Internet Draft V. Park
draft-jetf-manet-tora-spec-00.txt Naval Research Laboratory
S. Corson

University of Maryland

Submitted: Nov 26, 1997

Expires: May 26, 1997

Temporally-Ordered Routing Algorithm (TORA) Version 1
Functional Specification

Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas,
and its working groups. Note that other groups may also distribute
working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

To learn the current status of any Internet-Draft, please check the
"lid-abstracts.txt" listing contained in the Internet-Drafts Shadow
Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
ftp.isi.edu (US West Coast).

Abstract

This document provides a detailed specification of Version 1 of the
Temporally-Ordered Routing Algorithm (TORA)--a distributed routing
protocol for mobile, multihop, wireless networks. Its intended use is
for routing of Internet Protocol (IP) datagrams within an autonmous
system. The basic, underlying algorithm is neither a distance-vector
nor a link-state; it is one of a family of algorithms referred to as
'"'1ink reversal'' algorithms. The protocol's reaction is structured as
a temporally-ordered sequence of diffusing computations, each
computation consisting of a sequence of directed link reversals. The
protocol is highly adaptive, efficient and scalable; and is well-
suited for use in large, dense, mobile networks. In these networks,
the protocol's reaction to link failures typically involves only a
localized ''single pass'' of the distributed algorithm. This desirable
behavior is achieved through the use of a physical or logical clock

to establish the ''temporal order'' of topological change events. The
established temporal ordering is subsequently used to structure (or
order) the algorithm's reaction to topological changes.

Park, Corson [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-manet-tora-spec-00.txt

Internet Draft TORA Specification 15 November 1997

1 Introduction

The Temporally-Ordered Routing Algorithm (TORA) [1] is a highly
adaptive routing protocol, which has been tailored for operation in a
Mobile Ad hoc Network (MANET). Such a network can be envisioned as a
collection of routers (equipped with wireless receiver/transmitters),
which are free to move about arbitrarily. The status of the
communication links between the routers, at any given time, is a
function of their positions, transmission power levels, antenna
patterns, cochannel interference levels, etc. The mobility of the
routers and the variability of other connectivity factors result in a
network with a potentially rapid and unpredictably changing topology.
Congested links are also an expected characteristic of such a network
as wireless links inherently have significantly lower capacity than
hardwired links and are therefore more prone to congestion. TORA's
design is predicated on the notion that a routing algorithm that is
well-suited for operation in this environment should possess the
following properties:

* Executes distributedly

* Provides loop-free routes

* Provides multiple routes (i.e., to reduce the frequency of
reactions to topological changes and potentially to alleviate
congestion)

* Establishes routes quickly (i.e., so they may be used before
the topology changes)

* Minimizes communication overhead by localizing algorithmic
reaction to topological changes when possible (i.e., to conserve
available bandwidth and increase scalability)

Routing optimality (i.e., determination of the shortest-path) is of

less importance. It is also not necessary (nor desirable) to maintain

routes between every source/destination pair at all times. The
overhead expended to establish a route between a given
source/destination pair will be wasted if the source does not require
the route prior to its invalidation due to topological changes.

TORA is based, in part, on the work presented in [2] and [3]. TORA is
designed to minimize reaction to topological changes. A key concept
in its design is that it decouples the generation of potentially
far-reaching control message propagation from the rate of topological
changes. Control messaging is typically localized to a very small set
of nodes near the change without having to resort to a dynamic,
hierarchical routing solution with its attendant complexity. TORA
includes a secondary mechanism, which allows far-reaching control
message propagation as a means of infrequent route optimization and
soft-state route verification. This propogation occurs periodically
at a very low rate and is independent of the network topology
dynamics.

Park, Corson [Page 2]

Internet Draft TORA Specification 15 November 1997

TORA is distributed in that nodes need only maintain information
about adjacent nodes (i.e., one hop knowledge). It guarantees all
routes are loop-free, and typically provides multiple routes for any
source/destination pair that requires a route. TORA is "source
initiated" and quickly creates a set of routes to a given destination
only when desired. Since multiple routes are typically established
and having a single route is sufficient, many topological changes
require no reaction at all. Following topological changes that do
require reaction, the protocol quickly re-establishes valid routes.
This ability to initiate and react infrequently serves to minimize
communication overhead. Finally, in the event of a network partition,
the protocol detects the partition and erases all invalid routes.

2 MANET Routing Functional Description

A protocol for routing packets in a MANET can be divided into two
functional distinct components--a link status sensing mechanism and a
routing mechanism. Although these two components are somewhat
orthogonal, they can be designed to work together in a synergistic
fashion. Originally, these two mechanisms were being designed
together as a part of the TORA protocol specification. However, since
the basic functionality provided by a link status sensing mechanism
is required by a variety of different routing mechanisms, it seemed
appropriate that a more generic link status sensing mechanism should
be designed and specified as a separate, underlying protocol. This
underlying protocol--the Internet MANET Encapsulation Protocol (IMEP)
[4]--1s being designed to provide several other basic functions that
are commonly required by a routing mechanism. Thus, TORA provides
only the routing mechanism and depends on IMEP for other underlying
functions. Should it later be decided that the two protocols should
be combined, IMEP's functionality will be incorporated back into the
TORA specification.

