
IETF MANET Working Group V. Park
INTERNET-DRAFT S. Corson
draft-ietf-manet-tora-spec-04.txt Flarion Technologies, Inc.
 20 July 2001

Temporally-Ordered Routing Algorithm (TORA) Version 1
Functional Specification

Status of this Memo

 This document is an Internet-Draft and is subject to all provisions
 of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This document provides both a functional description and a detailed
 specification of the Temporally-Ordered Routing Algorithm (TORA)--a
 distributed routing protocol for multihop networks. A key concept in
 the protocol's design is an attempt to de-couple the generation of
 far-reaching control message propagation from the dynamics of the
 network topology. The basic, underlying algorithm is neither
 distance-vector nor link-state; it is a member of a class referred to
 as link-reversal algorithms. The protocol builds a loop-free,
 multipath routing structure that is used as the basis for forwarding
 traffic to a given destination. The protocol can simultaneously
 support both source-initiated, on-demand routing for some
 destinations and destination-initiated, proactive routing for other
 destinations.

Park, Corson Expires 20 January 2002 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-manet-tora-spec-04.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

INTERNET-DRAFT Temporally-Ordered Routing Algorithm 20 July 2001

1 Introduction

 The Temporally-Ordered Routing Algorithm (TORA) [1] is an adaptive
 routing protocol for multihop networks that possesses the following
 attributes:
 * Distributed execution,
 * Loop-free routing,
 * Multipath routing,
 * Reactive or proactive route establishment and maintenance, and
 * Minimization of communication overhead via localization of
 algorithmic reaction to topological changes.
 TORA is distributed, in that routers need only maintain information
 about adjacent routers (i.e., one-hop knowledge). Like a distance-
 vector routing approach, TORA maintains state on a per-destination
 basis. However, TORA does not continuously execute a shortest-path
 computation and thus the metric used to establish the routing
 structure does not represent a distance. The destination-oriented
 nature of the routing structure in TORA supports a mix of reactive
 and proactive routing on a per-destination basis. During reactive
 operation, sources initiate the establishment of routes to a given
 destination on-demand. This mode of operation may be advantageous in
 dynamic networks with relatively sparse traffic patterns, since it
 may not be necessary (nor desirable) to maintain routes between every
 source/destination pair at all times. At the same time, selected
 destinations can initiate proactive operation, resembling traditional
 table-driven routing approaches. This allows routes to be proactively
 maintained to destinations for which routing is consistently or
 frequently required (e.g., servers or gateways to hardwired
 infrastructure).

 TORA is designed to minimize the communication overhead associated
 with adapting to network topological changes. The scope of TORA's
 control messaging is typically localized to a very small set of nodes
 near a topological change. A secondary mechanism, which is
 independent of network topology dynamics, is used as a means of route
 optimization and soft-state route verification. The design and
 flexability of TORA allow its operation to be biased towards high
 reactivity (i.e., low time complexity) and bandwidth conservation
 (i.e., low communication complexity) rather than routing
 optimality--making it potentially well-suited for use in dynamic
 wireless networks.

2 Terminology

 MANET router or router:
 A device--identified by a "unique Router ID" (RID)--that executes
 a MANET routing protocol and, under the direction of which,
 forwards IP packets. It may have multiple interfaces, each

Park, Corson Expires 20 January 2002 [Page 2]

INTERNET-DRAFT Temporally-Ordered Routing Algorithm 20 July 2001

 identified by an IP address. Associated with each interface is a
 physical layer communication device. These devices may employ
 wireless or hardwired communications, and a router may
 simultaneously employ devices of differing technologies. For
 example, a MANET router may have four interfaces with differing
 communications technologies: two hardwired (Ethernet and FDDI) and
 two wireless (spread spectrum and impulse radio).

 adjacency:
 The name given to an "interface on a neighboring router".

 medium:
 A communication channel such as free space, cable or fiber through
 which connections are established.

 communications technology:
 The means employed by two devices to transfer information between
 them.

 connection:
 A physical-layer connection--which may be through a wired or
 wireless medium--between a device attached to an interface of one
 MANET router and a device utilizing the same communications
 technology attached to an interface on another MANET router. From
 the perspective of a given router, a connection is a (interface,
 adjacency) pair.

 link:
 A "logical connection" consisting of the logical *union* of one or
 more connections between two MANET routers. Thus, a link may
 consist of a heterogeneous combination of connections through
 differing media using different communications technologies.

 neighbor:
 From the perspective of a given MANET router, a "neighbor" is any
 other router to which it is connected by a link.

 topology:
 A network can be viewed abstractly as a "graph" whose "topology"
 at any point in time is defined by set of "points" connected by
 "edges." This term comes from the branch of mathematics bearing
 the same name that is concerned with those properties of geometric
 configurations (such as point sets) which are unaltered by elastic
 deformations (such as stretching) that are homeomorphisms.

 physical-layer topology:
 A topology consisting of connections (the edges) through the
 same communications medium between devices (the points)

Park, Corson Expires 20 January 2002 [Page 3]

INTERNET-DRAFT Temporally-Ordered Routing Algorithm 20 July 2001

 communicating using the *same* communications technology.

 network-layer topology:
 A topology consisting of links (the edges) between MANET routers
 (the points) which is used as the basis for MANET routing. Since
 "links" are the logical union of physical-layer "connections," it
 follows that the "network-layer topology" is the logical union of
 the various "physical-layer topologies."

