops distance appropriate to the chosen
 pattern of TC message hop limits, these times SHOULD be
 appropriate multiples of T_HOLD_TIME.

 5. The message MAY contain a message TLV with Type == INTERVAL_TIME,
 as specified in Appendix E.2. If all TC messages are sent with
 the same hop limit (usually 255) then this TLV MUST have Value ==
 TC_INTERVAL. If TC messages are sent with different hop limits,
 then this TLV MUST specify times which vary with the number of
 hops distance appropriate to the chosen pattern of TC message hop
 limits, these times SHOULD be appropriate multiples of
 TC_INTERVAL.

Clausen, et al. Expires August 5, 2007 [Page 29]

Internet-Draft OLSRv2 February 2007

 6. The message MUST contain the addresses of all of its OLSRv2
 interfaces in its first address block, note that the TC message
 generated on all OLSRv2 interfaces MUST be identical (including
 having identical message sequence number) and hence these
 addresses are not ordered or otherwise identified according to
 the interface on which the TC message is transmitted.

 7. The message MUST contain, in address blocks other than its first:

 1. A_neighbor_iface_addr from each Advertised Neighbor Tuple;

 2. AL_net_addr from each Local Attached Neighbor Tuple with
 AL_dist > 0, each associated with a TLV with Type == GATEWAY
 and Value == AL_dist.

 8. The message MAY contain, in address blocks other than its first:

 1. AL_net_addr from each Local Attached Neighbor Tuple with
 AL_dist == 0, each associated with a TLV with Type == GATEWAY
 and Value == 0.

12.1. TC Message: Transmission

 TC messages are generated and transmitted periodically on all OLSRv2
 interfaces, with a default interval between two consecutive TC
 emissions by the same node of TC_INTERVAL.

 TC messages MAY be generated in response to a change of contents,
 indicated by a change in ANSN. In this case a node MAY send a
 complete TC message, and if so MAY re-start its TC message schedule.
 Alternatively a node MAY send only new content in its address blocks
 (with appropriate associated TLVs) in which case it MUST include a
 message TLV with Type == INCOMPLETE, and MUST NOT re-start its TC
 message schedule. This TC message MUST include its usual message
 TLVs. Note that a node cannot report removal of advertised content
 using an incomplete TC message.

 When sending a TC message in response to a change of contents, a node
 must respect a minimum interval of TC_MIN_INTERVAL between generated
 TC messages. Sending an incomplete TC message MUST NOT cause the
 interval between complete TC messages to be increased, and thus a
 node MUST NOT send an incomplete TC message if within TC_MIN_INTERVAL
 of the next scheduled complete TC message.

 The generation of TC messages, whether scheduled or triggered by a
 change of contents, and the forwarding of TC messages, MAY be
 jittered as described in Appendix F. The values of MAXJITTER used
 SHOULD be:

Clausen, et al. Expires August 5, 2007 [Page 30]

Internet-Draft OLSRv2 February 2007

 o TP_MAXJITTER for periodic TC message generation;

 o TT_MAXJITTER for triggered TC message generation;

 o TF_MAXJITTER for TC message forwarding;

 TC messages are included in packets as specified in [3]. These
 packets may contain other messages, including HELLO messages and TC
 messages with different originator addresses. TC messages are
 forwarded according to the specification in Section 7.4.

Clausen, et al. Expires August 5, 2007 [Page 31]

Internet-Draft OLSRv2 February 2007

13. TC Message Processing

 When according to Section 7.3 a TC message is to be processed
 according to its type, this means that:

 o if the message does not contain a message TLV with Type ==
 INCOMPLETE, then processing according to Section 13.1 and then
 according to Section 13.2 is carried out;

 o if the message contains a message TLV with Type == INCOMPLETE,
 then only processing according to Section 13.1 is carried out.

 For all processing purposes, "ANSN" is defined as being the value of
 the message TLV with Type == CONT_SEQ_NUM in the TC message. If a TC
 message has no such TLV then it MUST NOT be processed.

13.1. Initial TC Message Processing

 For the purposes of this section, note the following:

 o "validity time" is calculated from the VALIDITY_TIME message TLV
 in the TC message according to the specification in Appendix E.2;

 o "originator address" refers to the originator address in the TC
 message header;

 o comparisons of sequence numbers are carried out as specified in
Section 18.

 The TC message is processed as follows:

 1. the ANSN History Set is updated according to Section 13.1.1; if
 the TC message is indicated as discarded in that processing then
 the following steps are not carried out;

 2. the Topology Set is updated according to Section 13.1.2;

 3. the Attached Network Set is updated according to Section 13.1.3.

13.1.1. Populating the ANSN History Set

 The node MUST update its ANSN History Set as follows:

 1. If there is an ANSN History Tuple with:

 * AH_orig_addr == originator address; AND

Clausen, et al. Expires August 5, 2007 [Page 32]

Internet-Draft OLSRv2 February 2007

 * AH_seq_number > ANSN

 then the TC message MUST be discarded.

 2. Otherwise

 1. If there is no ANSN History Tuple such that:

 + AH_orig_addr == originator address;

 then create a new ANSN History Tuple with:

 + AH_orig_addr = originator address.

 2. This ANSN History Tuple (existing or new) is then modified as
 follows:

 + AH_seq_number = ANSN;

 + AH_time = current time + validity time.

13.1.2. Populating the Topology Set

 The node MUST update its Topology Set as follows:

 1. For each address, henceforth local address, in the first address
 block in the TC message:

 1. For each address, henceforth advertised address, in an
 address block other than the first in the TC message, and
 which does not have an associated TLV with Type == GATEWAY:

 1. If there is no Topology Tuple such that:

 - T_dest_iface_addr == advertised address; AND

 - T_last_iface_addr == local address

 then create a new Topology Tuple with:

 - T_dest_iface_addr = advertised address;

 - T_last_iface_addr = local address.

 2. This Topology Tuple (existing or new) is then modified as
 follows:

Clausen, et al. Expires August 5, 2007 [Page 33]

Internet-Draft OLSRv2 February 2007

 - T_seq_number = ANSN;

 - T_time = current time + validity time.

13.1.3. Populating the Attached Network Set

 The node MUST update its Attached Network Set as follows:

 1. For each address, henceforth gateway address, in the first
 address block in the TC message:

 1. For each address, henceforth network address, in an address
 block other than the first in the TC message, and which has
 an associated TLV with Type == GATEWAY:

 1. If there is no Attached Network Tuple such that:

 - AN_net_addr == network address; AND

 - AN_gw_iface_addr == gateway address

 then create a new Attached Network Tuple with:

 - AN_net_addr = network address;

 - AN_gw_iface_addr = gateway address.

 2. This Attached Network Tuple (existing or new) is then
 modified as follows:

 - AN_dist = the value of the associated GATEWAY TLV;

 - AN_seq_number = ANSN;

 - AN_time = current time + validity time.

13.2. Completing TC Message Processing

 The TC message is processed as follows:

 1. the Topology Set is updated according to Section 13.2.1;

 2. the Attached Network Set is updated according to Section 13.2.2.

Clausen, et al. Expires August 5, 2007 [Page 34]

Internet-Draft OLSRv2 February 2007

13.2.1. Purging the Topology Set

 The Topology Set MUST be updated as follows:

 1. for each address, henceforth local address, in the first address
 block of the TC message, all Topology Tuples with:

 * T_last_iface_addr == local address; AND

 * T_seq_number < ANSN

 MUST be removed.

