
Internet Draft V. Park
draft-ietf-manet-tora-spec-00.txt Naval Research Laboratory
 S. Corson
 University of Maryland
 Submitted: Nov 26, 1997
 Expires: May 26, 1997

Temporally-Ordered Routing Algorithm (TORA) Version 1
Functional Specification

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

Abstract

 This document provides a detailed specification of Version 1 of the
 Temporally-Ordered Routing Algorithm (TORA)--a distributed routing
 protocol for mobile, multihop, wireless networks. Its intended use is
 for routing of Internet Protocol (IP) datagrams within an autonmous
 system. The basic, underlying algorithm is neither a distance-vector
 nor a link-state; it is one of a family of algorithms referred to as
 ''link reversal'' algorithms. The protocol's reaction is structured as
 a temporally-ordered sequence of diffusing computations, each
 computation consisting of a sequence of directed link reversals. The
 protocol is highly adaptive, efficient and scalable; and is well-
 suited for use in large, dense, mobile networks. In these networks,
 the protocol's reaction to link failures typically involves only a
 localized ''single pass'' of the distributed algorithm. This desirable
 behavior is achieved through the use of a physical or logical clock
 to establish the ''temporal order'' of topological change events. The
 established temporal ordering is subsequently used to structure (or
 order) the algorithm's reaction to topological changes.

Park, Corson [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-manet-tora-spec-00.txt

Internet Draft TORA Specification 15 November 1997

1 Introduction

 The Temporally-Ordered Routing Algorithm (TORA) [1] is a highly
 adaptive routing protocol, which has been tailored for operation in a
 Mobile Ad hoc Network (MANET). Such a network can be envisioned as a
 collection of routers (equipped with wireless receiver/transmitters),
 which are free to move about arbitrarily. The status of the
 communication links between the routers, at any given time, is a
 function of their positions, transmission power levels, antenna
 patterns, cochannel interference levels, etc. The mobility of the
 routers and the variability of other connectivity factors result in a
 network with a potentially rapid and unpredictably changing topology.
 Congested links are also an expected characteristic of such a network
 as wireless links inherently have significantly lower capacity than
 hardwired links and are therefore more prone to congestion. TORA's
 design is predicated on the notion that a routing algorithm that is
 well-suited for operation in this environment should possess the
 following properties:
 * Executes distributedly
 * Provides loop-free routes
 * Provides multiple routes (i.e., to reduce the frequency of
 reactions to topological changes and potentially to alleviate
 congestion)
 * Establishes routes quickly (i.e., so they may be used before
 the topology changes)
 * Minimizes communication overhead by localizing algorithmic
 reaction to topological changes when possible (i.e., to conserve
 available bandwidth and increase scalability)
 Routing optimality (i.e., determination of the shortest-path) is of
 less importance. It is also not necessary (nor desirable) to maintain
 routes between every source/destination pair at all times. The
 overhead expended to establish a route between a given
 source/destination pair will be wasted if the source does not require
 the route prior to its invalidation due to topological changes.

 TORA is based, in part, on the work presented in [2] and [3]. TORA is
 designed to minimize reaction to topological changes. A key concept
 in its design is that it decouples the generation of potentially
 far-reaching control message propagation from the rate of topological
 changes. Control messaging is typically localized to a very small set
 of nodes near the change without having to resort to a dynamic,
 hierarchical routing solution with its attendant complexity. TORA
 includes a secondary mechanism, which allows far-reaching control
 message propagation as a means of infrequent route optimization and
 soft-state route verification. This propogation occurs periodically
 at a very low rate and is independent of the network topology
 dynamics.

Park, Corson [Page 2]

Internet Draft TORA Specification 15 November 1997

 TORA is distributed in that nodes need only maintain information
 about adjacent nodes (i.e., one hop knowledge). It guarantees all
 routes are loop-free, and typically provides multiple routes for any
 source/destination pair that requires a route. TORA is "source
 initiated" and quickly creates a set of routes to a given destination
 only when desired. Since multiple routes are typically established
 and having a single route is sufficient, many topological changes
 require no reaction at all. Following topological changes that do
 require reaction, the protocol quickly re-establishes valid routes.
 This ability to initiate and react infrequently serves to minimize
 communication overhead. Finally, in the event of a network partition,
 the protocol detects the partition and erases all invalid routes.

2 MANET Routing Functional Description

 A protocol for routing packets in a MANET can be divided into two
 functional distinct components--a link status sensing mechanism and a
 routing mechanism. Although these two components are somewhat
 orthogonal, they can be designed to work together in a synergistic
 fashion. Originally, these two mechanisms were being designed
 together as a part of the TORA protocol specification. However, since
 the basic functionality provided by a link status sensing mechanism
 is required by a variety of different routing mechanisms, it seemed
 appropriate that a more generic link status sensing mechanism should
 be designed and specified as a separate, underlying protocol. This
 underlying protocol--the Internet MANET Encapsulation Protocol (IMEP)
 [4]--is being designed to provide several other basic functions that
 are commonly required by a routing mechanism. Thus, TORA provides
 only the routing mechanism and depends on IMEP for other underlying
 functions. Should it later be decided that the two protocols should
 be combined, IMEP's functionality will be incorporated back into the
 TORA specification.