 IP routing fabric:
 The heterogeneous mixture of communications media and technologies
 through which IP packets are forwarded whose topology is defined
 by the network-layer topology.

3 Protocol Functional Description

 This section is intended to provide an overview of the protocol and
 insight into its operation. The protocol specification provided in a
 subsequent section is intended to serve as the basis for protocol
 implementations. Thus, in the case of any discrepancies between the
 description in this section and the subsequent specification section,
 the specification section should be considered more athoritative.

 TORA has been designed to work on top of lower layer mechanisms or
 protocols that provide the following basic services between
 neighboring routers:
 * Link status sensing and neighbor discovery
 * Reliable, in-order control packet delivery
 * Link and network layer address resolution and mapping
 * Security authentication
 Events such as the reception of control messages and changes in
 connectivity with neighboring routers trigger TORA's algorithmic
 reactions.

 A logically separate version of TORA is run for each "destination" to
 which routing is required. The following discussion focuses on a
 single version of TORA running for a given destination. The term
 destination is used herein to refer to a traditional IP routing
 destination, which is identified by an IP address and mask (or
 prefix). Thus, the route to a destination may correspond to the
 individual address of an interface on a specific machine (i.e., a
 host route) or an aggregation of addresses (i.e., a network route).

 TORA assigns directions to the links between routers to form a
 routing structure that is used to forward datagrams to the
 destination. A router assigns a direction ("upstream" or
 "downstream") to the link with a neighboring router based on the
 relative values of a metric associated with each router. The metric

Park, Corson Expires 20 January 2002 [Page 4]

INTERNET-DRAFT Temporally-Ordered Routing Algorithm 20 July 2001

 maintained by a router can conceptually be thought of as the router's
 "height" (i.e., links are directed from the higher router to the
 lower router). The significance of the heights and the link
 directional assignments is that a router may only forward datagrams
 downstream. Links from a router to any neighboring routers with an
 unknown or undefined height are considered undirected and cannot be
 used for forwarding. Collectively, the heights of the routers and the
 link directional assignments form a loop-free, multipath routing
 structure in which all directed paths lead downstream to the
 destination, see Figure 1. Note that in this example, C is closer to
 the destination than B in terms of number of hops, but the height
 metric of C is greater than that of B.

 .-----. .-----. .-----.
 | A |---->| B |<----| C | Relative height of the routers
 `-----' `-----' `-----' ------------------------------
 ^ | |
 | | | H(C) > H(B) > H(E) > H(DEST)
 | | |
 | v v H(D) > H(A) > H(B) > H(E) > H(DEST)
 .-----. .-----. .-----.
 | D |---->| E |---->| DEST|
 `-----' `-----' `-----'

 Figure 1: Conceptual representation of the directed acyclic
 graph defined by the relative height of network routers.

 TORA can be separated into four basic functions: creating routes,
 maintaining routes, erasing routes, and optimizing routes. Creating
 routes corresponds to the selection of heights to form a directed
 sequence of links leading to the destination in a previously
 undirected network or portion of the network. Maintaining routes
 refers to the adapting the routing structure in response to network
 topological changes. For example, following the loss of some router's
 last downstream link, some directed paths may temporarily no longer
 lead to the destination. This event triggers a sequence of directed
 link reversals (caused by the re-selection of router heights), which
 re-orients the routing structure such that all directed paths again
 lead to the destination. In cases where the network becomes
 partitioned, links in the portion of the network that has become
 partitioned from the destination must be marked as undirected to
 erase invalid routes. During this erasing routes process, routers set
 their heights to null and their adjacent links become undirected.
 Finally, TORA includes a secondary mechanism for optimizing routes,
 in which routers re-select their heights in order to improve the
 routing structure. TORA accomplishes these four functions through the
 use of four distinct control packets: query (QRY), update (UPD),

Park, Corson Expires 20 January 2002 [Page 5]

INTERNET-DRAFT Temporally-Ordered Routing Algorithm 20 July 2001

 clear (CLR), and optimization (OPT).

3.1 Creating Routes

 Creating routes can be initiated on-demand by a source or proactively
 by a destination. In either case, routers select heights with respect
 to the given destination and assign directions to the links between
 neighboring routers.

 In the on-demand mode, creating routes is accomplished via a query-
 reply mechanism using QRY and UPD packets. A source initiates the
 process by sending a QRY packet to its neighbors that identifies the
 destination for which a route is requested. The QRY packet is
 propagated out from the source (i.e., processed and forwarded by
 neighboring routers) until it is received by one or more routers that
 have a trusted route to the destination. As the QRY packet is
 forwarded, routers set a route-requested flag and discard any
 subsequent QRY packets received for the same destination. The route-
 requested flag supresses redundant route requests and reduces the
 need for subsequent route requests when a destination is temporarily
 unreachable. Routers that have a trusted route to the destination
 repsond to the QRY packet by sending an UPD packet to their neighbors
 that identifies the relevant destination and the height of the router
 sending the UPD packet. Routers also maintain the time at which an
 UPD packet was last sent to its neighbors and the time at which links
 to neighboring routers became active, to reduce redundant replies to
 a given route request. When a router with the route-requested flag
 set receives an UPD packet, it sets its height and sends an UPD
 packet to its neighbors that identifies the relevant destination and
 the new height of the router sending the UPD packet. Thus, routers in
 the network select heights for the requested desination, learn of
 their neighbors heights for the destination and assign link
 directions based on those heights. To ensure that a route request
 continues to propagate when the destination was initially
 unreachable, routers with the route-requested flag set must resend a
 QRY packet upon activation of a new link (i.e., discovery of a new
 neighbor).

