
INTERNET-DRAFT Richard G. Ogier
IETF MANET Working Group Fred L. Templin
1 March 2002 Bhargav Bellur
 Mark G. Lewis
 SRI International

 Topology Broadcast Based on Reverse-Path Forwarding (TBRPF)

 <draft-ietf-manet-tbrpf-05.txt>

Status of This Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC 2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 TBRPF is a proactive, link-state routing protocol designed for mobile
 ad-hoc networks, which provides hop-by-hop routing along shortest
 paths to each destination. Each node running TBRPF computes a source
 tree (providing paths to all reachable nodes) based on partial
 topology information stored in its topology table, using a
 modification of Dijkstra's algorithm. To minimize overhead, each
 node reports only *part* of its source tree to neighbors. This is in
 contrast to other protocols (e.g., STAR) in which each node reports
 its *entire* source tree to neighbors. TBRPF uses a combination of
 periodic and differential updates to keep all neighbors informed of
 the reportable part of its source tree. Each node also has the
 option to report additional topology information (up to the full
 topology), to provide improved robustness in highly mobile networks.
 TBRPF performs neighbor discovery using "differential" HELLO messages
 which report only *changes* in the status of neighbors. This results
 in HELLO messages that are much smaller than those of other link-
 state routing protocols such as OSPF and OLSR.

https://datatracker.ietf.org/doc/html/draft-ietf-manet-tbrpf-05.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page i]

INTERNET-DRAFT TBRPF 1 March 2002

 Contents

1. Introduction ... 1
2. Changes .. 1
3. TBRPF Terminology .. 3
4. Applicability Section .. 4

4.1. Networking Context .. 4
4.2. Protocol Characteristics and Mechanisms 5

5. TBRPF Overview ... 6
5.1. Overview of Neighbor Discovery 7
5.2. Overview of the Routing Module 8

6. TBRPF Packets .. 10
6.1. TBRPF Packet Header 10
6.2. TBRPF Packet Body ... 13

7. TBRPF Neighbor Discovery 14
7.1. HELLO Message Format 15
7.2. Neighbor Table .. 15
7.3. Sending HELLO Messages 16
7.4. Processing a Received HELLO Message 17
7.5. Expiration of Timer nbr_life 18
7.6. Link-Layer Failure Indication 18
7.7. Optional Link Metrics 19
7.8. Configurable Parameters 19

8. TBRPF Routing Module ... 19
8.1. Conceptual Data Structures and Messages 20
8.2. TOPOLOGY UPDATE Messages 22

 8.3. Interface, Host, and Network Prefix Association Message
 Formats ... 23

8.4. TBRPF Operation ... 24
8.5. Pseudocode .. 26
8.6. Configurable Parameters 36

9. TBRPF Flooding Mechanism 37
10. Application of TBRPF In Mobile Ad-Hoc Networks 38

10.1. Data Link Layer Assumptions 38
10.2. Network Layer Assumptions 38
10.3. Optional Automatic Address Resolution 39

 10.4. Support for Multiple Interfaces and/or Alias Addresses
10.5. Support for Network Prefixes 39
10.6. Support for non-MANET Hosts 39
10.7. Internet Protocol Considerations 39

10.7.1. IPv4 Operation 40
10.7.2. IPv6 Operation 40

11. IANA Considerations ... 40
12. Security Considerations 41
13. Implementation Status ... 41
14. Patent Rights Statement 42

15. Acknowledgments ... 42
16. References .. 42

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page ii]

INTERNET-DRAFT TBRPF 1 March 2002

1. Introduction

 TBRPF is a proactive, link-state routing protocol that provides hop-
 by-hop routing along shortest paths to each destination. Each node
 running TBRPF computes a source tree (providing shortest paths to all
 reachable nodes) based on partial topology information stored in its
 topology table, using a modification of Dijkstra's algorithm. To
 minimize overhead, each node reports only *part* of its source tree
 to neighbors. This is in contrast to other protocols (e.g., FTSP [7]
 and STAR [4]) in which each node reports its *entire* source tree to
 neighbors.

 TBRPF uses a combination of periodic and differential updates to keep
 all neighbors informed of the reportable part of its source tree.
 Each node also has the option to report addition topology information
 (up to the full topology), to provide improved robustness in highly
 mobile networks.

 TBRPF performs neighbor discovery using "differential" HELLO messages
 which report only *changes* in the status of neighbors. This results
 in HELLO messages that are much smaller than those of other link-
 state routing protocols such as OSPF [17] and OLSR [18].

 TBRPF consists of two modules: the neighbor discovery module and the
 routing module (which performs topology discovery and route computa-
 tion). An overview of these modules is given in Section 5.

2. Changes

 Major changes from version 04 to version 05:

 - Introduction of support for multiple interfaces, associated hosts,
 and network prefixes.

 - Introduction of support for link metrics.

 - Introduction of a flooding mechanism.

 - Clarification of IPv6 operation.

 Major changes from version 03 to version 04:

 - "Status of This Memo" has been updated.

 - A simple packet header format is specified for use when header
 extensions are not required.

 - Each node has the option to report its entire source tree (instead
 of part of its source tree), to provide increased robustness when

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 1]

INTERNET-DRAFT TBRPF 1 March 2002

 sufficient bandwidth is available.

 Major changes from version 02 to version 03:

 - TBRPF no longer uses ACKs or NACKs to provide reliable delivery of
 messages. Instead, it uses a combination of periodic and differen-
 tial topology updates.

 - NEW PARENT messages are no longer used for the selection of
 parents. Instead, parents select themselves, thus avoiding the
 overhead of NEW PARENT messages.

 - The full topology (FT) mode of TBRPF has been merged with the par-
 tial topology (PT) mode. Each node is required to report the
 minimum topology information (as in PT), but has the option of
 reporting additional topology information.

 - The neighbor discovery module has been modified slightly so that
 it is completely modular and performs ONLY neighbor sensing.

 Major changes from version 01 to version 02:

 - The neighbor discovery protocol has been modified so that it is
 simpler and is independent of the routing protocol.

 - Sections 9 and 10 have been shortened considerably.

 - The IANA considerations section has been revised to bring it up to
 date with recent discussions on the MANET email list.

 Major changes from version 00 to version 01:

 - A partial-topology mode (TBRPF-PT) has been introduced to achieve
 a further reduction in control traffic in large, dense networks.

 - The neighbor discovery protocol has been improved significantly.

 - The unicast mode for transmitting TBRPF messages has been elim-
 inated: each TBRPF packet is now broadcast to all neighbors. If
 a message is to be processed by only a few neighbor nodes, their
 identities are included in the message.

 - All topology updates are now sent reliably to all neighbors using
 NACKs.

 - Two new configurable parameters, MIN_UPDATE_INTERVAL and

 MIN_FORW_UPDATE_INTERVAL, have been introduced to minimize fre-
 quent generation and forwarding of topology updates.

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 2]

INTERNET-DRAFT TBRPF 1 March 2002

 - TBRPF-FT includes a new message type NEW PARENT REPLY, which is
 sent in response to one or more NEW PARENT messages. A single
 message is sent in response to multiple NEW PARENT messages that
 are received at about the same time.

 - A new packet formatting scheme is used that provides optimal pack-
 ing of TBRPF protocol elements with minimal insertion of header
 and null padding octets. A packet compression mechanism is
 included that eliminates all null padding octets when enabled.

 - Formats have been added for new TBRPF-FT and TBRPF-PT message
 types. Formats have been revised for some existing TBRPF-FT mes-
 sage types.

 - An implicit NARP mechanism has been provided for binding one or
 more IP addresses to a Router ID.

 - Optional checksum facilities have been provided for data
 integrity.

3. TBRPF Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC2119 [2]. The fol-
 lowing terms are also used to describe TBRPF:

 node
 A router that implements TBRPF.

 interface
 A network device that connects a node to the MANET. A node can
 have multiple interfaces. An interface can be wireless or wired,
 and can be broadcast (e.g., Ethernet) or point-to-point. Each
 interface is identified by an IP address (unless the interface is
 to an unnumbered point-to-point link).

 Router ID
 Each node is identified by a unique 32-bit Router ID (RID), also
 called a node ID, which for IPv4 is equal to the IP address of one
 of its interfaces.

 link
 A logical connection from one node to another, identified by a
 pair (u,v), where u and v represent nodes. Nodes u and v are
 called the "tail" and "head" of the link, respectively.

https://datatracker.ietf.org/doc/html/rfc2119

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 3]

INTERNET-DRAFT TBRPF 1 March 2002

 bidirectional link
 A link between two nodes u and v is said to be bidirectional, or
 2-way, if node u has an interface I and node v has an interface J
 such that interface I can hear interface J and vice versa.

 neighbor node
 A node j is said to be a neighbor of node i if node i can hear
 node j on some interface. Node j is said to be a 2-way neighbor
 if there is a bidirectional link between i and j.

 ad-hoc interface
 Any interface such that two neighbor nodes on the interface need
 not be neighbors of each other. MANET nodes typically have at
 least one ad-hoc interface, but this is not a requirement.

 topology
 The topology of the network is described by a graph G = (V, E),
 where V is the set of nodes u and E is the set of links (u,v) in
 the network.

 directed tree
 A subset of (directed) links (u,v) that does not contain any
 loops. The root of a directed tree is the only node u such that
 the tree contains no link whose tail is u.

 source tree
 The directed tree computed by each node that provides shortest
 paths to all other nodes. Not the same as a broadcast tree.

 topology update
 A message or part of a message that reports a state change for one
 or more links.

 parent
 The parent of a node i for an update source u is the next node on
 the computed shortest path to node u.

4. Applicability Section

 This section describes the networking context and protocol charac-
 teristics of the TBRPF protocol as specified in the MANET Routing
 Protocol Applicability Statement [16].

4.1. Networking Context

 TBRPF is appropriate for any MANET network having up to a few hundred
 nodes, especially when nodes are highly mobile and bandwidth is lim-

 ited.

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 4]

INTERNET-DRAFT TBRPF 1 March 2002

4.2. Protocol Characteristics and Mechanisms

 * Does the protocol provide shortest path routes?

 Yes.

 * Does the protocol provide support for unidirectional links? (if
 so, how?)

 No. It uses only bidirectional links (as in 802.11).

 * Does the protocol require the use of tunneling? (if so, how?)

 No.

 * Does the protocol require using some form of source routing? (if
 so, how?)

 No. The protocol uses hop-by-hop routing. However, since the
 entire path is known, source routing can be used as an option.

 * Does the protocol require the use of periodic messaging? (if so,
 how?)

 Each node transmits HELLO and topology update messages periodi-
 cally.

 * Does the protocol require the use of reliable or sequenced packet
 delivery? (if so, how?)

 No.

 * Does the protocol provide support for routing through a multi-
 technology routing fabric? (if so, how?)

 Yes. Each network interface is assigned a unique IP address.

 * Does the protocol provide support for multiple hosts per router?
 (if so, how?)

 Yes. The concept of a Router ID (RID) [3,14,17] can be used to
 associate multiple hosts with a single RID.

 * Does the protocol support the IP addressing architecture? (if so,
 how?)

 Yes.

 * Does the protocol require link or neighbor status sensing (if so,

 how?)

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 5]

INTERNET-DRAFT TBRPF 1 March 2002

 Yes. A new, efficient neighbor discovery protocol is presented,
 in which each HELLO message contains only the IDs of nodes that
 have recently been heard but with which a 2-way link has not yet
 been established.

 * Does the protocol depend on a central entity? (if so, how?)

 No.

 * Does the protocol function reactively? (if so, how?)

 The protocol reacts to topology changes, but not to traffic
 demand.

 * Does the protocol function proactively? (if so, how?)

 Yes. It maintains optimal paths to all reachable destinations at
 all times.