13.2.2. Purging the Attached Network Set

 The Attached Network Set MUST be updated as follows:

 1. for each address, henceforth local address, in the first address
 block of the TC message, all Attached Network Tuples with:

 * AN_gw_iface_addr == local address; AND

 * AN_seq_number < ANSN

 MUST be removed.

Clausen, et al. Expires August 5, 2007 [Page 35]

Internet-Draft OLSRv2 February 2007

14. Populating the MPR Set

 Each node MUST select, from among its symmetric 1-hop neighbors, a
 subset of nodes as MPRs. This subset MUST be selected such that a
 message transmitted by the node, and retransmitted by all its MPRs,
 will be received by all of its symmetric strict 2-hop neighbors.

 Each node selects its MPR Set individually, utilizing the information
 in the Symmetric Neighbor Set, the 2-Hop Neighbor Set and the
 Neighborhood Address Association Set. Initially these sets will be
 empty, as will be the MPR Set. A node SHOULD recalculate its MPR Set
 when a relevant change is made to the Symmetric Neighbor Set, the
 2-Hop Neighbor Set or the Neighborhood Address Association Set.

 More specifically, a node MUST calculate MPRs per interface, the
 union of the MPR Sets of each interface make up the MPR Set for the
 node. All OLSRv2 interfaces of nodes selected as MPRs with which the
 node has a symmetric link MUST be added to the MPR Set. Also
 symmetric 1-hop neighbor nodes with willingness WILL_NEVER (as
 recorded in the Link Set) MUST NOT be considered as MPRs.

 MPRs are used to flood control messages from a node into the network
 while reducing the number of retransmissions that will occur in a
 region. Thus, the concept of MPR is an optimization of a classical
 flooding mechanism. While it is not essential that the MPR Set is
 minimal, it is essential that all symmetric strict 2-hop neighbors
 can be reached through the selected MPR nodes. A node MUST select an
 MPR Set such that any strict 2-hop neighbor is "covered" by at least
 one MPR node. A node MAY select additional MPRs beyond the minimum
 set. Keeping the MPR Set small ensures that the overhead of OLSRv2
 is kept at a minimum.

Appendix C contains an example heuristic for selecting MPRs.

Clausen, et al. Expires August 5, 2007 [Page 36]

Internet-Draft OLSRv2 February 2007

15. Populating Derived Sets

 The Relay Set and the Advertised Neighbor Set of OLSRv2 are denoted
 derived sets, since updates to these sets are not directly a function
 of message exchanges, but rather are derived from updates to other
 sets, in particular the MPR Selector Set.

15.1. Populating the Relay Set

 The Relay Set contains the set of OLSRv2 interface addresses of those
 symmetric 1-hop neighbors for which a node is supposed to relay
 broadcast traffic. This set MUST at least contain all addresses in
 the MPR Selector Set (i.e. all MS_neighbor_iface_addr). This set MAY
 contain additional symmetric 1-hop neighbor OLSRv2 interface
 addresses.

15.2. Populating the Advertised Neighbor Set

 The Advertised Neighbor Set contains the set of OLSRv2 interface
 addresses of those 1-hop neighbors to which a node advertises a
 symmetric link in TC messages. This set MUST at least contain all
 addresses in the MPR Selector Set (i.e. all MS_neighbor_iface_addr).
 This set MAY contain additional symmetric 1-hop neighbor OLSRv2
 interface addresses.

 Whenever an address is added to or removed from the Advertised
 Neighbor Set, the ANSN MUST be incremented.

Clausen, et al. Expires August 5, 2007 [Page 37]

Internet-Draft OLSRv2 February 2007

16. Routing Table Calculation

 The Routing Set is updated when a change (an entry appearing or
 disappearing, or changing between SYMMETRIC and LOST) is detected in:

 o the Link Set, OR;

 o the Neighbor Address Association Set, OR;

 o the 2-Hop Neighbor Set, OR;

 o the Topology Set, OR;

 o the Attached Network Set.

 Note that some changes to these sets do not necessitate a change to
 the Routing Set, in particular changes to the Link Set which do not
 involve Link Tuples with L_STATUS == SYMMETRIC (either before or
 after the change), and similar changes to the Neighbor Address
 Association Set. A node MAY avoid updating the Routing Set in such
 cases.

 Updates to the Routing Set do not generate or trigger any messages to
 be transmitted. The state of the Routing Set SHOULD, however, be
 reflected in the IP routing table by adding and removing entries from
 the routing table as appropriate.

 To construct the Routing Set of node X, a shortest path algorithm is
 run on the directed graph containing

 o the arcs X -> Y where there exists a Link Tuple with Y in the
 L_neighbor_iface_addr_list and L_STATUS == SYMMETRIC (i.e. Y is a
 symmetric 1-hop neighbor of X), AND;

 o the arcs Y -> Z where Y is added as above and the Link Tuple with
 Y in its L_neighbor_iface_addr_list has L_willingness not equal to
 WILL_NEVER, and there exists a 2-Hop Neighbor Tuple with Y as
 N2_neighbor_iface_addr and Z as N2_2hop_iface_addr (i.e. Z is a
 symmetric 2-hop neighbor of Z through Y, which does not have
 willingness WILL_NEVER), AND;

 o the arcs U -> V, where there exists a Topology Tuple with U as
 T_last_iface_addr and V as T_dest_iface_addr (i.e. this is an
 advertised link in the network).

 The graph is complemented with:

Clausen, et al. Expires August 5, 2007 [Page 38]

Internet-Draft OLSRv2 February 2007

 o arcs Y -> W where there exists a Link Tuple with Y in its
 L_neighbor_iface_addr_list and L_STATUS == SYMMETRIC and a
 Neighborhood Address Association Tuple with Y and W both contained
 in its NA_neighbor_iface_addr_list (i.e. Y and W are both
 addresses of the same symmetric 1-hop neighbor), AND;

 o arcs U -> T where there exists an Attached Network Tuple with U as
 AN_net_addr and T as AN_gw_iface_addr (i.e. U is a gateway to
 network T).

 The following procedure is given as an example for calculating the
 Routing Set using a variation of Dijkstra's algorithm. Thus:

 1. All Routing Tuples are removed.

 2. For each Link Tuple with L_STATUS == SYMMETRIC, and for each
 address (henceforth neighbor address) in that Link Tuple's
 L_neighbor_iface_addr_list, a new Routing Tuple is added with:

 * R_dest_addr = neighbor address;

 * R_next_iface_addr = neighbor address;

 * R_dist = 1;

 * R_local_iface_addr = neighbor address.

 3. For each Neighbor Address Association Tuple, for which two
 addresses A1 and A2 are in NA_neighbor_iface_addr_list where:

 * there is a Routing Tuple with:

 + R_dest_addr == A1

 * and there is no Routing Tuple with:

 + R_dest_addr == A2

 then a Routing Tuple is added with:

 * R_dest_addr = A2;

 * R_next_iface_addr = R_next_iface_addr of the Routing Tuple in
 which R_dest_addr == A1;

 * R_dist = 1;

Clausen, et al. Expires August 5, 2007 [Page 39]

Internet-Draft OLSRv2 February 2007

 * R_local_iface_addr = R_local_iface_addr of the Routing Tuple
 in which R_dest_addr == A1.

 4. The following procedure, which adds Routing Tuples for
 destination nodes h+1 hops away, MUST be executed for each value
 of h, starting with h=2 and incrementing by 1 for each iteration.
 The execution MUST stop if no new Routing Tuples are added in an
 iteration.