 In the proactive mode, the destination initiates the creating routes
 process by sending an OPT packet that is processed and forwarded by
 neighboring routers. The OPT packet identifies the destination, the
 mode of operation for the destination and the height of the router
 sending the OPT packet. The OPT packet also contains a sequence
 number used to uniquely identify the packet and ensure that each
 router processes and forwards a given OPT packet from a destination
 at most once. As the OPT packet is forwarded, routers set their mode
 of operation correspondingly, reselect their heights, and send an OPT
 packet to their neighbors that identifies the relevant destination

Park, Corson Expires 20 January 2002 [Page 6]

INTERNET-DRAFT Temporally-Ordered Routing Algorithm 20 July 2001

 and the new height of the router sending the UPD packet.

3.2 Maintaining Routes

 Maintaining routes is only performed for nodes that have a height
 other than NULL. Furthermore, any neighbor's height that is NULL is
 not used for the computations. A node i is said to have no downstream
 links if HEIGHT < HT_NEIGH[k] for all non-NULL neighbors k. This will
 result in one of five possible reactions depending on the state of
 the node and the preceding event. Each node (other than the
 destination) that has no downstream links modifies its height, HEIGHT
 = (tau[i], oid[i], r[i], delta[i], i), as follows:

 Case 1 (Generate):

 Node i has no downstream links (due to a link failure).

 (tau[i], oid[i], r[i])=(t, i, 0), where t is the time of the
 failure.

 (delta[i],i)=(0, i)

 In essence, node i defines a new reference level. The above
 assumes node i has at least one upstream neighbor. If node i
 has no upstream neighbors it simply sets its height to NULL.

 Case 2 (Propagate):

 Node i has no downstream links (due to a link reversal
 following reception of an UPD packet) and the ordered sets
 (tau[k], oid[k], r[k]) are not equal for all neighbors k.

 (tau[i], oid[i], r[i])=max{(t[k], oid[k], r[k]) of all
 neighbors k}

 (delta[i],i)=(delta[m]-1, i), where m is the lowest neighbor
 with the maximum reference level defined above.

 In essence, node i propagates the reference level of its
 highest neighbor and selects a height that is lower than all
 neighbors with that reference level.

 Case 3 (Reflect):

 Node i has no downstream links (due to a link reversal
 following reception of an UPD packet) and the ordered sets
 (tau[k], oid[k], r[k]) are equal with r[k] = 0 for all
 neighbors k.

Park, Corson Expires 20 January 2002 [Page 7]

INTERNET-DRAFT Temporally-Ordered Routing Algorithm 20 July 2001

 (tau[i], oid[i], r[i])=(tau[k], oid[k], 1)

 (delta[i],i)=(0, i)

 In essence, the same level (which has not been "reflected") has
 propagated to node i from all of its neighbors. Node i
 "reflects" back a higher sub-level by setting the bit r.

 Case 4 (Detect):

 Node i has no downstream links (due to a link reversal
 following reception of an UPD packet), the ordered sets
 (tau[k], oid[k], r[k]) are equal with r[k] = 1 for all
 neighbors k, and oid[k] = i (i.e., node i defined the level).

 (tau[i], oid[i], r[i])=(-, -, -)

 (delta[i],i)=(-, i)

 In essence, the last reference level defined by node i has been
 reflected and propagated back as a higher sub-level from all of
 its neighbors. This corresponds to detection of a partition.
 Node i must initiate the process of erasing invalid routes as
 discussed in the next section.

 Case 5 (Generate):

 Node i has no downstream links (due to a link reversal
 following reception of an UPD packet), the ordered sets
 (tau[k], oid[k], r[k]) are equal with r[k] = 1 for all
 neighbors k, and oid[k] != i (i.e., node i did not define the
 level).

 (tau[i], oid[i], r[i])=(t, i, 0), where t is the time of the
 failure

 (delta[i],i)=(0, i)

 In essence, node i experienced a link failure (which did not
 require reaction) between the time it propagated a reference
 level and the reflected higher sub-level returned from all
 neighbors. This is not necessarily an indication of a
 partition. Node i defines a new reference level.

 Following determination of its new height in cases 1, 2, 3, and 5,
 node i updates all the entries in its link-status table; and
 broadcasts an UPD packet to all neighbors k. The UPD packet consists
 of the destination-ID, j, and the new height of the node i that is

Park, Corson Expires 20 January 2002 [Page 8]

INTERNET-DRAFT Temporally-Ordered Routing Algorithm 20 July 2001

 broadcasting the packet, HEIGHT. When a node i receives an UPD packet
 from a neighbor k, node i reacts as described in the creating routes
 section and in accordance with the cases outlined above. In the event
 of the failure a link (i, k) that is not its last downstream link,
 node i simply removes the entries HT_NEIGH[k] and LNK_STAT[k] in its
 height and link-status tables.