 * Does the protocol provide loop-free routing? (if so, how?)

 Yes. Since routing is based on link states, it provides loop-free
 routing when the topology is stable.

 * Does the protocol provide for sleep period operation? (if so,
 how?)

 TBRPF operates correctly even if nodes can go into and out of
 sleep mode at arbitrary times. Other features can be added, such
 as assigning awake routers to store packets for sleeping nodes.

 * Does the protocol provide some form of security? (if so, how?)

 TBRPF can be extended in a straightforward manner to incorporate
 authentication of TBRPF protocol packets in a manner similar to
 OSPF version 2 [RFC 2328]. (See Section 12.)

 * Does the protocol provide support for utilizing multi-channel,
 link-layer technologies? (if so, how?)

 Yes. TBRPF supports multiple interfaces.

5. TBRPF Overview

 TBRPF consists of two main modules: the neighbor discovery module,
 and the routing module (which performs topology discovery and route
 computation).

https://datatracker.ietf.org/doc/html/rfc2328

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 6]

INTERNET-DRAFT TBRPF 1 March 2002

5.1. Overview of Neighbor Discovery

 The TBRPF Neighbor Discovery (TND) protocol allows each node to
 quickly detect the neighbor nodes with which the node has a direct,
 bidirectional link, i.e., such that the node and the neighbor node
 each have an interface that can hear the other interface. The proto-
 col also detects when a bidirectional link to some neighbor no longer
 exists.

 The key feature of TND is that it uses "differential" HELLO messages
 which report only *changes* in the status of neighbors. This results
 in HELLO messages that are much smaller than those of other link-
 state routing protocols such as OSPF and OLSR, in which each HELLO
 message includes the IDs of *all* neighbors. As a result, HELLO mes-
 sages can be sent more frequently in highly mobile networks without
 increasing overhead significantly.

 TND is designed to be fully modular and independent of the routing
 module. TND performs ONLY neighbor sensing (unlike OLSR's neighbor
 sensing module, which also discovers 2-hop neighbors and selects mul-
 tipoint relays). As a result, TND can be used by other routing proto-
 cols, and TBRPF can use another neighbor discovery protocols in place
 of TND, e.g., one provided by the link layer.

 Nodes with multiple interfaces run TND separately on each interface,
 similar to OSPF. Thus, a neighbor table is maintained for each
 interface, and a HELLO sent on a particular interface contains only
 the RIDs of neighbors for that interface. (This differs from OLSR,
 in which each HELLO is sent on all interfaces.)

 Each node sends a HELLO message every HELLO_INTERVAL seconds, with a
 small jitter. Each HELLO message contains three (possibly empty)
 lists of router IDs, formatted as the following three message sub-
 types: NEIGHBOR REQUEST, NEIGHBOR REPLY, and NEIGHBOR LOST. A NEIGH-
 BOR REQUEST message is always included in a HELLO, even if its list
 of router IDs is empty. However, a NEIGHBOR REPLY or NEIGHBOR LOST
 message is included only if its list of router IDs is nonempty. Each
 HELLO message also contains the current HELLO sequence number (HSEQ),
 which is incremented with each transmitted HELLO. For convenience,
 we say that "node i sends a NEIGHBOR REQUEST message for node j" if
 node i sends such a message that includes the ID of node j, and simi-
 larly for NEIGHBOR REPLY and NEIGHBOR LOST messages.

 Each node maintains a neighbor table for each interface, which stores
 the state information for neighbors heard on that interface. The
 state (or level) of each node can be 1-WAY, 2-WAY, or LOST. When
 node i changes the state of a neighbor j, it sends the appropriate
 message (NEIGHBOR REQUEST/UP/LOST) in at most NBR_HOLD_COUNT (typi-

 cally 3) consecutive HELLOs. This ensures that node j will either
 receive the message, or will miss NBR_HOLD_COUNT HELLOs and thus
 declare node i to be LOST. This technique also makes it unnecessary

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 7]

INTERNET-DRAFT TBRPF 1 March 2002

 for a node to include each 1-WAY neighbor in HELLOs indefinitely,
 unlike OSPF and OLSR.

 The NEIGHBOR REQUEST message includes a list of neighbors from which
 HELLO messages have recently been heard but for which a 2-WAY link is
 not currently established. To avoid establishing a link that is
 likely to be short lived (i.e., to employ hysteresis), a node i must
 receive at least HELLO_ACQUIRE_COUNT (e.g., 2) of the last
 HELLO_ACQUIRE_WINDOW (e.g., 3) HELLOs from another node j before
 declaring the node to be 1-WAY. In this case, node i sends a NEIGH-
 BOR REQUEST message for node j in each of its next NBR_HOLD_COUNT
 HELLO messages, or until a NEIGHBOR REPLY message for node i is
 received from node j.

 If node j receives a NEIGHBOR REQUEST from node i, then node j
 declares the link to node i to be 2-WAY (if it is not already 2-WAY),
 and includes a NEIGHBOR REPLY message for node i in its next
 NBR_HOLD_COUNT transmitted HELLO messages. Upon receiving the NEIGH-
 BOR REPLY message, node i declares the link to node j to be 2-WAY.

 If node i receives a HELLO from a 1-WAY or 2-WAY neighbor j whose
 HSEQ indicates that at least NBR_HOLD_COUNT HELLOs were missed, or if
 node i receives no HELLO from node j within NBR_HOLD_TIME seconds,
 then node i changes the state of node j to LOST, and sends a NEIGHBOR
 LOST message for node i in its next NBR_HOLD_COUNT transmitted HELLO
 messages (unless the link changes state before these transmissions
 are complete). Node j will either receive the message or will miss
 NBR_HOLD_COUNT HELLOs; in either case it will declare node i to be
 LOST. In this manner, both nodes will agree that the link is no
 longer bidirectional, even if node j can still hear HELLOs from node
 i.

 Each node MAY maintain and update one or more link metrics to each
 neighbor j for each interface I, representing the quality of the
 link. As described in Section 7.7, such link metrics can be used as
 additional conditions for changing the state of a neighbor, based on
 the link metric going above or below some threshold. TBRPF also
 allows link metrics to be advertised in topology updates and used for
 computing shortest paths.

5.2. Overview of the Routing Module

 Each node running TBRPF computes a source tree (providing shortest
 paths to all reachable nodes) based on partial topology information
 stored in its topology table, using a modification of Dijkstra's
 algorithm. To minimize overhead, each node reports only part of its
 source tree to neighbors. This is in contrast to FTSP [7] and STAR

 [4], in which each node reports its *entire* source tree to neigh-
 bors, which is redundant since the source trees of different neigh-
 bors often overlap considerably. The main idea behind the current

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 8]

INTERNET-DRAFT TBRPF 1 March 2002

 version of TBRPF came from PTSP [7], another protocol in which each
 node reports only part of its source tree. However, PTSP differs in
 many ways from TBRPF: e.g., PTSP uses NEW PARENT messages and reli-
 able updates, unlike the current version of TBRPF (but like previous
 versions of TBRPF [1]).

 To decide which part of its source tree T to report to neighbors, a
 node running TBRPF first computes its "reportable node set" RN. Node
 i includes node u in RN if it determines that some neighbor j (of
 node i) may select node i to be the next hop (or parent) on the shor-
 test path to destination u. (See the pseudocode procedure Update_RN()
 in Section 8.4 for details.) This technique avoids the need for the
 NEW PARENT messages that were used in PTSP and previous versions of
 TBRPF.

 The part of T that a node reports to neighbors is called the "report-
 able subtree" and is denoted RT. RT consists of links (u,v) of T
 such that u is in RN. To provide increased robustness when sufficient
 bandwidth is available, each node has the option to report its entire
 source tree T, by setting the configurable parameter REPORT_FULL_TREE
 to 1. This results in all reachable nodes u being included in RN, so
 that RT = T.

 Each node reports RT to neighbors in *periodic* topology updates
 (e.g., every 5 seconds), and reports changes (additions and dele-
 tions) to RT in more frequent *differential* updates (e.g., every 1
 second). Periodic updates inform new neighbors of RT, and ensure
 that each neighbor eventually learns RT even if it does not receive
 all updates. Differential updates ensure the fast propagation of
 each topology update to all nodes that are affected by the update. A
 received topology update is not forwarded, but *may* result in a
 change to RT, which will be reported in the next differential update.
 Whenever possible, topology updates are included in the same packet
 as a HELLO message, to minimize the number of control packets sent.
 TBRPF does not require reliable or sequenced delivery of messages,
 and does not use ACKs or NACKs.

 TBRPF does not use sequence numbers for topology updates, thus reduc-
 ing message overhead and avoiding wraparound problems. Instead, a
 technique similar to SPTA [20] is used in which, for each link (u,v)
 reported by one or more neighbors, only the parent p(u) for u is
 believed regarding the the state of the link. (However, in SPTA each
 node reports the full topology.) Using this technique, each node
 maintains a topology graph TG, consisting of "believable" links that
 are reported by neighbors, and computes T as the shortest-path tree
 within TG. To allow immediate rerouting, the restriction that each
 link (u,v) in TG must be reported by p(u) is relaxed temporarily if
 p(u) changes to a neighbor that is not reporting the link.

 Each node is required to report RT, but MAY report additional links,
 e.g., to provide increased robustness in highly mobile networks.

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 9]

INTERNET-DRAFT TBRPF 1 March 2002

 More precisely, a node may maintain any subgraph H of TG that con-
 tains T, and report the reportable subgraph RH, which consists of
 links (u,v) of H such that u is in RN. For example, H can equal TG,
 which would provide each node with the full network topology if this
 is done by all nodes. H can also be a biconnected subgraph that con-
 tains T, which would provide each node with two disjoint paths to
 each other node, if this is done by all nodes.

 Nodes MAY report a metric for each link in topology updates, and to
 compute paths that are shortest with respect to the metric. This
 allows packets to be sent along paths that are higher quality than
 minimum-hop paths.

 TBRPF allows path optimality to be traded off in order to reduce the
 amount of control traffic in networks with a large diameter, where
 the degree of approximation is determined by the configurable parame-
 ter NON_TREE_PENALTY.

 In a MANET, some nodes, called non-relay nodes, may choose not to
 forward data packets for other nodes. Non-relay nodes are supported
 by TBRPF in a very simple manner: they run TBRPF (and transmit HEL-
 LOs) but do not do not transmit topology update messages. As a
 result, no node will compute a path that uses a non-relay node as an
 intermediate node.

6. TBRPF Packets

 Nodes send TBRPF protocol data in contiguous units known as *pack-
 ets*. Each packet includes a header, optional header extensions, and
 a body comprising one or more *message(s)* and padding options as
 needed. The total length of all packet elements MUST be less than the
 maximum length represented by an unsigned 16-bit integer, i.e. 64KB.
 To facilitate efficient receiver processing, senders SHOULD insert
 padding options as necessary to align multi-octet words within the
 TBRPF packet on "natural" boundaries (i.e. modulo-8/4/2 addresses
 for 64/32/16-bit words, respectively). Receivers MUST be capable of
 processing multi-octet words whether/not aligned on natural boun-
 daries, and SHOULD do so as efficiently as possible. The following
 sections specify elements of the TBRPF packet in more detail.

6.1. TBRPF Packet Header

 TBRPF packet headers are variable-length (minimum one octet), and
 MUST begin on a modulo-8 boundary to provide a base for multi-octet
 word alignment. The format for the first octet of the header is given
 below:

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 10]

INTERNET-DRAFT TBRPF 1 March 2002

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |E|Vers | BITS |
 +-+-+-+-+-+-+-+-+

 Bits (4 bits):
 Interpreted based on the sense of the 'E' flag.

