Mobile Ad hoc Networking (MANET) Internet-Draft Intended status: Standards Track Expires: October 22, 2010

T. Clausen LIX, Ecole Polytechnique C. Dearlove BAE Systems ATC P. Jacquet Project Hipercom, INRIA The OLSRv2 Design Team MANET Working Group April 20, 2010

The Optimized Link State Routing Protocol version 2 draft-ietf-manet-olsrv2-11

Abstract

This document describes version 2 of the Optimized Link State Routing (OLSRv2) protocol for Mobile Ad hoc NETworks (MANETs).

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of <u>BCP 78</u> and <u>BCP 79</u>.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on October 22, 2010.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (<u>http://trustee.ietf.org/license-info</u>) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of

Clausen, et al. Expires October 22, 2010

[Page 1]

the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.

Table of Contents

1	L.	Intr	roduc	tion					•		•	•	•		•	•	•	<u>5</u>
2	2.	Tern	ninol	ogy .														<u>6</u>
3	3.	App]	licab	ility St	ateme	ent .												<u>8</u>
4	<u>1</u> .	Prot	tocol	0vervi	ew and	d Func	tio	nin	g									<u>9</u>
	<u>4</u> .	1.	0ver	view														<u>9</u>
	4.	2.	Rout	ers and	Inte	rfaces	÷.											<u>11</u>
	<u>4</u> .	3.	Info	rmation	Base	0verv	/iew											<u>12</u>
		4.3.	<u>.1</u> .	Local Ir	nforma	ation	Bas	e.										<u>12</u>
		4.3.		Interfac														
		4.3.	.3.	Neighbor	· Info	ormati	on	Bas	е									13
				Topology														
				Received														
	4.	4.	Sign	aling O\	/ervi@	ew												15
	4.	5.		ing Set														
5	5.	Prot		Paramet														
	5.	1.	Prot	ocol and	l Port	t Numb	ers											17
	5.	2.		icast Ad														
	5.	3.		l Histor														
	5.	4.		age Inte	-													
	5.	5.		rtised]														
		6.		ived Mes					-									
		.7.		er	•		-											
		8.		Limit Pa														
		9.	•	ingness														
				meter Ch														
F				formatic														
2		1.		inator S														
		2.	-	l Attack														
-	7.			e Inform														
	3.			Informa														
_	2.).	-	-	Informa														
	2 •	iopu	JTOGY	THIOTING	LUTOIL	Dase												<u> </u>

<u>9.1</u> . Advertising Remote Router Set
<u>9.2</u> . Router Topology Set
9.3. Routable Address Topology Set
<u>9.4</u> . Attached Network Set
<u>9.5</u> . Routing Set
<u>10</u> . Received Message Information Base
<u>10.1</u> . Received Set
<u>10.2</u> . Processed Set
<u>10.3</u> . Forwarded Set
<u>11</u> . Updating Information Bases
<u>12</u> . Packets and Messages
<u>13</u> . Message Processing and Forwarding
<u>13.1</u> . Actions when Receiving a Message
<u>13.2</u> . Message Considered for Processing
<u>13.3</u> . Message Considered for Forwarding
<u>14</u> . HELLO messages
<u>14.1</u> . HELLO Message Generation
<u>14.2</u> . HELLO Message TLVs
<u>14.2.1</u> . Message TLVs
<u>14.2.2</u> . Address Block TLVs
<u>14.3</u> . HELLO Message Transmission
<u>14.4</u> . HELLO Message Processing
<u>14.4.1</u> . HELLO Message Discarding
<u>14.4.2</u> . HELLO Message Usage
<u>15</u> . TC Messages
<u>15.1</u> . TC Message Generation
<u>15.2</u> . TC Message TLVs
<u>15.2.1</u> . Message TLVs
<u>15.2.2</u> . Address Block TLVs
<u>15.3</u> . TC Message Transmission
<u>15.4</u> . TC Message Processing
<u>15.4.1</u> . Invalid Message
<u>15.4.2</u> . TC Message Processing Definitions
<u>15.4.3</u> . Initial TC Message Processing
<u>15.4.4</u> . Completing TC Message Processing
<u>16</u> . Information Base Changes
<u>16.1</u> . Originator Address Changes
<u>16.2</u> . Neighbor State Changes
<u>16.3</u> . Advertised Neighbor Changes
<u>16.4</u> . Advertising Remote Router Tuple Expires
<u>16.5</u> . Neighborhood Changes and MPR Updates
<u>16.6</u> . Routing Set Updates
<u>17</u> . Selecting MPRs
18. Routing Set Calculation
<u>18.1</u> . Network Topology Graph
<u>18.2</u> . Populating the Routing Set
<u>19</u> . Proposed Values for Parameters and Constants
<u>19.1</u> . Local History Time Parameters
—

<u>19.2</u> . Message Interval Parameters
<u>19.3</u> . Advertised Information Validity Time Parameters <u>59</u>
<u>19.4</u> . Received Message Validity Time Parameters <u>59</u>
<u>19.5</u> . Jitter Time Parameters
<u>19.6</u> . Hop Limit Parameter
<u>19.7</u> . Willingness Parameter and Constants <u>60</u>
<u>20</u> . Sequence Numbers
<u>21</u> . Extensions
<u>22</u> . Security Considerations
<u>22.1</u> . Confidentiality
<u>22.2</u> . Integrity
22.3. Interaction with External Routing Domains
<u>23</u> . IANA Considerations
23.1. Expert Review: Evaluation Guidelines
<u>23.2</u> . Message Types
23.3. Message-Type-specific TLV Type Registries
<u>23.4</u> . Message TLV Types
23.5. Address Block TLV Types
<u>23.6</u> . NBR_ADDR_TYPE Values
<u>24</u> . Contributors
<u>25</u> . Acknowledgments
<u>26</u> . References
<u>26.1</u> . Normative References
<u>26.2</u> . Informative References
Appendix A. Example Algorithm for Calculating MPRs
<u>A.1</u> . Terminology
A.2. MPR Selection Algorithm for each OLSRv2 Interface 71
Appendix B. Example Algorithm for Calculating the Routing Set <u>72</u>
B.1. Local Interfaces and Neighbors
B.2. Add Neighbor Routers
<u>B.3</u> . Add Remote Routers
B.4. Add Neighbor Addresses
B.5. Add Remote Routable Addresses
B.6. Add Attached Networks
<u>B.7</u> . Add 2-Hop Neighbors
Appendix C. TC Message Example
Appendix D. Constraints
Appendix E. Flow and Congestion Control

1. Introduction

The Optimized Link State Routing protocol version 2 (OLSRv2) is an update to OLSR (version 1) as published in [RFC3626]. Compared to [RFC3626], OLSRv2 retains the same basic mechanisms and algorithms, while using a more flexible and efficient signaling framework, and includes some simplification of the messages being exchanged.

OLSRv2 is developed for mobile ad hoc networks. It operates as a table driven, proactive protocol, i.e., it exchanges topology information with other routers in the network regularly. OLSRv2 is an optimization of the classical link state routing protocol. Its key concept is that of MultiPoint Relays (MPRs). Each router selects as MPRs a set of its neighbor routers that "cover" all of its symmetrically connected 2-hop neighbor routers. MPRs are then used to achieve both flooding reduction and topology reduction.

Flooding reduction is achieved by control traffic being flooded through the network using hop by hop forwarding, but with a router only needing to forward control traffic that is first received directly from one of the routers that have selected it as an MPR (its "MPR selectors"). This mechanism, denoted "MPR flooding", provides an efficient mechanism for information distribution within the MANET by reducing the number of transmissions required.

Topology reduction is achieved by assigning a special responsibility to routers selected as MPRs when declaring link state information. A sufficient requirement for OLSRv2 to provide shortest (lowest hop count) routes to all destinations is that routers declare link state information for their MPR selectors, if any. Routers that are not selected as MPRs need not send any link state information. Thus the use of MPRs allows reduction of the number and the size of link state messages, and in the amount of link state information maintained in each router. Based on this reduced link state information, MPRs are used as intermediate routers in multi-hop routes.

A router selects MPRs from among its one hop neighbors connected by "symmetric", i.e., bidirectional, links. Therefore, selecting routes through MPRs avoids the problems associated with data packet transfer over unidirectional links (e.g., the problem of not getting link layer acknowledgments at each hop, for link layers employing this technique).

OLSRv2 uses and extends [<u>NHDP</u>] and uses [<u>RFC5444</u>], [<u>RFC5497</u>] and, optionally, [<u>RFC5148</u>]. These other protocols and specifications were all originally created as part of OLSRv2, but have been specified separately for wider use.

OLSRv2 makes no assumptions about the underlying link layer. OLSRv2, through its use of [<u>NHDP</u>], may use link layer information and notifications when available and applicable.

OLSRv2, as OLSR [<u>RFC3626</u>], inherits its concept of forwarding and relaying from HIPERLAN (a MAC layer protocol) which is standardized by ETSI [<u>HIPERLAN</u>], [<u>HIPERLAN2</u>].

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

All terms introduced in [RFC5444], including "packet", "Packet Header", "message", "Message Header", "Message Body", "Message Type", "message sequence number", "hop limit", "hop count", "Address Block", "TLV Block", "TLV", "Message TLV", "Address Block TLV", "type" (of TLV), "type extension" (of TLV), "value" (of TLV), "address", "address prefix", and "address object" are to be interpreted as described there.

All terms introduced in [<u>NHDP</u>], including "interface", "MANET interface", "network address", "link", "symmetric link", "1-hop neighbor", "symmetric 1-hop neighbor", "symmetric 2-hop neighbor", "constant", "interface parameter", "router parameter", "Information Base", and "HELLO message" are to be interpreted as described there.

Additionally, this document uses the following terminology:

Router - A MANET router which implements this protocol.

OLSRv2 interface - A MANET interface running this protocol.

- Routable address A network address which may be used as the destination of a packet. A router MUST be able to distinguish a routable address from a non-routable address by direct inspection of the network address, based on global scope address allocations by IANA and/or administrative configuration. Broadcast, multicast and anycast addresses, and addresses which are limited in scope to less than the entire MANET, MUST NOT be considered as routable addresses.
- Originator address An address which is unique (within the MANET) to a router. A router MUST select an originator address; it MAY choose one of its interface addresses as its originator address. If it selects a routable address then this MUST be one which this

0LSRv2

router will accept as destination. An originator address MUST NOT have a prefix length, except for when included in an Address Block where it MAY be associated with a prefix of maximum prefix length (e.g., if the originator address is an IPv6 address, it MUST have either no prefix length, or have a prefix length of 128). An originator address may be a routable or non-routable address.

- Message originator address The originator address of the router which created a message, as deduced from that message by its recipient. The message originator address will usually be included in the message as its <msg-orig-addr> element as defined in [RFC5444]. However an exceptional case in a HELLO message is also allowed by this specification, when a router only uses a single address. For all messages used in this specification, including HELLO messages defined in [NHDP], the recipient MUST be able to deduce an originator address.
- Willingness A numerical value between WILL_NEVER and WILL_ALWAYS (both inclusive), that represents the router's willingness to be selected as an MPR.
- Willing symmetric 1-hop neighbor A symmetric 1-hop neighbor of this router that has willingness not equal to WILL_NEVER.
- Symmetric 1-hop neighbor through OLSRv2 interface I A symmetric 1-hop neighbor of the router via a symmetric link using OLSRv2 interface I of the router.
- Willing symmetric 1-hop neighbor through OLSRv2 interface I A willing symmetric 1-hop neighbor of the router via a symmetric link using OLSRv2 interface I of the router.
- Symmetric strict 2-hop neighbor A symmetric 1-hop neighbor of a willing symmetric 1-hop neighbor that is not a symmetric 1-hop neighbor.
- Symmetric strict 2-hop neighbor through OLSRv2 interface I A symmetric 1-hop neighbor of a willing symmetric 1-hop neighbor through OLSRv2 interface I that is not a symmetric 1-hop neighbor through OLSRv2 interface I. The router MAY elect to use only information received over OLSRv2 interface I in making this determination.
- Multipoint relay (MPR) A router, X, is an MPR for a router, Y, if router Y has indicated its selection of router X as an MPR in a recent HELLO message.

- MPR selector A router, Y, is an MPR selector of router X if router Y has selected router X as an MPR.
- MPR flooding The optimized MANET-wide information distribution mechanism, employed by this protocol, in which a message is relayed by only a reduced subset of the routers in the network. MPR flooding is the mechanism by which flooding reduction is achieved.

This document employs the same notational conventions as in [<u>RFC5444</u>] and [<u>NHDP</u>].

3. Applicability Statement

This protocol:

- Is a proactive routing protocol for mobile ad hoc networks (MANETs) [<u>RFC2501</u>].
- o Is designed to work in networks with a dynamic topology, and in which messages may be lost, such as due to collisions in wireless networks.
- Supports routers that each have one or more participating OLSRv2 interfaces. The set of a router's interfaces may change over time. Each OLSRv2 interface may have one or more network addresses (which may have prefix lengths), and these may also be dynamically changing.
- o Enables hop-by-hop routing, i.e., each router can use its local information provided by this protocol to route packets.
- Continuously maintains routes to all destinations in the network, i.e., routes are instantly available and data traffic is subject to no delays due to route discovery. Consequently, no data traffic buffering is required.
- Supports routers that have non-OLSRv2 interfaces which may be local to a router or that can serve as gateways towards other networks.
- o Is optimized for large and dense networks; the larger and more dense a network, the more optimization can be achieved by using MPRs, compared to the classic link state algorithm.
- Uses [<u>RFC5444</u>] as described in its "Intended Usage" appendix and by [<u>RFC5498</u>].

- o Allows "external" and "internal" extensibility as enabled by
 [RFC5444].
- o Is designed to work in a completely distributed manner, and does not depend on any central entity.

4. Protocol Overview and Functioning

The objective of this protocol is for each router to, independently:

- o Identify all destinations in the network.
- o Identify a sufficient subset of links in the network, in order that shortest paths can be calculated to all available destinations.
- o Provide a Routing Set, containing these shortest paths from this router to all destinations (routable addresses and local links).

4.1. Overview

These objectives are achieved, for each router, by:

- Using [<u>NHDP</u>] to identify symmetric 1-hop neighbors and symmetric 2-hop neighbors.
- o Independently selecting MPRs from among its symmetric 1-hop neighbors such that all symmetric 2-hop neighbors are reachable via at least one symmetric 1-hop neighbor. An analysis and examples of MPR selection algorithms is given in [MPR], a suggested algorithm is included in this specification. Note that it is not necessary for routers to use the same algorithm in order to interoperate in the same MANET.
- Signaling its MPR selection by extending [<u>NHDP</u>] to include this information in outgoing HELLO messages, by the addition of MPR Address Block TLV(s) associated with the appropriate network addresses.
- o Extracting its MPR selectors from received HELLO messages, using the included MPR Address Block TLV(s).
- o Reporting its willingness to be an MPR in HELLO messages, by the addition on an MPR_WILLING Message TLV. The router's willingness to be an MPR indicates how willing it is to participate in MPR flooding and to be an intermediate node for routing. A node can absolutely decline to perform either role, while still being able to be a routing source or destination.

- o Using the message format specified in [<u>RFC5444</u>], specifically defining a TC (Topology Control) Message Type, used to periodically signal links between MPR selectors and itself throughout the MANET.
- o Allowing its TC messages, as well as HELLO messages, to be included in packets specified in [<u>RFC5444</u>], using the "manet" IP protocol or UDP port as specified in [<u>RFC5498</u>].
- Diffusing TC messages by using a flooding reduction mechanism, denoted "MPR flooding"; only the MPRs of a router will retransmit messages received from (i.e., originated or last relayed by) that router.

Note that the indicated extensions to [<u>NHDP</u>] are of forms permitted by that specification.