3.3 Erasing Routes

 Following detection of a partition (case 4), node i sets its height
 and the height entry for each neighbor k to NULL (unless the
 destination j is a neighbor, in which case the corresponding height
 entry is set to ZERO), updates all the entries in its link-status
 table, and broadcast a CLR packet. The CLR packet consists of the
 destination-ID, j, and the reflected reference level of node i,
 (tau[i], oid[i], 1). In actuality the value r[i] = 1 need not be
 included since it is always 1 for a reflected reference level. When a
 node i receives a CLR packet from a neighbor k it reacts as follows:

 a) If the reference level in the CLR packet matches the reference
 level of node i; it sets its height and the height entry for each
 neighbor k to NULL (unless the destination j is a neighbor, in
 which case the corresponding height entry is set to ZERO), updates
 all the entries in its link-status table and broadcasts a CLR
 packet.

 b) If the reference level in the CLR packet does not match the
 reference level of node i; it sets the height entry for each
 neighbor k (with the same reference level as the CLR packet) to
 NULL and updates the corresponding link-status table entries.
 Thus, the height of each node in the portion of the network that
 was partitioned is set to NULL and all invalid routes are erased.
 If (b) causes node i to lose its last downstream link, it reacts
 as in case 1 of maintaining routes.

3.4 Optimizing Routes

 TBD.

4 Protocol Specification

 The subsequent specification is intended to be of sufficient detail
 to serve as a template for implementations.

4.1 Configuration

 A router is configured with a router ID (RID), which must be unique
 among the set of routers collectively running TORA within a routing

Park, Corson Expires 20 January 2002 [Page 9]

INTERNET-DRAFT Temporally-Ordered Routing Algorithm 20 July 2001

 domain. This value may correspond to one of the router's IP
 addresses.

 For each interface "i" of a router, the following parameters must be
 configured.

 IP_ADDR[i] IP address of interface.
 ADDR_MASK[i] Address mask of interface.
 PRO_MODE[i] Indicates reactive/proactive mode of operation.
 OPT_MODE[i] Indicates optimization mode of operation.
 OPT_PERIOD[i] Period for optimization mechanism.

 For each interface, a network route corresponding to the address and
 mask of the interface may be added to the routing table.
 Additionally, TORA may respond to requests (i.e., QRY packets) for
 routes to destination addresses that match the set of addresses
 identified by the interface configurations. PRO_MODE[i] (0=OFF, 1=ON)
 indicates if routes to the destination identified by the
 corresponding interface address and mask should be created
 proactively. OPT_MODE[i] (00=OFF, 01=PARTIAL, 10=FULL, 11=reserved
 for future use) indicates the type (if any) of optimizations that
 should be used for the destination identified by the corresponding
 interface address and mask, while the OPT_PERIOD[i] sets the
 frequency at which the optimizations will occur.

4.2 State Variables

 A router maintains the state of the configuration parameters outlined
 above. In addition, for each interface a router maintains a sequence
 number that is incremented upon changes to the interface mode of
 operation.

 MODE_SEQ[i] Sequence number associated with mode of interface "i".

 For each destination "j", a router maintains the following state
 variables.

 HEIGHT[j] This router's height metric for routing to "j".
 MODE_SEQ[j] Sequence number of most recent mode for "j".
 PRO_MODE[j] Indicates reactive/proactive mode of operation for "j".
 OPT_MODE[j] Indicates optimization mode of operation for "j".
 OPT_PERIOD[j] Indicates optimization period for "j".
 RT_REQ[j] Indicates whether a route request to "j" is pending.
 TIME_UPD[j] Time last UPD packet regarding "j" sent by this router.

 For each destination "j", a router maintains a separate instance of
 the following state variables for each neighbor "k".

Park, Corson Expires 20 January 2002 [Page 10]

INTERNET-DRAFT Temporally-Ordered Routing Algorithm 20 July 2001

 HT_NEIGH[j][k] The height metric of neighbor "k."
 LNK_STAT[j][k] The assigned status of the link to neighbor "k."
 TIME_ACT[j][k] Time the link to neighbor "k" became active.

4.3 Auxiliary Variables

 For each destination "j" to which routing is required, a router may
 maintain the following auxiliary variables. Although each of the
 variables can be computed based on the entries in the LNK_STAT table,
 maintaining the values continuously may facilitate implementation of
 the protocol. Whether these variables are maintained continuously or
 computed when needed is implementation specific.

 NUM_ACTIVE[j] Number of neighbors (i.e., active links).
 NUM_DOWN[j] Number of links marked DN in the LNK_STAT table.
 NUM_UP[j] Number of links marked UP in the LNK_STAT table.

4.4 Height Data Structure

 Each HEIGHT[j] and HT_NEIGH[j][k] entry requires a data structure
 that comprises five components. The first three components of the
 Height data structure represent the reference level of the height
 entry, while the last two components represent an offset with respect
 to the reference level. The five components of the Height data
 structure are as follows.

 HEIGHT.tau Time the reference level was created.
 HEIGHT.oid Unique id of the router that created the reference level.
 HEIGHT.r Flag indicating if it is a reflected reference level.
 HEIGHT.delta Value used in propagation of a reference level.
 HEIGHT.id Unique id of the router to which the height metric refers.

 To simplify notation in this specification, a height may be written
 as an ordered quintuple--e.g., HEIGHT[j]=(tau,oid,r,delta,id). The
 following two predefined values for a height are used throughout the
 specification of the protocol.