 Version (3 bits):
 A 3-bit unsigned integer value that identifies the TBRPF protocol
 version; the following values are defined:

 TBRPFVERSION_2 2
 TBRPFVERSION_1 1

 Implementations of this protocol description MUST encode the value
 TBRPFVERSION_3 in the version field. (Implementations MAY provide
 backwards-compatibility for older protocol versions.)

 Mode (1 bit):
 Specifies simple mode (E = 0) or extended mode (E = 1) for the
 current TBRPF packet header as described in the following subsec-
 tions:

6.1.1. Simple-mode Packet Headers (E = 0)

 Senders MAY encode TBRPF packet headers in simple-mode when no header
 extensions are required, such as when the lower-level delivery ser-
 vice provides requisite fields (e.g. length; checksum). Simple-mode
 packet headers are 1-octet in length and *coincide* with the TYPE
 field of the first message in the TBRPF packet body (see below).
 Simple-mode packet headers MAY ONLY be used when
 0 <= TYPE <= 4 for the first message of the packet body. (This is
 usually the case, since the first message is usually a HELLO
 message.) Simple-mode packet headers are specified as follows:

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |0| 3 | TYPE |
 +-+-+-+-+-+-+-+-+

 TYPE (4 bits):
 A 4-bit unsigned integer with value 0 - 15 that encodes the low-
 order 4 bits of the TYPE field in the first element of the TBRPF
 packet body.

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 11]

INTERNET-DRAFT TBRPF 1 March 2002

6.1.2. Extended-mode Packet Headers (E = 1)

 Senders MUST encode TBRPF packet headers in extended-mode when header
 extensions are required, such as when the lower-level delivery ser-
 vice omits requisite fields. Extended-mode packet headers are speci-
 fied as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+- - - - - - - -+- - - - - - - - - - - - - - - -
 |1|0|1|0|R|L|C|F| flag extension| header extensions
 +-+-+-+-+-+-+-+-+- - - - - - - -+- - - - - - - - - - - - - - - -

 Flags (4 bits):
 One bit (F) specifies whether a 1-octet flag extension field fol-
 lows. Three bits (C, L, R) specify which header extension fields
 (if any) follow. Any extension fields specified by these bits
 MUST occur in canonical order (i.e. first F, then C, then L, then
 R) as follows:

 F - Flag extension field included:
 When F = '1', a 1-octet flag extension field immediately follows
 the first octet of the TBRPF packet header. Currently, all bits in
 the flag extension field are RESERVED for future use; senders MAY
 set F = '1' to insert a single octet of padding for alignment pur-
 poses.

 C - Checksum field included:
 If the underlying delivery service provides a checksum facility
 the sender MAY set C = '0' and omit the checksum extension field.
 Otherwise, the sender SHOULD set C = '1' and include a 16-bit
 checksum field beginning in the first octet of the header exten-
 sion. The checksum is calculated as described in [11] and written
 into the checksum field. The checksum is calculated across *all*
 data bytes in the packet header and body, but DOES NOT include a
 pseudo-header of the underlying delivery service. If other header
 extension fields are also included (see below), the sender MUST
 fill them in *before* calculating the checksum.

 Receivers MUST examine the C bit to determine whether the checksum
 field is present. If C = '1', a receiver MUST verify the checksum
 encoded in the 16-bit message checksum field as described in [11]
 regardless of whether the underlying delivery service also per-
 formed a checksum. Receivers MUST discard TBRPF packets that con-
 tain an incorrect checksum.

 L - Length field included:
 If the underlying delivery service provides a length field, the

 sender MAY set L = '0' and omit the length extension field. Other-
 wise, the sender MUST set L = '1' and include a 16-bit unsigned
 integer length field immediately after any previous header fields.

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 12]

INTERNET-DRAFT TBRPF 1 March 2002

 The length includes all header and data bytes and is written into
 the length field in network byte order.

 Receivers MUST examine the L bit to determine whether the length
 field is present. If L = '1', a receiver MUST convert the length
 field to host byte order to determine the length of the TBRPF
 packet, including the TBRPF packet header. Receivers MUST discard
 any TBRPF packet if neither the underlying delivery service nor
 the TBRPF packet header provide packet length.

 R - Router ID (RID) included:
 If the underlying delivery service encodes the sender's RID, the
 sender MAY set R = '0' and omit the RID field. Otherwise, the
 sender MUST set R = '1' and include a 32-bit unsigned integer RID
 immediately after any previous header fields. The RID option pro-
 vides a mechanism for implicit Network-level Address Resolution
 (NARP) as described in [14]. A receiver that detects an RID option
 MUST create a NARP binding between the RID and the source address
 that appears in the network-level header.

6.2. TBRPF Packet Body

 The TBRPF packet body consists of the concatenation of one or more
 TBRPF message(s) (and padding options where necessary) encoded using
 a method similar to the type-length-value (TLV) encoding method
 described in [15]. Messages and padding options within the TBRPF
 packet body are encoded using the following format:

 +-+-+-+-+-+-+-+-+- - - - -
 |OPTIONS| TYPE | VALUE
 +-+-+-+-+-+-+-+-+- - - - -

 TYPE (4 bits):
 A 4-bit identifier with value 0 - 15 that identifies the element.

 VALUE
 Variable-length field. (Format and length depend on TYPE, as
 described in the following sections.)

 OPTIONS
 Four option bits that depend on TYPE.

 As specified in [15], the sequence of elements MUST be processed
 strictly in the order they appear within the TBRPF packet body; a
 receiver must not, for example, scan through the packet body looking
 for a particular type of element prior to processing all preceding
 elements. TBRPF packet elements include *padding options* and *mes-
 sages* as described below.

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 13]

INTERNET-DRAFT TBRPF 1 March 2002

6.2.1. Padding Options (TYPE = 0 thru 1)

 As specified in [15], senders may insert two types of padding options
 where necessary to satisfy alignment requirements for other elements.
 Padding options may occur anywhere within the TBRPF packet body. The
 following two padding options are defined:

 Pad1 option (TYPE = 0)

 +-+-+-+-+-+-+-+-+
 | 0 | 0 |
 +-+-+-+-+-+-+-+-+

 The Pad1 option inserts one octet of padding into the TBRPF packet
 body; the VALUE field is omitted. If more than one octet of padding is
 required, the PadN option (described next) should be used, rather than
 multiple Pad1 options.

 PadN option (TYPE = 1)

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - - - -
 | 0 | 1 | LEN | Zero-valued Octets
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - - - -

 The PadN option inserts two or more octets of padding into the TBRPF
 packet body. The first octet of the VALUE field contains an 8-bit unsigned
 integer length containing a value between 0 - 253 which specifies the number
 of zero-valued octets that immediately follow, yielding a maximum total of
 255 padding octets.

6.2.2. Messages (TYPE = 2 thru 15)

 Message are described as they occur in the TBRPF protocol specifica-
 tion in the following sections, including the message name, type
 code and a detailed message format diagram. Senders MUST encode mes-
 sages as specified by the individual message formats. Receivers MUST
 detect errors in message construction, such as messages with a non-
 integral number of elements or with fewer elements than indicated. In
 all cases, upon detecting an error receivers MUST discontinue pro-
 cessing the current TBRPF packet and discard any unprocessed ele-
 ments.

7. TBRPF Neighbor Discovery

 This section describes the TBRPF Neighbor Discovery (TND) protocol,
 which allows each node to quickly detect the neighboring nodes with
 which the node has a direct, bidirectional (2-WAY) link, and to

 quickly detect the loss of such a link. TND is run separately on
 each interface.

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 14]

INTERNET-DRAFT TBRPF 1 March 2002

 TND is designed to be independent of the TBRPF routing module. The
 interface between these two modules is defined simply by the three
 functions Link_Up(j, I, metric), Link_Down(j, I), and Link_Change(j,
 I, metric), which are called by TND to report a new neighbor, the
 loss of a neighbor, or a change in the link metric on a given inter-
 face.

7.1. HELLO Message Format

 The HELLO message has the following three subtypes:

 - NEIGHBOR REQUEST (TYPE = 2)
 - NEIGHBOR REPLY (TYPE = 3)
 - NEIGHBOR LOST (TYPE = 4)

 Each HELLO subtype has the following format:

 +-+
 | 0 | TYPE | N | Reserved | HSEQ |
 +-+
 | Neighbor RID(1) |
 +-+
 | Neighbor RID(2) |
 +-+
 ~ ... ~
 +-+
 | Neighbor RID(N) |
 +-+

 - The message body contains N 4-octet router IDs.
 - HSEQ is the 8-bit HELLO sequence number.

 A HELLO message is the concatenation of a NEIGHBOR REQUEST message, a
 NEIGHBOR REPLY message, and a NEIGHBOR LOST message, where each of
 the last two messages is omitted if its list of router IDs is empty.
 Thus, a HELLO message always includes a (possibly empty) NEIGHBOR
 REQUEST.

7.2. Neighbor Table

 Each node maintains a neighbor table for each interface, which stores
 state information for each neighbor that has recently been heard on
 that interface. The entry for neighbor j contains the following vari-
 ables:

 nbr_rid(j) - The Router ID of node j.

 nbr_if_addr(j) - The interface IP address of node j.

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 15]

INTERNET-DRAFT TBRPF 1 March 2002

 nbr_level(j) - The current level (or status) of the link to node
 j, which can be LOST, 1-WAY, or 2-WAY.

 nbr_life(j) - The amount of time (in seconds) remaining before
 nbr_level(j) must be changed to LOST if no further HELLO message
 from node j is received. Set to NBR_HOLD_TIME whenever a HELLO is
 received from node j.

 nbr_hseq(j) - The last value of HSEQ received from node j. Used
 to determine the number of HELLOs have been missed.

 nbr_count(j) - The number of times a NEIGHBOR REQUEST/UP/LOST mes-
 sage has been sent for node j since nbr_level(j) has changed.

 hello_history(j) - A list of the sequence numbers of the last
 HELLO_ACQUIRE_WINDOW HELLO messages received from node j.

 nbr_metric(j) - An optional measure of the quality of the link to
 node j.

 The table entry for a neighbor j may be deleted if no HELLO has been
 received from node j within the last 2*NBR_HOLD_TIME seconds. (It is
 kept while the NEIGHBOR LOST for node j is being transmitted.) The
 absence of an entry for a given node j is equivalent to an entry with
 nbr_level(j) = LOST and hello_history(j) = NULL.

 The three possible values of nbr_level(j) at node i have the follow-
 ing meaning:

 LOST
 A neighbor is declared to be LOST if no HELLO message has been
 received from node j within the last NBR_HOLD_TIME seconds, and
 remains LOST until HELLO_ACQUIRE_COUNT of the last
 HELLO_ACQUIRE_WINDOW HELLOs from node j are received.

 1-WAY
 HELLO_ACQUIRE_COUNT of the last HELLO_ACQUIRE_WINDOW HELLOs from
 node j have been received, but the link is not 2-WAY.

 2-WAY
 Node i has received from node j either a NEIGHBOR REQUEST or a
 NEIGHBOR REPLY from node j, and no event has since occurred to
 change this status. A link that is 2-WAY is considered to be "up".

7.3. Sending HELLO Messages

 Each node sends a HELLO message periodically every HELLO_INTERVAL

 seconds, with a random jitter selected from the interval [0,
 MAX_JITTER]. Each HELLO message always includes a NEIGHBOR REQUEST

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 16]

INTERNET-DRAFT TBRPF 1 March 2002

 message, even if its router ID list is empty. The NEIGHBOR REQUEST
 message includes the sequence number HSEQ, which is incremented each
 time a HELLO is sent. The HELLO message also includes a NEIGHBOR
 REPLY message if its router ID list is nonempty, and a NEIGHBOR LOST
 message if its router ID list is nonempty. The contents of these
 three messages are determined by the following steps at node i:

 1. For each node j such that nbr_level(j) = LOST and nbr_count(j) >
 0, include node j in the NEIGHBOR LOST message and decrement
 nbr_count(j).