2.1 Internet MANET Encapsulation Protocol

IMEP and TORA have been designed to work together synergistically.

TORA relies on IMEP for the following underlying functions and

services:

* Link status sensing (i.e., monitoring and maintaining the
status of connectivity with the set of neighboring routers)

* Control packet delivery (i.e., reliable, in-order control packet
delivery to the set of neighbors)

* Network-layer address resolution and mapping

* Security authentication

IMEP provides a rich interface for use by a variety of different

mobile wireless routing protocols, which may have varied needs for

underlying services.

Park, Corson [Page 3]

Internet Draft TORA Specification 15 November 1997

2.2 Temporally-Ordered Routing Algorithm

This section provides a functional description of TORA. A detailed
specification of TORA is provided in a subsequent section.

2.2.1 Notation

A network can be modeled as a graph with a finite set of nodes
connected by a set of initially undirected links--wherea node
represents a router and a link represents communication connectivity
between two routers. Each node i in the network is assumed to have a
unique node identifier (ID), and each link (i, k) is assumed to allow
two-way communication (i.e., nodes connected by a link can
communicate with each other in either direction). Due to the mobility
of the nodes, the set of links in the network is changing with time
(i.e., new links can be established and existing links can be
severed). Each initially undirected link (i, k) may subsequently be
assigned one of three states; (1) undirected, (2) directed from node
i to node k, or (3) directed from node k to node i. If a link (i, k)
is directed from node i to node k, node i is said to be "upstream"
from node k, while node k is said to be "downstream" from node i. For
each node i, we define the '"neighbors" of i, to be the set of nodes k
such that there exists a link between nodes i and k. The following
assumptions account for the functionality provided by the IMEP. It is
assumed that each node i is always aware of its set of neighbors.
Additionally, it is assumed that when a node i transmits a packet, it
is broadcast to all of its neighbors and that all transmitted packets
are received correctly and in order of transmission.

2.2.2 Foundation and Basic Structure

A logically separate version of TORA is run for each destination to
which routing is required. The following discussion focuses on a
single version running for a given destination, j.

TORA can be separated into three basic functions: creating routes,
maintaining routes, and erasing routes. Creating a route from a given
node to the destination requires establishment of a sequence of
directed links leading from the node to the destination. This
function is only initiated when a node with no directed links
requires a route to the destination. Thus, creating routes
essentially corresponds to assigning directions to links in an
undirected network or portion of the network. The method used to
accomplish this is an adaptation of the query/reply process described
in [2], which builds a directed acyclic graph (DAG) rooted at the
destination (i.e., the destination is the only node with no
downstream 1links). Such a DAG will be referred to as a "destination-
oriented" DAG. Maintaining routes refers to reacting to topological

Park, Corson [Page 4]

Internet Draft TORA Specification 15 November 1997

changes in the network in a manner such that routes to the
destination are re-established within a finite time--meaning that its
directed portions return to a destination-oriented DAG within a
finite time. Gafni and Bertsekas (GB) described two algorithms [3],
which are members of a general class of algorithms designed to
accomplish this task. However, the GB algorithms are designed for
operation in connected networks. Due to instability exhibited by
these algorithms in portions of the network that become partitioned
from the destination, they are deemed unacceptable for the current
task. TORA incorporates a new algorithm, in the same general class,
that is more efficient in reacting to topological changes and capable
of detecting a network partition. This leads to the third function--
erasing routes. Upon detection of a network partition, all links (in
the portion of the network that has become partitioned from the
destination) must be marked as undirected to erase invalid routes.

TORA accomplishes these three functions through the use of three
distinct control packets: query (QRY), update (UPD), and clear (CLR).
QRY packets are used for creating routes; UPD packets are used for
both creating and maintaining routes; and CLR packets are used for
erasing routes.

2.2.3 General Class of Algorithms

It is beneficial at this point to briefly review the earlier GB
algorithms. Consider a connected DAG with at least one node (in
addition to the destination) that has no downstream links. Such a DAG
will be referred to as "destination-disoriented." The following
excerpts (punctuation added for clarity) from [3] loosely describe
the two algorithms designed to transform a destination-disoriented
DAG into a destination-oriented DAG.

Full Reversal Method: At each iteration, each node (other than the
destination) that has no outgoing links reverses the direction of all
its incoming links.

Partial Reversal Method: Every node i (other than the destination)
keeps a list of its neighboring nodes k that have reversed the
direction of the corresponding links (i, k). At each iteration, each
node i that has no outgoing links reverses the directions of the
links (i, k), for all k which do not appear on its list, and empties
the list. If no such k exists (i.e., the list is full), node i
reverses the directions of all incoming links and empties the list.