 NULL=(-,-,-,-,id) An unknown or undefined height. Conceptually,
 this can be thought of as an infinite height.

 ZERO=(0,0,0,0,id) The assumed height of a given destination. Note
 that here "id" is the unique id of the given
 destination.

4.5 Determination of Link Status

 Each entry in the LNK_STAT table is maintained in accordance with the
 following rule.

Park, Corson Expires 20 January 2002 [Page 11]

INTERNET-DRAFT Temporally-Ordered Routing Algorithm 20 July 2001

 if HT_NEIGH[k]==NULL then LNK_STAT[k]=UN;
 else if HEIGHT==NULL then LNK_STAT[k]=DN;
 else if HT_NEIGH[k]<HEIGHT then LNK_STAT[k]=DN;
 else if HT_NEIGH[k]>HEIGHT then LNK_STAT[k]=UP;

4.6 TORA Packet Formats

4.6.1 Query (QRY) Packet Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version # | Type | Reserved |
 +-+
 | Destination IP Address |
 +-+

 Version #
 The TORA version number. This specification documents version 1.

 Type
 The TORA packet type. For QRY packet this field is set to 1.

 Reserved
 Field reserved for future use.

 Destination IP Address
 The IP address for which a route is being requested.

4.6.2 Update (UPD) Packet Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version # | Type | Reserved |
 +-+
 | Destination IP Address |
 +-+
 | Destination IP Address Mask |
 +-+
 | Mode Sequence # |
 +-+
 | Mode | Optimization Period |
 +-+
 | H.tau |
 +-+
 | H.oid |
 +-+

Park, Corson Expires 20 January 2002 [Page 12]

INTERNET-DRAFT Temporally-Ordered Routing Algorithm 20 July 2001

 | H.r | H.delta |
 +-+
 | H.id |
 +-+

 Version #
 The TORA version number. This specification documents version 1.

 Type
 The TORA packet type. For UPD packet this field is set to 2.

 Reserved
 Field reserved for future use.

 Destination IP Address
 The IP address for which a route is being requested.

 Destination IP Address Mask
 The network mask associated with the destination IP address.

 Mode Sequence #
 Sequence number associated with the subsequent mode and
 optimization period fields. Used for propagation of most recent
 mode state and to ensure each router processes mode information at
 most once.

 Mode
 The mode of operation associated with the destination IP address
 and mask. This field is used to indicate reactive/proactive
 routing and also the type (if any) of optimizations used for the
 destination.

 Optimization Period
 The period for optimization packets originated by the destination.

 H.tau
 The H.tau value, associated with the destination IP address and
 mask, of the router sending the UPD.

 H.oid
 The H.oid value, associated with the destination IP address and
 mask, of the router sending the UPD.

 H.r
 The H.r value, associated with the destination IP address and
 mask, of the router sending the UPD.

 H.delta

Park, Corson Expires 20 January 2002 [Page 13]

INTERNET-DRAFT Temporally-Ordered Routing Algorithm 20 July 2001

 The H.delta value, associated with the destination IP address and
 mask, of the router sending the UPD.

 H.id
 The H.id value, associated with the destination IP address and
 mask, of the router sending the UPD (i.e., unique router ID).

4.6.3 Clear (CLR) Packet Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version # | Type | Reserved |
 +-+
 | Destination IP Address |
 +-+
 | Destination IP Address Mask |
 +-+
 | H.tau |
 +-+
 | H.oid |
 +-+
 | H.id |
 +-+

 Version #
 The TORA version number. This specification documents version 1.

 Type
 The TORA packet type. For CLR packet this field is set to 3.

 Reserved
 Field reserved for future use.

 Destination IP Address
 The IP address for which a route is being requested.

 Destination IP Address Mask
 The network mask associated with the destination IP address.

 H.tau
 The H.tau value, associated with the destination IP address and
 mask, of the router sending the UPD.

 H.oid
 The H.oid value, associated with the destination IP address and
 mask, of the router sending the UPD.

Park, Corson Expires 20 January 2002 [Page 14]

INTERNET-DRAFT Temporally-Ordered Routing Algorithm 20 July 2001

 H.id
 The H.id value, associated with the destination IP address and
 mask, of the router sending the UPD (i.e., unique router ID).

4.6.4 Optimization (OPT) Packet Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version # | Type | Reserved |
 +-+
 | Destination IP Address |
 +-+
 | Destination IP Address Mask |
 +-+
 | Mode Sequence # |
 +-+
 | Mode | Optimization Period |
 +-+
 | H.tau |
 +-+
 | H.oid |
 +-+
 | H.r | H.delta |
 +-+
 | H.id |
 +-+

 Version #
 The TORA version number. This specification documents version 1.

 Type
 The TORA packet type. For OPT packet this field is set to 4.

 Reserved
 Field reserved for future use.

 Destination IP Address
 The IP address for which a route is being requested.

 Destination IP Address Mask
 The network mask associated with the destination IP address.

 Mode Sequence #
 Sequence number associated with the subsequent mode and
 optimization period fields. Used for propagation of most recent
 mode state and to ensure each router processes mode information at
 most once.