 1. For each Topology Tuple, if

 + T_dest_iface_addr is not equal to R_dest_addr of any
 Routing Tuple, AND;

 + T_last_iface_addr is equal to R_dest_addr of a Routing
 Tuple whose R_dist == h;

 then a new Routing Tuple MUST be added, with:

 + R_dest_addr = T_dest_iface_addr;

 + R_next_iface_addr = R_next_iface_addr of the Routing Tuple
 whose R_dest_addr == T_last_iface_addr;

 + R_dist = h+1;

 + R_local_iface_addr = R_local_iface_addr of the Routing
 Tuple whose R_dest_addr == T_last_iface_addr.

 Several Topology Tuples may be used to select a next hop
 R_next_iface_addr for reaching the address R_dest_addr. When
 h == 1, ties should be broken such that nodes with highest
 willingness are preferred, and between nodes of equal
 willingness, MPR selectors are preferred over non-MPR
 selectors.

 2. After the above iteration has completed, if h == 1, for each
 2-Hop Neighbor Tuple where:

 + N2_2hop_iface_addr is not equal to R_dest_addr of any
 Routing Tuple, AND;

 + N2_neighbor_iface_addr has a willingness (i.e. the
 L_willingness of the Link Tuple whose
 L_neighbor_iface_addr_list contains
 N2_neighbor_iface_addr) which is not equal to WILL_NEVER;

 a Routing Tuple is added with:

Clausen, et al. Expires August 5, 2007 [Page 40]

Internet-Draft OLSRv2 February 2007

 + R_dest_addr = N2_2hop_iface_addr of the 2-Hop Neighbor
 Tuple;

 + R_next_iface_addr = R_next_iface_addr of the Routing Tuple
 in which R_dest_addr == N2_neighbor_iface_addr;

 + R_dist = 2;

 + R_local_iface_addr = R_local_iface_addr of the Routing
 Tuple in which R_dest_addr == N2_neighbor_iface_addr.

 5. For each Attached Network Tuple, if

 * AN_net_addr is not equal to R_dest_addr of any Routing Tuple,
 AND;

 * AN_gw_iface_addr is equal to R_dest_addr of a Routing Tuple;

 then a new Routing Tuple MUST be added, with:

 * R_dest_addr = AN_net_addr;

 * R_next_iface_addr = R_next_iface_addr of the Routing Tuple
 whose R_dest_addr == AN_gw_iface_addr;

 * R_dist = (R_dist of the Routing Tuple whose R_dest_addr ==
 AN_gw_iface_addr) + AN_dist;

 * R_local_iface_addr = R_local_iface_addr of the Routing Tuple
 whose R_dest_addr == AN_gw_iface_addr.

 If more than one Attached Network Tuple has the same AN_net_addr,
 then more than one Routing Tuple MUST NOT be added, and the added
 Routing Tuple MUST have minimum R_dist.

Clausen, et al. Expires August 5, 2007 [Page 41]

Internet-Draft OLSRv2 February 2007

17. Proposed Values for Constants

 This section list the values for the constants used in the
 description of the protocol. These proposed values are appropriate
 to the case where all TC messages are sent with the same hop limit
 (usually 255).

17.1. Neighborhood Discovery Constants

 The constants HELLO_INTERVAL, REFRESH_INTERVAL, HELLO_MIN_INTERVAL,
 H_HOLD_TIME, L_HOLD_TIME, N_HOLD_TIME, HP_MAXJITTER, HT_MAXJITTER and
 C are used as in [4].

17.2. Message Intervals

 o TC_INTERVAL = 5 seconds

 o TC_MIN_INTERVAL = TC_INTERVAL/4

17.3. Holding Times

 o T_HOLD_TIME = 3 x TC_INTERVAL

 o A_HOLD_TIME = T_HOLD_TIME

 o P_HOLD_TIME = 30 seconds

 o RX_HOLD_TIME = 30 seconds

 o F_HOLD_TIME = 30 seconds

17.4. Jitter Times

 o TP_MAXJITTER = HP_MAXJITTER

 o TT_MAXJITTER = HT_MAXJITTER

 o TF_MAXJITTER = TT_MAXJITTER

17.5. Willingness

 o WILL_NEVER = 0

 o WILL_DEFAULT = 3

 o WILL_ALWAYS = 7

Clausen, et al. Expires August 5, 2007 [Page 42]

Internet-Draft OLSRv2 February 2007

18. Sequence Numbers

 Sequence numbers are used in OLSRv2 with the purpose of discarding
 "old" information, i.e. messages received out of order. However with
 a limited number of bits for representing sequence numbers, wrap-
 around (that the sequence number is incremented from the maximum
 possible value to zero) will occur. To prevent this from interfering
 with the operation of OLSRv2, the following MUST be observed when
 determining the ordering of sequence numbers.

 The term MAXVALUE designates in the following one more than the
 largest possible value for a sequence number. For a 16 bit sequence
 number (as are those defined in this specification) MAXVALUE is
 65536.

 The sequence number S1 is said to be "greater than" the sequence
 number S2 if:

 o S1 > S2 AND S1 - S2 < MAXVALUE/2 OR

 o S2 > S1 AND S2 - S1 > MAXVALUE/2

 When sequence numbers S1 and S2 differ by MAXVALUE/2 their ordering
 cannot be determined. In this case, which should not occur, either
 ordering may be assumed.

 Thus when comparing two messages, it is possible - even in the
 presence of wrap-around - to determine which message contains the
 most recent information.

Clausen, et al. Expires August 5, 2007 [Page 43]

Internet-Draft OLSRv2 February 2007

19. IANA Considerations

19.1. Message Types

 OLSRv2 defines one message type, which must be allocated from the
 "Assigned Message Types" repository of [3].

 +--------------------+-------+--------------------------------------+
 | Mnemonic | Value | Description |
 +--------------------+-------+--------------------------------------+
 | TC | TBD | Topology Control (global signaling) |
 +--------------------+-------+--------------------------------------+

 Table 5

19.2. TLV Types

 OLSRv2 defines three message TLV types, which must be allocated from
 the "Assigned message TLV Types" repository of [3].

 +--------------------+-------+--------------------------------------+
 | Mnemonic | Value | Description |
 +--------------------+-------+--------------------------------------+
WILLINGNESS	TBD	Specifies the originating node's
		willingness to act as a relay and to
		partake in network formation
CONT_SEQ_NUM	TBD	Specifies a content sequence number
		for this message
INCOMPLETE	TBD	Specifies that this message is
		incomplete
 +--------------------+-------+--------------------------------------+

 Table 6

 OLSRv2 defines two Address Block TLV types, which must be allocated
 from the "Assigned address block TLV Types" repository of [3].

Clausen, et al. Expires August 5, 2007 [Page 44]

Internet-Draft OLSRv2 February 2007

 +--------------------+-------+--------------------------------------+
 | Mnemonic | Value | Description |
 +--------------------+-------+--------------------------------------+
MPR	TBD	Specifies that a given address is
		selected as MPR
GATEWAY	TBD	Specifies that a given address is
		reached via a gateway on the
		originating node
 +--------------------+-------+--------------------------------------+

 Table 7

Clausen, et al. Expires August 5, 2007 [Page 45]

Internet-Draft OLSRv2 February 2007

20. References

20.1. Normative References

 [1] Clausen, T. and P. Jacquet, "The Optimized Link State Routing
 Protocol", RFC 3626, October 2003.

 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", RFC 2119, BCP 14, March 1997.

 [3] Clausen, T., Dean, J., Dearlove, C., and C. Adjih, "Generalized
 MANET Packet/Message Format", work in
 progress draft-ietf-manet-packetbb-03.txt, January 2007.