2.1 Internet MANET Encapsulation Protocol

 IMEP and TORA have been designed to work together synergistically.
 TORA relies on IMEP for the following underlying functions and
 services:
 * Link status sensing (i.e., monitoring and maintaining the
 status of connectivity with the set of neighboring routers)
 * Control packet delivery (i.e., reliable, in-order control packet
 delivery to the set of neighbors)
 * Network-layer address resolution and mapping
 * Security authentication
 IMEP provides a rich interface for use by a variety of different
 mobile wireless routing protocols, which may have varied needs for
 underlying services.

Park, Corson [Page 3]

Internet Draft TORA Specification 15 November 1997

2.2 Temporally-Ordered Routing Algorithm

 This section provides a functional description of TORA. A detailed
 specification of TORA is provided in a subsequent section.

2.2.1 Notation

 A network can be modeled as a graph with a finite set of nodes
 connected by a set of initially undirected links--wherea node
 represents a router and a link represents communication connectivity
 between two routers. Each node i in the network is assumed to have a
 unique node identifier (ID), and each link (i, k) is assumed to allow
 two-way communication (i.e., nodes connected by a link can
 communicate with each other in either direction). Due to the mobility
 of the nodes, the set of links in the network is changing with time
 (i.e., new links can be established and existing links can be
 severed). Each initially undirected link (i, k) may subsequently be
 assigned one of three states; (1) undirected, (2) directed from node
 i to node k, or (3) directed from node k to node i. If a link (i, k)
 is directed from node i to node k, node i is said to be "upstream"
 from node k, while node k is said to be "downstream" from node i. For
 each node i, we define the "neighbors" of i, to be the set of nodes k
 such that there exists a link between nodes i and k. The following
 assumptions account for the functionality provided by the IMEP. It is
 assumed that each node i is always aware of its set of neighbors.
 Additionally, it is assumed that when a node i transmits a packet, it
 is broadcast to all of its neighbors and that all transmitted packets
 are received correctly and in order of transmission.

2.2.2 Foundation and Basic Structure

 A logically separate version of TORA is run for each destination to
 which routing is required. The following discussion focuses on a
 single version running for a given destination, j.

 TORA can be separated into three basic functions: creating routes,
 maintaining routes, and erasing routes. Creating a route from a given
 node to the destination requires establishment of a sequence of
 directed links leading from the node to the destination. This
 function is only initiated when a node with no directed links
 requires a route to the destination. Thus, creating routes
 essentially corresponds to assigning directions to links in an
 undirected network or portion of the network. The method used to
 accomplish this is an adaptation of the query/reply process described
 in [2], which builds a directed acyclic graph (DAG) rooted at the
 destination (i.e., the destination is the only node with no
 downstream links). Such a DAG will be referred to as a "destination-
 oriented" DAG. Maintaining routes refers to reacting to topological

Park, Corson [Page 4]

Internet Draft TORA Specification 15 November 1997

 changes in the network in a manner such that routes to the
 destination are re-established within a finite time--meaning that its
 directed portions return to a destination-oriented DAG within a
 finite time. Gafni and Bertsekas (GB) described two algorithms [3],
 which are members of a general class of algorithms designed to
 accomplish this task. However, the GB algorithms are designed for
 operation in connected networks. Due to instability exhibited by
 these algorithms in portions of the network that become partitioned
 from the destination, they are deemed unacceptable for the current
 task. TORA incorporates a new algorithm, in the same general class,
 that is more efficient in reacting to topological changes and capable
 of detecting a network partition. This leads to the third function--
 erasing routes. Upon detection of a network partition, all links (in
 the portion of the network that has become partitioned from the
 destination) must be marked as undirected to erase invalid routes.

 TORA accomplishes these three functions through the use of three
 distinct control packets: query (QRY), update (UPD), and clear (CLR).
 QRY packets are used for creating routes; UPD packets are used for
 both creating and maintaining routes; and CLR packets are used for
 erasing routes.

2.2.3 General Class of Algorithms

 It is beneficial at this point to briefly review the earlier GB
 algorithms. Consider a connected DAG with at least one node (in
 addition to the destination) that has no downstream links. Such a DAG
 will be referred to as "destination-disoriented." The following
 excerpts (punctuation added for clarity) from [3] loosely describe
 the two algorithms designed to transform a destination-disoriented
 DAG into a destination-oriented DAG.

 Full Reversal Method: At each iteration, each node (other than the
 destination) that has no outgoing links reverses the direction of all
 its incoming links.

 Partial Reversal Method: Every node i (other than the destination)
 keeps a list of its neighboring nodes k that have reversed the
 direction of the corresponding links (i, k). At each iteration, each
 node i that has no outgoing links reverses the directions of the
 links (i, k), for all k which do not appear on its list, and empties
 the list. If no such k exists (i.e., the list is full), node i
 reverses the directions of all incoming links and empties the list.