These two algorithms are subsequently re-stated in the context of a
generalized numbering scheme that will be summarize here; however,
much detail will be left out. For a thorough understanding, one
should review the original paper. Essentially, a value is associated

Park, Corson [Page 5]

Internet Draft TORA Specification 15 November 1997

with each node at all times, and the values are such that they can be
totally ordered. For example, in the full reversal method, a pair
(alpha[i], i) is associated with each node where i is the unique ID
of the node and alpha[i] is an integer. The pairs can then be totally
ordered lexicographically (e.g. (alpha[i], i) > (alpha[k], k) if
alpha[i] > alpha[k] ,or if alpha[i] = alpha[k] and i > k). The value
associated with each node i will be referred to as its "height" and
denoted h[i]. Now, assume that we assign an initial height to each
node in the destination-disoriented DAG such that node i is upstream
from node k if and only if h[i] > h[k]. Then it is clear that node i
has no downstream links when, measured by its height, it is a local
minimum with respect to its neighbors, h[i] < h[k] for all neighbors
k. To achieve the desired behavior in the full reversal method, node
i must select a new height such that it becomes a local maximum with
respect to its neighbors (i.e., h[i] > h[k] for all neighbors k).
Node i simply selects a new value alpha[i] = max {alpha[k] such that
k is a neighbor of i}+1 and broadcasts the value to all of its
neighbors. The partial reversal method can neither be viewed
conceptually nor explained as easily. Again, a node selects a new
height only when it is a local minimum, but it does not always become
a local maximum. To reverse only some of its links (i.e., partial
reversal), a node selects a new height that is higher than its own
previous height and the height of some of its neighbors, but not
higher than the height of all of its neighbors.

The algorithms that belong to this general class are shown to be
loop-free, and terminate in a finite number of iterations to a
destination-oriented DAG [3]. Furthermore, only nodes that have lost
all downstream paths to the destination react to a given failure. The
new algorithm incorporated into TORA for the maintaining routes
process is a member of this class, and thus inherits many of these
properties. The new algorithm is similar to the partial reversal
method in that it often reverses only some of its links. However, in
order to provide a partition detection capability, the rules for the
selection of a new height are significantly more complex. These rules
are discussed in detail in section 2.2.4.2.

The basic idea is as follows. When a node loses its last downstream
link (i.e., becomes a local minimum) as a result of a link failure,
the node selects a new height such that it becomes a global maximum
by defining a new "reference level". By design, when a new reference
level is defined, it is higher than any previously defined reference
levels. This action results in link reversals that may cause other
nodes to lose their last downstream link. Any such node executes a
partial reversal with respect to its neighbors that have heights
already associated with the newest (highest) reference level. In this
manner, the new reference level is propagated outward from the point
of the original failure (re-directing links in order to re-establish

Park, Corson [Page 6]

Internet Draft TORA Specification 15 November 1997

routes to the destination). This propagation will only extend through
nodes that (as a result of the initial link failure) have lost all
routes to the destination. Some nodes may experience link reversals
from all neighbors (as a result of the same initial link failure).
Any such node must select a new height such that it becomes a local
maximum. This is accomplished by defining a higher sub-level
associated with the new reference level, which will be referred to as
the "reflected reference level". This node essentially "reflects"
this higher sub-level back toward the node that originally defined
the new reference level. Should this reflected reference level be
propagated back to the originating node from all of its neighbors,
then it is determined that no route to the destination exists. The
originating node has then detected a partition and can begin the
process of erasing the invalid routes.

2.2.4 Detailed Description

At any given time, an ordered quintuple, HEIGHT = (tau[i], oid[i],
r[i], delta[i], i), is associated with each node i, where i is the
unique ID of the node. Conceptually, the quintuple associated with
each node represents the height of the node as defined by two
parameters: a reference level and a offset with respect to the
reference level. The reference level is represented by the first
three values in the quintuple, while the offset is represented by the
last two values. A new reference level is defined each time a node
loses its last downstream link due to a link failure. The first value
representing the reference level, tau[i], is a time tag set to the
"time" of the link failure. For now, it is assumed that all nodes
have synchronized clocks. This could be accomplished via interface
with an external time source such as the Global Positioning System
(GPS) [5] or through use of an algorithm such as the Network Time
Protocol [6]. This time tag need not actually indicate or be "time,"
nor will relaxation of the synchronization requirement invalidate the
protocol. The second value, oid[i], is the originator-ID (i.e., the
unique ID of the node that defined the new reference level). This
ensures that the reference levels can be totally ordered
lexicographically, even if multiple nodes define reference levels due
to failures that occur simultaneously (i.e., with equal time tags).
The third value, r[i], is a single bit used to divide each of the
unique reference levels into two unique sub-levels. This bit is used
to distinguish between the original reference level and its
corresponding, higher, reflected reference level. When a distinction
is not required, both the original and reflected reference levels
will simply be referred to as "reference levels." The first value
representing the offset, delta[i], is an integer used to order nodes
with respect to a common reference level. This value is instrumental
in the propagation of a reference level. How delta is selected will
be clarified in a subsequent section. Finally, the second value

Park, Corson [Page 7]

Internet Draft TORA Specification 15 November 1997

representing the offset, i, is the unique ID of the node itself. This
ensures that nodes with a common reference level and equal values of
delta (and in fact all nodes) can be totally ordered
lexicographically at all times.