 [4] Clausen, T., Dean, J., and C. Dearlove, "MANET Neighborhood
 Discovery Protocol (NHDP)", work in
 progress draft-ietf-manet-nhdp-01.txt, February 2007.

20.2. Informative References

 [5] Atkins, D., Stallings, W., and P. Zimmermann, "PGP Message
 Exchange Formats", RFC 1991, August 1996.

 [6] ETSI, "ETSI STC-RES10 Committee. Radio equipment and systems:
 HIPERLAN type 1, functional specifications ETS 300-652",
 June 1996.

 [7] Jacquet, P., Minet, P., Muhlethaler, P., and N. Rivierre,
 "Increasing reliability in cable free radio LANs: Low level
 forwarding in HIPERLAN.", 1996.

 [8] Qayyum, A., Viennot, L., and A. Laouiti, "Multipoint relaying:
 An efficient technique for flooding in mobile wireless
 networks.", 2001.

https://datatracker.ietf.org/doc/html/rfc3626
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/draft-ietf-manet-packetbb-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-manet-nhdp-01.txt
https://datatracker.ietf.org/doc/html/rfc1991

Clausen, et al. Expires August 5, 2007 [Page 46]

Internet-Draft OLSRv2 February 2007

Appendix A. Node Configuration

 OLSRv2 does not make any assumption about node addresses, other than
 that each node is assumed to have at least one unique and routable IP
 address for each interface that it has which participates in the
 MANET.

 When applicable, a recommended way of connecting an OLSRv2 network to
 an existing IP routing domain is to assign an IP prefix (under the
 authority of the nodes/gateways connecting the MANET with the routing
 domain) exclusively to the OLSRv2 area, and to configure the gateways
 statically to advertise routes to that IP sequence to nodes in the
 existing routing domain.

Clausen, et al. Expires August 5, 2007 [Page 47]

Internet-Draft OLSRv2 February 2007

Appendix B. Protocol and Port Number

 Packets in OLSRv2 are communicated using UDP. Port 698 has been
 assigned by IANA for exclusive usage by the OLSR (v1 and v2)
 protocol.

Clausen, et al. Expires August 5, 2007 [Page 48]

Internet-Draft OLSRv2 February 2007

Appendix C. Example Heuristic for Calculating MPRs

 The following specifies a proposed heuristic for selection of MPRs.

 In graph theory terms, MPR computation is a "set cover" problem,
 which is a difficult optimization problem, but for which an easy and
 efficient heuristics exist: the so-called "Greedy Heuristic", a
 variant of which is described here. In simple terms, MPR computation
 constructs an MPR Set that enables a node to reach any symmetric
 2-hop neighbors by relaying through an MPR node.

 There are several peripheral issues that the algorithm needs to
 address. The first one is that some nodes have some willingness
 WILL_NEVER. The second one is that some nodes may have several
 interfaces.

 The algorithm hence can be summarized by:

 o All 1-hop neighbor nodes with willingness equal to WILL_NEVER MUST
 ignored in the following algorithm: they are not considered as
 1-hop neighbors (hence not used as MPRs).

 o Because link sensing is performed by interface, the local network
 topology is best described in terms of links: hence the algorithm
 is considering 1-hop neighbor OLSRv2 interfaces, and 2-hop
 neighbor OLSRv2 interfaces (and their addresses). Additionally,
 asymmetric links are ignored. This is reflected in the
 definitions below.

 o MPR computation is performed on each interface of the node: on
 each interface I, the node MUST select some neighbor interfaces,
 so that all 2-hop neighbor interfaces are reached.

 From now on, MPR calculation will be described for one interface I on
 the node, and the following terminology will be used in describing
 the heuristics:

 neighbor interface (of I) - An OLSRv2 interface of a 1-hop neighbor
 to which there exist a symmetric link using interface I.

 N - the set of such neighbor interfaces

 2-hop neighbor interface (of I) An interface of a symmetric strict
 2-hop neighbor which can be reached from a neighbor interface for
 I.

Clausen, et al. Expires August 5, 2007 [Page 49]

Internet-Draft OLSRv2 February 2007

 N2 - the set of such 2-hop neighbor interfaces

 D(y): - the degree of a 1-hop neighbor interface y (where y is a
 member of N), is defined as the number of symmetric neighbor
 interfaces of node y which are in N2

 MPR Set - the set of the neighbor interfaces selected as MPRs.

 The proposed heuristic selects iteratively some interfaces from N as
 MPRs in order to cover 2-hop neighbor interfaces from N2, as follows:

 1. Start with an MPR Set made of all members of N with L_willingness
 equal to WILL_ALWAYS

 2. Calculate D(y), where y is a member of N, for all interfaces in
 N.

 3. Add to the MPR Set those interfaces in N, which are the *only*
 nodes to provide reachability to an interface in N2. For
 example, if interface B in N2 can be reached only through a
 symmetric link to interface A in N, then add interface B to the
 MPR Set. Remove the interfaces from N2 which are now covered by a
 interface in the MPR Set.

 4. While there exist interfaces in N2 which are not covered by at
 least one interface in the MPR Set:

 1. For each interface in N, calculate the reachability, i.e.,
 the number of interfaces in N2 which are not yet covered by
 at least one node in the MPR Set, and which are reachable
 through this neighbor interface;

 2. Select as an MPR the interface with highest L_willingness
 among the interfaces in N with non-zero reachability. In
 case of multiple choice select the interface which provides
 reachability to the maximum number of interfaces in N2. In
 case of multiple interfaces providing the same amount of
 reachability, select the interface as MPR whose D(y) is
 greater. Remove the interfaces from N2 which are now covered
 by an interface in the MPR Set.

 Other algorithms, as well as improvements over this algorithm, are
 possible. For example:

 o Assume that in a multiple interface scenario there exists more
 than one link between nodes 'a' and 'b'. If node 'a' has selected
 node 'b' as MPR for one of its interfaces, then node 'b' can be
 selected as MPR with minimal performance loss by any other

Clausen, et al. Expires August 5, 2007 [Page 50]

Internet-Draft OLSRv2 February 2007

 interfaces on node 'a'.

 o In a multiple interface scenario MPRs are selected for each
 interface of the selecting node, providing full coverage of all
 2-hop nodes accessible through that interface. The overall MPR
 Set is then the union of these sets. These sets do not however
 have to be selected independently, if a node is selected as an MPR
 for one interface it may be automatically added to the MPR
 selection for other interfaces.

Clausen, et al. Expires August 5, 2007 [Page 51]

Internet-Draft OLSRv2 February 2007

Appendix D. Packet and Message Layout

 This appendix illustrates the translation from the abstract
 descriptions of packets employed in the protocol specification, and
 the bit-layout packets actually exchanged between the nodes.

Appendix D.1. Packet and Message Options

 The basic layout of an OLSRv2 packet is as described in [3]. However
 the following points should be noted.

 In the following figures, reserved bits marked Reserved or Resv MUST
 be cleared ('0'). Octets indicated as Padding are optional and MAY
 be omitted; if not omitted they SHOULD be used to pad to a 32 bit
 boundary and MUST all be zero.