 These two algorithms are subsequently re-stated in the context of a
 generalized numbering scheme that will be summarize here; however,
 much detail will be left out. For a thorough understanding, one
 should review the original paper. Essentially, a value is associated

Park, Corson [Page 5]

Internet Draft TORA Specification 15 November 1997

 with each node at all times, and the values are such that they can be
 totally ordered. For example, in the full reversal method, a pair
 (alpha[i], i) is associated with each node where i is the unique ID
 of the node and alpha[i] is an integer. The pairs can then be totally
 ordered lexicographically (e.g. (alpha[i], i) > (alpha[k], k) if
 alpha[i] > alpha[k] ,or if alpha[i] = alpha[k] and i > k). The value
 associated with each node i will be referred to as its "height" and
 denoted h[i]. Now, assume that we assign an initial height to each
 node in the destination-disoriented DAG such that node i is upstream
 from node k if and only if h[i] > h[k]. Then it is clear that node i
 has no downstream links when, measured by its height, it is a local
 minimum with respect to its neighbors, h[i] < h[k] for all neighbors
 k. To achieve the desired behavior in the full reversal method, node
 i must select a new height such that it becomes a local maximum with
 respect to its neighbors (i.e., h[i] > h[k] for all neighbors k).
 Node i simply selects a new value alpha[i] = max {alpha[k] such that
 k is a neighbor of i}+1 and broadcasts the value to all of its
 neighbors. The partial reversal method can neither be viewed
 conceptually nor explained as easily. Again, a node selects a new
 height only when it is a local minimum, but it does not always become
 a local maximum. To reverse only some of its links (i.e., partial
 reversal), a node selects a new height that is higher than its own
 previous height and the height of some of its neighbors, but not
 higher than the height of all of its neighbors.

 The algorithms that belong to this general class are shown to be
 loop-free, and terminate in a finite number of iterations to a
 destination-oriented DAG [3]. Furthermore, only nodes that have lost
 all downstream paths to the destination react to a given failure. The
 new algorithm incorporated into TORA for the maintaining routes
 process is a member of this class, and thus inherits many of these
 properties. The new algorithm is similar to the partial reversal
 method in that it often reverses only some of its links. However, in
 order to provide a partition detection capability, the rules for the
 selection of a new height are significantly more complex. These rules
 are discussed in detail in section 2.2.4.2.

 The basic idea is as follows. When a node loses its last downstream
 link (i.e., becomes a local minimum) as a result of a link failure,
 the node selects a new height such that it becomes a global maximum
 by defining a new "reference level". By design, when a new reference
 level is defined, it is higher than any previously defined reference
 levels. This action results in link reversals that may cause other
 nodes to lose their last downstream link. Any such node executes a
 partial reversal with respect to its neighbors that have heights
 already associated with the newest (highest) reference level. In this
 manner, the new reference level is propagated outward from the point
 of the original failure (re-directing links in order to re-establish

Park, Corson [Page 6]

Internet Draft TORA Specification 15 November 1997

 routes to the destination). This propagation will only extend through
 nodes that (as a result of the initial link failure) have lost all
 routes to the destination. Some nodes may experience link reversals
 from all neighbors (as a result of the same initial link failure).
 Any such node must select a new height such that it becomes a local
 maximum. This is accomplished by defining a higher sub-level
 associated with the new reference level, which will be referred to as
 the "reflected reference level". This node essentially "reflects"
 this higher sub-level back toward the node that originally defined
 the new reference level. Should this reflected reference level be
 propagated back to the originating node from all of its neighbors,
 then it is determined that no route to the destination exists. The
 originating node has then detected a partition and can begin the
 process of erasing the invalid routes.

2.2.4 Detailed Description

 At any given time, an ordered quintuple, HEIGHT = (tau[i], oid[i],
 r[i], delta[i], i), is associated with each node i, where i is the
 unique ID of the node. Conceptually, the quintuple associated with
 each node represents the height of the node as defined by two
 parameters: a reference level and a offset with respect to the
 reference level. The reference level is represented by the first
 three values in the quintuple, while the offset is represented by the
 last two values. A new reference level is defined each time a node
 loses its last downstream link due to a link failure. The first value
 representing the reference level, tau[i], is a time tag set to the
 "time" of the link failure. For now, it is assumed that all nodes
 have synchronized clocks. This could be accomplished via interface
 with an external time source such as the Global Positioning System
 (GPS) [5] or through use of an algorithm such as the Network Time
 Protocol [6]. This time tag need not actually indicate or be "time,"
 nor will relaxation of the synchronization requirement invalidate the
 protocol. The second value, oid[i], is the originator-ID (i.e., the
 unique ID of the node that defined the new reference level). This
 ensures that the reference levels can be totally ordered
 lexicographically, even if multiple nodes define reference levels due
 to failures that occur simultaneously (i.e., with equal time tags).
 The third value, r[i], is a single bit used to divide each of the
 unique reference levels into two unique sub-levels. This bit is used
 to distinguish between the original reference level and its
 corresponding, higher, reflected reference level. When a distinction
 is not required, both the original and reflected reference levels
 will simply be referred to as "reference levels." The first value
 representing the offset, delta[i], is an integer used to order nodes
 with respect to a common reference level. This value is instrumental
 in the propagation of a reference level. How delta is selected will
 be clarified in a subsequent section. Finally, the second value

Park, Corson [Page 7]

Internet Draft TORA Specification 15 November 1997

 representing the offset, i, is the unique ID of the node itself. This
 ensures that nodes with a common reference level and equal values of
 delta (and in fact all nodes) can be totally ordered
 lexicographically at all times.