This specification defines:

- o Parameters and constants used by this protocol, in addition to those specified in [NHDP]. Parameters used by this protocol may, where appropriate, be specific to a given OLSRv2 interface, or to a router. This protocol allows all parameters to be changed dynamically, and to be set independently for each router or each OLSRv2 interface, as appropriate.
- o Extensions to the Information Bases specified in [NHDP].
- o Two new Information Bases: the Topology Information Base and the Received Message Information Base.
- o A requirement for each router to have an originator address to be included in, or deducible from, the HELLO messages of [<u>NHDP</u>].
- o A Message TLV, to be included in the HELLO messages of [<u>NHDP</u>], allowing a router to indicate its willingness to be an MPR.
- o An Address Block TLV, to be included in the HELLO messages of [<u>NHDP</u>], allowing a router to signal its MPR selection.
- The MPR flooding mechanism, including the inclusion of message originator address and sequence number to manage duplicate messages.
- o TC messages, which are used for MANET wide signaling (using MPR flooding) of selected topology (link state) information.

- o The specification of new Message TLVs and Address Block TLVs that are used in TC messages.
- o The generation of TC messages from the appropriate information in the Information Bases.
- o The updating of the Topology Information Base according to received TC messages.
- o The response to other events, such as the expiration of information in the Information Bases.

This protocol inherits the stability of a link state algorithm, and has the advantage of having routes immediately available when needed, due to its proactive nature.

This protocol only interacts with IP through routing table management, and the use of the sending IP address for IP datagrams containing OLSRv2 packets.

4.2. Routers and Interfaces

In order for a router to participate in a MANET, it MUST have at least one, and possibly more, OLSRv2 interfaces. Each OLSRv2 interface:

- Is configured with one or more network addresses, as specified in [<u>NHDP</u>]. These addresses MUST each be specific to this router, and MUST include any address that will be used as the sending address of any IP packet sent on this OLSRv2 interface.
- Has a number of interface parameters, adding to those specified in [NHDP].
- Has an Interface Information Base, extending that specified in [<u>NHDP</u>].
- Generates and processes HELLO messages according to [<u>NHDP</u>], extended as specified in <u>Section 14</u>.

In addition to a set of OLSRv2 interfaces as described above, each router:

o May have one or more non-OLSRv2 interfaces and/or local attached networks for which this router can accept packets. All routable addresses for which the router is to accept packets MUST be used as an (OLSRv2 or non-OLSRv2) interface network address or as an address of a local attached network of the router.

0LSRv2

- Has a number of router parameters, adding to those specified in [NHDP].
- o Has a Local Information Base, extending that specified in [NHDP], including selection of an originator address and recording any locally attached networks.
- Has a Neighbor Information Base, extending that specified in [NHDP] to record MPR selection and advertisement information.
- o Has a Topology Information Base, recording information received in TC messages.
- Has a Received Message Information Base, recording information about received messages to ensure that each TC message is only processed once, and forwarded at most once on each OLSRv2 interface, by a router.
- o Generates and processes TC messages.

<u>4.3</u>. Information Base Overview

Each router maintains the Information Bases described in the following sections. These are used for describing the protocol in this document. An implementation of this protocol MAY maintain this information in the indicated form, or in any other organization which offers access to this information. In particular, note that it is not necessary to remove Tuples from Sets at the exact time indicated, only to behave as if the Tuples were removed at that time.

4.3.1. Local Information Base

The Local Information Base is specified in [NHDP], and contains a router's local configuration. It is extended in this specification to also record an originator address, and to include a router's:

- o Originator Set, containing addresses that were recently used as this router's originator address, and is used, together with the router's current originator address, to enable a router to recognize and discard control traffic which was originated by the router itself.
- Local Attached Network Set, containing network addresses of networks to which this router can act as a gateway, and advertises in its TC messages.

4.3.2. Interface Information Bases

The Interface Information Bases, one for each OLSRv2 interface, are specified in [<u>NHDP</u>]. In addition to the uses in [<u>NHDP</u>], information recorded in the Interface Information Bases is used for completing the Routing Set.

4.3.3. Neighbor Information Base

The Neighbor Information Base is specified in [NHDP], and is extended to also record each neighbor's originator address, the willingness of each neighbor to be an MPR, as well as this router's MPR relationships with each neighbor (whether an MPR and/or an MPR selector of that neighbor), and whether that neighbor is to be advertised in TC messages.

A router selects some of its symmetric 1-hop neighbors as MPRs (see <u>Section 17</u>). That selection is recorded in the Neighbor Set. This selection is then reported in the router's HELLO messages, extending the specification in [NHDP], by using an MPR Address Block TLV. In making that selection, a router MUST consider its 1-hop neighbors' willingness to be an MPR, which (unless having default value) is reported using an Address Block TLV in HELLO messages and recorded in the receiving router's Neighbor Set.

A router also records, in the Neighbor Set, which symmetric 1-hop neighbors have selected it as an MPR (i.e., its MPR selectors). This is determined from the MPR TLVs in received HELLO messages. It also records which symmetric 1-hop neighbors that it is to advertise connectivity to in its TC messages; this MUST include all of its MPR selectors.

The Neighbor Set finally records each 1-hop neighbor's originator address, as deduced from received HELLO messages as described in <u>Section 14.4</u>. This, and other information in the Neighbor Set, including each 1-hop neighbor's routable addresses, is used in advertising the selected symmetric 1-hop neighbors in TC messages.

4.3.4. Topology Information Base

The Topology Information Base in each router contains:

 An Advertising Remote Router Set, recording each other router from which TC messages have been received. This is used in order to determine if a received TC message contains fresh or outdated information; a received TC message is ignored in the latter case.

- o A Router Topology Set, recording links between routers in the MANET, as described by received TC messages.
- A Routable Address Topology Set, recording routable addresses in the MANET (available as packet destinations) and from which other router these routable addresses can be directly reached (i.e., in a single IP hop), as reported by received TC messages.
- o An Attached Network Set, recording networks to which a remote router has advertised that it may act as a gateway. These networks may be reached in one or more IP hops.
- o A Routing Set, recording routes from this router to all available destinations. The IP routing table is to be updated using this Routing Set. (A router MAY choose to use any or all destination network addresses in the Routing Set to update the IP routing table, this selection is outside the scope of this protocol.)

The purpose of the Topology Information Base is to record information used, in addition to that in the Local Information Base, the Interface Information Bases and the Neighbor Information Base, to construct the Routing Set (which is also included in the Topology Information Base).

This specification describes the calculation of the Routing Set based on a Topology Graph constructed in two phases. First, a "backbone" graph representing the routers in the MANET, and the connectivity between them, is constructed from the Local Information Base, the Neighbor Information Base and the Router Topology Set. Second, this graph is "decorated" with additional destination network addresses using the Local Information Base, the Routable Address Topology Set and the Attached Network Set.

The Topology Graph does not need to be recorded in the Topology Information Base, it can either be constructed as required when the Routing Set is to be changed, or need not be explicitly constructed (as illustrated in <u>Appendix B</u>). An implementation MAY construct and retain the Topology Graph if preferred.

<u>4.3.5</u>. Received Message Information Base

The Received Message Information Base in each router contains:

- o A Received Set for each OLSRv2 interface, describing TC messages received by this router on that OLSRv2 interface.
- o A Processed Set, describing TC messages processed by this router.

0LSRv2

o A Forwarded Set, describing TC messages forwarded by this router.

The Received Message Information Base serves the MPR flooding mechanism by ensuring that received messages are forwarded at most once by a router, and also ensures that received messages are processed exactly once by a router.

<u>4.4</u>. Signaling Overview

This protocol generates and processes HELLO messages according to [NHDP], extended according to Section 14 of this specification to include an originator address and MPR selection information.

This protocol specifies a single message type, the TC message. TC messages are sent by their originating router proactively, at a regular interval. This interval may be fixed, or may be dynamic, for example it may be backed off due to congestion or network stability. TC messages may also be sent as a response to a change in the router itself, or its advertised 1-hop neighborhood, for example on first being selected as an MPR.

Because TC messages are sent periodically, this protocol is tolerant of unreliable transmissions of TC messages. Message losses may occur more frequently in wireless networks due to collisions or other transmission problems. This protocol MAY use "jitter", randomized adjustments to message transmission times, to reduce the incidence of collisions, as specified in [<u>RFC5148</u>].

This protocol is tolerant of out of sequence delivery of TC messages due to in transit message reordering. Each router maintains an Advertised Neighbor Sequence Number (ANSN) that is incremented when its recorded neighbor information that is to be included in its TC messages changes. This ANSN is included in the router's TC messages. The recipient of a TC message can used this included ANSN to identify which of the information it has received is most recent, even if messages have been reordered while in transit. Only the most recent information received is used, older information received later is discarded.

TC messages may be "complete" or "incomplete". A complete TC message advertises all of the originating router's MPR selectors, it may also advertise other symmetric 1-hop neighbors. Complete TC messages are generated periodically (and also, optionally, in response to neighborhood changes). Incomplete TC messages may be used to report additions to advertised information, without repeating unchanged information.

TC messages, and HELLO messages as extended by this specification,

include an originator address for the router that created the message. A TC message reports both the originator addresses and routable addresses of its advertised neighbors, distinguishing the two using an Address Block TLV (an address may be both routable and an originator address). TC messages also report the originator's locally attached networks.

TC messages are MPR flooded throughout the MANET. A router retransmits a TC message only if it is received from (i.e., originated from or was last relayed by) one of that router's MPR selectors.

Some TC messages may be MPR flooded over only part of the network, e.g., allowing a router to ensure that nearer routers are kept more up to date than distant routers, such as is used in Fisheye State Routing [FSR] and Fuzzy Sighted Link State routing [FSLS]. This is enabled using [RFC5497].

<u>4.5</u>. Routing Set

The purpose of the Routing Set is to determine and record routes (local interface network address and next hop interface network address) to all possible routable addresses advertised by this protocol, as well as of all destinations that are local, i.e., within one hop, to the router (whether using routable addresses or not). Only symmetric links are used in such routes.

It is intended that the Routing Set can be used for packet routing, by using its contents to update IP's routing tables. That update, and whether any Routing Tuples are not used in IP's routing table, is outside the scope of this specification.

The signaling in this specification has been designed so that a "backbone" Topology Graph of routers, each identified by its originator address, with at most one direct connection between any pair of routers, can be constructed (from the Neighbor Set and the Router Topology Set) using a suitable minimum path length algorithm. This Topology Graph can, then, have other network addresses (routable or of symmetric 1-hop neighbors) added to it (using the Interface Information Bases, the Routable Address Topology Set and the Attached Network Set).

5. Protocol Parameters and Constants

The parameters and constants used in this specification are those defined in [NHDP] plus those defined in this section. The separation in [NHDP] into interface parameters, router parameters and constants is also used in this specification, however all but one

(RX_HOLD_TIME) of the parameters added by this specification are router parameters.

Parameters and constants are detailed in the following sections. As for the parameters in [NHDP], parameters defined in this specification may be changed dynamically by a router, and need not be the same on different routers, even in the same MANET, or, for interface parameters, on different interfaces of the same router.

5.1. Protocol and Port Numbers

This protocol specifies TC messages, which are included in packets as defined by [<u>RFC5444</u>]. These packets may be sent either using the "manet" protocol number or the "manet" UDP well-known port number, as specified in [<u>RFC5498</u>].

TC messages and HELLO messages [NHDP] SHOULD, in a given deployment of this protocol, both be using the same of either of IP or UDP, in order that it is possible to combine messages of both protocols into the same [RFC5444] packet for transmission.

5.2. Multicast Address

This protocol specifies TC messages, which are included in packets as defined by [<u>RFC5444</u>]. These packets MAY be transmitted using the link local multicast address "LL-MANET-Routers", as specified in [<u>RFC5498</u>].

5.3. Local History Times

The following router parameter manages the time for which local information is retained:

O_HOLD_TIME - is used to define the time for which a recently used and replaced originator address is used to recognize the router's own messages.

The following constraint applies to this parameter:

o O_HOLD_TIME >= 0

<u>5.4</u>. Message Intervals

The following router parameters regulate TC message transmissions by a router. TC messages are usually sent periodically, but MAY also be sent in response to changes in the router's Neighbor Set and/or Local Attached Network Set. In a highly dynamic network, and with a larger value of the parameter TC_INTERVAL and a smaller value of the

parameter TC_MIN_INTERVAL, TC messages may be transmitted more often in response to changes than periodically. However because a router has no knowledge of, for example, routers remote to it (i.e., beyond two hops away) joining the network, TC messages MUST NOT be sent purely responsively.

- TC_INTERVAL is the maximum time between the transmission of two successive TC messages by this router. When no TC messages are sent in response to local network changes (by design, or because the local network is not changing) then TC messages SHOULD be sent at a regular interval TC_INTERVAL, possibly modified by jitter as specified in [RFC5148].
- TC_MIN_INTERVAL is the minimum interval between transmission of two successive TC messages by this router. (This minimum interval MAY be modified by jitter, as specified in [<u>RFC5148</u>].)

The following constraints apply to these parameters:

- o TC_INTERVAL > 0
- o TC_MIN_INTERVAL >= 0
- o TC_INTERVAL >= TC_MIN_INTERVAL
- o If TLVs with Type = INTERVAL_TIME, as defined in [<u>RFC5497</u>], are included in TC messages, then TC_INTERVAL MUST be representable as described in [<u>RFC5497</u>].

<u>5.5</u>. Advertised Information Validity Times

The following router parameters manage the validity time of information advertised in TC messages:

- T_HOLD_TIME is used to define the minimum value in the TLV with Type = VALIDITY_TIME included in all TC messages sent by this router. If a single value of parameter TC_HOP_LIMIT (see <u>Section 5.8</u>) is used then this will be the only value in that TLV.
- A_HOLD_TIME is the period during which TC messages are sent after they no longer have any advertised information to report, but are sent in order to accelerate outdated information removal by other routers.

The following constraints apply to these parameters:

- o T_HOLD_TIME > 0
- o A_HOLD_TIME >= 0
- o T_HOLD_TIME >= TC_INTERVAL
- o If TC messages can be lost, then both T_HOLD_TIME and A_HOLD_TIME SHOULD be significantly greater than TC_INTERVAL; a value >= 3 x TC_INTERVAL is RECOMMENDED.
- o T_HOLD_TIME MUST be representable as described in [RFC5497].

5.6. Received Message Validity Times

The following parameters manage the validity time of recorded received message information:

- RX_HOLD_TIME is an interface parameter, and is the period after receipt of a message by the appropriate OLSRv2 interface of this router for which that information is recorded, in order that the message is recognized as having been previously received on this OLSRv2 interface.
- P_HOLD_TIME is a router parameter, and is the period after receipt of a message that is processed by this router for which that information is recorded, in order that the message is not processed again if received again.
- F_HOLD_TIME is a router parameter, and is the period after receipt of a message that is forwarded by this router for which that information is recorded, in order that the message is not forwarded again if received again.

The following constraints apply to these parameters:

- o RX_HOLD_TIME > 0
- o P_HOLD_TIME > 0
- $O F_HOLD_TIME > 0$
- o All of these parameters SHOULD be greater than the maximum difference in time that a message may take to traverse the MANET, taking into account any message forwarding jitter as well as propagation, queuing, and processing delays.

Clausen, et al. Expires October 22, 2010 [Page 19]

5.7. Jitter

If jitter, as defined in [RFC5148], is used then the governing jitter parameters are as follows:

- TP_MAXJITTER represents the value of MAXJITTER used in [<u>RFC5148</u>] for periodically generated TC messages sent by this router.
- TT_MAXJITTER represents the value of MAXJITTER used in [<u>RFC5148</u>] for externally triggered TC messages sent by this router.
- F_MAXJITTER represents the default value of MAXJITTER used in
 [RFC5148] for messages forwarded by this router. However before
 using F_MAXJITTER a router MAY attempt to deduce a more
 appropriate value of MAXJITTER, for example based on any TLVs with
 Type = INTERVAL_TIME or Type = VALIDITY_TIME contained in the
 message to be forwarded.

For constraints on these parameters see [RFC5148].

5.8. Hop Limit Parameter

The parameter TC_HOP_LIMIT is the hop limit set in each TC message. TC_HOP_LIMIT MAY be a single fixed value, or MAY be different in TC messages sent by the same router. However each other router, at any hop count distance, SHOULD see a regular pattern of TC messages in order that meaningful values of TLVs with Type = INTERVAL_TIME and Type = VALIDITY_TIME at each hop count distance can be included as defined in [RFC5497]. Thus the pattern of TC_HOP_LIMIT SHOULD be defined to have this property. For example the repeating pattern (255 4 4) satisfies this property (having period TC_INTERVAL at hop counts up to 4, inclusive, and 3 x TC_INTERVAL at hop counts greater than 4), but the repeating pattern (255 255 4 4) does not satisfy this property because at hop counts greater than 4, message intervals are alternately TC_INTERVAL and 3 x TC_INTERVAL.