Park, Corson Expires 20 January 2002 [Page 15]

INTERNET-DRAFT Temporally-Ordered Routing Algorithm 20 July 2001

 Mode
 The mode of operation associated with the destination IP address
 and mask. This field is used to indicate reactive/proactive
 routing and also the type (if any) of optimizations used for the
 destination.

 Optimization Period
 The period for optimization packets originated by the destination.

 H.tau
 The H.tau value, associated with the destination IP address and
 mask, of the router sending the UPD.

 H.oid
 The H.oid value, associated with the destination IP address and
 mask, of the router sending the UPD.

 H.r
 The H.r value, associated with the destination IP address and
 mask, of the router sending the UPD.

 H.delta
 The H.delta value, associated with the destination IP address and
 mask, of the router sending the UPD.

 H.id
 The H.id value, associated with the destination IP address and
 mask, of the router sending the UPD (i.e., unique router ID).

4.7 Event Processing

4.7.1 Initialization

 TBD

4.7.2 Connection Status Change

 The TORA process receives notification of link status changes from
 lower layer mechanisms or protocols. It is anticipated that the TORA
 process will have access to all the information about the
 connections. Thus, upon notification, TORA will have sufficient
 information to determine if any new links have been established or
 any existing links have been severed. If either is the case, then
 TORA must proceed as outlined in appropriate subsequent section
 (4.7.3 or 4.7.4). In addition, since a link is potientially composed
 of multiple connections, it is also possible for a connection that
 was used in the routing table to be severed without resulting in the
 corresponding link being severed. In this case TORA must modify the

Park, Corson Expires 20 January 2002 [Page 16]

INTERNET-DRAFT Temporally-Ordered Routing Algorithm 20 July 2001

 appropriate routing table entries.

4.7.3 Link with a New Neighbor "k" Established

 For each destination "j":

 Set TIME_ACT[j][k] to the current time and increment NUM_ACTIVE[j].

 If the neighbor "k" is the destination "j", then set
 HT_NEIGH[j][k]=ZERO, LNK_STAT[j][k]=DN and increment NUM_DOWN[j],
 else set HT_NEIGH[j][k]=NULL and LNK_STAT[j][k]=UN.

 If the RT_REQ[j] flag is set && neighbor "k" is the destination "j"
 then I) else II).

 I) Set HEIGHT[j]=HT_NEIGH[j][k]. Increment HEIGHT[j].delta. Set
 HEIGHT[j].id to the unique id of this node. Update LNK_STAT[j][n]
 for all n. Unset the RT_REQ[j] flag. Set TIME_UPD[j] to the
 current time. Create an UPD packet and place it in the queue to
 be sent to all neighbors. Event Processing Complete.

 II) If PRO_MODE==1 and HEIGHT[j]!=NULL then A) else B).

 A) Set TIME_UPD[j] to the current time. Create an UPD packet
 and place it in the queue to be sent to all neighbors. If the
 RT_REQ[j] flag is set, create a QRY packet and place it in the
 queue to be sent to all neighbors. Event Processing Complete.

 B) If the RT_REQ[j] flag is set, create a QRY packet and place
 it in the queue to be sent to all neighbors. Event Processing
 Complete.

4.7.4 Link with Prior Neighbor "k" Severed

 For each destination "j":

 Decrement NUM_ACTIVE[j]. If LNK_STAT[j][k]==DN, decrement
 NUM_DOWN[j]. If LNK_STAT[j][k]==UP, decrement NUM_UP[j].

 If NUM_DOWN[j]==0 then I) else II).

 I) If NUM_ACTIVE[j]==0 then A) else B).

 A) Set HEIGHT[j]=NULL. Unset the RT_REQ[j] flag. Event
 Processing Complete.

 B) If NUM_UP==0 then 1) else 2).

Park, Corson Expires 20 January 2002 [Page 17]

INTERNET-DRAFT Temporally-Ordered Routing Algorithm 20 July 2001

 1) If HEIGHT[j]==NULL then a) else b).

 a) Event Processing Complete.

 b) Set HEIGHT[j]=NULL. Set TIME_UPD[j] to the current
 time. Create an UPD packet and place it in the queue to
 be sent to all neighbors. Event Processing Complete.

 2) Set HEIGHT[j].tau to the current time. Set HEIGHT[j].oid
 to the unique id of this node. Set HEIGHT[j].r=0. Set
 HEIGHT[j].delta=0. Set HEIGHT[j].id to the unique id of
 this node. Update LNK_STAT[j][n] for all n. Unset the
 RT_REQ[j] flag. Set TIME_UPD[j] to the current time.
 Create an UPD packet and place it in the queue to be sent to
 all neighbors. Event Processing Complete.

 II) Event Processing Complete.

4.7.5 QRY Packet Regarding Destination "j" Received from Neighbor "k"

 If the RT_REQ[j] flag is set then I) else II).

 I) Event Processing Complete.

 II) If HEIGHT[j].r==0 then A) else B).

 A) If TIME_ACT[j][k]>TIME_UPD[j] then 1) else 2).

 1) Set TIME_UPD[j] to the current time. Create an UPD
 packet and place it in the queue to be sent to all
 neighbors. Event Processing Complete.

 2) Event Processing Complete.

 B) If HT_NEIGH[j][n].r==0 for any n then 1) else 2).