 Each node i (other than the destination) maintains its height,
 HEIGHT. Initially the height of each node in the network (other than
 the destination) is set to NULL, HEIGHT = (-, -, -, -, i), where i is
 the unique ID of the node. Subsequently, the height of each node i
 can be modified in accordance with the rules of the protocol. The
 height of the destination j is always ZERO, HEIGHT = (0, 0, 0, 0, j),
 where j is the unique ID of the destination for which the algorithm
 is running). In addition to its own height, each node i maintains a
 height table with an entry HT_NEIGH[k] for each neighbor k. Initially
 the height of each neighbor is set to NULL, HT_NEIGH[k] = (-, -, -,
 -, k). If the destination j is a neighbor of node i, node i sets the
 corresponding height entry to ZERO, HT_NEIGH[j] = (0, 0, 0, 0, j).

 Each node i (other than the destination) also maintains a link-status
 table with an entry LNK_STAT[k] for each link (i, k), where node k is
 a neighbor of node i. The status of the links is determined by the
 height of the node, HEIGHT, and its height entry for the neighbor,
 HT_NEIGH[k]. The link is directed from the higher node to the lower
 node. If a neighbor k is higher than node i, the link is marked
 upstream (UP). If a neighbor k is lower than node i, the link is
 marked downstream (DN). If the neighbor's height entry, HT_NEIGH[k],
 is NULL, the link is marked undirected (UN). Finally, if the height
 of node i is NULL, then any neighbor's height that is not NULL is
 considered lower, and the corresponding link is marked downstream
 (DN). When a new link (i, k) is established (i.e., node i has a new
 neighbor k), node i adds entries for the new neighbor to the height
 and link-status tables. If the new neighbor is the destination j, the
 corresponding height entry is set to ZERO, HT_NEIGH[j] = (0, 0, 0, 0,
 j); otherwise it is set to NULL, HT_NEIGH[k] = (-, -, -, -, k). The
 corresponding link-status entry, LNK_STAT[k], is set as outlined
 above. Nodes need not communicate any routing information upon link
 activation.

2.2.4.1 Creating Routes

 Creating routes requires use of the QRY and UPD packets. A QRY packet
 consists of the destination-ID, j, which identifies the destination
 for which the algorithm is running. An UPD packet consists of the
 destination-ID, j, and the height of the node i that is broadcasting
 the packet, HEIGHT.

 Each node i (other than the destination) maintains a route-required
 flag, which is initially un-set. Each node i (other than the

Park, Corson [Page 8]

Internet Draft TORA Specification 15 November 1997

 destination) also maintains the time at which the last UPD packet was
 broadcast and the time at which each link (i, k), where node k is
 neighbor of node i, became active.

 When a node with no directed links and an un-set route-required flag
 requires a route to the destination, it broadcasts a QRY packet and
 sets its route-required flag. When a node i receives a QRY it reacts
 as follows:

 a) If the receiving node i has no downstream links and its route-
 required flag is un-set, it re-broadcasts the QRY packet and sets
 its route-required flag.

 b) If the receiving node i has no downstream links and the route-
 required flag is set, it discards the QRY packet.

 c) If the receiving node i has at least one downstream link and
 its height is NULL, it sets its height to HEIGHT = (tau[k],
 oid[k], r[k], delta[k] + 1, i), where HT_NEIGH[k] = (tau[k],
 oid[k], r[k], delta[k], k) is the minimum height of its non-NULL
 neighbors, and broadcasts an UPD packet.

 d) If the receiving node i has at least one downstream link and
 its height is non-NULL, it first compares the time the last UPD
 packet was broadcast to the time the link over which the QRY
 packet was received became active. If an UPD packet has been
 broadcast since the link became active, it discards the QRY
 packet; otherwise, it broadcasts an UPD packet.

 If a node has the route-required flag set when a new link is
 established, it must broadcast a QRY packet.

 When a node i receives an UPD packet from a neighbor k, node i first
 updates the entry HT_NEIGH[k] in its height table with the height
 contained in the received UPD packet. Node i then updates the entry
 LNK_STAT[k] in its link-status table and reacts as follows:

 a) If the route-required flag is set (which implies that the
 height of node i is NULL), node i sets its height to HEIGHT =
 (tau[k], oid[k], r[k], delta[k] + 1, i)--where HT_NEIGH[k] =
 (tau[k], oid[k], r[k], delta[k], k) is the minimum height of its
 non-NULL neighbors, updates all the entries in its link-status
 table, un-sets the route-required flag and then broadcasts an UPD
 packet that contains its new height.

 b) If the route-required flag is not set, node i need only react
 if it has lost its last downstream link. The section on
 maintaining routes discusses the reaction that occurs if reception

Park, Corson [Page 9]

Internet Draft TORA Specification 15 November 1997

 of the UPD packet resulted in loss of the last downstream link.

2.2.4.2 Maintaining Routes

 Maintaining routes is only performed for nodes that have a height
 other than NULL. Furthermore, any neighbor's height that is NULL is
 not used for the computations. A node i is said to have no downstream
 links if HEIGHT < HT_NEIGH[k] for all non-NULL neighbors k. This will
 result in one of five possible reactions depending on the state of
 the node and the preceding event. Each node (other than the
 destination) that has no downstream links modifies its height, HEIGHT
 = (tau[i], oid[i], r[i], delta[i], i), as follows:

 Case 1 (Generate):

 Node i has no downstream links (due to a link failure).

 (tau[i], oid[i], r[i])=(t, i, 0), where t is the time of the
 failure.