The following constraints apply to this parameter:

- o The maximum value of TC_HOP_LIMIT >= the network diameter in hops, a value of 255 is RECOMMENDED. Note that if using a pattern of different values of TC_HOP_LIMIT as described above, then only the maximum value in the pattern is so constrained.
- o All values of TC_HOP_LIMIT >= 2.

Internet-Draft

0LSRv2

5.9. Willingness

Each router has a WILLINGNESS parameter, which MUST be in the range WILL_NEVER to WILL_ALWAYS, inclusive, and which represents the router's willingness to be an MPR, and hence its willingness to forward messages and be an intermediate router on routes. The higher the value, the greater the router's willingness to be an MPR. If a router has WILLINGNESS = WILL_NEVER (the lowest possible value) it does not perform these tasks. A MANET using this protocol with too many routers having WILLINGNESS = WILL_NEVER will not function; it MUST be ensured, by administrative or other means, that this does not happen. If a router has WILLINGNESS = WILL_ALWAYS (the highest possible value) then it MUST always be selected as an MPR by all symmetric 1-hop neighbors.

Routers MAY have different WILLINGNESS values; however the three constants WILL_NEVER, WILL_DEFAULT and WILL_ALWAYS MUST have the values defined in <u>Section 19</u>. (Use of WILLINGNESS = WILL_DEFAULT allows a router to avoid advertising its WILLINGNESS in its HELLO messages.)

The following constraints apply to this parameter:

- o WILLINGNESS >= WILL_NEVER
- o WILLINGNESS <= WILL_ALWAYS</pre>

5.10. Parameter Change Constraints

If protocol parameters are changed dynamically, then the constraints in this section apply.

O_HOLD_TIME

* If O_HOLD_TIME for a router changes, then the expiry time for all Originator Tuples MAY be changed.

TC_INTERVAL

- * If the TC_INTERVAL for a router increases, then the next TC message generated by this router MUST be generated according to the previous, shorter, TC_INTERVAL. Additional subsequent TC messages MAY be generated according to the previous, shorter, TC_INTERVAL.
- * If the TC_INTERVAL for a router decreases, then the following TC messages from this router MUST be generated according to the current, shorter, TC_INTERVAL.

RX_HOLD_TIME

* If RX_HOLD_TIME for an OLSRv2 interface changes, then the expiry time for all Received Tuples for that OLSRv2 interface MAY be changed.

P_HOLD_TIME

* If P_HOLD_TIME changes, then the expiry time for all Processed Tuples MAY be changed.

F_HOLD_TIME

* If F_HOLD_TIME changes, then the expiry time for all Forwarded Tuples MAY be changed.

TP_MAXJITTER

* If TP_MAXJITTER changes, then the periodic TC message schedule on this router MAY be changed immediately.

TT_MAXJITTER

* If TT_MAXJITTER changes, then externally triggered TC messages on this router MAY be rescheduled.

F_MAXJITTER

* If F_MAXJITTER changes, then TC messages waiting to be forwarded with a delay based on this parameter MAY be rescheduled.

TC_HOP_LIMIT

* If TC_HOP_LIMIT changes, and the router uses multiple values after the change, then message intervals and validity times included in TC messages MUST be respected. The simplest way to do this is to start any new repeating pattern of TC_HOP_LIMIT values with its largest value.

<u>6</u>. Local Information Base

The Local Information Base, as defined for each router in [<u>NHDP</u>], is extended by this protocol by:

o Recording the router's originator address. The originator address MUST be unique to this router. It MUST NOT be used by any other router as an originator address. It MAY be included in any

network address in any I_local_iface_addr_list of this router, it MUST NOT be included in any network address in any I_local_iface_addr_list of any other router. It MAY be included in, but MUST NOT be equal to, the AL_net_addr in any Local Attached Network Tuple in this or any other router.

o The addition of an Originator Set, defined in <u>Section 6.1</u>, and a Local Attached Network Set, defined in <u>Section 6.2</u>.

All routable addresses of the router for which it is to accept packets as destination MUST be included in the Local Interface Set or the Local Attached Network Set.

<u>6.1</u>. Originator Set

A router's Originator Set records addresses that were recently used as originator addresses by this router. If a router's originator address is immutable then this set is always empty and MAY be omitted. It consists of Originator Tuples:

(0_orig_addr, 0_time)

where:

- O_orig_addr is a recently used originator address, note that this does not include a prefix length;
- O_time specifies the time at which this Tuple expires and MUST be removed.

6.2. Local Attached Network Set

A router's Local Attached Network Set records its local non-OLSRv2 interfaces via which it can act as gateways to other networks. The Local Attached Network Set is not modified by this protocol. This protocol MAY respond to changes to the Local Attached Network Set, which MUST reflect corresponding changes in the router's status. It consists of Local Attached Network Tuples:

(AL_net_addr, AL_dist)

where:

AL_net_addr - is the network address of an attached network which can be reached via this router. This SHOULD be a routable address. It is constrained as described below.

AL_dist - is the number of hops to the network with network address AL_net_addr from this router.

Attached networks local to this router only (i.e., not reachable except via this router) SHOULD be treated as local non-MANET interfaces, and added to the Local Interface Set, as specified in [NHDP], rather than be added to the Local Attached Network Set.

Because an attached network is not specific to the router, and may be outside the MANET, an attached network MAY also be attached to other routers. Routing to an AL_net_addr will use maximum prefix length matching; consequently an AL_net_addr MAY include, but MUST NOT equal or be included in, any network address which is of any interface of any router (i.e., is included in any I_local_iface_addr_list) or equal any router's originator address.

It is not the responsibility of this protocol to maintain routes from this router to networks recorded in the Local Attached Network Set.

Local Attached Neighbor Tuples are removed from the Local Attached Network Set only when the routers' local attached network configuration changes, i.e., they are not subject to timer-based expiration or changes due to received messages.

7. Interface Information Base

An Interface Information Base, as defined in [<u>NHDP</u>], is maintained for each OLSRv2 interface. It is not modified by this protocol.

8. Neighbor Information Base

An Neighbor Information Base, as defined in [<u>NHDP</u>], is maintained for each router. It is modified by this protocol by adding these additional elements to each Neighbor Tuple in the Neighbor Set:

- N_orig_addr is the neighbor's originator address, which may be unknown. Note that this originator address does not include a prefix length;
- N_willingness is the neighbor's willingness to be selected as an MPR, in the range from WILL_NEVER to WILL_ALWAYS, both inclusive;
- N_mpr is a boolean flag, describing if this neighbor is selected as an MPR by this router;

- N_mpr_selector is a boolean flag, describing if this neighbor has selected this router as an MPR, i.e., is an MPR selector of this router.
- N_advertised is a boolean flag, describing if this router has elected to advertise a link to this neighbor in its TC messages.

A Neighbor Tuple created (but not updated) by [<u>NHDP</u>] MUST set:

N_orig_addr := unknown;

N_willingness := WILL_NEVER;

N_mpr := false;

N_mpr_selector := false;

N_advertised := false.

The Neighbor Information Base also includes a variable, the Advertised Neighbor Sequence Number (ANSN), whose value is included in TC messages to indicate the freshness of the information transmitted. The ANSN is incremented whenever advertised information (the originator and routable addresses included in Neighbor Tuples with N_advertised = true, and local attached networks recorded in the Local Attached Network Set in the Local Information Base) changes, including addition or removal of such information.

9. Topology Information Base

The Topology Information Base, defined for each router by this specification, stores information received in TC messages, in the Advertising Remote Router Set, the Router Topology Set, the Routable Address Topology Set and the Attached Network Set.

Additionally, a Routing Set is maintained, derived from the information recorded in the Local Information Base, the Interface Information Bases, the Neighbor Information Base and the rest of the Topology Information Base.

9.1. Advertising Remote Router Set

A router's Advertising Remote Router Set records information describing each remote router in the network that transmits TC messages, allowing outdated TC messages to be recognized and discarded. It consists of Advertising Remote Router Tuples:

(AR_orig_addr, AR_seq_number, AR_time)

where:

- AR_orig_addr is the originator address of a received TC message, note that this does not include a prefix length;
- AR_seq_number is the greatest ANSN in any TC message received which originated from the router with originator address AR_orig_addr (i.e., which contributed to the information contained in this Tuple);
- AR_time is the time at which this Tuple expires and MUST be removed.

9.2. Router Topology Set

A router's Topology Set records topology information about the links between routers in the MANET. It consists of Router Topology Tuples:

(TR_from_orig_addr, TR_to_orig_addr, TR_seq_number, TR_time)

where:

- TR_from_orig_addr is the originator address of a router which can reach the router with originator address TR_to_orig_addr in one hop, note that this does not include a prefix length;
- TR_to_orig_addr is the originator address of a router which can be reached by the router with originator address TR_to_orig_addr in one hop, note that this does not include a prefix length;
- TR_seq_number is the greatest ANSN in any TC message received which originated from the router with originator address TR_from_orig_addr (i.e., which contributed to the information contained in this Tuple);
- TR_time specifies the time at which this Tuple expires and MUST be removed.

9.3. Routable Address Topology Set

A router's Routable Address Topology Set records topology information about the routable addresses within the MANET, and via which routers they may be reached. It consists of Routable Address Topology Tuples:

(TA_from_orig_addr, TA_dest_addr, TA_seq_number, TA_time)

where:

- TA_from_orig_addr is the originator address of a router which can reach the router with routable address TA_dest_addr in one hop, note that this does not include a prefix length;
- TA_dest_addr is a routable address of a router which can be reached by the router with originator address TA_from_orig_addr in one hop;
- TA_seq_number is the greatest ANSN in any TC message received which originated from the router with originator address TA_from_orig_addr (i.e., which contributed to the information contained in this Tuple);
- TA_time specifies the time at which this Tuple expires and MUST be removed.

9.4. Attached Network Set

A router's Attached Network Set records information about networks (which may be outside the MANET) attached to other routers and their routable addresses. It consists of Attached Network Tuples:

(AN_orig_addr, AN_net_addr, AN_dist, AN_seq_number, AN_time)

where:

- AN_orig_addr is the originator address of a router which can act as gateway to the network with network address AN_net_addr, note that this does not include a prefix length;
- AN_net_addr is the network address of an attached network, which may be reached via the router with originator address AN_orig_addr;
- AN_dist is the number of hops to the network with network address AN_net_addr from the router with originator address AN_orig_addr;
- AN_seq_number is the greatest ANSN in any TC message received which originated from the router with originator address AN_orig_addr (i.e., which contributed to the information contained in this Tuple);
- AN_time specifies the time at which this Tuple expires and MUST be removed.

9.5. Routing Set

A router's Routing Set records the first hop along a selected path to each destination for which any such path is known. It consists of Routing Tuples:

(R_dest_addr, R_next_iface_addr, R_local_iface_addr, R_dist)

where:

- R_dest_addr is the network address of the destination, either the network address of an interface of a destination router, or the network address of an attached network;
- R_next_iface_addr is the network address of the "next hop" on the selected path to the destination;
- R_local_iface_addr is the network address of the local OLSRv2 interface over which a packet MUST be sent to reach the destination by the selected path.
- R_dist is the number of hops on the selected path to the destination;

The Routing Set for a router is derived from the contents of other protocol Sets of the router (the Link Sets, the Neighbor Set, the Router Topology Set, the Routable Address Topology Set, the Attached Network Set, and OPTIONALLY the Two Hop Sets). The Routing Set is updated (Routing Tuples added or removed, or the complete Routing Set recalculated) when routing paths are calculated, based on changes to these other protocol Sets. Routing Tuples are not subject to timerbased expiration.

<u>10</u>. Received Message Information Base

The Received Message Information Base, defined by this specification, records information required to ensure that a message is processed at most once and is forwarded at most once per OLSRv2 interface of a router, using MPR flooding.

<u>10.1</u>. Received Set

A router has a Received Set per OLSRv2 interface. Each Received Set records the signatures of messages which have been received over that OLSRv2 interface. Each consists of Received Tuples:

(RX_type, RX_orig_addr, RX_seq_number, RX_time)

where:

RX_type - is the received Message Type;

- RX_orig_addr is the originator address of the received message, note that this does not include a prefix length;
- RX_seq_number is the message sequence number of the received message;
- RX_time specifies the time at which this Tuple expires and MUST be removed.

10.2. Processed Set

A router has a single Processed Set which records signatures of messages which have been processed by the router. It consists of Processed Tuples:

(P_type, P_orig_addr, P_seq_number, P_time)

where:

P_type - is the processed Message Type;

- P_orig_addr is the originator address of the processed message, note that this does not include a prefix length;
- P_seq_number is the message sequence number of the processed message;
- P_time specifies the time at which this Tuple expires and MUST be removed.

<u>10.3</u>. Forwarded Set

A router has a single Forwarded Set which records signatures of messages which have been forwarded by the router. It consists of Forwarded Tuples:

(F_type, F_orig_addr, F_seq_number, F_time)

where:

F_type - is the forwarded Message Type;

Clausen, et al. Expires October 22, 2010 [Page 29]

- F_orig_addr is the originator address of the forwarded message, note that this does not include a prefix length;
- F_seq_number is the message sequence number of the forwarded message;
- F_time specifies the time at which this Tuple expires and MUST be removed.

<u>11</u>. Updating Information Bases

The purpose of this protocol is to determine the contents of the router's Routing Set, which may be used to update IP's Routing Table, providing "next hop" routing information for IP packets. This is performed by first updating the other Protocol Sets in the Information Bases, and then using information from some of those other Protocol Sets to determine the contents of the Routing Set.

As part of this specification, in a number of cases there is a natural correspondence from a Protocol Tuple in one Protocol Set to a single Protocol Tuple in another Protocol Set, in the same or another Information Base. The latter Protocol Tuple is referred to as "corresponding" to the former Protocol Tuple.

Specific examples of corresponding Protocol Tuples include:

- o There is a Local Interface Tuple corresponding to each Link Tuple, where the Link Tuple is in the Link Set for an OLSRv2 interface, and the Local Interface Tuple represents that OLSRv2 interface.
- o There is a Neighbor Tuple corresponding to each Link Tuple which has L_HEARD_time not expired, such that N_neighbor_addr_list contains L_neighbor_iface_addr_list.
- o There is a Link Tuple (in the Link Set in the same Interface Information Base) corresponding to each 2-Hop Tuple such that L_neighbor_iface_addr_list = N2_neighbor_iface_addr_list.
- There is a Neighbor Tuple corresponding to each 2-Hop Tuple, such that N_neighbor_addr_list contains N2_neighbor_iface_addr_list.
 (This is the Neighbor Tuple corresponding to the Link Tuple that corresponds to the 2-Hop Tuple.)
- o There is an Advertising Remote Router Tuple corresponding to each Router Topology Tuple such that AR_orig_addr = TR_from_orig_addr.
- o There is an Advertising Remote Router Tuple corresponding to each Routable Address Topology Tuple such that AR_orig_addr =

TA_from_orig_addr.

- o There is an Advertising Remote Router Tuple corresponding to each Attached Network Tuple such that AR_orig_addr = AN_orig_addr.
- o There is an Neighbor Tuple corresponding to each Routing Tuple such that N_neighbor_addr_list contains R_next_iface_addr.

Addresses or network addresses with the following properties are considered as "fully owned" by a router when processing a received message:

- o Equaling its originator address, OR;
- o Equaling the O_orig_addr in an Originator Tuple, OR;
- o Equaling or being a sub-range of the I_local_iface_addr_list in a Local Interface Tuple, OR;
- Equaling or being a sub-range of the IR_local_iface_addr in a Removed Interface Address Tuple, OR;
- o Equaling an AL_net_addr in a Local Attached Network Tuple.

Addresses or network addresses with the following properties are considered as "partially owned" (which may include being fully owned) by a router when processing a received message:

- o Overlapping (equaling or containing) its originator address, OR;
- Overlapping (equaling or containing) the O_orig_addr in an Originator Tuple, OR;
- o Overlapping the I_local_iface_addr_list in a Local Interface Tuple, OR;
- Overlapping the IR_local_iface_addr in a Removed Interface Address Tuple, OR;
- o Equaling or having as a sub-range an AL_net_addr in a Local Attached Network Tuple.