 2. For each node j such that nbr_level(j) = 1-WAY and nbr_count(j) >
 0, include node j in the NEIGHBOR REQUEST message and decrement
 nbr_count(j).

 3. For each node j such that nbr_level(j) = 2-WAY and nbr_count(j) >
 0, include node j in the NEIGHBOR REPLY message and decrement
 nbr_count(j).

7.4. Processing a Received HELLO Message

 Upon receiving a HELLO message with sequence number HSEQ from node j
 on interface I, node i performs the following steps:

 1. If the neighbor table for interface I does not contain an entry
 for node j, create one with nbr_rid(j) equal to the Router ID of
 node j, nbr_if_addr(j) equal to the interface address from which
 the message was sent, nbr_level(j) = LOST (temporarily), and
 nbr_count(j) = 0. Update hello_history(j) to reflect the received
 HELLO message.

 2. If nbr_level(j) = LOST and hello_history(j) indicates that
 HELLO_ACQUIRE_COUNT of the last HELLO_ACQUIRE_WINDOW HELLO mes-
 sages from node j have been received:

 a. If node i does not appear in the NEIGHBOR REQUEST list, set
 nbr_level(j) = 1-WAY and nbr_count(j) = NBR_HOLD_COUNT (a
 NEIGHBOR REQUEST will be sent).

 b. If node i appears in the NEIGHBOR REQUEST list, set
 nbr_level(j) = 2-WAY and nbr_count(j) = NBR_HOLD_COUNT (a
 NEIGHBOR REPLY will be sent). Call Link_Up(j, I, metric).

 3. Else if nbr_level(j) = 1-WAY:

 a. If node i appears in the NEIGHBOR REQUEST list, then set
 nbr_level(j) = 2-WAY, nbr_count(j) = NBR_HOLD_COUNT (a NEIGHBOR

 REPLY will be sent). Call Link_Up(j, I, metric).

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 17]

INTERNET-DRAFT TBRPF 1 March 2002

 b. Else if node i appears in the NEIGHBOR REPLY list, then set
 nbr_level(j) = 2-WAY and nbr_count(j) = 0. Call Link_Up(j, I,
 metric).

 c. Else if HSEQ - nbr_hseq(j) > NBR_HOLD_COUNT, then set
 nbr_level(j) = LOST and nbr_count(j) = NBR_HOLD_COUNT (a NEIGH-
 BOR LOST will be sent).

 4. Else if nbr_level(j) = 2-WAY:

 a. If node i appears in the NEIGHBOR LOST list, set nbr_level(j) =
 LOST and nbr_count(j) = 0. Call Link_Down(j).

 b. Else if HSEQ - nbr_hseq(j) > NBR_HOLD_COUNT, set nbr_level(j) =
 LOST and nbr_count(j) = NBR_HOLD_COUNT (a NEIGHBOR LOST will be
 sent).

 c. Else if node i appears in the NEIGHBOR REQUEST list and
 nbr_count(j) = 0, then set nbr_count(j) = NBR_HOLD_COUNT (a
 NEIGHBOR REPLY will be sent).

 5. Set nbr_life(j) = NBR_HOLD_TIME and nbr_hseq(j) = HSEQ.

7.5. Expiration of Timer nbr_life

 Upon expiration of the timer nbr_life(j), node i performs the follow-
 ing step:

 If nbr_level(j) = 1-WAY or 2-WAY, set nbr_level(j) = LOST and
 nbr_count(j) = NBR_HOLD_COUNT (a NEIGHBOR LOST will be sent).
 Call Link_Down(j).

7.6. Link-Layer Failure Indication

 Some link-layer protocols (e.g., IEEE 802.11) provide an indication
 that the link to a particular neighbor has failed, e.g., after
 attempting a maximum number of retransmissions. If such an indication
 is provided by the link layer, then node i SHOULD perform the follow-
 ing step upon receipt of a link-layer failure indication for the link
 to node j:

 If nbr_level(j) = 2-WAY, set nbr_level(j) = LOST and nbr_count(j)
 = NBR_HOLD_COUNT (a NEIGHBOR LOST will be sent). Call
 Link_Down(j).

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 18]

INTERNET-DRAFT TBRPF 1 March 2002

7.7. Optional Link Metrics

 Each node MAY maintain and update one or more link metrics to each
 neighbor j for each interface I, representing the quality of the
 link, e.g., signal strength, number of HELLOs received over some time
 interval, reliability, stability, bandwidth, etc. Each node MUST
 declare a neighbor to be LOST if either NBR_HOLD_COUNT HELLOs are
 missed or if no HELLO is received within NBR_HOLD_TIME seconds; how-
 ever, a node MAY also declare a neighbor to be LOST based on a link
 metric being above or below some threshold. Each node MUST receive at
 least HELLO_ACQUIRE_COUNT of the last HELLO_ACQUIRE_WINDOW HELLOs
 from a neighbor before declaring the neighbor 1-WAY or 2-WAY; how-
 ever, a node MAY require an additional condition based on a link
 metric being above or below some threshold, before declaring the
 neighbor 1-WAY or 2-WAY. This document does not specify any particu-
 lar link metric, but an implementation of TBRPF that uses such
 metrics is considered to be compliant with this draft.

 If USE_METRICS = 1, one of the link metrics computed by TND, denoted
 nbr_metric(j,I) for neighbor j and interface I, is reported to the
 routing module via the functions Link_Up(j,I,metric) and
 Link_Change(j,I,metric). The latter function is called whenever
 nbr_metric(j,I) changes significantly. As described in Section 8, if
 USE_METRICS = 1, this link metric is advertised in topology updates
 and used for computing shortest paths.

7.8. Configurable Parameters

 This section lists the parameters used in the description of the
 neighbor discovery protocol, and their proposed default values.

 HELLO_INTERVAL (1 second)

 MAX_JITTER (0.1 second)

 NBR_HOLD_TIME (3 seconds)

 NBR_HOLD_COUNT (3)

 HELLO_ACQUIRE_COUNT (2)

 HELLO_ACQUIRE_WINDOW (3)

8. TBRPF Routing Module

 This section describes the TBRPF routing module (which performs

 topology discovery and route computation). The interface of this
 module with the neighbor discovery module (TND) is defined by the

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 19]

INTERNET-DRAFT TBRPF 1 March 2002

 three functions Link_Up(), Link_Down(), and Link_Change(), which are
 called by TND. Therefore, it is possible to use another neighbor
 discovery mechanism in place of TND, e.g., one that is provided by
 the link layer.

8.1. Conceptual Data Structures

 In addition to the information required by the neighbor discovery
 protocol, each node running TBRPF contains a topology table TT, which
 stores information for each known link and node in the network. The
 following information is stored at node i for each known link (u,v)
 and node u:

 T(u,v) - Equal to 1 if (u,v) is in node i's source tree T, and 0
 otherwise. The previous source tree is also maintained as old_T.

 RN(u) - Equal to 1 if u is in node i's reportable node set RN, and
 0 otherwise. The previous reportable node set is also maintained
 as old_RN.

 RT(u,v) - Equal to 1 if (u,v) is in node i's reportable subtree
 RT, and 0 otherwise. Since RT is defined as the set of links (u,v)
 in T such that u is in RN, this variable need not be maintained
 explicitly.

 TG(u,v) = Equal to 1 if (u,v) is in node i's topology graph TG,
 and 0 otherwise.

 N_I - The set of 2-way neighbors for interface I.

 N - The set of 2-way neighbors of node i, equal to the union of
 N_I for all interfaces.

 r(u,v) - The list of neighbors that are reporting link (u,v) in
 their reportable subtree RT. The set of links (u,v) reported by
 neighbor j is denoted RT_j.

 r(u) - The list of neighbors that are reporting node u in their
 reportable node set RN.

 p(u) - The current parent for node u, equal to the next node on
 the shortest path to u.

 nbr_if(j) - The ID of the preferred interface for forwarding pack-
 ets to neighbor j.

 pred(u) - The node preceding node u in node i's source tree T.
 Equal to NULL if node u is not reachable.

 pred(j,u) - The node preceding node u in the subtree RT_j reported

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 20]

INTERNET-DRAFT TBRPF 1 March 2002

 by neighbor j.

 d(u) - The length of the shortest path to node u. If USE_METRICS =
 0, d(u) is the number of hops to node u.

 reported(u,v) - Equal to 1 if link (u,v) in TG is reported by
 p(u).

 tg_expire(u) - Expiration time for links (u,v) in TG.

 rt_expire(j,u) - Expiration time for links (u,v) in RT_j.

 nr_expire(u,v) - Expiration time for a link (u,v) in TG such that
 reported(u,v) = 0. Such non-reported links can be used temporarily
 during rerouting and usually have an earlier expiration time than
 tg_expire(u).

 The following metric variables are used only if USE_METRICS = 1:

 if_metric(j,I) - The metric (or cost) for reaching neighbor j
 through interface I.

 metric(j,u,v) - The metric for link (u,v) reported by neighbor j.

 metric(u,v) - The metric for link (u,v) in TG. For a neighbor j,
 metric(i,j) is the minimum of if_metric(j,I) over all interfaces I
 such that j is in N_I.

 The routing table consists of a list of tuples of the form (rt_dest,
 rt_next, rt_dist, rt_if_id), where rt_dest is the destination IP
 address or prefix, rt_next is the interface address of the next hop
 of the route, rt_dist is the length of the route, and rt_if_id is the
 ID of the local interface through which the next hop can be reached.

 Each node also maintains three tables that describe associated IP
 addresses or prefixes: the "interface table", which associates
 interface IP addresses with router IDs, the "host table", which asso-
 ciates host IP addresses with router IDs, and the "network prefix
 table", which associates network prefixes with router IDs.

 The "interface table" consists of tuples of the form (if_addr,
 if_rid, if_expire), where if_addr is an interface IP address associ-
 ated with the router with RID = if_rid, and if_expire is the time at
 which the tuple expires and MUST be removed. The interface table at
 a node does NOT contain an entry in which if_addr equals the node's
 own RID; thus, a node does not advertise its own RID as an associated
 interface.

 The "host table" consists of tuples of the form (h_addr, h_rid,

 h_expire), where h_addr is a host IP address associated with the
 router with RID = h_rid, and h_expire is the time at which the tuple

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 21]

INTERNET-DRAFT TBRPF 1 March 2002

 expires and MUST be removed.

 The "network prefix table" consists of tuples of the form
 (net_prefix, net_length, net_rid, net_expire), where net_prefix and
 net_length describe a network prefix associated with the router with
 RID = net_rid, and net_expire is the time at which the tuple expires
 and MUST be removed. A MANET may be configured as a "stub" network,
 in which case one or more gateway routers may announce a default pre-
 fix such that net_prefix = net_length = 0.

 Two copies of each table are kept: an "old" copy that was last
 reported to neighbors, and the current copy that is updated when
 association messages are received. We note that the "interface
 table" is equivalent to the "interface association information base"
 of OLSR, and that the "host table" and "network prefix table", if
 combined, would be equivalent to the "host and network association
 information base" of OLSR [18].