Each node i (other than the destination) maintains its height,
HEIGHT. Initially the height of each node in the network (other than
the destination) is set to NULL, HEIGHT = (-, -, -, -, 1), where i is
the unique ID of the node. Subsequently, the height of each node i
can be modified in accordance with the rules of the protocol. The
height of the destination j is always ZERO, HEIGHT = (@, 0, 0, 0, j),
where j is the unique ID of the destination for which the algorithm
is running). In addition to its own height, each node i maintains a
height table with an entry HT_NEIGH[k] for each neighbor k. Initially
the height of each neighbor is set to NULL, HT_NEIGH[k] = (-, -, -,

-, k). If the destination j is a neighbor of node i, node i sets the
corresponding height entry to ZERO, HT_NEIGH[j] = (0, 0, 0, 0, j).

Each node i (other than the destination) also maintains a link-status
table with an entry LNK_STAT[k] for each link (i, k), where node k is
a neighbor of node i. The status of the links is determined by the
height of the node, HEIGHT, and its height entry for the neighbor,
HT_NEIGH[k]. The link is directed from the higher node to the lower
node. If a neighbor k is higher than node i, the link is marked
upstream (UP). If a neighbor k is lower than node i, the link is
marked downstream (DN). If the neighbor's height entry, HT_NEIGH[k],
is NULL, the link is marked undirected (UN). Finally, if the height
of node i is NULL, then any neighbor's height that is not NULL is
considered lower, and the corresponding link is marked downstream
(DN). When a new link (i, k) is established (i.e., node i has a new
neighbor k), node i adds entries for the new neighbor to the height
and link-status tables. If the new neighbor is the destination j, the
corresponding height entry is set to ZERO, HT_NEIGH[j] = (©, 0, 0, O,
j); otherwise it is set to NULL, HT_NEIGH[k] = (-, -, -, -, k). The
corresponding link-status entry, LNK_STAT[k], is set as outlined
above. Nodes need not communicate any routing information upon link
activation.

2.2.4.1 Creating Routes

Creating routes requires use of the QRY and UPD packets. A QRY packet
consists of the destination-ID, j, which identifies the destination
for which the algorithm is running. An UPD packet consists of the
destination-ID, j, and the height of the node i that is broadcasting
the packet, HEIGHT.

Each node i (other than the destination) maintains a route-required
flag, which is initially un-set. Each node i (other than the

Park, Corson [Page 8]

Internet Draft TORA Specification 15 November 1997

destination) also maintains the time at which the last UPD packet was
broadcast and the time at which each link (i, k), where node k 1is
neighbor of node i, became active.

When a node with no directed links and an un-set route-required flag
requires a route to the destination, it broadcasts a QRY packet and
sets its route-required flag. When a node i receives a QRY it reacts
as follows:

a) If the receiving node i has no downstream links and its route-
required flag is un-set, it re-broadcasts the QRY packet and sets
its route-required flag.

b) If the receiving node i has no downstream links and the route-
required flag is set, it discards the QRY packet.

c) If the receiving node i has at least one downstream link and
its height is NULL, it sets its height to HEIGHT = (tau[k],
oid[k], r[k], delta[k] + 1, i), where HT_NEIGH[k] = (tau[k],
oid[k], r[k], delta[k], k) is the minimum height of its non-NULL
neighbors, and broadcasts an UPD packet.

d) If the receiving node i has at least one downstream link and
its height is non-NULL, it first compares the time the last UPD
packet was broadcast to the time the link over which the QRY
packet was received became active. If an UPD packet has been
broadcast since the link became active, it discards the QRY
packet; otherwise, it broadcasts an UPD packet.

If a node has the route-required flag set when a new link is
established, it must broadcast a QRY packet.

When a node i receives an UPD packet from a neighbor k, node i first
updates the entry HT_NEIGH[k] in its height table with the height
contained in the received UPD packet. Node i then updates the entry
LNK_STAT[k] in its link-status table and reacts as follows:

a) If the route-required flag is set (which implies that the
height of node i is NULL), node i sets its height to HEIGHT =
(tau[k], oid[k], r[k], delta[k] + 1, i)--where HT_NEIGH[K] =
(tau[k], oid[k], r[k], delta[k], k) is the minimum height of its
non-NULL neighbors, updates all the entries in its link-status
table, un-sets the route-required flag and then broadcasts an UPD
packet that contains its new height.

b) If the route-required flag is not set, node i need only react
if it has lost its last downstream link. The section on
maintaining routes discusses the reaction that occurs if reception

Park, Corson [Page 9]

Internet Draft TORA Specification 15 November 1997

of the UPD packet resulted in loss of the last downstream link.
2.2.4.2 Maintaining Routes

Maintaining routes is only performed for nodes that have a height
other than NULL. Furthermore, any neighbor's height that is NULL is
not used for the computations. A node i is said to have no downstream
links if HEIGHT < HT_NEIGH[k] for all non-NULL neighbors k. This will
result in one of five possible reactions depending on the state of
the node and the preceding event. Each node (other than the
destination) that has no downstream links modifies its height, HEIGHT
= (tau[i], oid[i], r[i], delta[i], i), as follows:

Case 1 (Generate):
Node i has no downstream links (due to a link failure).

(tau[i], oid[i], r[i])=(t, i, ©), where t is the time of the
failure.