 (delta[i],i)=(0, i)

 In essence, node i defines a new reference level. The above
 assumes node i has at least one upstream neighbor. If node i
 has no upstream neighbors it simply sets its height to NULL.

 Case 2 (Propagate):

 Node i has no downstream links (due to a link reversal
 following reception of an UPD packet) and the ordered sets
 (tau[k], oid[k], r[k]) are not equal for all neighbors k.

 (tau[i], oid[i], r[i])=max{(t[k], oid[k], r[k]) of all
 neighbors k}

 (delta[i],i)=(delta[m]-1, i), where m is the lowest neighbor
 with the maximum reference level defined above.

 In essence, node i propagates the reference level of its
 highest neighbor and selects a height that is lower than all
 neighbors with that reference level.

 Case 3 (Reflect):

 Node i has no downstream links (due to a link reversal
 following reception of an UPD packet) and the ordered sets
 (tau[k], oid[k], r[k]) are equal with r[k] = 0 for all
 neighbors k.

Park, Corson [Page 10]

Internet Draft TORA Specification 15 November 1997

 (tau[i], oid[i], r[i])=(tau[k], oid[k], 1)

 (delta[i],i)=(0, i)

 In essence, the same level (which has not been "reflected") has
 propagated to node i from all of its neighbors. Node i
 "reflects" back a higher sub-level by setting the bit r.

 Case 4 (Detect):

 Node i has no downstream links (due to a link reversal
 following reception of an UPD packet), the ordered sets
 (tau[k], oid[k], r[k]) are equal with r[k] = 1 for all
 neighbors k, and oid[k] = i (i.e., node i defined the level).

 (tau[i], oid[i], r[i])=(-, -, -)

 (delta[i],i)=(-, i)

 In essence, the last reference level defined by node i has been
 reflected and propagated back as a higher sub-level from all of
 its neighbors. This corresponds to detection of a partition.
 Node i must initiate the process of erasing invalid routes as
 discussed in the next section.

 Case 5 (Generate):

 Node i has no downstream links (due to a link reversal
 following reception of an UPD packet), the ordered sets
 (tau[k], oid[k], r[k]) are equal with r[k] = 1 for all
 neighbors k, and oid[k] != i (i.e., node i did not define the
 level).

 (tau[i], oid[i], r[i])=(t, i, 0), where t is the time of the
 failure

 (delta[i],i)=(0, i)

 In essence, node i experienced a link failure (which did not
 require reaction) between the time it propagated a reference
 level and the reflected higher sub-level returned from all
 neighbors. This is not necessarily an indication of a
 partition. Node i defines a new reference level.

 Following determination of its new height in cases 1, 2, 3, and 5,
 node i updates all the entries in its link-status table; and
 broadcasts an UPD packet to all neighbors k. The UPD packet consists
 of the destination-ID, j, and the new height of the node i that is

Park, Corson [Page 11]

Internet Draft TORA Specification 15 November 1997

 broadcasting the packet, HEIGHT. When a node i receives an UPD packet
 from a neighbor k, node i reacts as described in the creating routes
 section and in accordance with the cases outlined above. In the event
 of the failure a link (i, k) that is not its last downstream link,
 node i simply removes the entries HT_NEIGH[k] and LNK_STAT[k] in its
 height and link-status tables.

2.2.4.3 Erasing Routes

 Following detection of a partition (case 4), node i sets its height
 and the height entry for each neighbor k to NULL (unless the
 destination j is a neighbor, in which case the corresponding height
 entry is set to ZERO), updates all the entries in its link-status
 table, and broadcast a CLR packet. The CLR packet consists of the
 destination-ID, j, and the reflected reference level of node i,
 (tau[i], oid[i], 1). In actuality the value r[i] = 1 need not be
 included since it is always 1 for a reflected reference level. When a
 node i receives a CLR packet from a neighbor k it reacts as follows:

 a) If the reference level in the CLR packet matches the reference
 level of node i; it sets its height and the height entry for each
 neighbor k to NULL (unless the destination j is a neighbor, in
 which case the corresponding height entry is set to ZERO), updates
 all the entries in its link-status table and broadcasts a CLR
 packet.

 b) If the reference level in the CLR packet does not match the
 reference level of node i; it sets the height entry for each
 neighbor k (with the same reference level as the CLR packet) to
 NULL and updates the corresponding link-status table entries.
 Thus, the height of each node in the portion of the network that
 was partitioned is set to NULL and all invalid routes are erased.
 If (b) causes node i to lose its last downstream link, it reacts
 as in case 1 of maintaining routes.

3 Protocol Specification

 In the previous description of TORA, some simplifications were made
 for clarity. In particular, j was used to represent the unique ID of
 the destination for which the algorithm was running. However, when
 forwarding IP datagrams in an internetwork, "destinations" to which
 routing is required are usually identified by an IP address and mask.
 Together, these two values may correspond to an individual interface
 on a specific machine, or an aggregation of addresses (e.g., a
 network address). Thus, in the subsequent discussion a destination
 "j" refers to a typical IP destination. Another significant
 simplification pertains to the link between to nodes. In the most
 general case, a MANET router may have multiple wireless and hardwired

Park, Corson [Page 12]

Internet Draft TORA Specification 15 November 1997

 interfaces with differing communication technologies. Therefore, it
 is necessary to make a distiction between a physical communication
 "connection" between two routers and a logical communication "link"
 between two routers. The previous description also ommited any
 discussion about how the next-hop forwarding decision is made. It is
 assumed that the IP packet forwarding performed by the kernel in
 accordance with a standard IP routing table maintained in kernel
 space. The TORA process must have access to the information in the
 table and be able to manipulate the table entries. The details
 regarding how the routing table manipulations made by TORA will be
 described in detail in the subsequent sections. Since the subsequent
 description is intended to be in sufficient detail to serve as a
 template for implementations, some additional terminology is defined
 first.