8.2. TOPOLOGY UPDATE Message Format

 The TOPOLOGY UPDATE message has the following format:

 +-+
 | 0 |M| TYPE | n | NRL | NRNL |
 +-+
 | Router ID of u |
 +-+
 | Router ID of v_1 |
 +-+
 ~ ... ~
 +-+
 | Router ID of v_n |
 +-+
 | metric 1 | metric 2 | ... |
 +-+
 | ... |
 +-+

 The message body contains the N+1 router IDs for nodes u,
 v_1,...,v_n, which represent the links (u,v_1),..., (u,v_n). The
 first NRL of the v_k are "reported leaf nodes", the next NRNL of the
 v_k are "non-reported leaf nodes", and the last n - (NRL+NRNL) of the
 v_k are "non-reported non-leaf nodes". (The meanings of these terms
 are defined in the pseudocode.) The M bit indicates whether or not
 link metrics are included in the message. If M = 1, then a 1-octet
 metric is included for each of the links (u,v_1),..., (u,v_n), fol-
 lowing the last router ID.

 The TOPOLOGY UPDATE message has the following three subtypes:

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 22]

INTERNET-DRAFT TBRPF 1 March 2002

 FULL (TYPE = 5)
 A FULL update (FULL, n, NRL, NRNL, u, v_1,..., v_n) reports that
 the links (u,v_1),..., (u,v_n) belong to the sending router's
 reportable subtree RT, and that RT contains no other links with
 tail u.

 ADD (TYPE = 6)
 An ADD update (ADD, n, NRL, NRNL, u, v_1,..., v_n) reports that
 the links (u,v_1),..., (u,v_n) have been added to the sending
 router's reportable subtree RT.

 DELETE (TYPE = 7)
 A DELETE update (DELETE, n, NRL, NRNL, u, v_1,..., v_n) reports
 that the links (u,v_1),..., (u,v_n) have been deleted from the
 sending router's reportable subtree RT.

8.3. Interface, Host, and Network Prefix Association Message Formats

 The INTERFACE ASSOCIATION (TYPE = 8) and HOST ASSOCIATION (TYPE = 9)
 messages have the following format:

 +-+
 |ST | 0 | TYPE | Reserved | N |
 +-+
 | Router ID |
 +-+
 | IP Address |
 +-+
 | IP Address |
 +-+
 | ... |
 +-+

 The message body contains the router ID of the originating node, and
 N IP addresses of interfaces (TYPE = 8) or hosts (TYPE = 9) that are
 associated with the router ID. The ST field is defined below.

 The NETWORK PREFIX ASSOCIATION message (TYPE = 10) has the following
 format:

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 23]

INTERNET-DRAFT TBRPF 1 March 2002

 +-+
 |ST | 0 | TYPE | Reserved | N |
 +-+
 | Router ID |
 +-+
 | PrefixLength | Prefix byte 1 | Prefix byte 2 | ... |
 +-+
 | ... | PrefixLength | Prefix byte 1 | Prefix byte 2 |
 +-+
 | ... |
 +-+

 The message body contains the router ID of the originating node, and
 N network prefixes, each specified by a 1-octet prefix length fol-
 lowed immediately by the prefix, using the minimum number of whole
 octets required. To minimize overhead, the prefix lengths and pre-
 fixes are NOT aligned along word boundaries.

 The INTERFACE ASSOCIATION, HOST ASSOCIATION, and NETWORK PREFIX ASSO-
 CIATION messages each have the following three subtypes (similar to
 those for the TOPOLOGY UPDATE message):

 FULL (ST = 0)
 Indicates that this is a FULL update that includes all interface
 addresses, host addresses, or network prefixes associated with the
 given router ID.

 ADD (ST = 1)
 Indicates that the included IP addresses or network prefixes are
 associated with the router ID, but may not include all such IP
 addresses or network prefixes.

 DELETE (ST = 2)
 Indicates that the included IP addresses or network prefixes are
 no longer associated with the router ID.

8.4. TBRPF Operation

 This section describes the operation of TBRPF topology discovery and
 route computation, with the aid of the pseudocode given in the next
 section.

 The procedure Update_All() is called periodically every
 MIN_UPDATE_INTERVAL seconds, which is typically equal to
 HELLO_INTERVAL. Update_All() first generates a (different) HELLO
 message for each interface.

 If USE_METRICS = 1 and it is time for a periodic update, link costs
 and metrics are then updated as described in Update_Link_Costs().

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 24]

INTERNET-DRAFT TBRPF 1 March 2002

 Link metrics are updated only for periodic updates, to avoid having
 to report changes to link metrics in differential updates (thus
 reducing overhead). If a given neighbor j can be reached through
 more than one interface, metric(i,j) is set to the minimum metric
 over all interfaces.

 Update_Routes() is then called, which updates T, TG, and the routing
 table. Update_RN() is then called to update the reportable node set
 RN. (Recall that the reportable subtree RT is defined to be the set
 of links (u,v) in T such that u is in RN.) If it is time for a
 periodic update, Generate_Periodic_Update() is called; otherwise,
 Generate_Diff_Update() is called, which generates differential topol-
 ogy updates if RT has changed.

 Generate_Association_Messages() is then called to generate INTERFACE
 ASSOCIATION, HOST ASSOCIATION, and NETWORK PREFIX ASSOCIATION mes-
 sages. All addresses or prefixes in the interface table, host table,
 and network prefix table are reported periodically every IA_INTERVAL,
 HA_INTERVAL, and NPA_INTERVAL seconds, respectively. In addition,
 differential changes to the tables are reported every
 MIN_UPDATE_INTERVAL seconds if it is not time for a periodic update
 (similar to differential topology updates).

 The generated messages are then sent on each interface. Whenever pos-
 sible, these messages are combined into the same packet, in order to
 minimize the number of control packets transmitted. Although a dif-
 ferent HELLO message is sent on each interface, identical copies of
 each other message are sent on all interfaces.

 When a packet containing TOPOLOGY UPDATE messages is received,
 Process_Updates() is called to update the topology table TT, in par-
 ticular to update TG and the reporting neighbor lists r(u) and
 r(u,v). If any link in T has been deleted from TG, then
 Update_Routes() is called to provide immediate rerouting.

 When a packet containing one or more association messages is
 received, Process_Association_Messages() is called, which updates the
 interface table, host table, and/or network prefix table.

 Link_Up(j, I) adds node j to the neighbor lists N_I (for interface I)
 and to N if it does not already belong, sets nbr_if(j) to I if it is
 NULL, and adds the link (i,j) to TG if it does not already belong,
 which may result in a change to the source tree T when
 Update_Routes() is next called.

 Link_Down(j, I) removes node j from N_I, and also from N if j does
 not belong to N_J for any interface J. If j is removed from N, then
 link (i,j) is removed from TG and Update_Routes() is called to pro-

 vide immediate rerouting. If the link loss is the result of a link-
 layer failure indication, a differential update is generated immedi-
 ately.

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 25]

INTERNET-DRAFT TBRPF 1 March 2002

 Each node is required to report its reportable subtree RT to neigh-
 bors. However, each node (independently of the other nodes) MAY
 report additional links, e.g., to provide increased robustness in
 highly mobile networks. More precisely, a node may compute any sub-
 graph H of TG that contains T. It would then report the "reportable
 subgraph" RH which consists of links (u,v) of H such that u is in RN.
 RH is then be reported instead of RT to all neighbors, in periodic
 and differential updates. Additional details for this option will be
 described in a future version of this draft.

 Non-relay nodes are implemented simply by not generating or transmit-
 ting any TOPOLOGY UPDATE messages or NETWORK PREFIX ASSOCIATION mes-
 sages. (Only HELLO, HOST ASSOCIATION, and INTERFACE ASSOCIATION mes-
 sages are transmitted.) Therefore, the following functions can be
 omitted in non-relay nodes: Update_RN(), Generate_Periodic_Update(),
 and Generate_Diff_Update().

8.5. Pseudocode

 The following pseudocode describes the procedures of the TBRPF rout-
 ing module, as performed by node i.

 Update_All() {
 // Called periodically every MIN_UPDATE_INTERVAL seconds
 For each interface I, set msg_list(I) = empty.
 For each interface I, generate a HELLO message for
 interface I and add it to msg_list(I).
 Expire_Links().
 If (USE_METRICS = 1 AND current_time >= next_periodic)
 Update_Link_Costs().
 Update_Routes().
 If (REPORT_FULL_TREE = 0) Update_RN().
 Else Update_RN_Simple().
 If (current_time >= next_periodic) {
 Generate_Periodic_Update().
 Set next_periodic = current_time + PER_UPDATE_INTERVAL.}
 Else Generate_Diff_Update().
 Generate_Association_Messages().
 For each interface I, send msg_list(I) on interface I.
 Set old_T = T and old_RN = RN.
 }

 Update_Link_Costs() {
 // Called only when it is time to send a periodic update,
 // and only if USE_METRICS = 1.
 // Update metrics of non-adjacent links.
 For each link (u,v) in TT s.t. u != i {

 For each neighbor j in r(u,v) {
 Set metric(j,u,v) = new_metric(j,u,v).
 If (j = p(u)) {

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 26]

INTERNET-DRAFT TBRPF 1 March 2002

 // Set metric(u,v) to that reported by p(u).
 Set metric(u,v) = metric(j,u,v).
 // Set link cost as a function of metric(u,v).
 Set c(u,v) = 1 + METRIC_COEFF * metric(u,v). }}
 }
 // Update metrics of adjacent links.
 For each neighbor j in N {
 Set nbr_if(j) to the ID of an interface I such that
 j is in N_I and if_metric(j,I) is minimum.
 Set metric(i,j) = if_metric(j,I), where I = nbr_if(j).
 Set c(i,j) = 1 + METRIC_COEFF * metric(i,j). }}
 }
 }

 Update_Routes() {
 For each node v in TT {
 Set d(v) = INFINITY, pred(v) = NULL.
 Set old_p(v) = p(v), p(v) = NULL. }
 Set d(i) = 0, p(i) = i, pred(i) = i.
 Set S = {i} (labeled nodes).
 For each node j in N {
 Set d(j) = c(i,j), pred(j) = i, p(j) = j. }
 // If USE_METRICS = 0, then all link costs are 1.
 While there exists a node u in TT - S s.t. d(u) < INFINITY {
 Let u be a node in TT - S that minimizes d(u).
 // A heap should be used to find u efficiently.
 Add u to S.
 If p(u) != old_p(u) { // parent has changed
 For each link (u,v) in TG {
 If (reported(u,v) = 1) {
 Set reported(u,v) = 0. // Mark old links as not reported.
 Set nr_expire(u,v) = current_time + PER_UPDATE_INTERVAL.}}
 If (p(u) is in r(u)) { // p(u) is reporting u
 Set tg_expire(u) = rt_expire(p(u),u).
 If (p(u) = u)
 // If u is a neighbor, remove old links.
 Remove all links (u,v) from TG. // Remove old links.
 For each link (u,v) such that p(u) is in r(u,v) {
 Add (u,v) to TG. // Add new links reported by p(u).
 Set reported(u,v) = 1. // (u,v) is reported by p(u)
 If (USE_METRICS = 1) {
 // Set link metric and cost based on metric
 // reported by p(u).
 Set metric(u,v) = metric(p(u),u,v).
 Set c(u,v) = 1 + METRIC_COEFF * metric(u,v). }}}
 }
 For each node v s.t. (u,v) is in TG {
 // Penalize links (u,v) not reported by p(u).

 If (reported(u,v) = 0)
 Set cost = c(u,v) + NON_REPORT_PENALTY.
 // Penalize (u,v) if u is a neighbor and is not reporting v.