 1) Find m such that HT_NEIGH[j][m] is the minimum of all
 height entries with HT_NEIGH[j][n].r==0. Set
 HEIGHT[j]=HT_NEIGH[j][m]. Increment HEIGHT.delta. Set
 HEIGHT[j].id to the unique id of this node. Update
 LNK_STAT[j][n] for all n. Set TIME_UPD[j] to the current
 time. Create an UPD packet and place it in the queue to be
 sent to all neighbors. Event Processing Complete.

 2) Set the RT_REQ[j] flag. If NUM_ACTIVE[j]>1 then a) else
 b).

 a) Create a QRY packet and place it in the queue to be

Park, Corson Expires 20 January 2002 [Page 18]

INTERNET-DRAFT Temporally-Ordered Routing Algorithm 20 July 2001

 sent to all neighbors. Event Processing Complete.

 b) Event Processing Complete.

4.7.6 UPD Packet Regarding Destination "j" Received from Neighbor "k"

 If MODE_SEQ field of received packet is greater than MODE_SEQ[j],
 update entries PRO_MODE[j], OPT_MODE[j], and MODE_SEQ[j].

 Update the entries HT_NEIGH[j][k], and LNK_STAT[j][k]. If the
 RT_REQ[j] flag is set and HT_NEIGH[j][k].r==0 then I) else II).

 I) Set HEIGHT[j]=HT_NEIGH[j][k]. Increment HEIGHT.delta. Set
 HEIGHT[j].id to the unique id of this node. Update LNK_STAT[j][n]
 for all n. Unset the RT_REQ[j] flag. Set TIME_UPD[j] to the
 current time. Create an UPD packet and place it in the queue to
 be sent to all neighbors. Event Processing Complete.

 II) If NUM_DOWN[j]==0 then A) else B).

 A) If NUM_UP[j]==0 then 1) else 2).

 1) If HEIGHT[j]==NULL then a) else b).

 a) Event Processing Complete.

 b) Set HEIGHT[j]=NULL. Set TIME_UPD[j] to the current
 time. Create an UPD packet and place it in the queue to
 be sent to all neighbors. Event Processing Complete.

 2) If all HT_NEIGH[j][n], for all n such that HT_NEIGH[j][n]
 is non-NULL, have the same reference level then a) else b).

 a) If HT_NEIGH[j][n].r==0, for any n such that
 HT_NEIGH[j][n] is non-NULL, then i) else ii).

 i) Set HEIGHT[j]=HT_NEIGH[j][n], where n is such that
 HT_NEIGH[j][n] is non-NULL. Set HEIGHT[j].r=1. Set
 HEIGHT[j].delta=0. Set HEIGHT[j].id to the unique id
 of this node. Update LNK_STAT[j][n] for all n. Set
 TIME_UPD[j] to the current time. Create an UPD packet
 and place it in the queue to be sent to all neighbors.
 Event Processing Complete.

 ii) If HT_NEIGH[j][n].oid==id, where n is such that
 HT_NEIGH[j][n] is non-NULL and id is the unique id of
 this node, then x) else y).

Park, Corson Expires 20 January 2002 [Page 19]

INTERNET-DRAFT Temporally-Ordered Routing Algorithm 20 July 2001

 x) Save the current values of HEIGHT[j].tau and
 HEIGHT[j].oid in temporary variables. Set
 HEIGHT[j]=NULL. Set NUM_DOWN[j]=0. Set
 NUM_UP[j]=0. For every active link n, if the
 neighbor connected via link n is the destination j,
 set HT_NEIGH[j][n]=ZERO and LNK_STAT[j][n]=DN else
 set HT_NEIGH[j][n]=NULL and LNK_STAT[j][n]=UN.
 Create a CLR packet, with the previously saved
 values of tau and oid, and place it in the queue to
 be sent to all neighbors. Event Processing
 Complete.

 y) Set HEIGHT[j].tau to the current time. Set
 HEIGHT[j].oid to the unique id of this node. Set
 HEIGHT[j].r=0. Set HEIGHT[j].delta=0. Set
 HEIGHT[j].id to the unique id of this node. Update
 LNK_STAT[j][n] for all n. Unset the RT_REQ[j]
 flag. Set TIME_UPD[j] to the current time. Create
 an UPD packet and place it in the queue to be sent
 to all neighbors. Event Processing Complete.

 b) Find n such that HT_NEIGH[j][n] is the maximum of all
 non-NULL height entries. Find m such that HT_NEIGH[j][m]
 is the minimum of the non-NULL height entries with the
 same reference level as HT_NEIGH[j][n]. Set
 HEIGHT[j]=HT_NEIGH[j][m]. Decrement HEIGHT.delta. Set
 HEIGHT[j].id to the unique id of this node. Update
 LNK_STAT[j][n] for all n. Set TIME_UPD[j] to the current
 time. Create an UPD packet and place it in the queue to
 be sent to all neighbors. Event Processing Complete.

 B) IF PRO_MODE changed from OFF to ON as a result of this UPD
 packet reception and HEIGHT[j]==NULL then 1) else 2)

 1) Find m such that HT_NEIGH[j][m] is the minimum of all
 non-NULL height entries. Set HEIGHT[j]=HT_NEIGH[j][m].
 Increment HEIGHT[j].delta. Set HEIGHT[j].id to the unique
 id of this node. Update LNK_STAT[j][n] for all n. Set
 TIME_UPD[j] to the current time. Create an UPD packet and
 place it in the queue to be sent to all neighbors. Event
 Processing Complete.