<u>12</u>. Packets and Messages

The packet and message format used by this protocol is defined in [<u>RFC5444</u>]. Except as otherwise noted, options defined in [<u>RFC5444</u>] may be freely used, in particular alternative formats defined by packet, message, Address Block and TLV flags.

Routers using this protocol exchange information through messages. The message types used by this protocol are the HELLO message and the TC message. The HELLO message is defined by [<u>NHDP</u>] and extended by this specification, see <u>Section 14</u>. The TC message is defined by this specification, see <u>Section 15</u>.

One or more messages sent by a router at the same time SHOULD be combined into a single packet, subject to any constraints on maximum packet size (such as derived from the MTU over a local single hop) that MAY be imposed. These messages may have originated at the sending router, or have originated at another router and are being forwarded by the sending router. Messages with different originating routers MAY be combined for transmission within the same packet. Messages from other protocols defined using [<u>RFC5444</u>], including but not limited to [<u>NHDP</u>], MAY be combined for transmission within the same packet. This specification does not define or use any contents of the Packet Header.

Forwarded messages MAY be jittered as described in [RFC5148]. The value of MAXJITTER used in jittering a forwarded message MAY be based on information in that message (in particular any Message TLVs with Type = INTERVAL_TIME or Type = VALIDITY_TIME) or otherwise SHOULD be with a maximum delay of F_MAXJITTER. A router MAY modify the jitter applied to a message in order to more efficiently combine messages in packets, as long as the maximum jitter is not exceeded.

All references in this specification to TLVs that do not indicate a type extension, assume Type Extension = 0. TLVs in processed messages with a type extension which is neither zero as so assumed, nor a specifically indicated non-zero type extension, are ignored.

<u>13</u>. Message Processing and Forwarding

This section describes the optimized flooding operation (MPR flooding) used when control messages, as instances of [RFC5444], are intended for MANET wide distribution. This flooding mechanism defines when a received message is, or is not, processed and/or forwarded.

This flooding mechanism is used by this protocol and MAY be used by extensions to this protocol which define, and hence own, other message types, to manage processing and/or forwarding of these messages. This specification contains elements (P_type, RX_type, F_type) required only for such usage.

This flooding mechanism is always used for TC messages (see <u>Section 15</u>). Received HELLO messages (see <u>Section 14</u> are, unless invalid, always processed, and never forwarded by this flooding

mechanism. They thus do not need to be recorded in the Received Message Information Base.

The processing selection and forwarding mechanisms are designed to only need to parse the Message Header in order to determine whether a message is to be processed and/or forwarded, and not to have to parse the Message Body even if the message is forwarded (but not processed). An implementation MAY only parse the Message Body if necessary, or MAY always parse the Message Body and reject the message if it cannot be so parsed, or any other error is identified.

An implementation MUST discard the message silently if it is unable to parse the Message Header or (if attempted) the Message Body, or if a message (other than a HELLO message) does not include a message sequence number.

<u>13.1</u>. Actions when Receiving a Message

On receiving a message of a type specified to be using this mechanism, which includes the TC messages defined in this specification, a router MUST perform the following:

- If the router recognizes from the originator address of the message that the message is one which the receiving router itself originated (i.e., the message originator address is the originator address of this router, or is an O_orig_addr in an Originator Tuple) then the message MUST be silently discarded.
- 2. Otherwise:
 - If the message is of a type which may be processed, then the message is considered for processing according to <u>Section 13.2</u>.
 - 2. If the message is of a type which may be forwarded, AND:
 - + <msg-hop-limit> is present and <msg-hop-limit> > 1, AND;
 - + <msg-hop-count> is not present or <msg-hop-count> < 255;

then the message is considered for forwarding according to <u>Section 13.3</u>.

<u>13.2</u>. Message Considered for Processing

If a message (the "current message") is considered for processing, then the following tasks MUST be performed:

- If the sending address (i.e., the source address of the IP datagram containing the current message) does not match (taking into account any address prefix) a network address in an L_neighbor_iface_addr_list of a Link Tuple, with L_status = SYMMETRIC, in the Link Set for the OLSRv2 interface on which the current message was received (the "receiving interface") then processing the current message is OPTIONAL. If the current message is not processed then the following steps are not carried out.
- 2. If a Processed Tuple exists with:
 - * P_type = the Message Type of the current message, AND;
 - * P_orig_addr = the originator address of the current message, AND;
 - * P_seq_number = the message sequence number of the current message;

then the current message MUST NOT be processed.

- 3. Otherwise:
 - 1. Create a Processed Tuple with:
 - + P_type := the Message Type of the current message;
 - + P_orig_addr := the originator address of the current
 message;
 - + P_seq_number := the sequence number of the current
 message;
 - + P_time := current time + P_HOLD_TIME.
 - Process the current message according to its Message Type. For a TC message this is as defined in <u>Section 15.4</u>.

<u>13.3</u>. Message Considered for Forwarding

If a message (the "current message") is considered for forwarding, then the following tasks MUST be performed:

 If the sending address (i.e., the source address of the IP datagram containing the current message) does not match (taking into account any address prefix) a network address in an L_neighbor_iface_addr_list of a Link Tuple, with L_status =

SYMMETRIC, in the Link Set for the OLSRv2 interface on which the current message was received (the "receiving interface") then the current message MUST be silently discarded.

- 2. Otherwise:
 - 1. If a Received Tuple exists in the Received Set for the receiving interface, with:
 - + RX_type = the Message Type of the current message, AND;
 - + RX_orig_addr = the originator address of the current message, AND;
 - + RX_seq_number = the sequence number of the current
 message;

then the current message MUST be silently discarded.

- 2. Otherwise:
 - 1. Create a Received Tuple in the Received Set for the receiving interface with:
 - RX_type := the Message Type of the current message;
 - RX_orig_addr := originator address of the current message;
 - RX_seq_number := sequence number of the current
 message;
 - RX_time := current time + RX_HOLD_TIME.
 - 2. If a Forwarded Tuple exists with:
 - F_type = the Message Type of the current message, AND;
 - F_orig_addr = the originator address of the current message, AND;
 - F_seq_number = the sequence number of the current message.

then the current message MUST be silently discarded.

3. Otherwise if the sending address matches (taking account of any address prefix) any network address in an

Clausen, et al. Expires October 22, 2010 [Page 35]

L_neighbor_iface_addr_list of a Link Tuple in the Link Set for the receiving OLSRv2 interface that has L_status = SYMMETRIC and whose corresponding Neighbor Tuple has N_mpr_selector = true, then:

- 1. Create a Forwarded Tuple with:
 - o F_type := the Message Type of the current message;
 - o F_orig_addr := originator address of the current
 message;
 - o F_seq_number := sequence number of the current
 message;
 - o F_time := current time + F_HOLD_TIME.
- 2. The Message Header of the current message is modified by:
 - o if present, decrement <msg-hop-limit> in the Message Header by 1, AND;
 - o if present, increment <msg-hop-count> in the Message Header by 1.
- 3. The message is transmitted over all OLSRv2 interfaces, as described in <u>Section 12</u>.

<u>14</u>. HELLO messages

The HELLO message Message Type is owned by [NHDP], and thus HELLO messages are generated, transmitted, received and processed by [NHDP]. This protocol, as permitted by [NHDP], also uses HELLO messages, including adding to HELLO message generation, and implementing additional processing based on received HELLO messages. HELLO messages are not forwarded by [NHDP] or this specification.

<u>14.1</u>. HELLO Message Generation

An HELLO message is generated as defined in [<u>NHDP</u>], extended by the following elements being added to the HELLO message by this specification before the HELLO message is sent over an OLSRv2 interface:

o A message originator address, recording this router's originator address. This MUST use a <msg-orig-addr> element, unless:

- * The message specifies only a single local interface address (i.e., contains only one address object that is associated with an Address Block TLV with Type = LOCAL_IF, and which has no prefix length, or a maximum prefix length) which will then be interpreted as the message originator address, OR;
- * The message does not include any local interface network addresses (i.e., has no address objects associated with an Address Block TLV with Type = LOCAL_IF), as permitted by the specification in [NHDP] when the router that generated the HELLO message has only one interface address and will use that as the sending address of the IP datagram in which the HELLO message is contained. In this case that address will be interpreted as the message originator address.
- o A Message TLV with Type := MPR_WILLING and Value := WILLINGNESS MUST be included, unless WILLINGNESS = WILL_DEFAULT (in which case it MAY be included).
- o For each Neighbor Tuple with N_mpr = true, and for which one or more network addresses in its N_neighbor_addr_list are included as address objects in the HELLO message with an associated Address Block TLV with Type = LINK_STATUS and Value = SYMMETRIC, at least one, possibly more, of these address objects (including a different copy of that address object, in the same or a different Address Block) MUST be associated with an Address Block TLV with Type := MPR. Address objects which do not satisfy this property MUST NOT be associated with an Address Block TLV with Type = MPR.

<u>14.2</u>. HELLO Message TLVs

This specification defines one Message TLV and one Address Block TLV that may be added to HELLO messages by this specification.

14.2.1. Message TLVs

This specification defines one Message TLV that may be included in a HELLO message:

Туре	Value Length	++ Value ++
MPR_WILLING 	1 octet	<pre> Router parameter WILLINGNESS; unused bits (based on the maximum willingness value WILL_ALWAYS) are RESERVED and SHOULD be set to zero. +</pre>

0LSRv2

Table 1: MPR_WILLING TLV definition

14.2.2. Address Block TLVs

This specification defines one Address Block TLV that may be included in a HELLO message:

+----+ | Type | Value Length | Value | +----+ | MPR | 0 octets | None. | +----+

Table 2: MPR TLV definition

<u>14.3</u>. HELLO Message Transmission

HELLO messages are scheduled and transmitted by [<u>NHDP</u>]. This protocol MAY require that an additional HELLO message is sent when the router's set of MPRs changes, in addition to the cases specified in [<u>NHDP</u>], and subject to the same constraints.

<u>14.4</u>. HELLO Message Processing

When received on an OLSRv2 interface, HELLO messages are made available to this protocol in two ways, both as permitted by [<u>NHDP</u>]:

- Such received HELLO messages MUST be made available to this protocol on reception, which allows them to be discarded before being processed by [NHDP], for example if the information added to the HELLO message by this protocol is inconsistent.
- o Such received HELLO messages MUST be made available to OLSRv2 after [<u>NHDP</u>] has completed its processing thereof, unless discarded as malformed by [NHDP], for processing by this protocol.

14.4.1. HELLO Message Discarding

In addition to the reasons specified in [<u>NHDP</u>] for discarding a HELLO message on reception, a HELLO message MUST be discarded before processing by [<u>NHDP</u>] or this specification if it:

- o Has more than one Message TLV with Type = MPR_WILLING.
- Has a message originator address, or a network address corresponding to an address object associated with an Address Block TLV with Type = LOCAL_IF, that is partially owned by this router. (Some of these cases are already excluded by [NHDP].)

- o Includes any address object associated with an Address Block TLV with Type = LINK_STATUS or Type = OTHER_NEIGHB that overlaps the message's originator address.
- o Contains any address object associated with an Address Block TLV with Type = MPR that is not also associated with an Address Block TLV with Type = LINK_STATUS and Value = SYMMETRIC (including using a different copy of that address object, in the same or a different Address Block).

<u>14.4.2</u>. HELLO Message Usage

HELLO messages are first processed as specified in [NHDP]. That processing includes identifying (or creating) a Neighbor Tuple corresponding to the originator of the HELLO message (the "current Neighbor Tuple"). After this, the following processing MUST also be performed:

- If the HELLO message has a well-defined message originator address, i.e., has an <msg-orig-addr> element or has zero or one network addresses associated with a TLV with Type = LOCAL_IF:
 - Remove any other Neighbor Tuple with N_orig_addr = message originator address, taking any consequent action (including removing one or more Link Tuples) as specified in [NHDP].
 - 2. The current Neighbor Tuple is then updated according to:
 - 1. N_orig_addr := message originator address;
 - 2. Update N_willingness as described in <u>Section 14.4.2.1;</u>
 - 3. Update N_mpr_selector as described in <u>Section 14.4.2.2</u>.
- 2. If there are any changes to the router's Information Bases, then perform the processing defined in <u>Section 16</u>.

<u>**14.4.2.1</u>**. Updating Willingness</u>

N_willingness in the current Neighbor Tuple is updated as follows:

- If the HELLO message contains a Message TLV with Type = MPR_WILLING then N_willingness := the value of that TLV;
- 2. Otherwise, N_willingness := WILL_DEFAULT.

Clausen, et al. Expires October 22, 2010 [Page 39]

<u>**14.4.2.2</u>**. Updating MPR Selector Status</u>

N_mpr_selector is updated as follows:

- If a router finds an address object representing any of its local interface network addresses (i.e., those contained in the I_local_iface_addr_list of an OLSRv2 interface) with an associated Address Block TLV with Type = MPR in the HELLO message (indicating that the originating router has selected the receiving router as an MPR) then, for the current Neighbor Tuple:
 - * N_mpr_selector := true
- 2. Otherwise (i.e., if no such address object and Address Block TLV was found) if a router finds an address object representing any of its local interface network addresses (i.e., those contained in the I_local_iface_addr_list of an OLSRv2 interface) with an associated Address Block TLV with Type = LINK_STATUS and Value = SYMMETRIC in the HELLO message, then for the current Neighbor Tuple:
 - * N_mpr_selector := false
 - * N_advertised := false

<u>15</u>. TC Messages

This protocol defines, and hence owns, the TC message type (see <u>Section 23</u>). Thus, as specified in [<u>RFC5444</u>], this protocol generates and transmits all TC messages, receives all TC messages and is responsible for determining whether and how each TC message is to be processed (updating the Topology Information Base) and/or forwarded, according to this specification.

<u>15.1</u>. TC Message Generation

A TC message is a message as defined in [<u>RFC5444</u>]. A generated TC message MUST contain the following elements as defined in [<u>RFC5444</u>]:

- o A message originator address, recording this router's originator address. This MUST use a <msg-orig-addr> element.
- o <msg-seq-num> element containing the message sequence number.
- o A <msg-hop-limit> element, containing TC_HOP_LIMIT. A router MAY use the same or different values of TC_HOP_LIMIT in its TC messages, see <u>Section 5.8</u>.

- o A <msg-hop-count> element, containing zero, if the message contains a TLV with either Type = VALIDITY_TIME or Type = INTERVAL_TIME (as specified in [RFC5497]) indicating more than one time value according to distance. A TC message MAY contain such a <msg-hop-count> element even if it does not need to.
- o A single Message TLV with Type := CONT_SEQ_NUM and Value := ANSN from the Neighbor Information Base. If the TC message is complete then this Message TLV MUST have Type Extension := COMPLETE, otherwise it MUST have Type Extension := INCOMPLETE. (Exception: a TC message MAY omit such a Message TLV if the TC message does not include any address objects with an associated Address Block TLV with Type = NBR_ADDR_TYPE or Type = GATEWAY.)
- o A single Message TLV with Type := VALIDITY_TIME, as specified in [RFC5497]. If all TC messages are sent with the same hop limit then this TLV MUST have a value encoding the period T_HOLD_TIME. If TC messages are sent with different hop limits (more than one value of TC_HOP_LIMIT) then this TLV MUST specify times that vary with the number of hops distance appropriate to the chosen pattern of TC message hop limits, as specified in [RFC5497]; these times SHOULD be appropriate multiples of T_HOLD_TIME. The options included in [RFC5497] for representing zero and infinite times MUST NOT be used.
- o If the TC message is complete, all network addresses which are the N_orig_addr of a Neighbor Tuple with N_advertised = true, MUST be represented by address objects in one or more Address Blocks. If the TC message is incomplete then any such address objects MAY be included. At least one copy of each such address object that is included MUST be associated with an Address Block TLV with Type := NBR_ADDR_TYPE, and Value := ORIGINATOR, or with Value := ROUTABLE_ORIG if that address object is also to be associated with Value = ROUTABLE.
- o If the TC message is complete, all routable addresses which are in the N_neighbor_addr_list of a Neighbor Tuple with N_advertised = true MUST be represented by address objects in one or more Address Blocks. If the TC message is incomplete then any such address objects MAY be included. At least one copy of each such address object MUST be associated with an Address Block TLV with Type = NBR_ADDR_TYPE, and Value = ROUTABLE, or with Value = ROUTABLE_ORIG if also to be associated with Value = ORIGINATOR.
- o If the TC message is complete, all network addresses which are the AL_net_addr of a Local Attached Network Tuple MUST be represented by address objects in one or more Address Blocks. If the TC message is incomplete then any such address objects MAY be

Clausen, et al. Expires October 22, 2010 [Page 41]

included. At least one copy of each such address object MUST be associated with an Address Block TLV with Type := GATEWAY, and Value := AN_dist.