(delta[i],i)=(0, i)

In essence, node i defines a new reference level. The above
assumes node i has at least one upstream neighbor. If node i
has no upstream neighbors it simply sets its height to NULL.

Case 2 (Propagate):

Node i has no downstream links (due to a link reversal
following reception of an UPD packet) and the ordered sets
(tau[k], oid[k], r[k]) are not equal for all neighbors k.

(tau[i], oid[i], r[i])=max{(t[k], oid[k], r[k]) of all
neighbors k}

(delta[i],i)=(delta[m]-1, i), where m is the lowest neighbor
with the maximum reference level defined above.

In essence, node i propagates the reference level of its
highest neighbor and selects a height that is lower than all
neighbors with that reference level.

Case 3 (Reflect):

Node i has no downstream links (due to a link reversal
following reception of an UPD packet) and the ordered sets
(tau[k], oid[k], r[k]) are equal with r[k] = @ for all
neighbors k.

Park, Corson [Page 10]

Internet Draft TORA Specification 15 November 1997

(tau[i], oid[i], r[i])=(tau[k], oid[k], 1)
(delta[i],i)=(0, i)

In essence, the same level (which has not been "reflected") has
propagated to node i from all of its neighbors. Node i
"reflects" back a higher sub-level by setting the bit r.

Case 4 (Detect):

Node i has no downstream links (due to a link reversal
following reception of an UPD packet), the ordered sets
(tau[k], oid[k], r[k]) are equal with r[k] = 1 for all
neighbors k, and oid[k] = i (i.e., node i defined the level).

(tau[i], oid[i], r[i])=(-, -, -)
(delta[i],1)=(-, 1)

In essence, the last reference level defined by node i has been
reflected and propagated back as a higher sub-level from all of
its neighbors. This corresponds to detection of a partition.
Node i must initiate the process of erasing invalid routes as
discussed in the next section.

Case 5 (Generate):

Node i has no downstream links (due to a link reversal
following reception of an UPD packet), the ordered sets
(tau[k], oid[k], r[k]) are equal with r[k] = 1 for all
neighbors k, and oid[k] !'= i (i.e., node i did not define the
level).

(tau[i], oid[i], r[i])=(t, i, ©), where t is the time of the
failure

(delta[i],i)=(0, i)

In essence, node 1 experienced a link failure (which did not
require reaction) between the time it propagated a reference
level and the reflected higher sub-level returned from all
neighbors. This is not necessarily an indication of a
partition. Node i defines a new reference level.

Following determination of its new height in cases 1, 2, 3, and 5,
node i updates all the entries in its link-status table; and
broadcasts an UPD packet to all neighbors k. The UPD packet consists
of the destination-ID, j, and the new height of the node i that is

Park, Corson [Page 11]

Internet Draft TORA Specification 15 November 1997

broadcasting the packet, HEIGHT. When a node i receives an UPD packet
from a neighbor k, node i reacts as described in the creating routes
section and in accordance with the cases outlined above. In the event
of the failure a link (i, k) that is not its last downstream link,
node i simply removes the entries HT_NEIGH[k] and LNK_STAT[k] in its
height and link-status tables.

2.2.4.3 Erasing Routes

Following detection of a partition (case 4), node 1 sets its height
and the height entry for each neighbor k to NULL (unless the
destination j is a neighbor, in which case the corresponding height
entry is set to ZERO), updates all the entries in its link-status
table, and broadcast a CLR packet. The CLR packet consists of the
destination-ID, j, and the reflected reference level of node 1i,
(tau[i], oid[i], 1). In actuality the value r[i] = 1 need not be
included since it is always 1 for a reflected reference level. When a
node i receives a CLR packet from a neighbor k it reacts as follows:

a) If the reference level in the CLR packet matches the reference
level of node i; it sets its height and the height entry for each
neighbor k to NULL (unless the destination j is a neighbor, in
which case the corresponding height entry is set to ZERO), updates
all the entries in its link-status table and broadcasts a CLR
packet.

b) If the reference level in the CLR packet does not match the
reference level of node i; it sets the height entry for each
neighbor k (with the same reference level as the CLR packet) to
NULL and updates the corresponding link-status table entries.
Thus, the height of each node in the portion of the network that
was partitioned is set to NULL and all invalid routes are erased.
If (b) causes node i to lose its last downstream link, it reacts
as in case 1 of maintaining routes.

3 Protocol Specification

In the previous description of TORA, some simplifications were made
for clarity. In particular, j was used to represent the unique ID of
the destination for which the algorithm was running. However, when
forwarding IP datagrams in an internetwork, "destinations" to which
routing is required are usually identified by an IP address and mask.
Together, these two values may correspond to an individual interface
on a specific machine, or an aggregation of addresses (e.g., a
network address). Thus, in the subsequent discussion a destination
"j" refers to a typical IP destination. Another significant
simplification pertains to the link between to nodes. In the most
general case, a MANET router may have multiple wireless and hardwired

Park, Corson [Page 12]

Internet Draft TORA Specification 15 November 1997

interfaces with differing communication technologies. Therefore, it
is necessary to make a distiction between a physical communication
"connection" between two routers and a logical communication "link"
between two routers. The previous description also ommited any
discussion about how the next-hop forwarding decision is made. It is
assumed that the IP packet forwarding performed by the kernel in
accordance with a standard IP routing table maintained in kernel
space. The TORA process must have access to the information in the
table and be able to manipulate the table entries. The details
regarding how the routing table manipulations made by TORA will be
described in detail in the subsequent sections. Since the subsequent
description is intended to be in sufficient detail to serve as a
template for implementations, some additional terminology is defined
first.