 OLSRv2 uses only packets with a packet header including a packet
 sequence number, either with or without a packet TLV block. Thus all
 OLSRv2 packets have the layout of either

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 0 0 0| Reserved |0|0| Packet Sequence Number |
 +-+
 | |
 | Message + Padding |
 | |
 +-+
 | |
 : ... :
 | |
 +-+
 | |
 | Message + Padding |
 | |
 +-+

 or

Clausen, et al. Expires August 5, 2007 [Page 52]

Internet-Draft OLSRv2 February 2007

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 0 0 0| Reserved |1|0| Packet Sequence Number |
 +-+
 | |
 | Packet TLV Block |
 | |
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | Padding |
 +-+
 | |
 | Message + Padding |
 | |
 +-+
 | |
 : ... :
 | |
 +-+
 | |
 | Message + Padding |
 | |
 +-+

 OLSRv2 uses only messages with a complete message header. Thus all
 OLSRv2 messages, plus padding if any, have the following layout.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Message Type | Resv |N|0|0| Message Size |
 +-+
 | Originator Address |
 +-+
 | Hop Limit | Hop Count | Message Sequence Number |
 +-+
 | |
 | Message Body |
 | |
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

 In standard OLSRv2 messages (HELLO and TC) the type dependent
 sequence number bit marked N MUST be cleared ('0').

 The layouts of the message body, address block, TLV block and TLV are
 as in [3], allowing all options. Standard (HELLO and TC) messages

Clausen, et al. Expires August 5, 2007 [Page 53]

Internet-Draft OLSRv2 February 2007

 contain a first address block which contains local interface address
 information, all other address blocks contain neighbor interface
 address information (or for a TC message address information for
 which it is a gateway) specific to the message type.

Appendix D.2. Example HELLO Message

 An example HELLO message, using IPv4 (four octet) addresses is as
 follows. The overall message length is 58 octets. The message has a
 hop limit of 1 and a hop count of 0, as sent by its originator.

 The message has a message TLV block with content length 12 octets
 containing three message TLVs. These TLVs represent message validity
 time, message interval time and willingness. Each uses a TLV with
 semantics value 4, indicating no start and stop indexes are included,
 and each has a value length of 1 octet.

 The first address block contains 1 local interface address. The
 semantics octet 2 indicates it has no tail section. It has head
 length 4, this is equal to the address length, it thus has no mid
 section. This address block has no TLVs (TLV block content length is
 0 octets).

 The second, and last, address block includes 4 neighbor interface
 addresses. The semantics octet 2 indicates they have no tail
 section. The addresses have head length 3 octets, thus each mid
 section is of length one octet. The following address TLV block
 (content length 11 octets) includes two TLVs.

 The first of these TLVs reports the link status of all four neighbors
 in a single multivalue TLV, the first two addresses are HEARD, the
 last two addresses are SYMMETRIC. The TLV semantics octet value of
 20 indicates, in addition to that this is a multivalue TLV, that no
 start index and stop index are included, hence values for all
 addresses are included. The TLV value length of 4 octets indicates
 one octet per value per address.

 The second of these TLVs indicates that the last address (start index
 3, stop index 3) is an MPR. This TLV has no value, or value length,
 fields, as indicated by its semantics octet being equal to 2.

Clausen, et al. Expires August 5, 2007 [Page 54]

Internet-Draft OLSRv2 February 2007

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | HELLO |0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0|
 +-+
 | Originator Address |
 +-+
 |0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0| Message Sequence Number |
 +-+
 |0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0| VALIDITY_TIME |0 0 0 0 0 1 0 0|
 +-+
 |0 0 0 0 0 0 0 1| Value | INTERVAL_TIME |0 0 0 0 0 1 0 0|
 +-+
 |0 0 0 0 0 0 0 1| Value | WILLINGNESS |0 0 0 0 0 1 0 0|
 +-+
 |0 0 0 0 0 0 0 1| Value |0 0 0 0 0 0 0 1|0 0 0 0 0 0 1 0|
 +-+
 |0 0 0 0 0 1 0 0| Head |
 +-+
 | Head (cont) |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 0 0 0 1 0 0|
 +-+
 |0 0 0 0 0 0 1 0|0 0 0 0 0 0 1 1| Head |
 +-+
 | Head (cont) | Mid | Mid | Mid |
 +-+
 | Mid |0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1| LINK_STATUS |
 +-+
 |0 0 0 1 0 1 0 0|0 0 0 0 0 1 0 0| HEARD | HEARD |
 +-+
 | SYMMETRIC | SYMMETRIC | MPR |0 0 0 0 0 0 1 0|
 +-+
 |0 0 0 0 0 0 1 1|0 0 0 0 0 0 1 1|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Appendix D.3. Example TC Message

 An example TC message, using IPv4 (four octet) addresses, is as
 follows. The overall message length is 67 octets.

 The message has a message TLV block with content length 13 octets
 containing three TLVs. The first two TLVs are validity and interval
 times as for the HELLO message above. The third TLV is a content
 sequence number TLV used to carry the 2 octet ANSN. The semantics
 value is also 4.

 The message has three address blocks. The first address block
 contains 3 local interface addresses (with semantics octet 2, hence
 no tail section, head length 2 octets, and hence mid sections with

Clausen, et al. Expires August 5, 2007 [Page 55]

Internet-Draft OLSRv2 February 2007

 length two octets) and has no TLVs (TLV block content length 0
 octets).

 The other two address blocks contain neighbor interface addresses.
 The first contains 3 addresses (semantics octet 2, no tail section,
 head length 2 octets, hence mid sections length two octets) and has
 no TLVs (TLV block content length 0 octets). The second contains 1
 address, with semantics octet 4 indicating that the tail section,
 length 2 octets, consists of zero valued octets (not included). The
 following TLV block (content length 6 octets) includes two TLVs, the
 first (semantics value 4 indicating no indexes are needed) indicates
 that the address has a netmask, with length given by the value (of
 length 1 octet) of 16. Thus this address is Head.0.0/16. The second
 TLV indicates that the originating node is a gateway to this network,
 at a given number of hops distance. The TLV semantics value of 4
 indicates that no indexes are needed.

Clausen, et al. Expires August 5, 2007 [Page 56]

Internet-Draft OLSRv2 February 2007

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | TC |0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0|
 +-+
 | Originator Address |
 +-+
 | Hop Limit | Hop Count | Message Sequence Number |
 +-+
 |0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1| VALIDITY_TIME |0 0 0 0 0 1 0 0|
 +-+
 |0 0 0 0 0 0 0 1| Value | INTERVAL_TIME |0 0 0 0 0 1 0 0|
 +-+
 |0 0 0 0 0 0 0 1| Value | CONT_SEQ_NUM |0 0 0 0 0 1 0 0|
 +-+
 |0 0 0 0 0 0 1 0| Value (ANSN) |0 0 0 0 0 0 1 1|
 +-+
 | 0x02 |0 0 0 0 0 0 1 0| Head |
 +-+
 | Mid | Mid |
 +-+
 | Mid |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
 +-+
 |0 0 0 0 0 0 1 1| 0x02 |0 0 0 0 0 0 1 0| Head |
 +-+
 | Head (cont) | Mid | Mid |
 +-+
 | Mid (cont) | Mid |0 0 0 0 0 0 0 0|
 +-+
 |0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 1|0 0 0 0 0 1 0 0|0 0 0 0 0 0 1 0|
 +-+
 | Head |0 0 0 0 0 0 1 0|0 0 0 0 0 0 0 0|
 +-+
 |0 0 0 0 0 1 1 1| PREFIX_LENGTH |0 0 0 0 0 1 0 0|0 0 0 0 0 0 0 1|
 +-+
 |0 0 0 1 0 0 0 0| GATEWAY |0 0 0 0 0 1 0 0| Number Hops |
 +-+

Clausen, et al. Expires August 5, 2007 [Page 57]

Internet-Draft OLSRv2 February 2007

Appendix E. Time TLVs

 This appendix specifies a general time TLV structure for expressing
 either single time values or a set of time values with each value
 associated with a range of distances. Furthermore, using this
 general time TLV structure, this document specifies the INTERVAL_TIME
 and VALIDITY_TIME TLVs, which are used by OLSRv2.