- A TC message MAY contain:
- o A single Message TLV with Type := INTERVAL_TIME, as specified in [RFC5497]. If all TC messages are sent with the same hop limit then this TLV MUST have a value encoding the period TC_INTERVAL. If TC messages are sent with different hop limits, then this TLV MUST specify times that vary with the number of hops distance appropriate to the chosen pattern of TC message hop limits, as specified in [RFC5497]; these times SHOULD be appropriate multiples of TC_INTERVAL. The options included in [RFC5497] for representing zero and infinite times MUST NOT be used.

<u>15.2</u>. TC Message TLVs

This specification defines one Message TLV and two Address Block TLV that may be used in TC messages by this specification.

15.2.1. Message TLVs

In a TC message, a router MAY include at most one (and except in an exceptional case MUST include exactly one) CONT_SEQ_NUM Message TLV as specified in Table 3.

+	-+	+	- +
1 91	Value Length	Value	
CONT_SEQ_NUM	2 octets 	The ANSN contained in the Neighbor Information Base. +	

Table 3: CONT_SEQ_NUM TLV definition

<u>15.2.2</u>. Address Block TLVs

In a TC message, a router MAY include NBR_ADDR_TYPE Address Block TLV(s) as specified in Table 4.

Clausen, et al. Expires October 22, 2010 [Page 42]

+------Type | Value Length | Value +------+ | NBR_ADDR_TYPE | 1 octet | ORIGINATOR indicates that the | corresponding address (which MUST | | have maximum prefix length) is an | | originator address, ROUTABLE Ι | indicates that the corresponding | network address is a routable | address of an interface, | ROUTABLE_ORIG indicates that the | corresponding address is both

Table 4: NBR_ADDR_TYPE TLV definition

If an address is both a originator address and a routable address, then it may be associated with either one Address Block TLV with Type := NBR_ADDR_TYPE and Value := ROUTABLE_ORIG, or with two Address Block TLVs with Type:= NBR_ADDR_TYPE, one with Value := ORIGINATOR and one with Value := ROUTABLE.

In a TC message, a router MAY include GATEWAY Address Block TLV(s) as specified in Table 5.

+	+	+
Type Value Length		Ì
GATEWAY 1 octet	Number of hops to attached network.	Ì

Table 5

All address objects included in a TC message according to this specification MUST be associated either with at least one TLV with Type := NBR_ADDR_TYPE or with a TLV with Type := GATEWAY, but not both. Any other address objects MAY be included in Address Blocks in a TC message, but are ignored by this specification.

<u>15.3</u>. TC Message Transmission

A router with one or more OLSRv2 interfaces, and with any Neighbor Tuples with N_advertised = true, or with a non-empty Local Attached Network Set MUST generate TC messages. A router which does not have such information to advertise SHOULD also generate "empty" TC messages for a period A_HOLD_TIME after it last generated a non-empty TC message.

0LSRv2

Complete TC messages are generated and transmitted periodically on all OLSRv2 interfaces, with a default interval between two consecutive TC transmissions by the same router of TC_INTERVAL.

TC messages MAY be generated in response to a change in the information which they are to advertise, indicated by a change in the ANSN in the Neighbor Information Base. In this case a router MAY send a complete TC message, and if so MAY re-start its TC message schedule. Alternatively a router MAY send an incomplete TC message with at least the newly advertised network addresses (i.e., not previously, but now, an N_orig_addr or in an N_neighbor_addr_list in a Neighbor Tuple with N_advertised = true, or an AL_net_addr) in its Address Blocks, with associated Address Block TLV(s). Note that a router cannot report removal of advertised content using an incomplete TC message.

When sending a TC message in response to a change of advertised network addresses, a router MUST respect a minimum interval of TC_MIN_INTERVAL between generated TC messages. Sending an incomplete TC message MUST NOT cause the interval between complete TC messages to be increased, and thus a router MUST NOT send an incomplete TC message if within TC_MIN_INTERVAL of the next scheduled complete TC message.

The generation of TC messages, whether scheduled or triggered by a change of contents, MAY be jittered as described in [<u>RFC5148</u>]. The values of MAXJITTER used SHOULD be:

- o TP_MAXJITTER for periodic TC message generation;
- o TT_MAXJITTER for responsive TC message generation.

<u>15.4</u>. TC Message Processing

On receiving a TC message, the receiving router MUST then follow the processing and forwarding procedure, defined in <u>Section 13</u>.

If the message is considered for processing (<u>Section 13.2</u>), then a router MUST first check if the message is invalid for processing by this router, as defined in <u>Section 15.4.1</u>. A router MAY make a similar check before considering a message for forwarding, it MUST make those aspects of the check that apply to elements in the Message Header.

If the TC message is not invalid, then the TC message type specific processing, described in <u>Section 15.4.2</u> MUST be applied. This will update its appropriate Interface Information Base and its Router Information Base. Following this, if there are any changes in these

Information Bases, then the processing in <u>Section 16</u> MUST be performed.

<u>15.4.1</u>. Invalid Message

A received TC message is invalid for processing by this router if the message:

- o The address length as specified in the Message Header is not equal to the length of the addresses used by this router.
- o Does not include a message originator address and a message sequence number.
- o Does not include a hop count, and contains a multi-value TLV with Type = VALIDITY_TIME or Type = INTERVAL_TIME, as defined in [<u>RFC5497</u>].
- o Does not have exactly one Message TLV with Type = VALIDITY_TIME.
- o Has more than one Message TLV with Type = INTERVAL_TIME.
- o Does not have a Message TLV with Type = CONT_SEQ_NUM and Type Extension = COMPLETE or Type Extension = INCOMPLETE, and contains at least one address object associated with an Address Block TLV with Type = NBR_ADDR_TYPE or Type = GATEWAY.
- o Has more than one Message TLV with Type = CONT_SEQ_NUM and Type Extension = COMPLETE or Type Extension = INCOMPLETE.
- o Has a message originator address that is partially owned by this router.
- o Includes any address object with a prefix length which is not maximal (equal to the address length, in bits), associated with an Address Block TLV with Type = NBR_ADDR_TYPE and Value = ORIGINATOR or Value = ROUTABLE_ORIG.
- Includes any address object that represents a non-routable address, associated with an Address Block TLV with Type = NBR_ADDR_TYPE and Value = ROUTABLE or Value = ROUTABLE_ORIG.
- o Includes any address object associated with an Address Block TLV with Type = NBR_ADDR_TYPE or Type = GATEWAY that also represents the message's originator address.
- Associates any address object (including different copies of an address object, in the same or different Address Blocks) with more

than one single value using one or more Address Block TLV(s) with Type = GATEWAY.

o Associates any address object (including different copies of an address object, in the same or different Address Blocks) with Address Block TLVs with Type = NBR_ADDR_TYPE and Type = GATEWAY.

A router MAY recognize additional reasons for identifying that a message is invalid. An invalid message MUST be silently discarded, without updating the router's Information Bases.

<u>15.4.2</u>. TC Message Processing Definitions

When, according to <u>Section 13.2</u>, a TC message is to be "processed according to its type", this means that:

- o If the TC message contains a Message TLV with Type = CONT_SEQ_NUM and Type Extension = COMPLETE, then processing according to <u>Section 15.4.3</u> and then according to <u>Section 15.4.4</u> is carried out.
- o If the TC message contains a Message TLV with Type = CONT_SEQ_NUM and Type Extension = INCOMPLETE, then only processing according to <u>Section 15.4.3</u> is carried out.

For the purposes of this section:

- o "validity time" is calculated from a VALIDITY_TIME Message TLV in the TC message according to the specification in [<u>RFC5497</u>]. All information in the TC message has the same validity time.
- o "received ANSN" is defined as being the value of a Message TLV with Type = CONT_SEQ_NUM.
- o Comparisons of sequence numbers are carried out as specified in <u>Section 20</u>.

<u>15.4.3</u>. Initial TC Message Processing

The TC message is processed as follows:

- The Advertising Remote Router Set is updated according to <u>Section 15.4.3.1</u>. If the TC message is indicated as discarded in that processing then the following steps are not carried out.
- 2. The Router Topology Set is updated according to <u>Section 15.4.3.2</u>.

- 3. The Routable Address Topology Set is updated according to <u>Section 15.4.3.3</u>.
- 4. The Attached Network Set is updated according to <u>Section 15.4.3.4</u>.

<u>15.4.3.1</u>. Populating the Advertising Remote Router Set

The router MUST update its Advertising Remote Router Set as follows:

- 1. If there is an Advertising Remote Router Tuple with:
 - * AR_orig_addr = message originator address, AND;
 - * AR_seq_number > received ANSN,

then the TC message MUST be discarded.

- 2. Otherwise:
 - 1. If there is no Advertising Remote Router Tuple such that:

+ AR_orig_addr = message originator address;

then create an Advertising Remote Router Tuple with:

- + AR_orig_addr := message originator address.
- 2. This Advertising Remote Router Tuple (existing or new) is then modified as follows:
 - + AR_seq_number := received ANSN;
 - + AR_time := current time + validity time.

15.4.3.2. Populating the Router Topology Set

The router MUST update its Router Topology Set as follows:

- For each address (henceforth advertised address) corresponding to one or more address objects with an associated Address Block TLV with Type = NBR_ADDR_TYPE and Value = ORIGINATOR or Value = ROUTABLE_ORIG, and that is not partially owned by this router, perform the following processing:
 - 1. If there is no Router Topology Tuple such that:

Clausen, et al. Expires October 22, 2010 [Page 47]

0LSRv2

- + TR_from_orig_addr = message originator address, AND;
- + TR_to_orig_addr = advertised address,

then create a new Router Topology Tuple with:

- + TR_from_orig_addr := message originator address;
- + TR_to_orig_addr := advertised address.
- This Router Topology Tuple (existing or new) is then modified as follows:
 - + TR_seq_number := received ANSN;
 - + TR_time := current time + validity time.

<u>15.4.3.3</u>. Populating the Routable Address Topology Set

The router MUST update its Routable Address Topology Set as follows:

- For each network address (henceforth advertised address) corresponding to one or more address objects with an associated Address Block TLV with Type = NBR_ADDR_TYPE and Value = ROUTABLE or Value = ROUTABLE_ORIG, and that is not partially owned by this router, perform the following processing:
 - 1. If there is no Routable Address Topology Tuple such that:
 - + TA_from_orig_addr = message originator address, AND;
 - + TA_dest_addr = advertised address,

then create a new Routable Address Topology Tuple with:

- + TA_from_orig_addr := message originator address;
- + TA_dest_addr := advertised address.
- This Routable Address Topology Tuple (existing or new) is then modified as follows:
 - + TA_seq_number := received ANSN;
 - + TA_time := current time + validity time.

<u>15.4.3.4</u>. Populating the Attached Network Set

The router MUST update its Attached Network Set as follows:

- For each network address (henceforth attached address) corresponding to one or more address objects with an associated Address Block TLV with Type = GATEWAY, and that is not fully owned by this router, perform the following processing:
 - 1. If there is no Attached Network Tuple such that:
 - + AN_net_addr = attached address, AND;
 - + AN_orig_addr = message originator address,

then create a new Attached Network Tuple with:

- + AN_net_addr := attached address;
- + AN_orig_addr := message originator address.
- This Attached Network Tuple (existing or new) is then modified as follows:
 - + AN_dist := the Value of the associated GATEWAY TLV;
 - + AN_seq_number := received ANSN;
 - + AN_time := current time + validity time.

<u>15.4.4</u>. Completing TC Message Processing

The TC message is processed as follows:

- 1. The Router Topology Set is updated according to Section 15.4.4.1.
- 2. The Routable Address Topology Set is updated according to <u>Section 15.4.4.2</u>.
- 3. The Attached Network Set is updated according to <u>Section 15.4.4.3</u>.

15.4.4.1. Purging the Router Topology Set

The Router Topology Set MUST be updated as follows:

1. Any Router Topology Tuples with:

Clausen, et al. Expires October 22, 2010 [Page 49]

- * TR_from_orig_addr = message originator address, AND;
- * TR_seq_number < received ANSN,</pre>

MUST be removed.

<u>15.4.4.2</u>. Purging the Routable Address Topology Set

The Routable Address Topology Set MUST be updated as follows:

- 1. Any Routable Address Topology Tuples with:
 - * TA_from_orig_addr = message originator address, AND;
 - * TA_seq_number < received ANSN,</pre>

MUST be removed.

15.4.4.3. Purging the Attached Network Set

The Attached Network Set MUST be updated as follows:

- 1. Any Attached Network Tuples with:
 - * AN_orig_addr = message originator address, AND;
 - * AN_seq_number < received ANSN,</pre>

MUST be removed.

16. Information Base Changes

The changes described in the following sections MUST be carried out when any Information Base changes as indicated.

<u>16.1</u>. Originator Address Changes

If the router changes originator address, then:

- 1. If there is no Originator Tuple with:
 - * 0_orig_addr = old originator address

then create an Originator Tuple with:

* O_orig_addr := old originator address

The Originator Tuple (existing or new) with:

Clausen, et al. Expires October 22, 2010 [Page 50]

- * 0_orig_addr = new originator address
- is then modified as follows:
- * 0_time := current time + 0_HOLD_TIME

<u>16.2</u>. Neighbor State Changes

The N_mpr_selector and N_advertised flags in Neighbor Tuples MUST be maintained according to the following rules:

- If N_symmetric = false, then N_mpr_selector = false and N_advertised = false.
- 2. If N_mpr_selector = true, then N_advertised = true.
- 3. In other cases (i.e., N_symmetric = true and N_mpr_selector = false) a router MAY select N_advertised = true or N_advertised = false. The more neighbors that are advertised, the larger TC messages become, but the more redundancy is available for routing. A router SHOULD consider the nature of its network in making such a decision, and SHOULD avoid unnecessary changes in advertising status, which may result both in additional TC messages having to be sent by its neighbors, and in unnecessary changes to routing, which will have similar effects to other forms of topology changes in the MANET.

<u>16.3</u>. Advertised Neighbor Changes

The router MUST increment the ANSN in the Neighbor Information Base whenever:

- 1. Any Neighbor Tuple changes its N_advertised value.
- N_orig_addr is changed, or any routable address is added to or removed from any Neighbor Tuple with N_advertised = true.
- 3. Any Neighbor Tuple with N_advertised = true is removed.
- 4. There is any change to the Local Attached Network Set.

<u>16.4</u>. Advertising Remote Router Tuple Expires

The Router Topology Set, the Routable Address Topology Set and the Attached Network Set MUST be changed when an Advertising Remote Router Tuple expires (AR_time is reached). The following changes are required before the Advertising Remote Router Tuple is removed:

- 1. All Router Topology Tuples with:
 - * TR_from_orig_addr = AR_orig_addr of the Advertising Remote
 Router Tuple

are removed.

- 2. All Routable Address Topology Tuples with:
 - * TA_from_orig_addr = AR_orig_addr of the Advertising Remote
 Router Tuple

are removed.

- 3. All Attached Network Tuples with:
 - * AN_orig_addr = AR_orig_addr of the Advertising Remote Router Tuple

are removed.