3.1 Terminology

The following definitions are identical to the definitions used in
the IMEP specification. Many of these definitions may be replaced by
or merged with those of the MANET working group's terminology draft
[7] now under development.

MANET router or router:
A device--identified by a "unique Router ID" (RID)--that executes
a MANET routing protocol and, under the direction of which,
forwards IP packets. It may have multiple interfaces, each
identified by an IP address. Associated with each interface is a
physical layer communication device. These devices may employ
wireless or hardwired communications, and a router may
simultaneousl employ devices of differing technologies. For
example, a MANET router may have four interfaces with differing
communications technologies: two hardwired (Ethernet and FDDI) and
two wireless (spread spectrum and impulse radio).

adjacency:
The name given to an "interface on a neighboring router".

medium:
A communication channel such as free space, cable or fiber through
which connections are established.

communications technology:

The means employed by two devices to transfer information between
them.

connection:
A physical-layer connection--which may be through a wired or
wireless medium--between a device attached to an interface of one

Park, Corson [Page 13]

Internet Draft TORA Specification 15 November 1997

MANET router and a device utilizating the same communications
technology attached to an interface on another MANET router. From
the perspective of a given router, a connection is a (interface,
adjacency) pair.

link:
A "logical connection" consisting of the logical *union* of one or
more connections between two MANET routers. Thus, a link may
consist of a heterogeneous combination of connections through
differing media using different communications technologies.

neighbor:
From the perspective of a given MANET router, a "neighbor" is any
other router to which it is connected by a link.

topology:
A network can be viewed abstractly as a "graph" whose "topology"
at any point in time is defined by set of "points" connected by
"edges." This term comes from the branch of mathematics bearing
the same name that is concerned with those properties of geometric
configurations (such as point sets) which are unaltered by elastic
deformations (such as stretching) that are homeomorphisms.

physical-layer topology:
A topology consisting of connections (the edges) through the
same communications medium between devices (the points)
communicating using the *same* communications technology.

network-layer topology:
A topology consisting of links (the edges) between MANET routers
(the points) which is used as the basis for MANET routing. Since
"links" are the logical union of physical-layer "connections," it
follows that the "network-layer topology" is the logical union of
the various "physical-layer topologies."

IP routing fabric:
The heterogeneous mixture of communications media and technologies
through which IP packets are forwarded whose topology is defined
by the network-layer topology.

3.2 State Variables

For each destination "j" to which routing is required, a router
maintains the following state variables.

HEIGHT[]] The height metric of this router.
RT_REQ[]] Flag indicating route to the destination is required.
TIME_UPD[]j] Time an UPD packet was last sent by this router.

Park, Corson [Page 14]

Internet Draft TORA Specification 15 November 1997

For each destination "j" to which routing is required, a router
maintains a separate instance of the following state variables for
each neighbor "k".

HT_NEIGH[j][k] The height metric of neighbor "k."
LNK_STAT[j][k] The assigned status of the link to neighbor "k."
TIME_ACT[]j][k] Time the link to neighbor "k" became active.

3.3 Auxiliary Variables

For each destination "j" to which routing is required, a router
may maintain the following auxiliary variables. Although each of
the variables can be computed based on the entries in the LNK_STAT
table, maintaining the values continuously may facilitate
implementation of the protocol.

num_active[j] Number of neighbors (i.e., active links).
num_down[j] Number of links marked DN in the LNK_STAT table.
num_up[j] Number of links marked UP in the LNK_STAT table.

3.4 Height Data Structure

Each HEIGHT[j] and HT_NEIGH[j][k] entry requires a data structure
that comprises five components. The first three components of the
Height data structure represent the reference level of the height
entry, while the last two components represent an offset with
respect to the reference level. The five components of the Height
data structure are as follows.

Height.tau Time the reference level was created.

Height.oid Unique id of the router that created the reference level.
Height.r Flag indicating if it is a reflected reference level.
Height.delta Value used in propagation of a reference level.

Height.id Unique id of the router.

To simplify notation in this specification, a height may be
written as an ordered quintuple--e.g.,

HEIGHT[j]=(tau,o0id, r,delta,id). The following two predefined
values for a height are used throughout the specification of the
protocol.

NULL=(-,-,-,-,1d) An unknown or undefined height. Conceptually,
this can be thought of as an infinite height.

ZER0=(0,0,0,0,id) The assumed height of a given destination. Note
that here "id" is the unique id of the given
destination.