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 27]

INTERNET-DRAFT TBRPF 1 March 2002

 Else if (p(u) = u AND u is not in r(v))
 Set cost = c(u,v) + NON_REPORT_PENALTY.
 // Penalize (u,v) if it is not in old_T and u is not a neighbor
 If ((u,v) is not in old_T AND p(u) != u)
 Set cost = cost + NON_TREE_PENALTY.
 If (d(u) + cost < d(v) OR
 [d(u) + cost = d(v) AND RID(u) < RID(pred(v))]) {
 Set d(v) = d(u) + c(u,v).
 Set pred(v) = u.
 Set p(v) = p(u). }
 }
 }
 // Update source tree T.
 Set T = empty set.
 For each node u in TT - i, add link (pred(u), u) to T.
 Update_Routing_Table().
 }

 Update_Routing_Table() {
 Remove all tuples from the routing table.
 For each node u in TT - i such that p(u) != NULL {
 Add the tuple (rt_dest, rt_next, rt_dist, rt_if_id)
 to the routing table, where:
 rt_dest = RID(u),
 rt_if_id = nbr_if(p(u)),
 rt_next = nbr_if_addr(p(u)), obtained from the
 neighbor table for rt_if_id,
 rt_dist = d(u).
 }
 For each tuple (if_addr, if_rid, if_expire)
 in the interface table{
 If there exists a routing table entry
 (rt_dest, rt_next, rt_dist, rt_if_id)
 such that rt_dest = if_rid, add the tuple
 (if_addr, rt_next, rt_dist, rt_if_id) to the routing table.
 }
 For each tuple (h_addr, h_rid, h_expire)
 in the host table{
 If there exists a routing table entry
 (rt_dest, rt_next, rt_dist, rt_if_id)
 such that rt_dest = h_rid, add the tuple
 (h_addr, rt_next, rt_dist, rt_if_id) to the routing table,
 unless an entry already exists with the same value for
 h_addr and a smaller value for rt_dist.
 }
 For each tuple (net_prefix, net_length, net_rid, net_expire)
 in the network prefix table {
 If there exists a routing table entry

 (rt_dest, rt_next, rt_dist, rt_if_id)
 such that rt_dest = net_rid, add the tuple
 (net_prefix/net_length, rt_next, rt_dist, rt_if_id)

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 28]

INTERNET-DRAFT TBRPF 1 March 2002

 to the routing table, unless an entry already exists with
 the same value for net_prefix/net_length and a smaller value
 for rt_dist.
 }
 }

 Update_RN() {
 // RN is the set of nodes reported by node i.
 Set RN = empty.
 // A neighbor j is in RN if some other neighbor s
 // would select node i as p(j).
 For each neighbor s in N s.t. j is in r(s) {
 // Initialize to run Dijkstra for source s, for 2 hops
 For each node j in N+{i},
 Set d(j) = INFINITY, par(j) = NULL.
 Set d(s) = 0, par(s) = s.
 For each link (s,j) s.t. s is in r(s,j) and j is in N+i {
 Set d(j) = 1, par(j) = j.
 For each link (j,k) s.t. j is in r(j,k) and k in in N {
 Set cost = 1.
 If (1 + cost < d(k) OR
 (1 + cost = d(k) AND RID(j) < RID(par(k)))) {
 Set d(k) = 1 + cost, par(k) = j. }}}
 // End of Dijkstra for source s
 For each neighbor j in N {
 // Add neighbor j to RN if its parent is i.
 If par(j) = i, add j to RN. }
 } // End of selection of neighbors in RN
 Add i to RN. // Node i is always in RN
 // A non-neighbor node u is in RN if p(u) is in RN.
 For each node u in TT - i,
 If p(u) is in RN, add u to RN.
 }

 Update_RN_Simple() {
 // Called only if REPORT_FULL_TREE = 1. Includes all reachable
 // nodes u in RN, so that the full source tree T is reported.
 Set RN = empty.
 Add i to RN.
 For each node u in TT - i,
 If pred(u) is not NULL, add u to RN.
 }

 Generate_Periodic_Update() {
 // Generates updates describing the reportable subtree RT.
 For each node u in RN that is not a leaf of T,
 add the update (FULL, n, NRL, NRNL, u, v_1,..., v_n)
 to msg_list(I) for each I, where:

 (a) v_1,..., v_n are the nodes v such that (u,v) is in T,
 the first NRL of these are nodes in RN that are leaves of T,
 the next NRNL of these are nodes in RN that are not leaves

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 29]

INTERNET-DRAFT TBRPF 1 March 2002

 of T, and the last n-(NRL+NRNL) of these are not in RN.
 (b) If USE_METRICS = 1, then the METRICS bit is set to 1 and the
 link metrics metric(u,v_1),..., metric(u,v_n) are included
 in the message.
 }

 Generate_Diff_Update() {
 // Generates updates reporting changes to the reportable
 // subtree RT.
 For each node u in RN {
 If u is not in old_RN and is not a leaf of T {
 // u was added to RN
 Add the update (FULL, n, NRL, NRNL, u, v_1,..., v_n)
 to msg_list(I) for each I, where:
 (a) v_1,..., v_n, NRL, and NRNL are defined as above for
 periodic updates.
 (b) If USE_METRICS = 1, then the METRICS bit is set to 1 and
 the link metrics metric(u,v_1),..., metric(u,v_n) are
 included in the message.
 }
 Else if u is in old_RN and is not a leaf of T {
 Let v_1,..., v_n be the nodes v s.t. (u,v) is in T AND {
 [(u,v) is not in old_T] OR
 [v is in RN - old_RN AND v is a leaf] OR
 [v is in old_RN - RN] }
 If this set of nodes is nonempty, add the update (ADD, n, NRL,
 NRNL, u, v_1,..., v_n) to msg_list(I) for each I, where:
 (a) NRL and NRNL are defined as above.
 (b) If USE_METRICS = 1, then the METRICS bit is set to 1 and
 the link metrics metric(u,v_1),..., metric(u,v_n) are
 included in the message.
 }
 If (u is in old_RN) {
 Let v_1,..., v_n be the nodes v s.t. (u,v) is in old_T - TG
 AND [pred(v) is NULL or is not in RN].
 // If pred(v) is in RN, the delete is implied by an add.
 If this set of nodes is nonempty, add the update
 (DELETE, n, u, v_1,..., v_n) to msg_list(I) for each I.
 }
 }
 }

 Process_Updates(j, msg_list) {
 // Processes a list of update messages from node j.
 Set update_routes_flag = 0.
 // Flag will be set to 1 if a link in T is deleted.
 For each update = (subtype, n, NRL, NRNL, u, v_1,..., v_n)
 in msg_list {

 Create an entry for u in TT if it does not exist.
 Create an entry for u in TT_j if it does not exist.
 If (subtype = FULL)

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 30]

INTERNET-DRAFT TBRPF 1 March 2002

 Process_Full_Update(j, update).
 If (subtype = ADD)
 Process_Add_Update(j, update).
 If (subtype = DELETE)
 Process_Delete_Update(j, update).
 // Set update_routes_flag.
 If update_routes_flag = 0 {
 For each link (u,v) in TT(u) {
 If (u,v) is in T but not in TG {
 Set update_routes_flag = 1.
 Break. }}}
 } // End for each update
 If (update_routes_flag = 1) Update_Routes().
 }

 Process_Full_Update(j, update) {
 // update = (FULL, n, NRL, NRNL, u, v_1,..., v_n)
 Add u to RN.
 Set rt_expire(j,u) = current_time + TOP_HOLD_TIME.
 For each link (u,v) s.t. j is in r(u,v) {
 Remove j from r(u,v).
 If pred(j,v) = u, set pred(j,v) = NULL. }
 If (j = p(u) OR p(u) = NULL) {
 Set tg_expire(u) = current_time + TOP_HOLD_TIME.
 For each v s.t. (u,v) is in TG,
 // Delete old reported links before adding new ones.
 If reported(u,v) = 1, remove (u,v) from TG.
 }
 Process_Add_Update(j, update).
 }

 Process_Add_Update(j, update) {
 // update = (subtype, ADD, n, NRL, NRNL, u, v_1,..., v_n)
 For m = 1,..., n {
 Let v = v_m.
 Create an entry for v in TT if it does not exist.
 Create an entry for v in TT_j if it does not exist.
 Add j to r(u,v).
 If (j = p(u) OR p(u) = NULL) {
 Add (u,v) to TG.
 If (USE_METRICS = 1 and the METRICS bit is 1)
 Set new_metric(u,v) to the m-th metric in the update.
 Set reported(u,v) = 1.
 }
 // Process implicit delete
 Set w = pred(j,v).
 Set pred(j,v) = u.
 If (w != NULL AND w != u) {

 Remove j from r(w,v).
 If (j = p(w)) remove (w,v) from TG.
 }

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 31]

INTERNET-DRAFT TBRPF 1 March 2002

 If (m <= NRL) { // v is a reported leaf
 Set leaf_update = (FULL, 0, 0, 0, u)
 Process_Full_Update(j, leaf_update).
 }
 If (m > NRL + NRNL) { // v is not reported by j
 Remove j from r(v).
 Set rt_expire(j,v) = 0.
 For each node w s.t. j is in r(v,w)
 Remove j from r(v,w).
 If (j = p(v))
 For each node w s.t. (v,w) is in TG {
 Set reported(v,w) = 0. // (v,w) is not reported by p(v)
 Set nr_expire(u,v) = current_time + PER_UPDATE_INTERVAL.}
 }
 }
 }

 Process_Delete_Update(j, update) {
 // update = (DELETE, n, NRL, NRNL, u, v_1,..., v_n)
 For m = 1,..., n {
 Let v = v_m.
 Remove j from r(u,v).
 If pred(j,v) = u, set pred(j,v) = NULL.
 If (j = p(u)) remove (u,v) from TG.
 }
 }

 Link_Up(j,I,metric) {
 // Called when a link to j is discovered on interface I
 Add j to N_I.
 Set if_metric(j,I) = metric.
 If j is not in N {
 Add j to N.
 Set nbr_if(j) = I.
 Add (i,j) to TG.
 Set report(i,j) = 1.
 }
 }

 Link_Change(j,I,metric) {
 // Called when the metric to j via I changes
 Set if_metric(j,I) = metric.
 }

 Link_Down(j,I) {
 // Called when the link to neighbor j is lost on interface I
 If j is in N_I { remove j from N_I.
 If j is in N but does not belong to N_J for any interface J {

 Remove j from N.
 Remove (i,j) from TG.
 If lost link is due to link-layer failure indication {

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 32]

INTERNET-DRAFT TBRPF 1 March 2002

 Update_Routes().
 Update_RN().
 Set msg_list = empty.
 Generate_Diff_Update().
 Send msg_list on all interfaces.
 Set old_T = T and old_RN = RN.
 }
 Else Update_Routes().
 }
 }

 Expire_Links() {
 For each node u in TT - i {
 If (tg_expire(u) < current_time) {
 For each v s.t. (u,v) is in TG,
 Remove (u,v) from TG. }
 Else for each v s.t. (u,v) is in TG {
 If (report(u,v) = 0 AND nr_expire(u,v) < current_time)
 Remove (u,v) from TG. }
 For each node j in r(u) {
 If (rt_expire(j,u) < current_time) {
 Remove j from r(u).
 For each link (u,v) s.t. j is in r(u,v)
 Remove j from r(u,v). }}
 }
 }

 Generate_Association_Messages() {
 Generate_Interface_Association_Messages().
 Generate_Host_Association_Messages().
 Generate_Network_Prefix_Association_Messages().
 }

 Generate_Interface_Association_Messages() {
 If (current_time > next_ia_time) {
 next_ia_time = current_time + IA_INTERVAl.
 For each node u in RN {
 Let addr_1,..., addr_n be the interface IP addresses
 associated with RID u in the current interface table.
 If this list is nonempty, add the INTERFACE ASSOCIATION
 message (FULL, n, u, addr_1,..., addr_n) to msg_list(I)
 for each I. }
 }
 Else {
 For each node u in RN {
 Add the INTERFACE ASSOCIATION message
 (ADD, n, u, addr_1,..., addr_n) to msg_list(I) for each I,
 where addr_1,..., addr_n are the interface IP addresses

 that are associated with RID u in the current interface
 table but not in the old interface table.