16.5. Neighborhood Changes and MPR Updates

The set of symmetric 1-hop neighbors selected as MPRs MUST satisfy the conditions defined in <u>Section 17</u>. To ensure this:

- 1. The set of MPRs of a router MUST be recalculated if:
 - * a Link Tuple is added with L_status = SYMMETRIC, OR;
 - * a Link Tuple with L_status = SYMMETRIC is removed, OR;
 - * a Link Tuple with L_status = SYMMETRIC changes to having L_status = HEARD or L_status = LOST, OR;
 - * a Link Tuple with L_status = HEARD or L_status = LOST changes to having L_status = SYMMETRIC, OR;
 - * a 2-Hop Tuple is added or removed, OR;
 - * the N_willingness of a Neighbor Tuple with N_symmetric = true changes from WILL_NEVER to any other value, OR;
 - * the N_willingness of a Neighbor Tuple with N_mpr = true changes to WILL_NEVER from any other value, OR;
 - * the N_willingness of a Neighbor Tuple with N_symmetric = true and N_mpr = false changes to WILL_ALWAYS from any other value.

Clausen, et al. Expires October 22, 2010 [Page 52]

2. Otherwise, the set of MPRs of a router MAY be recalculated if the N_willingness of a Neighbor Tuple with N_symmetric = true changes in any other way; it SHOULD be recalculated if N_mpr = false and this is an increase in N_willingness or if N_mpr = true and this is a decrease in N_willingness.

If the set of MPRs of a router is recalculated, this MUST be as described in <u>Section 17</u>. Before that calculation, the N_mpr of all Neighbor Tuples are set false (although the previous values of N_mpr MAY be used by an algorithm that minimizes changes to the set of MPRs). After that calculation the N_mpr of all Neighbor Tuples representing symmetric 1-hop neighbors that are chosen as MPRs, are set true.

<u>**16.6</u>**. Routing Set Updates</u>

The Routing Set MUST be updated, as described in <u>Section 18</u> when changes in the Local Information Base, the Neighborhood Information Base or the Topology Information Base indicate a change of the known symmetric links and/or attached networks in the MANET, hence changing the Topology Graph. It is sufficient to consider only changes which affect at least one of:

- o The Local Interface Set, if the change removes any network address in an I_local_iface_addr_list. In this case, unless the OLSRv2 interface is removed, it may not be necessary to do more than replace such network addresses, if used, by an alternative network address from the same I_local_iface_addr_list.
- o The Local Attached Set, if the change removes any AL_net_addr which is also an AN_net_addr. In this case it may not be necessary to do more than add Routing Tuples with R_dest_addr equal to that AN_net_addr.
- o The Link Set of any OLSRv2 interface, and to consider only Link Tuples which have, or just had, L_status = SYMMETRIC (including removal of such Link Tuples).
- o The Neighbor Set of the router, and to consider only Neighbor Tuples that have, or just had, N_symmetric = true, and do not have N_orig_addr = unknown.
- o The 2-Hop Set of any OLSRv2 interface, if used in the creation of the Routing Set.
- o The Router Topology Set of the router.

- o The Routable Address Topology Set of the router.
- o The Attached Network Set of the router.

17. Selecting MPRs

Each router MUST select, from among its willing symmetric 1-hop neighbors, a subset of these routers as MPRs. Only MPRs forward control messages flooded through the MANET, thus effecting a flooding reduction, an optimization of the classical flooding mechanism, known as MPR flooding. MPRs MAY also be used to effect a topology reduction in the MANET. Consequently, while it is not essential that the set of MPRs is minimal, keeping the number of MPRs small ensures that the overhead is kept at a minimum.

A router MUST select MPRs for each of its OLSRv2 interfaces, but then forms the union of those sets as its single set of MPRs. This union MUST include all symmetric 1-hop neighbors with willingness WILL_ALWAYS. Only this overall set of MPRs is relevant, the recorded and used MPR relationship is one of routers, not interfaces. Routers MAY select their MPRs by any process which satisfies the conditions which follow. Routers can freely interoperate whether they use the same or different MPR selection algorithms.

For each OLSRv2 interface a router MUST select a set of MPRs. This set MUST have the properties that:

- All of the selected MPRs are willing symmetric 1-hop neighbors, AND;
- o If the selecting router sends a message on that OLSRv2 interface, and that message is successfully forwarded by all of the selected MPRs for that interface, then all symmetric strict 2-hop neighbors of the selecting router through that OLSRv2 interface will receive that message over a symmetric link.

When a router selects its set of MPRs it MAY consider any other characteristics of its neighbors that it is aware of. In particular it SHOULD consider the willingness of the neighbor, as recorded by the corresponding N_willingness value, preferring neighbors with higher values of N_willingness, but MAY consider other characteristics to have a greater significance.

Note that it is always possible to select a valid set of MPRs. The set of all willing symmetric 1-hop neighbors of a router is a (maximal) valid set of MPRs for that router. However a router SHOULD NOT select a symmetric 1-hop neighbor with N_willingness != WILL_ALWAYS as an MPR if there are no symmetric strict 2-hop

Internet-Draft

0LSRv2

neighbors with a symmetric link to that symmetric 1-hop neighbor. Thus a router with no symmetric 1-hop neighbors with N_willingness = WILL_ALWAYS and with no symmetric strict 2-hop neighbors SHOULD NOT select any MPRs.

A router MAY select its MPRs for each OLSRv2 interface independently, or it MAY coordinate its MPR selections across its OLSRv2 interfaces, as long as the required condition is satisfied for each OLSRv2 interface. Each router MAY select its MPRs independently from the MPR selection by other routers, or it MAY, for example, give preference to routers that either are, or are not, already selected as MPRs by other routers.

When selecting MPRs for each OLSRv2 interface independently, this MAY be done using information from the Link Set and 2-Hop Set of that OLSRv2 interface only, and the Neighbor Set of the router (specifically the N_willingness elements).

The selection of MPRs is recorded in the Neighbor Set of the router, by setting N_mpr = true for any selected MPR (on any OLSRv2 interface) and ensuring that N_mpr = false otherwise. A selected MPR MUST be a willing symmetric 1-hop neighbor (i.e., MUST have corresponding N_symmetric = true, and corresponding N_willingness != WILL_NEVER). Note that although selected per OLSRv2 interface, MPRs are recorded and used independent of interface, i.e., a router's set of MPRs is the union of the sets of MPRs selected per OLSRv2 interface.

A router MUST recalculate its MPRs whenever the currently selected set of MPRs does not still satisfy the required conditions. It MAY recalculate its MPRs if the current set of MPRs is still valid, but could be more efficient. Sufficient conditions to recalculate a router's set of MPRs are given in <u>Section 16.5</u>.

An example algorithm that creates a set of MPRs that satisfies the required conditions is given in <u>Appendix A</u>.

<u>18</u>. Routing Set Calculation

The Routing Set of a router is populated with Routing Tuples that represent paths from that router to all destinations in the network. These paths are calculated based on the Network Topology Graph, which is constructed from information in the Information Bases, obtained via HELLO and TC message exchange.

Changes to the Routing Set do not require any messages to be transmitted. The state of the Routing Set SHOULD, however, be reflected in IP's routing table by adding and removing entries from

IP's routing table as appropriate. Only appropriate Routing Tuples (in particular only those that represent local links or paths to routable addresses) need be reflected in IP's routing table.

<u>18.1</u>. Network Topology Graph

The Network Topology Graph is formed from information from the router's Local Interface Set, Link Sets, Neighbor Set, Router Topology Set, Routable Address Topology Set and Attached Network Set. The Network Topology Graph MAY also use information from the router's 2-Hop Sets. The Network Topology Graph forms the router's topological view of the network in form of a directed graph. The Network Topology Graph has a "backbone" (within which minimum distance routes will be constructed) containing the following edges:

- o Edges X -> Y for all possible Y, and one X per Y, such that:
 - * Y is the N_orig_addr of a Neighbor Tuple, AND;
 - * N_orig_addr is not unknown;
 - * X is in the I_local_iface_addr_list of a Local Interface Tuple, AND;
 - * There is a Link Tuple with L_status = SYMMETRIC such that this Neighbor Tuple and this Local Interface Tuple correspond to it. A network address from L_neighbor_iface_addr_list will be denoted R in this case.

It SHOULD be preferred, where possible, to select R = S and X from the Local Interface Tuple corresponding to the Link Tuple from which R was selected.

- o All edges W -> U such that:
 - * W is the TR_from_orig_addr of a Router Topology Tuple, AND;
 - * U is the TR_to_orig_addr of the same Router Topology Tuple.

The Network Topology Graph is further "decorated" with the following edges. If a network address S, V, Z or T equals a network address Y or W, then the edge terminating in the network address S, V, Z or T MUST NOT be used in any path.

- o Edges X -> S for all possible S, and one X per S, such that:
 - * S is in the N_neighbor_addr_list of a Neighbor Tuple, AND;

- * X is in the I_local_iface_addr_list of a Local Interface Tuple, AND;
- * There is a Link Tuple with L_status = SYMMETRIC such that this Neighbor Tuple and this Local Interface Tuple correspond to it. A network address from L_neighbor_iface_addr_list will be denoted R in this case.

It SHOULD be preferred, where possible, to select R = S and X from the Local Interface Tuple corresponding to the Link Tuple from which R was selected.

- o All edges W -> V such that:
 - * W is the TA_from_orig_addr of a Routable Address Topology Tuple, AND;
 - * V is the TA_dest_addr of the same Routable Address Topology Tuple.
- o All edges W -> T such that:
 - * W is the AN_orig_addr of an Attached Network Tuple, AND;
 - * T is the AN_net_addr of the same Attached Network Tuple.
- o OPTIONALLY, all edges Y -> Z such that:
 - * Z is a routable address and is the N2_2hop_addr of a 2-Hop Tuple, AND;
 - * Y is the N_orig_addr of the corresponding Neighbor Tuple, AND;
 - * This Neighbor Tuple has N_willingness not equal to WILL_NEVER.

A path terminating with such an edge SHOULD NOT be used in preference to any other path.

Any part of the Topology Graph which is not connected to a local network address X is not used. Only one selection X SHOULD be made from each I_local_iface_addr_list, and only one selection R SHOULD be made from any L_neighbor_iface_addr_list. All edges have a cost (hop count) of one, except edges W -> T which each have a cost (hop count) equal to the appropriate value of AN_dist.

Clausen, et al. Expires October 22, 2010 [Page 57]

18.2. Populating the Routing Set

The Routing Set MUST contain the shortest paths for all destinations from all local OLSRv2 interfaces using the Network Topology Graph. This calculation MAY use any algorithm, including any means of choosing between paths of equal length.

Using the notation of <u>Section 18.1</u>, initially "backbone" paths using only edges X -> Y and W -> U need be constructed (using a minimum distance algorithm). Then paths using only a final edge of the other types may be added. These MUST NOT replace backbone paths with the same destination (and paths terminating in an edge Y -> Z SHOULD NOT replace paths with any other form of terminating edge).

Each path will correspond to a Routing Tuple. These will be of two types. The first type will represent single edge paths, of type X -> S or X -> Y, by:

o R_local_iface_addr := X;

- o R_next_iface_addr := R;
- o R_dest_addr := S or Y;
- o R_dist := 1,

where R is as defined in <u>Section 18.1</u> for these types of edges.

The second type will represent a multiple edge path, which will always have first edge of type X -> Y, and will have final edge of type W -> U, W -> V, W -> T or Y -> Z. The Routing Tuple will be:

- o R_local_iface_addr := X;
- o R_next_iface_addr := Y;
- o R_dest_addr := U, V, T or Z;
- o R_dist := the total hop count of the path.

Finally, Routing Tuples of the second type whose R_dest_addr is not routable MAY be discarded.

An example algorithm for calculating the Routing Set of a router is given in <u>Appendix B</u>.

Clausen, et al. Expires October 22, 2010 [Page 58]

<u>19</u>. Proposed Values for Parameters and Constants

This protocol uses all parameters and constants defined in [NHDP] and additional parameters and constants defined in this document. All but one (RX_HOLD_TIME) of these additional parameters are router parameters as defined in [NHDP]. These proposed values of the additional parameters are appropriate to the case where all parameters (including those defined in [NHDP]) have a single value. Proposed values for parameters defined in [NHDP] are given in that document.

<u>19.1</u>. Local History Time Parameters

o O_HOLD_TIME := 30 seconds

<u>19.2</u>. Message Interval Parameters

- o TC_INTERVAL := 5 seconds
- o TC_MIN_INTERVAL := TC_INTERVAL/4

<u>19.3</u>. Advertised Information Validity Time Parameters

- o T_HOLD_TIME := 3 x TC_INTERVAL
- o A_HOLD_TIME := T_HOLD_TIME
- <u>19.4</u>. Received Message Validity Time Parameters
 - o RX_HOLD_TIME := 30 seconds
 - o P_HOLD_TIME := 30 seconds
 - o F_HOLD_TIME := 30 seconds

<u>19.5</u>. Jitter Time Parameters

- o TP_MAXJITTER := HP_MAXJITTER
- o TT_MAXJITTER := HT_MAXJITTER
- o F_MAXJITTER := TT_MAXJITTER
- <u>19.6</u>. Hop Limit Parameter
 - O TC_HOP_LIMIT := 255

Clausen, et al. Expires October 22, 2010 [Page 59]

19.7. Willingness Parameter and Constants

- o WILLINGNESS := WILL_DEFAULT
- O WILL_NEVER := 0
- o WILL_DEFAULT := 7
- o WILL_ALWAYS := 15

20. Sequence Numbers

Sequence numbers are used in this specification for the purpose of discarding "old" information, i.e., messages received out of order. However with a limited number of bits for representing sequence numbers, wrap-around (that the sequence number is incremented from the maximum possible value to zero) will occur. To prevent this from interfering with the operation of this protocol, the following MUST be observed when determining the ordering of sequence numbers.

The term MAXVALUE designates in the following one more than the largest possible value for a sequence number. For a 16 bit sequence number (as are those defined in this specification) MAXVALUE is 65536.

The sequence number S1 is said to be "greater than" the sequence number S2 if:

o S1 > S2 AND S1 - S2 < MAXVALUE/2 OR

o S2 > S1 AND S2 - S1 > MAXVALUE/2

When sequence numbers S1 and S2 differ by MAXVALUE/2 their ordering cannot be determined. In this case, which should not occur, either ordering may be assumed.

Thus when comparing two messages, it is possible - even in the presence of wrap-around - to determine which message contains the most recent information.

21. Extensions

An extension to this protocol will need to interact with this specification, and possibly also with [<u>NHDP</u>]. This protocol is designed to permit such interactions, in particular:

o Through accessing, and possibly extending, the information in the Information Bases. All updates to the elements specified in this

document are subject to the constraints specified in [\underline{NHDP}] and Appendix D.

- Through accessing an outgoing message prior to it being transmitted over any OLSRv2 interface, and to add information to it as specified in [RFC5444]. This MAY include Message TLVs and/or network addresses with associated Address Block TLVs. (Network addresses without new associated TLVs SHOULD NOT be added to messages.) This may, for example, be to allow a security protocol, as suggested in Section 22, to add a TLV containing a cryptographic signature to the message.
- o Through accessing an incoming message, and potentially discarding it prior to processing by this protocol. This may, for example, allow a security protocol as suggested in <u>Section 22</u> to perform verification of message signatures and prevent processing and/or forwarding of unverifiable messages by this protocol.
- o Through accessing an incoming message after it has been completely processed by this protocol. This may, in particular, allow a protocol which has added information, by way of inclusion of appropriate TLVs, or of network addresses associated with new TLVs, access to such information after appropriate updates have been recorded in the Information Bases in this protocol.
- Through requesting that a message be generated at a specific time. In that case, message generation MUST still respect the constraints in [<u>NHDP</u>] and <u>Section 5.4</u>.

22. Security Considerations

Currently, this protocol does not specify any special security measures. As a proactive routing protocol, this protocol is a potential target for various attacks. Various possible vulnerabilities are discussed in this section.

<u>22.1</u>. Confidentiality

This protocol periodically MPR floods topological information to all routers in the network. Hence, if used in an unprotected wireless network, the network topology is revealed to anyone who listens to the control messages.

In situations where the confidentiality of the network topology is of importance, regular cryptographic techniques, such as exchange of OLSRv2 control traffic messages encrypted by PGP [<u>RFC4880</u>] or encrypted by some shared secret key, can be applied to ensure that control traffic can be read and interpreted by only those authorized

to do so.

<u>22.2</u>. Integrity

Each router is injecting topological information into the network through transmitting HELLO messages and, for some routers, TC messages. If some routers for some reason, malicious or malfunction, inject invalid control traffic, network integrity may be compromised. Therefore, message authentication is recommended.