Park, Corson [Page 15]

Internet Draft TORA Specification 15 November 1997

3.5 Determination of Link Status

Each entry in the LNK_STAT table is maintained in accordance with
the following rule.

if HT_NEIGH[k]==NULL then LNK_STAT[k]=UN;
else if HEIGHT==NULL then LNK_STAT[k]=DN;
else if HT_NEIGH[K]<HEIGHT then LNK_STAT[k]=DN;
else if HT_NEIGH[K]>HEIGHT then LNK_STAT[k]=UP;

3.6 TORA Packet Formats

TORA packets are encapsulated in IMEP messages, which are sent as
"raw" IP datagrams with protocol number ?. The bit level format of
the TORA packets has yet to be defined.

3.7 Event Processing
3.7.1 Initialization
TBD.
3.7.2 Connection Status Change

The TORA process receives notification of connection status changes
from the the IMEP process. The interface between these two processes
has yet to be defined. However, it is anticipated that the TORA
process will have access to all the information maintained by the
IMEP process about the connections. Thus, upon notification, TORA
will have sufficient information to determine if any new links have
been established or any existing links have been severed. If either
is the case, then TORA must proceed as outlined in appropriate
subsequent section (3.7.3 or 3.7.4). In addition, it is also
possible for a connection that was used in the routing table to be
severed without resulting in the corresponding link being severed. In
this case TORA must modify the appropriate routing table entries as
outlined in section 3.7.5.

3.7.3 Link with a New Neighbor "k" Established
TBD.

3.7.4 Link with Prior Neighbor "k" Severed
TBD.

3.7.5 Connection Used in Routing Table Severed

Park, Corson [Page 16]

Internet Draft TORA Specification 15 November 1997

TBD.

3.7.6 QRY Packet Regarding Destination "j" Received from Neighbor "k"

If the RTE_REQ flag set then I) else II). nk with Prior Neighbor "k"

Severed

I) Event Processing Complete.

II) If HEIGHT[j].r==0 then A) else B).

A)

B)

If TIME_ACT[j][k]>TIME_UPD[j] then 1) else 2).

1) Set TIME_UPD to the current time. Create an UPD packet
and place it in the queue to be sent to all neighbors. Event
Processing Complete.

2) Event Processing Complete.
If HT_NEIGH[j][n].r==0 for any n then 1) else 2).

1) Find m such that HT_NEIGH[j][m] is the minimum of all
height entries with HT_NEIGH[j][n].r==0. Set
HEIGHT[j]=HT_NEIGH[]j][m]. Increment HEIGHT.delta. Set
HEIGHT[j].id to the unique id of this node. Update
LNK_STAT[j][n] for all n. Set TIME_UPD to the current time.
Create an UPD packet and place it in the queue to be sent to
all neighbors. Event Processing Complete.

2) Set the RT_REQ flag. If num_active>1 then a) else b).

a) Create a QRY packet and place it in the queue to be
sent to all neighbors. Event Processing Complete.

b) Event Processing Complete.

3.7.7 UPD Packet Regarding Destination "j" Received from Neighbor "k"

Update the entries HT_NEIGH[j][k] and LNK_STAT[j][k]. If the RT_REQ
flag is set and HT_NEIGH[]j][k].r==0 then I) else II).

I) Set HEIGHT[j]=HT_NEIGH[j][k]. Increment HEIGHT.delta. Set
HEIGHT[]j].id to the unique id of this node. Update LNK_STAT[j][n]
for all n. Unset the RT_REQ flag. Set TIME_UPD to the current

time.

Create an UPD packet and place it in the queue to be sent to

all neighbors. Event Processing Complete.

II) If num_down[]j]==0 then A) else B).

Park, Corson [Page 17]

Internet Draft

A) If

1)

2)
is

TORA Specification 15 November 1997

num_up[j]==0 then 1) else 2).
If HEIGHT[j]==NULL then a) else b).
a) Event Processing Complete.

b) Set HEIGHT[j]=NULL. Set TIME_UPD to the current time.
Create an UPD packet and place it in the queue to be sent
to all neighbors. Event Processing Complete.

If all HT_NEIGH[j][n], for all n such that HT_NEIGH[j][n]
non-NULL, have the same reference level then a) else b).

a) If HT_NEIGH[j][n].r==0, for any n such that
HT_NEIGH[j][n] is non-NULL, then i) else ii).

i) Set HEIGHT[Jj]=HT_NEIGH[j][n], where n is such that
HT_NEIGH[j][n] is non-NULL. Set HEIGHT[j].r=1. Set
HEIGHT[j].delta=0. Set HEIGHT[]j].id to the unique id
of this node. Update LNK_STAT[j][n] for all n. Set
TIME_UPD to the current time. Create an UPD packet and
place it in the queue to be sent to all neighbors.
Event Processing Complete.

ii) If HT_NEIGH[j].oid==id, where id is the unique id
of this node, then x) else y).