E.1. Representing Time

 This document specifies a TLV structure in which time values are each
 represented in an 8 bit time code, one or more of which may be used
 in a TLV's value field. Of these 8 bits, the least significant four
 bits represent the mantissa (a), and the most significant four bits
 represent the exponent (b), so that:

 o time value = (1 + a/16) * 2^b * C

 o time code = 16 * b + a

 All nodes in the network MUST use the same value of C, which will be
 specified in seconds, hence so will be all time values. Note that
 ascending values of the time code represent ascending time values,
 time values may thus be compared by comparison of time codes.

 An algorithm for computing the time code representing the smallest
 representable time value not less than the time value t is:

 1. find the largest integer b such that t/C >= 2^b;

 2. set a = 16 * (t / (C * 2^b) - 1), rounded up to the nearest
 integer;

 3. if a == 16 then set b = b + 1 and set a = 0;

 4. if a and b are in the range 0 and 15 then the required time value
 can be represented by the time code 16 * b + a, otherwise it can
 not.

 The minimum time value that can be represented in this manner is C.
 The maximum time value that can be represented in this manner is
 63488 * C.

E.2. General Time TLV Structure

 A Time TLV may be a packet, message or address block TLV. If it is a
 packet or message TLV then it must be a single value TLV as defined
 in [3]; if it is an address block TLV then it may be single value or

Clausen, et al. Expires August 5, 2007 [Page 58]

Internet-Draft OLSRv2 February 2007

 multivalue TLV. The specific Time TLVs specified in this document,
 in Appendix E.3 are message, and hence single value, TLVs. Note that
 even a single value Time TLV may contain a multiple octet <value>
 field.

 The purpose of a single value Time TLV is to allow a single time
 value to be determined by a node receiving an entity containing the
 Time TLV, based on its distance from the entity's originator. The
 Time TLV may contain information that allows that time value to be a
 function of distance, and thus different receiving nodes may
 determine different time values. If a receiving node will not be
 able to determine its distance from the originating node, then the
 form of this Time TLV with a single time code in a <value> field (or
 single value subfield) SHOULD be used.

 The <value> field of a single value Time TLV is specified, using the
 regular expression syntax of [3], by:

 <value> = {<time><distance>}*<time>

 where:

 <time> is an 8 bit field containing a time code as defined in
Appendix E.1.

 <distance> is an 8 bit field specifying a distance from the message
 originator, in hops.

 A single value <value> field thus consists of an odd number of
 octets; with a repetition factor of n in the regular expression
 syntax it contains 2n+1 octets, thus the <length> field of a single
 value Time TLV, which MUST always be present, is given by:

 o <length> = 2n+1

 A single value <value> field may be thus represented by:

 <t_1><d_1><t_2><d_2> ... <t_i><d_i> ... <t_n><d_n><t_default>

 <d_1>, ... <d_n>, if present, MUST be a strictly increasing sequence.
 Then, at the receiving node's distance from the originator node, the
 time value indicated is that represented by the time code:

 o <t_1>, if n > 0 and distance <= <d_1>;

 o <t_i+1>, if n > 1 and <d_i> < distance <= <d_i+1> for some i such
 that 1 <= i < n;

Clausen, et al. Expires August 5, 2007 [Page 59]

Internet-Draft OLSRv2 February 2007

 o <t_default> otherwise, i.e. if n == 0 or distance > <d_n>.

 In a multivalue Time TLV, each single value subfield of the
 multivalue Time TLV is defined as above. Note that [3] requires that
 each single value subfield has the same length (i.e. the same value
 of n) but they need not use the same values of <d_1> to <d_n>.

E.3. Message TLVs

 Two message TLVs are defined, for signaling message validity time
 (VALIDITY_TIME) and message interval (INTERVAL_TIME).

E.3.1. VALIDITY_TIME TLV

 A VALIDITY TIME TLV is a message TLV that defines the validity time
 of the information carried in the message in which the TLV is
 contained. After this time the receiving node MUST consider the
 message content to no longer be valid (unless repeated in a later
 message). The validity time of a message MAY be specified to depend
 on the distance from its originator. (This is appropriate if
 messages are sent with different hop limits, so that receiving nodes
 at greater distances receive information less frequently and must
 treat is as valid for longer.)

 A VALIDITY_TIME TLV is an example of a Time TLV specified as in
Appendix E.1.

E.3.2. INTERVAL_TIME TLV

 An INTERVAL_TIME TLV is a message TLV that defines the maximum time
 before another message of the same type as this message from the same
 originator should be received. This interval time MAY be specified
 to depend on the distance from the originator. (This is appropriate
 if messages are sent with different hop limits, so that receiving
 nodes at greater distances have an increased interval time.)

 An INTERVAL_TIME TLV is an example of a Time TLV specified as in
Appendix E.1.

Clausen, et al. Expires August 5, 2007 [Page 60]

Internet-Draft OLSRv2 February 2007

Appendix F. Message Jitter

 Since NHDP employs periodic message transmission in order to detect
 neighborhoods, and since NHDP is a building block for MANET routing
 protocols employing other triggered or periodic message exchanges,
 this appendix presents global concerns pertaining to jittering of
 MANET control traffic.

F.1. Jitter

 In order to prevent nodes in a MANET from simultaneous transmission,
 whilst retaining the MANET characteristic of maximum node autonomy, a
 randomization of the transmission time of packets by nodes, known as
 jitter, MAY be employed. Three jitter mechanisms, which target
 different aspects of this problem, MAY be employed, with the aim of
 reducing the likelihood of simultaneous transmission, and, if it
 occurs, preventing it from continuing.

 Three cases exist:

 o Periodic message generation;

 o Externally triggered message generation;

 o Message forwarding.

 Each of these cases uses a parameter, denoted MAXJITTER, for the
 maximum timing variation that it introduces. If more than one of
 these cases is used by a protocol, it MAY use the same or a different
 value of MAXJITTER for each case. It also MAY use the same or
 different values of MAXJITTER according to message type, and under
 different circumstances - in particular if other parameters (such as
 message interval) vary.

 Issues relating to the value of MAXJITTER are considered in
Appendix F.1.4.

F.1.1. Periodic message generation

 When a node generates a message periodically, two successive messages
 will be separated by a well-defined interval, denoted
 MESSAGE_INTERVAL. A node MAY maintain more than one such interval,
 e.g. for different message types or in different circumstances (such
 as backing off transmissions to avoid congestion). Jitter MAY be
 applied by reducing this delay by a random amount, so that the delay
 between consecutive transmissions of a messages of the same type is
 equal to (MESSAGE_INTERVAL - jitter), where jitter is the random
 value.

Clausen, et al. Expires August 5, 2007 [Page 61]

Internet-Draft OLSRv2 February 2007

 Subtraction of the random value from the message interval ensures
 that the message interval never exceeds MESSAGE_INTERVAL, and does
 not adversely affect timeouts or other mechanisms which may be based
 on message late arrival or failure to arrive. By basing the message
 transmission time on the previous transmission time, rather than by
 jittering a fixed clock, nodes can become completely desynchronized,
 which minimizes their probability of repeated collisions. This is
 particularly useful when combined with externally triggered message
 generation and rescheduling.