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 33]

INTERNET-DRAFT TBRPF 1 March 2002

 Add the INTERFACE ASSOCIATION message
 (DELETE, n, u, addr_1,..., addr_n) to msg_list(I) for each I,
 where addr_1,..., addr_n are the interface IP addresses
 that are associated with RID u in the old interface
 table but not in the current interface table. }
 }
 }

 Generate_Host_Association_Messages() {
 If (current_time > next_ha_time) {
 next_ha_time = current_time + HA_INTERVAl.
 For each node u in RN {
 Let addr_1,..., addr_n be the host IP addresses
 associated with RID u in the current host table.
 If this list is nonempty, add the HOST ASSOCIATION message
 (FULL, n, u, addr_1,..., addr_n) to msg_list(I) for each I.}
 }
 Else {
 For each node u in RN {
 Add the HOST ASSOCIATION message
 (ADD, n, u, addr_1,..., addr_n) to msg_list(I) for each I,
 where addr_1,..., addr_n are the host IP addresses
 that are associated with RID u in the current host
 table but not in the old host table.

 Add the HOST ASSOCIATION message
 (DELETE, n, u, addr_1,..., addr_n) to msg_list(I) for each I,
 where addr_1,..., addr_n are the host IP addresses
 that are associated with RID u in the old host
 table but not in the current host table. }
 }
 }

 Generate_Network_Prefix_Association_Messages() {
 If (current_time > next_npa_time) {
 next_npa_time = current_time + NPA_INTERVAL.
 For each node u in RN {
 Let length_1, prefix_1,..., length_n, prefix_n be the
 network prefix lengths and prefixes associated with RID u
 in the current network prefix table. If this list is
 nonempty, add the NETWORK PREFIX ASSOCIATION message
 (FULL, n, u, length_1, prefix_1,..., length_n, prefix_n)
 to msg_list(I) for each I.
 }
 Else {
 For each node u in RN {
 Add the NETWORK PREFIX ASSOCIATION message
 (ADD, n, u, prefix_1,..., prefix_n) to msg_list(I) for each I,

 where prefix_1,..., prefix_n are the network prefixes
 that are associated with RID u in the current prefix
 table but not in the old prefix table.

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 34]

INTERNET-DRAFT TBRPF 1 March 2002

 Add the NETWORK PREFIX ASSOCIATION message
 (DELETE, n, u, prefix_1,..., prefix_n) to msg_list(I) for
 each I, where prefix_1,..., prefix_n are the network
 prefixes that are associated with RID u in the old prefix
 table but not in the current prefix table. }
 }
 }

 Process_Interface_Association_Messages(j, msg_list) {
 // Processes a list of INTERFACE ASSOCIATION messages from node j.
 For each message (subtype, n, u, addr_1,..., addr_n) in msg_list {
 If (subtype = FULL)
 Remove all entries from the interface table.
 If (subtype = FULL or ADD) {
 For m = 1,..., n {
 Add the tuple (if_addr, if_rid, if_expire) to the
 interface table, where:
 if_addr = addr_m,
 if_rid = u,
 if_expire = current_time + IA_HOLD_TIME.
 }
 }
 If (subtype = DELETE) {
 For m = 1,..., n {
 Remove the tuple (if_addr, if_rid, if_expire) from the
 interface table, where if_addr = addr_m and if_rid = u. }
 }
 }
 }

 Process_Host_Association_Messages(j, msg_list) {
 // Processes a list of HOST ASSOCIATION messages from node j.
 For each message (subtype, n, u, addr_1,..., addr_n) in msg_list {
 If (subtype = FULL)
 Remove all entries from the host table.
 If (subtype = FULL or ADD) {
 For m = 1,..., n {
 Add the tuple (h_addr, h_rid, h_expire) to the
 host table, where:
 h_addr = addr_m,
 h_rid = u,
 h_expire = current_time + HA_HOLD_TIME.
 }
 }
 If (subtype = DELETE) {
 For m = 1,..., n {
 Remove the tuple (h_addr, h_rid, h_expire) from the
 host table, where h_addr = addr_m and h_rid = u. }

 }
 }
 }

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 35]

INTERNET-DRAFT TBRPF 1 March 2002

 Process_Network_Prefix_Association_Messages(j, msg_list) {
 // Processes a list of NETWORK PREFIX ASSOCIATION messages.
 For each message
 (subtype, n, u, length_1, prefix_1,..., length_n, prefix_n)
 in msg_list {
 If (subtype = FULL)
 Remove all entries from the network prefix table.
 If (subtype = FULL or ADD) {
 For m = 1,..., n {
 Add the tuple (net_prefix, net_length, net_rid, net_expire)
 to the network prefix table, where:
 net_prefix = prefix_m,
 net_length = length_m,
 net_rid = u,
 net_expire = current_time + NPA_HOLD_TIME.
 }
 }
 If (subtype = DELETE) {
 For m = 1,..., n {
 Remove the tuple
 (net_prefix, net_length, net_rid, net_expire)
 from the network prefix table,
 where net_prefix = prefix_m, net_length = length_m,
 and net_rid = u. }
 }
 }
 }

8.6. Configurable Parameters

 This section lists the values of the parameters used in the descrip-
 tion of the protocol, and their proposed default values.

 MIN_UPDATE_INTERVAL (1 second)

 PER_UPDATE_INTERVAL (5 seconds)

 TOP_HOLD_TIME (15 seconds)

 NON_REPORT_PENALTY (1.01)

 NON_TREE_PENALTY (0.01)

 IA_INTERVAL (10 seconds)

 IA_HOLD_TIME (3 x IA_INTERVAL)

 HA_INTERVAL (10 seconds)

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 36]

INTERNET-DRAFT TBRPF 1 March 2002

 HA_HOLD_TIME (3 x HA_INTERVAL)

 NPA_INTERVAL (10 seconds)

 NPA_HOLD_TIME (3 x NPA_INTERVAL)

 USE_METRICS (0)

 METRIC_COEFF (TBD)

 REPORT_FULL_TREE (0)

9. TBRPF Flooding Mechanism

 This section describes a mechanism for the efficient best-effort
 flooding (or network-wide broadcast) of packets to all nodes of a
 connected ad-hoc network. These may include TBRPF packets, non-TBRPF
 packets, and data packets. This mechanism can be considered a spe-
 cial case of the flooding mechanism described in [24], in which
 information provided by TBRPF is used to decide whether a given
 received flooded packet should be forwarded, i.e., to perform selec-
 tive retransmission as discussed in Section 5 of [24]. By performing
 selective retransmission, each packet is transmitted by only a rela-
 tively small subset of nodes, thus consuming much less bandwidth than
 full flooding.

 For the purpose of this description, we call the flooding address
 ALL_MANET_NODES (TBD). Every node maintains a duplicate cache as
 described in [24] to keep track of which flooded packets have already
 been received. When a node receives a packet whose destination IP
 address is ALL_MANET_NODES, it checks its duplicate cache for an
 entry that matches the packet. If such an entry exists, the node
 silently discards the flooded packet since it has already been
 received. Otherwise, the node retransmits the packet on all inter-
 faces (see the exception below) if and only if the following condi-
 tions hold:

 1. The TBRPF node associated with the source IP address of the packet
 belongs to the set RN of reportable nodes computed by TBRPF.

 2. When decremented, the 'ip_ttl' in the IPv4 packet header
 (respectively, the 'hop_count' in the IPv6 packet header) is
 greater than zero.

 If the packet is to be retransmitted, it is sent after a small random
 time interval in order to avoid collisions. If the interface on which
 the packet was received is NOT an ad-hoc interface (see the Terminol-
 ogy section), then the packet need not be retransmitted on that

 interface.

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 37]

INTERNET-DRAFT TBRPF 1 March 2002

10. Application of TBRPF In Mobile Ad-Hoc Networks

 The TBRPF routing protocols provide efficient proactive topology
 discovery with dynamic adaptation to link state changes in both fixed
 and mobile environments whether the topology is relatively static or
 highly dynamic in nature. TBRPF is particularly well suited to MANETs
 consisting of mobile nodes with wireless network interfaces operating
 in peer-to-peer fashion over a multiple access communications channel
 (e.g. the IEEE 802.11 Distributed Coordination Function (DCF) [13].)
 Although applicable across a much broader field of use, TBRPF is par-
 ticularly well suited for supporting the standard DARPA Internet pro-
 tocols [10] [15] as per current practices advocated by the IETF MANET
 working group. In the following sections, we discuss practical con-
 siderations the operation of TRBPF on MANETs.

10.1. Data Link Layer Assumptions

 We assume a MANET data link layer that supports broadcast, multicast
 and unicast addressing with best-effort (not guaranteed) delivery
 services between neighbors (i.e. a pair of nodes within operational
 communications range of one another). We further assume that each
 interface belonging to a node in the MANET is assigned a unicast data
 link layer address that is unique within that particular MANET. While
 uniqueness for data link layer address assignments is not strictly
 guaranteed, the assumption of uniqueness is consistent with current
 practices for deployment of the Internet protocols on specific link
 layers, e.g. [5]. Methods for duplicate data link layer address
 detection and deconfliction are beyond the scope of this document.

10.2. Network Layer Assumptions

 MANETs are formed as collections of MANET routers [14] and non-
 routing nodes that use network layer addresses when calculating the
 MANET topology. We assume that each node has at least one data link
 layer interface (as described above) and that each such interface is
 assigned a network layer address that is unique within the MANET.
 (Methods for network layer address assignment and duplicate address
 detection are beyond the scope of this document.) We further assume
 that each node will select a unique ID for use in TBRPF protocol mes-
 sages, which we refer to as the Router ID (RID) whether/not the node
 acts as a MANET router. Finally, we assume that each MANET router
 supports the multi-hop relay paradigm at the network layer; i.e. each
 router provides an inter-node forwarding service via network layer
 host routes which reflect the current MANET topology as perceived by
 TBRPF.

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 38]

INTERNET-DRAFT TBRPF 1 March 2002

10.3. Optional Automatic Address Resolution

 TBRPF employs a proactive neighbor discovery protocol at the network
 layer that maintains bi-directional link state for neighboring nodes
 through the periodic transmission of messages. Since each neighbor
 discovery message contains both the data link and network layer
 address of the sender, implementations MAY employ automatic network-
 to-data link layer address resolution for the nodes with which they
 form links. An implementation may use such a mechanism to avoid addi-
 tional message overhead and potential for packet loss associated with
 on-demand address resolution mechanisms such as ARP [9] or IPv6
 Neighbor Discovery [15]. Since this behavior is optional, however,
 implementations MUST respond to on-demand address resolution requests
 in the normal manner.

10.4. Support for Multiple Interfaces and/or Alias Addresses

 MANET nodes may comprise multiple interfaces; each with a unique net-
 work layer address. Additionally, MANET nodes may wish to publish
 alias addresses such as when multiple network layer addresses are
 assigned to the same interface or when the MANET node is serving as a
 Mobile IP [22] home agent for nodes that send binding updates from
 foreign networks. Multiple interfaces and alias addresses are adver-
 tised in INTERFACE ASSOCIATION messages, which bind each such address
 to the node's RID.

10.5. Support for Network Prefixes

 MANET routers may wish to advertise network prefixes which the router
 discovered via attached networks, route redistributions from other
 routing protocols, or other means. Network prefixes are advertised in
 NETWORK PREFIX ASSOCIATION messages, which bind each such prefix to
 the node's RID.

10.6. Support for non-MANET Hosts

 Non-MANET hosts may establish connections to MANET routers through
 on-demand mechanisms such as ARP or IPv6 Neighbor Discovery. Such
 connections do not constitute a MANET link and therefore are not
 reported in TBRPF topology updates. Non-MANET hosts are advertised in
 HOST ASSOCIATION messages, which bind the IP address of each host to
 the node's RID.