 2) Event Processing Complete.

4.7.7 CLR Packet Regarding Destination "j" Received from Neighbor "k"

 If HEIGHT[j].tau and HEIGHT[j].oid match the values of tau and oid
 from the CLR packet and HEIGHT[j].r==1 then I) else II).

Park, Corson Expires 20 January 2002 [Page 20]

INTERNET-DRAFT Temporally-Ordered Routing Algorithm 20 July 2001

 I) Save the current values of HEIGHT[j].tau and HEIGHT[j].oid in
 temporary variables. Set Height[j]=NULL. Set NUM_DOWN[j]=0. Set
 NUM_UP[j]=0. For every active link n, if the neighbor connected
 via link n is the destination j, set HT_NEIGH[j][n]=ZERO and
 LNK_STAT[j][n]=DN else set HT_NEIGH[j][n]=NULL and
 LNK_STAT[j][n]=UN. If NUM_ACTIVE[j]>1 then A) else B).

 A) Create a CLR packet, with the previously saved values of tau
 and oid, and place it in the queue to be sent to all neighbors.
 Event Processing Complete.

 B) Event Processing Complete.

 II) Set HT_NEIGH[j][k]=NULL and LNK_STAT[j][k]=UN. For all n such
 that HT_NEIGH[j][n].tau and HT_NEIGH[j][n].oid match the values of
 tau and oid from the CLR packet and HT_NEIGH[j][n].r==1, set
 HT_NEIGH[j][n]=NULL and LNK_STAT[j][n]=UN. If NUM_DOWN[j]==0 then
 A) else B).

 A) If NUM_UP==0 then 1) else 2).

 1) If HEIGHT[j]==NULL then a) else b).

 a) Event Processing Complete.

 b) Set HEIGHT[j]=NULL. Set TIME_UPD[j] to the current
 time. Create an UPD packet and place it in the queue to
 be sent to all neighbors. Event Processing Complete.

 2) Set HEIGHT[j].tau to the current time. Set HEIGHT[j].oid
 to the unique id of this node. Set HEIGHT[j].r=0. Set
 HEIGHT[j].delta=0. Set HEIGHT[j].id to the unique id of
 this node. Update LNK_STAT[j][n] for all n. Unset the
 RT_REQ[j] flag. Set TIME_UPD[j] to the current time.
 Create an UPD packet and place it in the queue to be sent to
 all neighbors. Event Processing Complete.

 B) Event Processing Complete.

4.7.8 OPT Packet Regarding Destination "j" Received from Neighbor "k"

 If MODE_SEQ field of received packet is greater than MODE_SEQ[j] then
 I) else II).

 I) Update entries PRO_MODE[j], OPT_MODE[j], and MODE_SEQ[j]. If
 PRO_MODE[j] changed as a result of this OPT packet reception ||
 (OPT_MODE[j]==PARTIAL && HEIGHT[j]!=NULL) || OPT_MODE[j]==FULL
 then A) else B).

Park, Corson Expires 20 January 2002 [Page 21]

INTERNET-DRAFT Temporally-Ordered Routing Algorithm 20 July 2001

 A) Set HEIGHT[j]=ZERO. Set HEIGHT[j].delta to the value of the
 DELTA field in the received OPT packet + 1. Set HEIGHT[j].id
 to the unique id of this node. Update LNK_STAT[j][n] for all
 n. Unset the RT_REQ[j] flag. Set TIME_UPD[j] to the current
 time. Create an OPT packet and place it in the queue to be
 sent to all neighbors. Event Processing Complete.

 B) Event Processing Complete.

 II) Event Processing Complete.

4.7.9 Mode Configuration Change or Optimization Timer Event for local
interface "i"
 Increment MODE_SEQ[i]. Create an OPT packet and place it in the queue
 to be sent to all neighbors. If OPT_MODE[i]==PARTIAL ||
 OPT_MODE[i]==FULL, schedule a local optimization timer event for
 interface "i" to occur at a time randomly selected between
 0.5*OPT_PERIOD[i] and 1.5*OPT_PERIOD[i] seconds based on a uniform
 distribution. Event Processing Complete.

5 Security Considerations

 TBD.

6 Intellectual Property Rights Notice

 Both the University of Maryland and the U.S. Naval Research
 Laboratory have applied for patents relating to the technology
 described in this internet draft.

References

 [1] V. Park and M. S. Corson, A Highly Adaptive Distributed Routing
 Algorithm for Mobile Wireless Networks, Proc. IEEE INFOCOM '97, Kobe,
 Japan (1997).
 [4] M.S. Corson and V. Park, An Internet MANET Encapsulation Protocol
 (IMEP), draft-ietf-

Author's Addresses

 Vincent D. Park
 park@flarion.com
 (908) 947-7084

 M. Scott Corson
 corson@flarion.com
 (908) 947-7033

https://datatracker.ietf.org/doc/html/draft-ietf

Park, Corson Expires 20 January 2002 [Page 22]

INTERNET-DRAFT Temporally-Ordered Routing Algorithm 20 July 2001

 Flarion Technologies, Inc.
 Bedminster One
 135 Route 202/206 South
 Bedminster, NJ 07921

Park, Corson Expires 20 January 2002 [Page 23]