 The jitter value SHOULD be taken from a uniform distribution between
 zero and MAXJITTER.

 Note that a node will know its own MESSAGE_INTERVAL value and can
 readily ensure that any MAXJITTER value used satisfies the conditions
 in Appendix F.1.4.

F.1.2. Externally triggered message generation

 An internal or external condition or event MAY trigger message
 generation by a node. Depending upon the protocol, this condition
 MAY trigger generation of a single message, initiation of a new
 periodic message schedule, or rescheduling of existing periodic
 messaging. Collision between externally triggered messages is made
 more likely if more than one node is likely to respond to the same
 event. To reduce this likelihood, an externally triggered message
 MAY be jittered by delaying it by a random duration; an internally
 triggered message MAY also be so jittered if appropriate. This delay
 SHOULD be generated uniformly in an interval between zero and
 MAXJITTER. If periodically transmitted messages are rescheduled,
 then this SHOULD be based on this delayed time, with subsequent
 messages treated as described in Appendix F.1.1.

 When messages are triggered, whether or not they are also
 periodically transmitted, a protocol MAY impose a minimum interval
 between messages of the same type, denoted MESSAGE_MIN_INTERVAL. It
 is however appropriate to also allow this interval to be reduced by
 jitter, so that when a message is transmitted the next message is
 allowed after a time (MESSAGE_MIN_INTERVAL - jitter), where jitter
 SHOULD be generated uniformly in an interval between zero and
 MAXJITTER (using a value of MAXJITTER appropriate to periodic message
 transmission). This is because otherwise, when external triggers are
 more frequent than MESSAGE_MIN_INTERVAL, it takes the role of
 MESSAGE_INTERVAL and the arguments applying to jittering of the
 latter also apply to the former. This also permits
 MESSAGE_MIN_INTERVAL to equal MESSAGE_INTERVAL even when jitter is
 used.

Clausen, et al. Expires August 5, 2007 [Page 62]

Internet-Draft OLSRv2 February 2007

F.1.3. Message forwarding

 When a node forwards a message, it may be jittered by delaying it by
 a random duration. This delay SHOULD be generated uniformly in an
 interval between zero and MAXJITTER.

 Unlike the cases of periodically generated and externally triggered
 messages, a node is not automatically aware of the message
 originator's value of MESSAGE_INTERVAL, which is required to select a
 value of MAXJITTER which is known to be valid. This may require
 prior agreement as to the value (or minimum value) of
 MESSAGE_INTERVAL, may be by inclusion in the message of
 MESSAGE_INTERVAL (the time until the next relevant message, rather
 than the time since the last message) or be by any other protocol
 specific mechanism, which may include estimation of the value of
 MESSAGE_INTERVAL based on received message times.

 For several possible reasons (differing parameters, message
 rescheduling, extreme random values) a node may receive a message
 while still waiting to forward an earlier message of the same type
 originating from the same node. This is possible without jitter, but
 may occur more often with it. The appropriate action to take is
 protocol specific (typically to discard the earlier message or to
 forward both, possible modifying timing to maintain message order).

 In many cases, including [1] and protocols using the full
 functionality of [3], messages are transmitted hop by hop in
 potentially multi-message packets, and some or all of those messages
 may need to be forwarded. For efficiency this should be in a single
 packet, and hence the forwarding jitter of all messages received in a
 single packet should be the same. (This also requires that a single
 value of MAXJITTER is used in this case.) For this to have the
 intended uniform distribution it is necessary to choose a single
 random jitter for all messages. It is not appropriate to give each
 message a random jitter and then to use the smallest of these jitter
 values, as that produces a jitter with a non-uniform distribution and
 a reduced mean value.

 In addition, the protocol may permit messages received in different
 packets to be combined, possibly also with locally generated messages
 (periodically generated or triggered). However in this case the
 purpose of the jitter will be accomplished by choosing any of the
 independently scheduled times for these events as the single
 forwarding time; this may have to be the earliest time to achieve all
 constraints. This is because without combining messages, a
 transmission was due at this time anyway.

Clausen, et al. Expires August 5, 2007 [Page 63]

Internet-Draft OLSRv2 February 2007

F.1.4. Maximum Jitter Determination

 In considering how the maximum jitter (one or more instances of
 parameter MAXJITTER) may be determined, the following points may be
 noted:

 o While jitter may resolve the problem of simultaneous
 transmissions, the timing changes (in particular the delays) it
 introduces will otherwise only have a negative impact on a well-
 designed protocol. Thus MAXJITTER should always be minimized,
 subject to acceptably achieving its intent.

 o When messages are periodically generated, all of the following
 that are relevant apply to each instance of MAXJITTER:

 * it MUST NOT be greater than MESSAGE_INTERVAL/2;

 * it SHOULD be significantly less than MESSAGE_INTERVAL;

 * it MUST NOT be greater than MESSAGE_MIN_INTERVAL;

 * it SHOULD NOT be greater than MESSAGE_MIN_INTERVAL/2.

 o As well as the decision as to whether to use jitter being
 dependent on the medium access control and lower layers, the
 selection of the MAXJITTER parameter should be appropriate to
 those mechanisms.

 o As jitter is intended to reduce collisions, greater jitter, i.e.
 an increased value of MAXJITTER, is appropriate when the chance of
 collisions is greater. This is particularly the case with
 increased node density, where node density should be considered
 relative to (the square of) the interference range rather than
 useful signal range.

 o The choice of MAXJITTER used when forwarding messages may also
 take into account the expected number of times that the message
 may be sequentially forwarded, up to the network diameter in hops.

Clausen, et al. Expires August 5, 2007 [Page 64]

Internet-Draft OLSRv2 February 2007

Appendix G. Security Considerations

 Currently, OLSRv2 does not specify any special security measures. As
 a proactive routing protocol, OLSRv2 makes a target for various
 attacks. The various possible vulnerabilities are discussed in this
 section.

Appendix G.1. Confidentiality

 Being a proactive protocol, OLSRv2 periodically diffuses topological
 information. Hence, if used in an unprotected wireless network, the
 network topology is revealed to anyone who listens to OLSRv2 control
 messages.

 In situations where the confidentiality of the network topology is of
 importance, regular cryptographic techniques, such as exchange of
 OLSRv2 control traffic messages encrypted by PGP [5] or encrypted by
 some shared secret key, can be applied to ensure that control traffic
 can be read and interpreted by only those authorized to do so.

Appendix G.2. Integrity

 In OLSRv2, each node is injecting topological information into the
 network through transmitting HELLO messages and, for some nodes, TC
 messages. If some nodes for some reason, malicious or malfunction,
 inject invalid control traffic, network integrity may be compromised.
 Therefore, message authentication is recommended.

 Different such situations may occur, for instance:

 1. a node generates TC messages, advertising links to non-neighbor
 nodes;

 2. a node generates TC messages, pretending to be another node;

 3. a node generates HELLO messages, advertising non-neighbor nodes;

 4. a node generates HELLO messages, pretending to be another node;

 5. a node forwards altered control messages;

 6. a node does not forward control messages;

 7. a node does not select multipoint relays correctly;

 8. a node forwards broadcast control messages unaltered, but does
 not forward unicast data traffic;

Clausen, et al. Expires August 5, 2007 [Page 65]

Internet-Draft OLSRv2 February 2007

 9. a node "replays" previously recorded control traffic from another
 node.

 Authentication of the originator node for control messages (for
 situations 2, 4 and 5) and on the individual links announced in the
 control messages (for situations 1 and 3) may be used as a
 countermeasure. However to prevent nodes from repeating old (and
 correctly authenticated) information (situation 9) temporal
 information is required, allowing a node to positively identify such
 delayed messages.