Different such situations may occur, for instance:

- a router generates TC messages, advertising links to non-neighbor routers;
- 2. a router generates TC messages, pretending to be another router;
- a router generates HELLO messages, advertising non-neighbor routers;
- a router generates HELLO messages, pretending to be another router;
- 5. a router forwards altered control messages;
- 6. a router does not forward control messages;
- 7. a router does not select multipoint relays correctly;
- a router forwards broadcast control messages unaltered, but does not forward unicast data traffic;
- 9. a router "replays" previously recorded control traffic from another router.

Authentication of the originator router for control messages (for situations 2, 4 and 5) and on the individual links announced in the control messages (for situations 1 and 3) may be used as a countermeasure. However to prevent routers from repeating old (and correctly authenticated) information (situation 9) temporal information is required, allowing a router to positively identify such delayed messages.

In general, digital signatures and other required security information may be transmitted as a separate Message Type, or signatures and security information may be transmitted within the HELLO and TC messages, using the TLV mechanism. Either option permits that "secured" and "unsecured" routers can coexist in the

same network, if desired,

Specifically, the authenticity of entire control packets can be established through employing IPsec authentication headers, whereas authenticity of individual links (situations 1 and 3) require additional security information to be distributed.

An important consideration is that all control messages are transmitted either to all routers in the neighborhood (HELLO messages) or broadcast to all routers in the network (TC messages).

For example, a control message in this protocol is always a point-tomultipoint transmission. It is therefore important that the authentication mechanism employed permits that any receiving router can validate the authenticity of a message. As an analogy, given a block of text, signed by a PGP private key, then anyone with the corresponding public key can verify the authenticity of the text.

<u>22.3</u>. Interaction with External Routing Domains

This protocol does, through the use of TC messages, provide a basic mechanism for injecting external routing information to this protocol's domain. Routing information can be extracted from the protocol's Information Bases, in particular the Routing Set, of this protocol and, potentially, injected into an external domain, if the routing protocol governing that domain permits this.

When operating routers connecting a MANET using this protocol to an external routing domain, care MUST be taken not to allow potentially insecure and untrustworthy information to be injected from this domain to external routing domains. Care MUST also be taken to validate the correctness of information prior to it being injected as to avoid polluting routing tables with invalid information.

A recommended way of extending connectivity from an existing routing domain to a MANET routed using this protocol is to assign an IP prefix (under the authority of the routers/gateways connecting the MANET with the exiting routing domain) exclusively to that MANET area, and to statically configure the gateways to advertise routes for that IP sequence to routers in the existing routing domain.

23. IANA Considerations

This specification defines one Message Type, which must be allocated from the "Message Types" repository of [<u>RFC5444</u>], two Message TLV Types, which must be allocated from the "Message TLV Types" repository of [<u>RFC5444</u>], and three Address Block TLV Types, which must be allocated from the "Address Block TLV Types" repository of

[<u>RFC5444</u>].

23.1. Expert Review: Evaluation Guidelines

For the registries where an Expert Review is required, the designated expert SHOULD take the same general recommendations into consideration as are specified by [<u>RFC5444</u>].

23.2. Message Types

This specification defines one Message Type, to be allocated from the 0-223 range of the "Message Types" namespace defined in [RFC5444], as specified in Table 6.

+---+
| Type | Description |
+---+
| TBD1 | TC : Topology Control (MANET-wide signaling) |
+---++

Table 6: Message Type assignment

23.3. Message-Type-specific TLV Type Registries

IANA is requested to create a registry for Message-Type-specific Message TLVs for TC messages, in accordance with <u>Section 6.2.1 of</u> [<u>RFC5444</u>], and with initial assignments and allocation policies as specified in Table 7.

+----+
| Type | Description | Allocation Policy |
+----+
| 128-223 | Unassigned | Expert Review |
+---++

Table 7: TC Message-Type-specific Message TLV Types

IANA is requested to create a registry for Message-Type-specific Address Block TLVs for TC messages, in accordance with <u>Section 6.2.1</u> of [RFC5444], and with initial assignments and allocation policies as specified in Table 8.

> +----+ | Type | Description | Allocation Policy | +----+ | 128-223 | Unassigned | Expert Review | +----+

Table 8: TC Message-Type-specific Address Block TLV Types

<u>23.4</u>. Message TLV Types

This specification defines two Message TLV Types, which must be allocated from the "Message TLV Types" namespace defined in [RFC5444]. IANA is requested to make allocations in the 0-127 range for these types. This will create two new Type Extension registries with assignments as specified in Table 9 and Table 10. Specifications of these TLVs are in <u>Section 14.2.1</u> and <u>Section 15.2.1</u>, respectively. Each of these TLVs MUST NOT be included more than once in a Message TLV Block.

+	+	+	+	++
Name +	Type 	Type Extension	Description +	Allocation Policy
<pre>MPR_WILLING MPR_WILLING MPR_WILLING </pre>	TBD2 TBD2 	0	<pre>Specifies the originating router's willingness to act as a relay and to partake in network formation (maximum value is WILL_ALWAYS = 15) Unassigned </pre>	 Expert Review

Table 9: Message TLV Type assignment: MPR_WILLING

+	+ +	+		++
Name	Type 	Type Extension	Description	Allocation Policy
CONT_SEQ_NUM 	TBD3 	0 	COMPLETE : Specifies a content sequence number for this complete message	
CONT_SEQ_NUM 	TBD3 	1	INCOMPLETE : Specifies a content sequence number for this incomplete message	· · · · · · · · · · · · · · · · · · ·

CONT_SEQ_NUM	TBD3	2-255	Unassigned	Expert
				Review
+	-++-	+		+

Table 10: Message TLV Type assignment: CONT_SEQ_NUM

Type extensions indicated as Expert Review SHOULD be allocated as described in [RFC5444], based on Expert Review as defined in [RFC5226].

23.5. Address Block TLV Types

This specification defines three Address Block TLV Types, which must be allocated from the "Address Block TLV Types" namespace defined in [<u>RFC5444</u>]. IANA are requested to make allocations in the 8-127 range for these types. This will create three new Type Extension registries with assignments as specified in Table 11, Table 12 and Table 13, respectively. Specifications of these TLVs are in <u>Section 14.2.2</u> and <u>Section 15.2.2</u>.

++ Name Type 	Type Extension	 Description 	Allocation Policy
MPR TBD4 MPR TBD4 	0 	Specifies that a given network address is of a router selected as an MPR Unassigned	 Expert Review

Table 11: Address Block TLV Type assignment: MPR

Clausen, et al. Expires October 22, 2010 [Page 66]

+	+ 4			++
Name	Туре	Type Extension	Description	Allocation Policy
+	TBD5 	0	Specifies that a given network address is of a neighbor reached via the originating router, if it is an originator address (ORIGINATOR = 1), is a routable address (ROUTABLE = 2), or if it is both (ROUTABLE_ORIG = 3)	
NBR_ADDR_TYPE +	TBD5 	1-255 	Unassigned	Expert Review ++

Table 12: Address Block TLV Type assignment: NBR_ADDR_TYPE

++- Name 	+ Type 	Type extension	+ Description +	++ Allocation Policy ++
	TBD6 	0	Specifies that a given network address is reached via a gateway on the originating router, with value equal to the number of hops 	 Expert Review

Table 13: Address Block TLV Type assignment: GATEWAY

Type extensions indicated as Expert Review SHOULD be allocated as described in [<u>RFC5444</u>], based on Expert Review as defined in [<u>RFC5226</u>].

Clausen, et al. Expires October 22, 2010 [Page 67]

Internet-Draft

0LSRv2

<u>23.6</u>. NBR_ADDR_TYPE Values

Note: This section does not require any IANA action, as the required information is included in the descriptions of the NBR_ADDR_TYPE Address Block TLV allocated in <u>Section 23.5</u>. This information is recorded here for clarity, and for use elsewhere in this specification.

The Values which the NBR_ADDR_TYPE Address Block TLV can use are the following:

- o ORIGINATOR := 1;
- o ROUTABLE := 2;
- o ROUTABLE_ORIG := 3.

24. Contributors

This specification is the result of the joint efforts of the following contributors -- listed alphabetically.

- o Cedric Adjih, INRIA, France, <Cedric.Adjih@inria.fr>
- o Emmanuel Baccelli, INRIA , France, <Emmanuel.Baccelli@inria.fr>
- o Thomas Heide Clausen, LIX, France, <T.Clausen@computer.org>
- o Justin Dean, NRL, USA, <jdean@itd.nrl.navy.mil>
- o Satoh Hiroki, Hitachi SDL, Japan, <hiroki.satoh.yj@hitachi.com>
- o Philippe Jacquet, INRIA, France, <Philippe.Jacquet@inria.fr>
- o Monden Kazuya, Hitachi SDL, Japan, <kazuya.monden.vw@hitachi.com>
- o Kenichi Mase, Niigata University, Japan, <mase@ie.niigata-u.ac.jp>
- o Ryuji Wakikawa, Toyota, Japan, <ryuji@sfc.wide.ad.jp>

25. Acknowledgments

The authors would like to acknowledge the team behind OLSRv1, specified in <u>RFC3626</u>, including Anis Laouiti (INT, Paris), Pascale Minet (INRIA, France), Laurent Viennot (INRIA, France), and Amir

Clausen, et al. Expires October 22, 2010 [Page 68]

Qayyum (M.A. Jinnah University, Islamabad) for their contributions.

The authors would like to gratefully acknowledge the following people for intense technical discussions, early reviews and comments on the specification and its components (listed alphabetically): Khaldoun Al Agha (LRI), Teco Boot (Infinity Networks), Song-Yean Cho (LIX), Alan Cullen (BAE Systems), Louise Lamont (CRC), Li Li (CRC), Joe Macker (NRL), Richard Ogier (SRI), Charles E. Perkins (WiChorus), Henning Rogge (FGAN), and the entire IETF MANET working group.

<u>26</u>. References

<u>26.1</u>. Normative References

- [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", <u>RFC 2119</u>, <u>BCP 14</u>, March 1997.
- [RFC5148] Clausen, T., Dearlove, C., and B. Adamson, "Jitter considerations in MANETS", <u>RFC 5148</u>, February 2008.
- [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", <u>RFC 5226</u>, <u>BCP 26</u>, May 2008.
- [RFC5444] Clausen, T., Dean, J., Dearlove, C., and C. Adjih, "Generalized MANET Packet/Message Format", <u>RFC 5444</u>, February 2009.
- [RFC5497] Clausen, T. and C. Dearlove, "Representing multi-value time in MANETs", <u>RFC 5497</u>, March 2009.
- [RFC5498] Chakeres, I., "IANA Allocations for MANET Protocols", <u>RFC 5498</u>, March 2009.
- [NHDP] Clausen, T., Dean, J., and C. Dearlove, "MANET Neighborhood Discovery Protocol (NHDP)", work in progress draft-ietf-manet-nhdp-12.txt, March 2010.

<u>26.2</u>. Informative References

- [RFC2501] Macker, J. and S. Corson, "Mobile Ad hoc Networking (MANET): Routing Protocol Performance Issues and Evaluation Considerations", <u>RFC 2501</u>, January 1999.
- [RFC3626] Clausen, T. and P. Jacquet, "The Optimized Link State Routing Protocol", RFC 3626, October 2003.
- [RFC4880] Callas, J., Donnerhacke, L., Finney, H., and R. Thayer,

"OpenPGP message format", <u>RFC 4880</u>, November 2007.

- [HIPERLAN] ETSI, "ETSI STC-RES10 Committee. Radio equipment and systems: HIPERLAN type 1, functional specifications ETS 300-652", June 1996.
- [HIPERLAN2] Jacquet, P., Minet, P., Muhlethaler, P., and N. Rivierre, "Increasing reliability in cable free radio LANs: Low level forwarding in HIPERLAN.", 1996.
- [MPR] Qayyum, A., Viennot, L., and A. Laouiti, "Multipoint relaying: An efficient technique for flooding in mobile wireless networks.", 2001.
- [FSR] Pei, G., Gerla, M., and T. Chen, "Fisheye state routing in mobile ad hoc networks", 2000.
- [FSLS] Santivanez, C., Ramanathan, R., and I. Stavrakakis, "Making link-state routing scale for ad hoc networks", 2000.

Appendix A. Example Algorithm for Calculating MPRs

The following specifies an algorithm which MAY be used to select MPRs. MPRs are calculated per OLSRv2 interface, but then a single set of MPRs is formed from the union of the MPRs for all OLSRv2 interfaces. (As noted in <u>Section 17</u> a router MAY improve on this, by coordination between OLSRv2 interfaces.) A router's MPRs are recorded using the element N_mpr in Neighbor Tuples.

If using this example algorithm then the following steps MUST be executed in order for a router to select its MPRs:

- 1. Set N_mpr := false in all Neighbor Tuples;
- 2. For each Neighbor Tuple with N_symmetric = true and N_willingness = WILL_ALWAYS, set N_mpr := true;
- 3. For each OLSRv2 interface of the router, use the algorithm in <u>Appendix A.2</u>. Note that this sets N_mpr := true for some Neighbor Tuples, these routers are already selected as MPRs when using the algorithm for following OLSRv2 interfaces.
- 4. OPTIONALLY, consider each selected MPR in turn, and if the set of selected MPRs without that router still satisfies the necessary conditions, for all OLSRv2 interfaces, then that router MAY be removed from the set of MPRs. This process MAY be repeated until no MPRs are removed. Routers MAY be considered in order of

increasing N_willingness.

Note that only symmetric strict 2-hop neighbors are considered, thus:

- o Symmetric 1-hop neighbor routers with N_willingness = WILL_NEVER MUST NOT be selected as MPRs, and MUST be ignored in the following algorithm (and hence also ignore any 2-Hop Tuples whose N2_neighbor_iface_addr_list is included in the N_neighbor_addr_list of any such Neighbor Tuple).
- Symmetric 2-hop neighbor routers which are also symmetric 1-hop neighbor routers MUST be ignored in the following algorithm (i.e., ignore any 2-Hop Tuples whose N2_2hop_addr is in the N_neighbor_addr_list of any Neighbor Tuple).

<u>A.1</u>. Terminology

The following terminology will be used when selecting MPRs for the OLSRv2 interface I:

- N(I) The set of symmetric 1-hop neighbors which have a symmetric link to I.
- N2(I) The set of network addresses of interfaces of a router with a symmetric link to a router in N(I); this MAY be restricted to considering only information received over I (in which case N2(I) is the set of N2_2hop_addr in 2-Hop Tuples in the 2-Hop Set for OLSRv2 interface I).
- Connected to I via Y A network address A in N2(I) is connected to I via a router Y in N(I) if A is a network address of an interface of a symmetric 1-hop neighbor of Y (i.e., A is the N2_2hop_addr in a 2-Hop Tuple in the 2-Hop Set for OLSRv2 interface I, and whose N2_neighbor_iface_addr_list is contained in the set of interface network addresses of Y).
- D(Y, I) For a router Y in N(I), the number of network addresses in N2(I) which are connected to I via Y.
- R(Y, I): For a router Y in N(I), the number of network addresses in N2(I) which are connected to I via Y, but are not connected to I via any router which has already been selected as an MPR.

A.2. MPR Selection Algorithm for each OLSRv2 Interface

When selecting MPRs for the OLSRv2 interface I:

- For each network address A in N2(I) for which there is only one router Y in N(I) such that A is connected to I via Y, select that router Y as an MPR (i.e., set N_mpr := true in the Neighbor Tuple corresponding to Y).
- 2. While there exists any router Y in N(I) with R(Y, I) > 0:
 - Select a router Y in N(I) with R(Y, I) > 0 in the following order of priority:
 - + greatest N_willingness in the Neighbor Tuple corresponding
 to Y, THEN;
 - + greatest R(Y, I), THEN;
 - + greatest D(Y, I), THEN;
 - + N_mpr_selector is equal to true, if possible, THEN;
 - + any choice.
 - Select Y as an MPR (i.e., set N_mpr := true in the Neighbor Tuple corresponding to Y).

Appendix B. Example Algorithm for Calculating the Routing Set

The following procedure is given as an example for calculating the Routing Set using a variation of Dijkstra's algorithm. First all Routing Tuples are removed, and then, using the selections and definitions in <u>Appendix B.1</u>, the procedures in the following sections (each considered a "stage" of the processing) are applied in turn.