3.1 Terminology

 The following definitions are identical to the definitions used in
 the IMEP specification. Many of these definitions may be replaced by
 or merged with those of the MANET working group's terminology draft
 [7] now under development.

 MANET router or router:
 A device--identified by a "unique Router ID" (RID)--that executes
 a MANET routing protocol and, under the direction of which,
 forwards IP packets. It may have multiple interfaces, each
 identified by an IP address. Associated with each interface is a
 physical layer communication device. These devices may employ
 wireless or hardwired communications, and a router may
 simultaneousl employ devices of differing technologies. For
 example, a MANET router may have four interfaces with differing
 communications technologies: two hardwired (Ethernet and FDDI) and
 two wireless (spread spectrum and impulse radio).

 adjacency:
 The name given to an "interface on a neighboring router".

 medium:
 A communication channel such as free space, cable or fiber through
 which connections are established.

 communications technology:
 The means employed by two devices to transfer information between
 them.

 connection:
 A physical-layer connection--which may be through a wired or
 wireless medium--between a device attached to an interface of one

Park, Corson [Page 13]

Internet Draft TORA Specification 15 November 1997

 MANET router and a device utilizating the same communications
 technology attached to an interface on another MANET router. From
 the perspective of a given router, a connection is a (interface,
 adjacency) pair.

 link:
 A "logical connection" consisting of the logical *union* of one or
 more connections between two MANET routers. Thus, a link may
 consist of a heterogeneous combination of connections through
 differing media using different communications technologies.

 neighbor:
 From the perspective of a given MANET router, a "neighbor" is any
 other router to which it is connected by a link.

 topology:
 A network can be viewed abstractly as a "graph" whose "topology"
 at any point in time is defined by set of "points" connected by
 "edges." This term comes from the branch of mathematics bearing
 the same name that is concerned with those properties of geometric
 configurations (such as point sets) which are unaltered by elastic
 deformations (such as stretching) that are homeomorphisms.

 physical-layer topology:
 A topology consisting of connections (the edges) through the
 same communications medium between devices (the points)
 communicating using the *same* communications technology.

 network-layer topology:
 A topology consisting of links (the edges) between MANET routers
 (the points) which is used as the basis for MANET routing. Since
 "links" are the logical union of physical-layer "connections," it
 follows that the "network-layer topology" is the logical union of
 the various "physical-layer topologies."

 IP routing fabric:
 The heterogeneous mixture of communications media and technologies
 through which IP packets are forwarded whose topology is defined
 by the network-layer topology.

3.2 State Variables

 For each destination "j" to which routing is required, a router
 maintains the following state variables.

 HEIGHT[j] The height metric of this router.
 RT_REQ[j] Flag indicating route to the destination is required.
 TIME_UPD[j] Time an UPD packet was last sent by this router.

Park, Corson [Page 14]

Internet Draft TORA Specification 15 November 1997

 For each destination "j" to which routing is required, a router
 maintains a separate instance of the following state variables for
 each neighbor "k".

 HT_NEIGH[j][k] The height metric of neighbor "k."
 LNK_STAT[j][k] The assigned status of the link to neighbor "k."
 TIME_ACT[j][k] Time the link to neighbor "k" became active.

3.3 Auxiliary Variables

 For each destination "j" to which routing is required, a router
 may maintain the following auxiliary variables. Although each of
 the variables can be computed based on the entries in the LNK_STAT
 table, maintaining the values continuously may facilitate
 implementation of the protocol.

 num_active[j] Number of neighbors (i.e., active links).
 num_down[j] Number of links marked DN in the LNK_STAT table.
 num_up[j] Number of links marked UP in the LNK_STAT table.

3.4 Height Data Structure

 Each HEIGHT[j] and HT_NEIGH[j][k] entry requires a data structure
 that comprises five components. The first three components of the
 Height data structure represent the reference level of the height
 entry, while the last two components represent an offset with
 respect to the reference level. The five components of the Height
 data structure are as follows.

 Height.tau Time the reference level was created.
 Height.oid Unique id of the router that created the reference level.
 Height.r Flag indicating if it is a reflected reference level.
 Height.delta Value used in propagation of a reference level.
 Height.id Unique id of the router.

 To simplify notation in this specification, a height may be
 written as an ordered quintuple--e.g.,
 HEIGHT[j]=(tau,oid,r,delta,id). The following two predefined
 values for a height are used throughout the specification of the
 protocol.

 NULL=(-,-,-,-,id) An unknown or undefined height. Conceptually,
 this can be thought of as an infinite height.

 ZERO=(0,0,0,0,id) The assumed height of a given destination. Note
 that here "id" is the unique id of the given
 destination.