 In general, digital signatures and other required security
 information may be transmitted as a separate OLSRv2 message type,
 thereby allowing that "secured" and "unsecured" nodes can coexist in
 the same network, if desired, or signatures and security information
 may be transmitted within the OLSRv2 HELLO and TC messages, using the
 TLV mechanism.

 Specifically, the authenticity of entire OLSRv2 control messages can
 be established through employing IPsec authentication headers,
 whereas authenticity of individual links (situations 1 and 3) require
 additional security information to be distributed.

 An important consideration is, that all control messages in OLSRv2
 are transmitted either to all nodes in the neighborhood (HELLO
 messages) or broadcast to all nodes in the network (TC messages).

 For example, a control message in OLSRv2 is always a point-to-
 multipoint transmission. It is therefore important that the
 authentication mechanism employed permits that any receiving node can
 validate the authenticity of a message. As an analogy, given a block
 of text, signed by a PGP private key, then anyone with the
 corresponding public key can verify the authenticity of the text.

Appendix G.3. Interaction with External Routing Domains

 OLSRv2 does, through the use of TC messages, provide a basic
 mechanism for injecting external routing information to the OLSRv2
 domain. Appendix A also specifies that routing information can be
 extracted from the topology table or the routing table of OLSRv2 and,
 potentially, injected into an external domain if the routing protocol
 governing that domain permits.

 Other than as described in Appendix A, when operating nodes,
 connecting OLSRv2 to an external routing domain, care MUST be taken
 not to allow potentially insecure and untrustworthy information to be
 injected from the OLSRv2 domain to external routing domains. Care
 MUST be taken to validate the correctness of information prior to it

Clausen, et al. Expires August 5, 2007 [Page 66]

Internet-Draft OLSRv2 February 2007

 being injected as to avoid polluting routing tables with invalid
 information.

 A recommended way of extending connectivity from an existing routing
 domain to an OLSRv2 routed MANET is to assign an IP prefix (under the
 authority of the nodes/gateways connecting the MANET with the exiting
 routing domain) exclusively to the OLSRv2 MANET area, and to
 configure the gateways statically to advertise routes to that IP
 sequence to nodes in the existing routing domain.

Appendix G.4. Node Identity

 OLSRv2 does not make any assumption about node addresses, other than
 that each node is assumed to have at least one a unique and routable
 IP address for each interface that it has which participates in the
 MANET.

Clausen, et al. Expires August 5, 2007 [Page 67]

Internet-Draft OLSRv2 February 2007

Appendix H. Flow and Congestion Control

 Due to its proactive nature, the OLSRv2 protocol has a natural
 control over the flow of its control traffic. Nodes transmit control
 messages at predetermined rates specified and bounded by message
 intervals.

 OLSRv2 employs [4] for local signalling, embedding MPR selection
 advertisement through a simple address block TLV, and node
 willingness advertisement (if any) as a single message TLV. OLSRv2
 local signalling, therefore, shares the characteristics and
 constraints of [4].

 Furthermore, the MPR optimization greatly constrains global
 signalling overhead from link state diffusion in two ways. First,
 the messages that advertise the topology need only contain MPR
 selectors, reducing their size as compared to full link state.
 Second, the cost of diffusing these messages throughout the network
 is greatly reduced as compared to when using classic flooding, since
 only MPRs need to forward broadcast messages. In dense networks, the
 reduction of control traffic can be of several orders of magnitude
 compared to routing protocols using classical flooding [8]. This
 feature naturally provides more bandwidth for useful data traffic and
 pushes further the frontier of congestion.

 Since the control traffic is continuous and periodic, it keeps the
 quality of the links used in routing more stable. However, using
 certain OLSRv2 options, some control messages (HELLO messages or TC
 messages) may be intentionally sent in advance of their deadline in
 order to increase the responsiveness of the protocol to topology
 changes. This may cause a small, temporary and local increase of
 control traffic, however this is at all times bounded by the use of
 minimum message intervals.

Clausen, et al. Expires August 5, 2007 [Page 68]

Internet-Draft OLSRv2 February 2007

Appendix I. Contributors

 This specification is the result of the joint efforts of the
 following contributors -- listed alphabetically.

 o Cedric Adjih, INRIA, France, <Cedric.Adjih@inria.fr>

 o Emmanuel Baccelli, Hitachi Labs Europe, France,
 <Emmanuel.Baccelli@inria.fr>

 o Thomas Heide Clausen, PCRI, France<T.Clausen@computer.org>

 o Justin Dean, NRL, USA<jdean@itd.nrl.navy.mil>

 o Christopher Dearlove, BAE Systems, UK,
 <Chris.Dearlove@baesystems.com>

 o Satoh Hiroki, Hitachi SDL, Japan, <h-satoh@sdl.hitachi.co.jp>

 o Philippe Jacquet, INRIA, France, <Philippe.Jacquet@inria.fr>

 o Monden Kazuya, Hitachi SDL, Japan, <monden@sdl.hitachi.co.jp>

 o Kenichi Mase, Niigata University, Japan, <mase@ie.niigata-u.ac.jp>

 o Ryuji Wakikawa, KEIO University, Japan, <ryuji@sfc.wide.ad.jp>

Clausen, et al. Expires August 5, 2007 [Page 69]

Internet-Draft OLSRv2 February 2007

Appendix J. Acknowledgements

 The authors would like to acknowledge the team behind OLSRv1,
 specified in RFC3626, including Anis Laouiti, Pascale Minet, Laurent
 Viennot (all at INRIA, France), and Amir Qayyum (Center for Advanced
 Research in Engineering, Pakistan) for their contributions.

 The authors would like to gratefully acknowledge the following people
 for intense technical discussions, early reviews and comments on the
 specification and its components: Li Li (CRC), Louise Lamont (CRC),
 Joe Macker (NRL), Alan Cullen (BAE Systems), Philippe Jacquet
 (INRIA), Khaldoun Al Agha (LRI), Richard Ogier (SRI), Song-Yean Cho
 (Samsung Software Center), Shubhranshu Singh (Samsung AIT) and the
 entire IETF MANET working group.

https://datatracker.ietf.org/doc/html/rfc3626

Clausen, et al. Expires August 5, 2007 [Page 70]

Internet-Draft OLSRv2 February 2007

Authors' Addresses

 Thomas Heide Clausen
 LIX, Ecole Polytechnique, France

 Phone: +33 6 6058 9349
 Email: T.Clausen@computer.org
 URI: http://www.lix.polytechnique.fr/Labo/Thomas.Clausen/

 Christopher M. Dearlove
 BAE Systems Advanced Technology Centre

 Phone: +44 1245 242194
 Email: chris.dearlove@baesystems.com
 URI: http://www.baesystems.com/ocs/sharedservices/atc/

 Philippe Jacquet
 Project Hipercom, INRIA

 Phone: +33 1 3963 5263
 Email: philippe.jacquet@inria.fr
 URI: http://hipercom.inria.fr/test/Jacquet.htm

 The OLSRv2 Design Team
 MANET Working Group

http://www.lix.polytechnique.fr/Labo/Thomas.Clausen/
http://www.baesystems.com/ocs/sharedservices/atc/
http://hipercom.inria.fr/test/Jacquet.htm

Clausen, et al. Expires August 5, 2007 [Page 71]

Internet-Draft OLSRv2 February 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Clausen, et al. Expires August 5, 2007 [Page 72]