10.7. Internet Protocol Considerations

 As with OSPF [17], TBRPF packets are sent directly over the Internet
 Protocol's network layer and are encapsulated solely by IP and local

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 39]

INTERNET-DRAFT TBRPF 1 March 2002

 data-link headers. An official IP Protocol number registration [12]
 for TBRPF will be procured in due course. The same IANA registration
 will be used whether encapsulation is via IPv4 or IPv6. (IPv6 treats
 the IP protocol number as a "Next Header" designator). While IP
 encapsulation is specified, implementations MAY employ alternate data
 delivery services (e.g. UDP/IP, local data-link encapsulation) in
 private networks. The selection of an alternate data delivery service
 MUST be consistent among all MANET routers in the private network.

 The following subsections discuss the operation of TBRPF over IPv4
 and IPv6, respectively.

10.7.1. IPv4 Operation

 When the IPv4 protocol is used, all TBRPF packets are sent to the
 "All_MANET_Neighbors" multicast address (see: "IANA Considerations")
 and thus reach all MANET routers within single-hop transmission range
 of the sender. MANET routers MUST NOT forward packets sent to the
 "All_MANET_Neighbors" multicast address. Since packet loss due to
 link failure, interference, etc. can occur, implementations SHOULD
 split large TBRPF protocol packets into several smaller packets to
 avoid IPv4 fragmentation/reassembly. Since packets sent to
 "All_MANET_Neighbors" are delivered only to single-hop neighbors,
 Path MTU Discovery is not required. Instead, MANET routers can
 derive the maximum TBRPF packet length(s) directly from the maximum
 transmission unit(s) (MTUs) of their attached interface(s).

10.7.2. IPv6 Operation

 The procedures for TBRPF are the same for IPv6 as for IPv4. (TBRPF
 for IPv6 will have a different version number.) The only required
 change for IPv6 is that the 4-octet IPv4 addresses and IPv4
 prefixes in the interface, host, and network prefix tables, and in
 the INTERFACE ASSOCIATION, HOST ASSOCIATION, and NETWORK PREFIX ASSO-
 CIATION messages, must be replaced by 16-octet IPv6 addresses and
 IPv6 prefixes. All other message types will continue to use only 4-
 octet router IDs, similar to OSPF for IPv6 [21]. This will help to
 reduce control traffic, which is an important consideration for
 MANETs.

 Transition mechanisms described in the IETF NGTRANS working group
 (e.g. ISATAP) enable IPv6 operation over IPv4 routing infrastruc-
 tures. ISATAP [19] can be used on TBRPF MANETs to enable automatic
 IPv6-in-IPv4 operation regardless of route changes due to mobility.

11. IANA Considerations

 An official IANA IP protocol number assignment is required for TBRPF
 protocol messages. Additionally, an IANA IPv4 multicast address

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 40]

INTERNET-DRAFT TBRPF 1 March 2002

 assignment for "All_MANET_Neighbors" is required from the range of
 addresses between 224.0.0.0 and 224.0.0.255 inclusive. This range of
 addresses is reserved for the use of routing protocols and other
 low-level topology discovery or maintenance protocols, such as gate-
 way discovery and group membership reporting. Multicast routers
 should not forward any multicast datagram with destination addresses
 in this range, regardless of its TTL [23].

 Note that such an IPv4 multicast address assignment may have general
 application for MANET beyond its anticipated use for TBRPF. We there-
 fore propose that MANET consider the procurement of an
 "All_MANET_Neighbors" IPv4 multicast address from the range of
 addresses between 224.0.0.0 and 224.0.0.255.

12. Security Considerations

 Authentication issues exist for allowing "foreign" nodes to join a
 MANET via TBRPF neighbor discovery. Additionally, privacy issues
 exist for any networking protocols run over unencrypted wireless data
 links such as IEEE 802.11. Finally, denial-of-service attacks are
 possible if rogue nodes join a TBRPF MANET and offer to provide a
 multi-hop relay service, but then fail to perform the service when it
 is required.

 The TBRPF protocol can be extended in a straightforward manner to
 incorporate authentication of TBRPF protocol packets in a manner
 similar to OSPF version 2 [RFC 2328]. Here, a shared secret key is
 configured in all TBRPF routers. For each TBRPF protocol packet, the
 key is used to generate/verify a "message digest" that is appended to
 the end of the TBRPF packet. The message digest is a one-way function
 of the TBRPF protocol packet and the secret key [RFC 2104]. For the
 widely used MD5 message-digest algorithm [RFC 1321], the "message
 digest" is 16 bytes in length.

 Alternatively, the IP Authentication Header algorithm [RFC 2401,
 2402] within the IPSec Working Group can be used to provide authenti-
 cation for TBRPF protocol packets.

13. Implementation Status

 TBRPF version 2 (as described in version 3 of the draft) has been
 implemented in Linux and ns-2.

 TBRPF version 1 (as described in version 0 of the draft) has been
 implemented in the FreeBSD V3.2 operating system with the Merit
 Multi-Threaded Routing Toolkit daemon (mrtd). The initial FreeBSD
 V3.2 implementation has been in use for laboratory and fielded exper-

https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc1321

 iments since June 1999.

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 41]

INTERNET-DRAFT TBRPF 1 March 2002

 TBRPF version 1 has been ported to Linux. The current port runs on
 RedHat Version 7.0 and has been tested under multiple Linux kernel
 releases including 2.2.16 and a 2.4 pre-release. Additionally, the
 Linux and FreeBSD ports are fully interoperable under TBRPF Version
 1.

14. Patent Rights Statement

 SRI International has filed one or more patents protecting the inven-
 tions described in this submission. If SRI's submission (or portions
 thereof) is accepted and becomes part of the IETF standard, then SRI
 will grant royalty-free permission under such patents for both com-
 mercial and non-commercial uses, to the extent necessary for compli-
 ance with the standard. Any aspects or variants of SRI's submission
 that are not included in the IETF standard and/or are not necessary
 for compliance with the standard may require an additional license
 from SRI under terms to be negotiated by the parties.

15. Acknowledgments

 The authors would like to thank ASEO for funding this work, and the
 following people for helping in the development of TBRPF: Yonael
 Gorfu and Julie S. Wong.

16. References

 [1] B. Bellur and R.G. Ogier. A Reliable, Efficient Topology Broad-
 cast Protocol for Dynamic Networks. Proc. IEEE INFOCOM '99, New
 York, March 1999.

 [2] S. Bradner. Key words for use in RFCs to Indicate Requirement
 Levels. RFC 2119, March 1997.

 [3] M.S. Corson and J. Macker. Mobile Ad hoc Networking (MANET):
 Routing Protocol Performance Issues and Evaluation Considera-
 tion. RFC 2501, 1999.

 [4] J.J. Garcia-Luna-Aceves and M. Spohn. Efficient Routing in
 Packet-Radio Networks Using Link-State Information. Proc. IEEE
 WCNC '99, September 1999.

 [5] C. Hornig. Standard for the Transmission of IP Datagrams over
 Ethernet Networks. STD0041, April 1984.

 [6] D.B. Johnson and D.A. Maltz. Protocols for Adaptive Wireless and
 Mobile Networking. IEEE Personal Communications, Vol. 3, No. 1,

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2501

 pp 34-42, February 1996.

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 42]

INTERNET-DRAFT TBRPF 1 March 2002

 [7] R.G. Ogier. Efficient Routing Protocols for Packet-Radio Net-
 works Based on Tree Sharing. Proc. Sixth IEEE Intl. Workshop on
 Mobile Multimedia Communications (MOMUC'99), November 1999.

 [8] C.E. Perkins, E.M. Belding-Royer, and S.R. Das. Ad Hoc On-
 Demand Distance Vector (AODV) Routing. draft-ietf-manet-aodv-

09.txt, November 2001 (work in progress).

 [9] D.C. Plummer. An Ethernet address resolution protocol: Or con-
 verting network protocol addresses to 48.bit Ethernet addresses
 for transmission on Ethernet hardware. RFC 826, November 1982.

 [10] J. Postel. Internet Protocol. RFC 791, September 1981.

 [11] J. Postel. User Datagram Protocol. RFC 768, August 1980.

 [12] J. Reynolds and J. Postel. Assigned Numbers. RFC 1700, October
 1994.

 [13] Wireless LAN Medium Access Control (MAC) and Physical Layer
 (PHY) Specifications, ISO/IEC Std. 8802-11, ANSI/IEEE Std
 802.11, 1999.

 [14] An Internet MANET Encapsulation Protocol (IMEP) Specification,
draft-ietf-manet-imep-spec-01.txt

 [15] S. Deering and R. Hinden. Internet Protocol Version 6 (IPv6)
 Specification. RFC 2460, December 1998.

 [16] S. Corson. MANET Routing Protocol Applicability Statement,
draft-ietf-manet-appl-00.txt, November 1998 (work in progress).

 [17] J. Moy. OSPF Version 2. RFC 1583, March 1994.

 [18] T. Clausen et al. Optimized Link State Routing Protocol, draft-
ietf-manet-olsr-05.txt, October 2001 (work in progress).

 [19] F. Templin. "Intra-Site Automatic Tunnel Addressing Protocol
 (ISATAP)", draft-ietf-ngtrans-isatap-02.txt (work in progress)

 [20] D. Bertsekas and R. Gallager. Data Networks, Prentice-Hall,
 1987.

 [21] R. Coltun, D. Ferguson, and J. Moy. OSPF for IPv6. RFC 2740,
 December 1999.

 [22] C. Perkins. IP Mobility Support. RFC 2002, October 1996.

 [23] F. Baker. Requirements for IP Version 4 Routers. RFC 1812, June

https://datatracker.ietf.org/doc/html/draft-ietf-manet-aodv-09.txt
https://datatracker.ietf.org/doc/html/draft-ietf-manet-aodv-09.txt
https://datatracker.ietf.org/doc/html/rfc826
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/draft-ietf-manet-imep-spec-01.txt
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/draft-ietf-manet-appl-00.txt
https://datatracker.ietf.org/doc/html/rfc1583
https://datatracker.ietf.org/doc/html/draft-ietf-manet-olsr-05.txt
https://datatracker.ietf.org/doc/html/draft-ietf-manet-olsr-05.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-isatap-02.txt
https://datatracker.ietf.org/doc/html/rfc2740
https://datatracker.ietf.org/doc/html/rfc2002
https://datatracker.ietf.org/doc/html/rfc1812

 1995.

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 43]

INTERNET-DRAFT TBRPF 1 March 2002

 [24] C.E. Perkins, E.M. Belding-Royer, and S.R. Das. IP Flooding in
 Ad Hoc Mobile Networks, November 2001 (work in progress).

Authors' Addresses

 Richard G. Ogier
 SRI International
 333 Ravenswood Ave.
 Menlo Park, CA 94025

 Phone: +1 650 859-4216
 Fax: +1 650 859-4812
 Email: ogier@erg.sri.com

 Fred L. Templin
 SRI International
 333 Ravenswood Ave.
 Menlo Park, CA 94025

 Phone: +1 650 859-3144
 Fax: +1 650 859-4812
 Email: templin@erg.sri.com

 Bhargav Bellur
 SRI International
 333 Ravenswood Ave.
 Menlo Park, CA 94025

 Phone: +1 650 859-6335
 Fax: +1 650 859-4812
 Email: bhargav@erg.sri.com

 Mark G. Lewis
 SRI International
 333 Ravenswood Ave.
 Menlo Park, CA 94025

 Phone: +1 650 859-4302
 Fax: +1 650 859-4812
 Email: lewis@erg.sri.com

Ogier, Templin, Bellur, Lewis Expires 1 September 2002 [Page 44]