B.1. Local Interfaces and Neighbors

The following selections and definitions are made:

- For each Local Interface Tuple, select a network address from its I_local_iface_addr_list, this is defined as the selected address for this Local Interface Tuple.
- 2. For each Link Tuple, the selected address of its corresponding Local Interface Tuple is defined as the selected local address for this Local Interface Tuple.
- For each Neighbor Tuple with N_symmetric = true, the selected local address is defined as the selected local address of the selected Link Tuple for that Neighbor Tuple.

- 4. For each network address (N_orig_addr or in N_neighbor_addr_list, the "neighbor address") from a Neighbor Tuple with N_symmetric = true, select a Link Tuple with L_status = SYMMETRIC whose corresponding Neighbor Tuple is this Neighbor Tuple and where, if possible, L_neighbor_iface_addr_list contains the neighbor address. This is defined as the selected Link Tuple for that neighbor address.
- 5. For each network address (N_orig_addr or in N_neighbor_addr_list, the "neighbor address") from a Neighbor Tuple with N_symmetric = true, a selected address from the L_neighbor_iface_addr_list of the selected Link Tuple for the neighbor address, if possible equal to the neighbor address, is defined as the selected link address for that neighbor address.
- 6. Routing Tuple preference is decided by preference for corresponding Neighbor Tuples in this order:
 - * For greater N_willingness.
 - * For N_mpr_selector = true over N_mpr_selector = false.

B.2. Add Neighbor Routers

The following procedure is executed once.

- For each Neighbor Tuple with N_symmetric = true, add a Routing Tuple with:
 - * R_dest_addr := N_orig_addr;
 - * R_next_iface_addr := selected link address;
 - * R_local_iface_addr := selected local address;
 - * R_dist := 1.

B.3. Add Remote Routers

The following procedure is executed for each value of h, starting with h := 1 and incrementing by 1 for each iteration. The execution MUST stop if no new Routing Tuples are added in an iteration.

- 1. For each Router Topology Tuple, if:
 - * TR_to_orig_addr is not equal to the R_dest_addr of any Routing Tuple added in an earlier stage, AND;

* TR_from_orig_addr is equal to the R_dest_addr of a Routing Tuple with R_dist = h (the "previous Routing Tuple"),

then add a new Routing Tuple, with:

- * R_dest_addr := TR_to_orig_addr;
- * R_next_iface_addr := R_next_iface_addr of the previous Routing Tuple;
- * R_local_iface_addr := R_local_iface_addr of the previous Routing Tuple;
- * R_dist := h+1.

There may be more than one possible Routing Tuple that may be added for an R_dest_addr in this stage. If so, then, for each such R_dest_addr, a Routing Tuple which is preferred SHOULD be added.

<u>B.4</u>. Add Neighbor Addresses

The following procedure is executed once.

- 1. For each Neighbor Tuple with N_symmetric = true:
 - For each network address (the "current address") in N_neighbor_addr_list, if the current address is not equal to the R_dest_addr of any Routing Tuple, then add a new Routing Tuple, with:
 - + R_dest_addr := current address;
 - + R_next_iface_addr := selected link address;
 - + R_local_iface_addr := selected local address;
 - + R_dist := 1.

B.5. Add Remote Routable Addresses

The following procedure is executed once.

- 1. For each Routable Address Topology Tuple, if:
 - * TA_dest_addr is not equal to the R_dest_addr of any Routing Tuple added in an earlier stage, AND;

Clausen, et al. Expires October 22, 2010 [Page 74]

* TR_from_orig_addr is equal to the R_dest_addr of a Routing Tuple (the "previous Routing Tuple"),

then add a new Routing Tuple, with:

- * R_dest_addr := TA_dest_addr;
- * R_next_iface_addr := R_next_iface_addr of the previous Routing Tuple;
- * R_local_iface_addr := R_local_iface_addr of the previous Routing Tuple;
- * R_dist := R_dist of the previous Routing Tuple + 1.

There may be more than one possible Routing Tuple that may be added for an R_dest_addr in this stage. If so, then, for each such R_dest_addr, a Routing Tuple which is preferred SHOULD be added.

<u>B.6</u>. Add Attached Networks

The following procedure is executed once.

- 1. For each Attached Network Tuple, if:
 - * AN_net_addr is not equal to the R_dest_addr of any Routing Tuple added in an earlier stage, AND;
 - * AN_orig_addr is equal to the R_dest_addr of a Routing Tuple (the "previous Routing Tuple),

then add a new Routing Tuple, with:

- * R_dest_addr := AN_net_addr;
- * R_next_iface_addr := R_next_iface_addr of the previous Routing Tuple;
- * R_local_iface_addr := R_local_iface_addr of the previous Routing Tuple;
- * R_dist := R_dist of the previous Routing Tuple + AN_dist.

There may be more than one possible Routing Tuple that may be added for an R_dest_addr in this stage. If so, then, for each such R_dest_addr, a Routing Tuple with minimum R_dist MUST be selected, otherwise a Routing Tuple which is preferred SHOULD be

Clausen, et al. Expires October 22, 2010 [Page 75]

added.

B.7. Add 2-Hop Neighbors

The following procedure is executed once.

- 1. For each 2-Hop Tuple, if:
 - * N2_2hop_addr is a routable address, AND;
 - N2_2hop_addr is not equal to the R_dest_addr of any Routing Tuple added in an earlier stage,

then define the "previous Routing Tuple" as that with R_dest_addr = N_orig_addr of the corresponding Neighbor Tuple, and add a new Routing Tuple, with:

- * R_dest_addr := N2_2hop_addr;
- * R_next_iface_addr := R_next_iface_addr of the previous Routing Tuple;
- * R_local_iface_addr := R_local_iface_addr of the previous Routing Tuple;
- * R_dist := 2.

There may be more than one possible Routing Tuple that may be added for an R_dest_addr in this stage. If so, then, for each such R_dest_addr, a Routing Tuple which is preferred SHOULD be added.

<u>Appendix C</u>. TC Message Example

TC messages are instances of [RFC5444] messages. This protocol requires that TC messages contains <msg-hop-limit> and <msg-origaddr> fields. It supports TC messages with any combination of remaining message header options and address encodings, enabled by [RFC5444] that convey the required information. As a consequence, there is no single way to represent how all TC messages look. This appendix illustrates a TC message, the exact values and content included are explained in the following text.

The message has full Message Header (four bit Flags field value is 15). Its four bit Message Address Length field has value 3 and hence addresses in the message have length four octets, here being IPv4 addresses. The overall message length is 57 octets.

The message has a Message TLV Block with content length 13 octets containing three TLVs. The first two TLVs are interval and validity times for the message. The third TLV is the content sequence number TLV used to carry the 2 octet ANSN, and (with default type extension zero, i.e., COMPLETE) indicating that the TC message is complete. Each TLV uses a TLV with Flags octet value 16, indicating that it has a Value, but no type extension or start and stop indexes. The first two TLVs have a Value Length of 1 octet, the last has a Value Length of 2 octets.

The message has two Address Blocks. (This is not necessary, the information could be conveyed using a single Address Block, the use of two Address Blocks, which is also allowed, is illustrative only.) The first Address Block contains 3 addresses, with Flags octet value 128, hence with a Head section, (with length 2 octets) but no Tail section, and hence Mid sections with length two octets. The following TLV Block (content length 6 octets) contains a single NBR_ADDR_TYPE TLV (Flags octet value 16, includes a Value but no indexes) indicating that these addresses are associated with the Value (with Value Length 1 octet) ROUTABLE_ORIG, i.e., they are originator addresses of advertised neighbors that are also routable addresses.

The second Address Block contains 1 address, with Flags octet 176 indicating that there is a Head section (with length 2 octets), that the Tail section (length 2 octets) consists of zero valued octets (not included), and that there is a single prefix length, which is 16. The network address is thus Head.0.0/16. The following TLV Block (content length 8 octets) includes one TLV that indicates that the originating router is a gateway to this network, at a given number of hops distance (Value Length 1 octet). The TLV Flags octet value of 16 again indicates that a Value, but no indexes are needed.

Clausen, et al. Expires October 22, 2010 [Page 77]

<u>Appendix D</u>. Constraints

Any process which updates the Local Information Base, the Neighborhood Information Base or the Topology Information Base MUST ensure that all constraints specified in this appendix are maintained, as well as those specified in [<u>NHDP</u>].

In each Originator Tuple:

- o O_orig_addr MUST NOT equal any other O_orig_addr.
- o O_orig_addr MUST NOT equal this router's originator address.

In each Local Attached Network Tuple:

Clausen, et al. Expires October 22, 2010 [Page 78]

0LSRv2

- o AL_net_addr MUST NOT equal any other AL_net_addr.
- o AL_net_addr MUST NOT equal or be a sub-range of any network address in the I_local_iface_addr_list of any Local Interface Tuple.
- o AL_net_addr MUST NOT equal this router's originator address, or equal the 0_orig_addr in any Originator Tuple.
- o AL_dist MUST NOT be less than zero.

In each Link Tuple:

- o L_neighbor_iface_addr_list MUST NOT contain any network address that AL_net_addr of any Local Attached Network Tuple equals or is a sub-range of.
- In each Neighbor Tuple:
- o N_orig_addr MUST NOT be changed to unknown.
- N_orig_addr MUST NOT equal this router's originator address, or equal 0_orig_addr in any Originator Tuple.
- o N_orig_addr MUST NOT equal the AL_net_addr in any Local Attached Network Tuple.
- o If N_orig_addr != unknown, then N_orig_addr MUST NOT equal the N_orig_addr in any other Neighbor Tuple.
- N_neighbor_addr_list MUST NOT contain any network address which includes this router's originator address, the O_orig_addr in any Originator Tuple, or equal or have as a sub-range the AL_net_addr in any Local Attached Network Tuple.
- o If N_orig_addr = unknown, then N_willingness = WILL_NEVER, N_mpr =
 false, N_mpr_selector = false, and N_advertised = false.
- o N_willingness MUST be in the range from WILL_NEVER to WILL_ALWAYS, inclusive.
- o If N_mpr = true, then N_symmetric MUST be true and N_willingness MUST NOT equal WILL_NEVER.
- o If N_symmetric = true and N_mpr = false, then N_willingness MUST NOT equal WILL_ALWAYS.

Clausen, et al. Expires October 22, 2010 [Page 79]

- o If N_mpr_selector = true, then N_advertised MUST be true.
- o If N_advertised = true, then N_symmetric MUST be true.

In each Lost Neighbor Tuple:

o NL_neighbor_addr MUST NOT include this router's originator address, the O_orig_addr in any Originator Tuple, or equal or have as a sub-range the AL_net_addr in any Local Attached Network Tuple.

In each 2-Hop Tuple:

o N2_2hop_addr MUST NOT equal this router's originator address, equal the O_orig_addr in any Originator Tuple, or equal or have as a sub-range the AL_net_addr in any Local Attached Network Tuple

In each Advertising Remote Router Tuple:

- o AR_orig_addr MUST NOT be in any network address in the I_local_iface_addr_list in any Local Interface Tuple or be in the IR_local_iface_addr in any Removed Interface Address Tuple.
- o AR_orig_addr MUST NOT equal this router's originator address or equal the 0_orig_addr in any Originator Tuple.
- o AR_orig_addr MUST NOT be in the AL_net_addr in any Local Attached Network Tuple.
- o AR_orig_addr MUST NOT equal the AR_orig_addr in any other Advertising Remote Router Tuple.

In each Router Topology Tuple:

- o There MUST be an Advertising Remote Router Tuple with AR_orig_addr = TR_from_orig_addr.
- o TR_to_orig_addr MUST NOT be in any network address in the I_local_iface_addr_list in any Local Interface Tuple or be in the IR_local_iface_addr in any Removed Interface Address Tuple.
- o TR_to_orig_addr MUST NOT equal this router's originator address or equal the 0_orig_addr in any Originator Tuple.
- o TR_to_orig_addr MUST NOT be in the AL_net_addr in any Local Attached Network Tuple.

Clausen, et al. Expires October 22, 2010 [Page 80]

- o The ordered pair (TR_from_orig_addr, TR_to_orig_addr) MUST NOT equal the corresponding pair for any other Router Topology Tuple.
- o TR_seq_number MUST NOT be greater than AR_seq_number in the Advertising Remote Router Tuple with AR_orig_addr = TR_from_orig_addr.
- In each Routable Address Topology Tuple:
- o There MUST be an Advertising Remote Router Tuple with AR_orig_addr = TA_from_orig_addr.
- o TA_dest_addr MUST be routable.
- o TA_dest_addr MUST NOT overlap any network address in the I_local_iface_addr_list in any Local Interface Tuple or overlap the IR_local_iface_addr in any Removed Interface Address Tuple.
- o TA_dest_addr MUST NOT include this router's originator address or include the O_orig_addr in any Originator Tuple.
- o TA_dest_addr MUST NOT equal or have as a sub-range the AL_net_addr in any Local Attached Network Tuple.
- o The ordered pair (TA_from_orig_addr, TA_dest_addr) MUST NOT equal the corresponding pair for any other Attached Network Tuple.
- o TA_seq_number MUST NOT be greater than AR_seq_number in the Advertising Remote Router Tuple with AR_orig_addr = TA_from_orig_addr.

In each Attached Network Tuple:

- o There MUST be an Advertising Remote Router Tuple with AR_orig_addr = AN_orig_addr.
- AN_net_addr MUST NOT equal or be a sub-range of any network address in the I_local_iface_addr_list in any Local Interface Tuple or be a sub-range of the IR_local_iface_addr in any Removed Interface Address Tuple.
- o AN_net_addr MUST NOT equal this router's originator address or equal the O_orig_addr in any Originator Tuple.
- o AN_net_addr MUST NOT equal the AL_net_addr in any Local Attached Network Tuple.

- o The ordered pair (AN_orig_addr, AN_net_addr) MUST NOT equal the corresponding pair for any other Attached Network Tuple.
- o AN_seq_number MUST NOT be greater than AR_seq_number in the Advertising Remote Router Tuple with AR_orig_addr = AN_orig_addr.
- o AN_dist MUST NOT be less than zero.

Appendix E. Flow and Congestion Control

Due to its proactive nature, this protocol has a natural control over the flow of its control traffic. Routers transmit control messages at predetermined rates specified and bounded by message intervals.

This protocol employs [NHDP] for local signaling, embedding MPR selection advertisement through a simple Address Block TLV, and router willingness advertisement (if any) as a single Message TLV. Local signaling, therefore, shares the characteristics and constraints of [NHDP].

Furthermore, the use of MPRs can greatly reduce the signaling overhead from link state information dissemination in two ways, attaining both flooding reduction and topology reduction. First, using MPR flooding, the cost of distributing link state information throughout the network is reduced, as compared to when using classic flooding, since only MPRs need to forward link state declaration messages. Second, the amount of link state information for a router to declare is reduced to need only contain that router's MPR selectors. This reduces the size of a link state declaration as compared to declaring full link state information. In particular some routers may not need to declare any such information. In dense networks, the reduction of control traffic can be of several orders of magnitude compared to routing protocols using classical flooding [MPR]. This feature naturally provides more bandwidth for useful data traffic and pushes further the frontier of congestion.

Since the control traffic is continuous and periodic, it keeps the quality of the links used in routing more stable. However, using some options, some control messages (HELLO messages or TC messages) may be intentionally sent in advance of their deadline in order to increase the responsiveness of the protocol to topology changes. This may cause a small, temporary, and local increase of control traffic, however this is at all times bounded by the use of minimum message intervals.

Internet-Draft

Authors' Addresses

Thomas Heide Clausen LIX, Ecole Polytechnique

Phone: +33 6 6058 9349 EMail: T.Clausen@computer.org URI: <u>http://www.ThomasClausen.org/</u>

Christopher Dearlove BAE Systems ATC

Phone: +44 1245 242194 EMail: chris.dearlove@baesystems.com URI: <u>http://www.baesystems.com/</u>

Philippe Jacquet Project Hipercom, INRIA

Phone: +33 1 3963 5263 EMail: philippe.jacquet@inria.fr

The OLSRv2 Design Team MANET Working Group

Clausen, et al. Expires October 22, 2010 [Page 83]