Park, Corson [Page 15]

Internet Draft TORA Specification 15 November 1997

3.5 Determination of Link Status

 Each entry in the LNK_STAT table is maintained in accordance with
 the following rule.

 if HT_NEIGH[k]==NULL then LNK_STAT[k]=UN;
 else if HEIGHT==NULL then LNK_STAT[k]=DN;
 else if HT_NEIGH[k]<HEIGHT then LNK_STAT[k]=DN;
 else if HT_NEIGH[k]>HEIGHT then LNK_STAT[k]=UP;

3.6 TORA Packet Formats

 TORA packets are encapsulated in IMEP messages, which are sent as
 "raw" IP datagrams with protocol number ?. The bit level format of
 the TORA packets has yet to be defined.

3.7 Event Processing

3.7.1 Initialization

 TBD.

3.7.2 Connection Status Change

 The TORA process receives notification of connection status changes
 from the the IMEP process. The interface between these two processes
 has yet to be defined. However, it is anticipated that the TORA
 process will have access to all the information maintained by the
 IMEP process about the connections. Thus, upon notification, TORA
 will have sufficient information to determine if any new links have
 been established or any existing links have been severed. If either
 is the case, then TORA must proceed as outlined in appropriate
 subsequent section (3.7.3 or 3.7.4). In addition, it is also
 possible for a connection that was used in the routing table to be
 severed without resulting in the corresponding link being severed. In
 this case TORA must modify the appropriate routing table entries as
 outlined in section 3.7.5.

3.7.3 Link with a New Neighbor "k" Established

 TBD.

3.7.4 Link with Prior Neighbor "k" Severed

 TBD.

3.7.5 Connection Used in Routing Table Severed

Park, Corson [Page 16]

Internet Draft TORA Specification 15 November 1997

 TBD.

3.7.6 QRY Packet Regarding Destination "j" Received from Neighbor "k"

 If the RTE_REQ flag set then I) else II). nk with Prior Neighbor "k"
 Severed

 I) Event Processing Complete.

 II) If HEIGHT[j].r==0 then A) else B).

 A) If TIME_ACT[j][k]>TIME_UPD[j] then 1) else 2).

 1) Set TIME_UPD to the current time. Create an UPD packet
 and place it in the queue to be sent to all neighbors. Event
 Processing Complete.

 2) Event Processing Complete.

 B) If HT_NEIGH[j][n].r==0 for any n then 1) else 2).

 1) Find m such that HT_NEIGH[j][m] is the minimum of all
 height entries with HT_NEIGH[j][n].r==0. Set
 HEIGHT[j]=HT_NEIGH[j][m]. Increment HEIGHT.delta. Set
 HEIGHT[j].id to the unique id of this node. Update
 LNK_STAT[j][n] for all n. Set TIME_UPD to the current time.
 Create an UPD packet and place it in the queue to be sent to
 all neighbors. Event Processing Complete.

 2) Set the RT_REQ flag. If num_active>1 then a) else b).

 a) Create a QRY packet and place it in the queue to be
 sent to all neighbors. Event Processing Complete.

 b) Event Processing Complete.

3.7.7 UPD Packet Regarding Destination "j" Received from Neighbor "k"

 Update the entries HT_NEIGH[j][k] and LNK_STAT[j][k]. If the RT_REQ
 flag is set and HT_NEIGH[j][k].r==0 then I) else II).

 I) Set HEIGHT[j]=HT_NEIGH[j][k]. Increment HEIGHT.delta. Set
 HEIGHT[j].id to the unique id of this node. Update LNK_STAT[j][n]
 for all n. Unset the RT_REQ flag. Set TIME_UPD to the current
 time. Create an UPD packet and place it in the queue to be sent to
 all neighbors. Event Processing Complete.

 II) If num_down[j]==0 then A) else B).

Park, Corson [Page 17]

Internet Draft TORA Specification 15 November 1997

 A) If num_up[j]==0 then 1) else 2).

 1) If HEIGHT[j]==NULL then a) else b).

 a) Event Processing Complete.

 b) Set HEIGHT[j]=NULL. Set TIME_UPD to the current time.
 Create an UPD packet and place it in the queue to be sent
 to all neighbors. Event Processing Complete.

 2) If all HT_NEIGH[j][n], for all n such that HT_NEIGH[j][n]
 is non-NULL, have the same reference level then a) else b).

 a) If HT_NEIGH[j][n].r==0, for any n such that
 HT_NEIGH[j][n] is non-NULL, then i) else ii).

 i) Set HEIGHT[j]=HT_NEIGH[j][n], where n is such that
 HT_NEIGH[j][n] is non-NULL. Set HEIGHT[j].r=1. Set
 HEIGHT[j].delta=0. Set HEIGHT[j].id to the unique id
 of this node. Update LNK_STAT[j][n] for all n. Set
 TIME_UPD to the current time. Create an UPD packet and
 place it in the queue to be sent to all neighbors.
 Event Processing Complete.

 ii) If HT_NEIGH[j].oid==id, where id is the unique id
 of this node, then x) else y).

 x) Save the current values of HEIGHT[j].tau and
 HEIGHT[j].oid in temporary variables. Set
 HEIGHT[j]=NULL. Set num_down=0. Set num_up=0. For
 every active link n, if the neighbor connected via
 link n is the destination j, set
 HT_NEIGH[j][n]=ZERO and LNK_STAT[j][n]=DN else set
 HT_NEIGH[j][n]=NULL and LNK_STAT[j][n]=UN. Create a
 CLR packet, with the previously saved values of tau
 and oid, and place it in the queue to be sent to
 all neighbors. Event Processing Complete.