Xx) Save the current values of HEIGHT[j].tau and
HEIGHT[]j].oid in temporary variables. Set
HEIGHT[j]=NULL. Set num_down=0. Set num_up=0. For
every active link n, if the neighbor connected via
link n is the destination j, set
HT_NEIGH[j][n]=ZERO and LNK_STAT[j][n]=DN else set
HT_NEIGH[j][n]=NULL and LNK_STAT[j][n]=UN. Create a
CLR packet, with the previously saved values of tau
and oid, and place it in the queue to be sent to
all neighbors. Event Processing Complete.

y) Set HEIGHT[j].tau to the current time. Set
HEIGHT[j].oid to the unique id of this node. Set
HEIGHT[j].r=0. Set HEIGHT[j].delta=0. Set
HEIGHT[]j].id to the unique id of this node. Update
LNK_STAT[j][n] for all n. Unset the RT_REQ flag.
Set TIME_UPD to the current time. Create an UPD
packet and place it in the queue to be sent to all
neighbors. Event Processing Complete.

b) Find n such that HT_NEIGH[j][n] is the maximum of all

Park, Corson [Page 18]

Internet Draft TORA Specification 15 November 1997

non-NULL height entries. Find m such that HT_NEIGH[j][m]
is the minimum of the non-NULL height entries with the
same reference level as HT_NEIGH[]j][n]. Set
HEIGHT[j]=HT_NEIGH[]j][m]. Decrement HEIGHT.delta. Set
HEIGHT[j].id to the unique id of this node. Update
LNK_STAT[j][n] for all n. Set TIME_UPD to the current
time. Create an UPD packet and place it in the queue to
be sent to all neighbors. Event Processing Complete.

B) Event Processing Complete.
3.7.8 CLR Packet Regarding Destination "j" Received from Neighbor "k"

If HEIGHT[Jj].tau and HEIGHT[j].oid match the values of tau and oid
from the CLR packet and HEIGHT[j].r==1 then I) else II).

I) Save the current values of HEIGHT[j].tau and HEIGHT[]j].oid in
temporary variables. Set Height[j]=NULL. Set num_down=0. Set
num_up=0. For every active link n, if the neighbor connected via
link n is the destination j, set HT_NEIGH[j][n]=ZERO and
LNK_STAT[j][n]=DN else set HT_NEIGH[j][n]=NULL and
LNK_STAT[j][n]=UN. If num_active>1 then A) else B).

A) Create a CLR packet, with the previously saved values of tau
and oid, and place it in the queue to be sent to all neighbors.
Event Processing Complete.

B) Event Processing Complete.

II) Set HT_NEIGH[j][Kk]=NULL and LNK_STAT[j][k]=UN. For all n such
that HT_NEIGH[]j][n].tau and HT_NEIGH[j][n].oid match the values of
tau and oid from the CLR packet and HT_NEIGH[]j][n].r==1, set
HT_NEIGH[j][n]=NULL and LNK_STAT[j][n]=UN. If num_down==0 then A)
else B).

A) If num_up==0 then 1) else 2).
1) If HEIGHT[]j]==NULL then a) else b).
a) Event Processing Complete.

b) Set HEIGHT[j]=NULL. Set TIME_UPD to the current time.
Create an UPD packet and place it in the queue to be sent
to all neighbors. Event Processing Complete.

2) Set HEIGHT[j].tau to the current time. Set HEIGHT[j].oid
to the unique id of this node. Set HEIGHT[]j].r=0. Set
HEIGHT[j].delta=0. Set HEIGHT[]j].id to the unique id of this

Park, Corson [Page 19]

Internet Draft TORA Specification 15 November 1997

node. Update LNK_STAT[j][n] for all n. Unset the RT_REQ
flag. Set TIME_UPD to the current time. Create an UPD packet
and place it in the queue to be sent to all neighbors. Event
Processing Complete.

B) Event Processing Complete.
4 Security Considerations
TBD.
References

[1] V. Park and M. S. Corson, A Highly Adaptive Distributed Routing
Algorithm for Mobile Wireless Networks, Proc. IEEE INFOCOM '97, Kobe,
Japan (1997).

[2] M.S. Corson and A. Ephremides, A distributed routing algorithm
for mobile wireless networks, Wireless Networks 1 (1995).

[3] E. Gafni and D. Bertsekas, Distributed algorithms for generating
loop-free routes in networks with frequently changing topology, IEEE
Trans. Commun. (January 1981).

[4] M.S. Corson and V. Park, An Internet MANET Encapsulation Protocol
(IMEP), draft-ietf-manet-imep-spec-00.txt

[5] NAVSTAR GPS user equipment introduction, MZ10298.001 (February
1991).

[6] D. Mills, Network time protocol, specification, implementation
and analysis, Internet RFC-1119 (September 1989).

[7] C. Perkins, Mobile Ad Hoc Networking Terminology, draft-ietf-
manet-term-00.txt, (October 1997).

Author's Addresses

Vincent D. Park

Information Technology Division
Naval Research Laboratory
wWashington, DC 20375

(202) 767-5098
vpark@itd.nrl.navy.mil

M. Scott Corson

Institute for Systems Research
University of Maryland

College Park, MD 20742

(301) 405-6630
corson@isr.umd.edu

https://datatracker.ietf.org/doc/html/draft-ietf-manet-imep-spec-00.txt
https://datatracker.ietf.org/doc/html/rfc1119
https://datatracker.ietf.org/doc/html/draft-ietf-manet-term-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-manet-term-00.txt

Park, Corson [Page 20]