 y) Set HEIGHT[j].tau to the current time. Set
 HEIGHT[j].oid to the unique id of this node. Set
 HEIGHT[j].r=0. Set HEIGHT[j].delta=0. Set
 HEIGHT[j].id to the unique id of this node. Update
 LNK_STAT[j][n] for all n. Unset the RT_REQ flag.
 Set TIME_UPD to the current time. Create an UPD
 packet and place it in the queue to be sent to all
 neighbors. Event Processing Complete.

 b) Find n such that HT_NEIGH[j][n] is the maximum of all

Park, Corson [Page 18]

Internet Draft TORA Specification 15 November 1997

 non-NULL height entries. Find m such that HT_NEIGH[j][m]
 is the minimum of the non-NULL height entries with the
 same reference level as HT_NEIGH[j][n]. Set
 HEIGHT[j]=HT_NEIGH[j][m]. Decrement HEIGHT.delta. Set
 HEIGHT[j].id to the unique id of this node. Update
 LNK_STAT[j][n] for all n. Set TIME_UPD to the current
 time. Create an UPD packet and place it in the queue to
 be sent to all neighbors. Event Processing Complete.

 B) Event Processing Complete.

3.7.8 CLR Packet Regarding Destination "j" Received from Neighbor "k"

 If HEIGHT[j].tau and HEIGHT[j].oid match the values of tau and oid
 from the CLR packet and HEIGHT[j].r==1 then I) else II).

 I) Save the current values of HEIGHT[j].tau and HEIGHT[j].oid in
 temporary variables. Set Height[j]=NULL. Set num_down=0. Set
 num_up=0. For every active link n, if the neighbor connected via
 link n is the destination j, set HT_NEIGH[j][n]=ZERO and
 LNK_STAT[j][n]=DN else set HT_NEIGH[j][n]=NULL and
 LNK_STAT[j][n]=UN. If num_active>1 then A) else B).

 A) Create a CLR packet, with the previously saved values of tau
 and oid, and place it in the queue to be sent to all neighbors.
 Event Processing Complete.

 B) Event Processing Complete.

 II) Set HT_NEIGH[j][k]=NULL and LNK_STAT[j][k]=UN. For all n such
 that HT_NEIGH[j][n].tau and HT_NEIGH[j][n].oid match the values of
 tau and oid from the CLR packet and HT_NEIGH[j][n].r==1, set
 HT_NEIGH[j][n]=NULL and LNK_STAT[j][n]=UN. If num_down==0 then A)
 else B).

 A) If num_up==0 then 1) else 2).

 1) If HEIGHT[j]==NULL then a) else b).

 a) Event Processing Complete.

 b) Set HEIGHT[j]=NULL. Set TIME_UPD to the current time.
 Create an UPD packet and place it in the queue to be sent
 to all neighbors. Event Processing Complete.

 2) Set HEIGHT[j].tau to the current time. Set HEIGHT[j].oid
 to the unique id of this node. Set HEIGHT[j].r=0. Set
 HEIGHT[j].delta=0. Set HEIGHT[j].id to the unique id of this

Park, Corson [Page 19]

Internet Draft TORA Specification 15 November 1997

 node. Update LNK_STAT[j][n] for all n. Unset the RT_REQ
 flag. Set TIME_UPD to the current time. Create an UPD packet
 and place it in the queue to be sent to all neighbors. Event
 Processing Complete.

 B) Event Processing Complete.

4 Security Considerations

 TBD.

References

 [1] V. Park and M. S. Corson, A Highly Adaptive Distributed Routing
 Algorithm for Mobile Wireless Networks, Proc. IEEE INFOCOM '97, Kobe,
 Japan (1997).
 [2] M.S. Corson and A. Ephremides, A distributed routing algorithm
 for mobile wireless networks, Wireless Networks 1 (1995).
 [3] E. Gafni and D. Bertsekas, Distributed algorithms for generating
 loop-free routes in networks with frequently changing topology, IEEE
 Trans. Commun. (January 1981).
 [4] M.S. Corson and V. Park, An Internet MANET Encapsulation Protocol
 (IMEP), draft-ietf-manet-imep-spec-00.txt
 [5] NAVSTAR GPS user equipment introduction, MZ10298.001 (February
 1991).
 [6] D. Mills, Network time protocol, specification, implementation
 and analysis, Internet RFC-1119 (September 1989).
 [7] C. Perkins, Mobile Ad Hoc Networking Terminology, draft-ietf-

manet-term-00.txt, (October 1997).

Author's Addresses

 Vincent D. Park
 Information Technology Division
 Naval Research Laboratory
 Washington, DC 20375
 (202) 767-5098
 vpark@itd.nrl.navy.mil

 M. Scott Corson
 Institute for Systems Research
 University of Maryland
 College Park, MD 20742
 (301) 405-6630
 corson@isr.umd.edu

https://datatracker.ietf.org/doc/html/draft-ietf-manet-imep-spec-00.txt
https://datatracker.ietf.org/doc/html/rfc1119
https://datatracker.ietf.org/doc/html/draft-ietf-manet-term-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-manet-term-00.txt

Park, Corson [Page 20]

