
Workgroup: MASQUE

Internet-Draft:

draft-ietf-masque-connect-ip-01

Published: 5 March 2022

Intended Status: Standards Track

Expires: 6 September 2022

Authors: T. Pauly, Ed.

Apple Inc.

D. Schinazi

Google LLC

A. Chernyakhovsky

Google LLC

M. Kuehlewind

Ericsson

M. Westerlund

Ericsson

IP Proxying Support for HTTP

Abstract

This document describes a method of proxying IP packets over HTTP.

This protocol is similar to CONNECT-UDP, but allows transmitting

arbitrary IP packets, without being limited to just TCP like CONNECT

or UDP like CONNECT-UDP.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Multiplexed

Application Substrate over QUIC Encryption Working Group mailing

list (masque@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/masque/.

Source for this draft and an issue tracker can be found at https://

github.com/tfpauly/draft-age-masque-connect-ip.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 6 September 2022.

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/masque/
https://mailarchive.ietf.org/arch/browse/masque/
https://github.com/tfpauly/draft-age-masque-connect-ip
https://github.com/tfpauly/draft-age-masque-connect-ip
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Configuration of Clients

4. The CONNECT-IP Protocol

4.1. Limiting Request Scope

4.2. Capsules

4.2.1. ADDRESS_ASSIGN Capsule

4.2.2. ADDRESS_REQUEST Capsule

4.2.3. ROUTE_ADVERTISEMENT Capsule

5. Context Identifiers

6. HTTP Datagram Payload Format

7. Examples

7.1. Remote Access VPN

7.2. IP Flow Forwarding

7.3. Proxied Connection Racing

8. Security Considerations

9. IANA Considerations

9.1. CONNECT-IP HTTP Upgrade Token

9.2. Capsule Type Registrations

10. References

10.1. Normative References

10.2. Informative References

Acknowledgments

Authors' Addresses

1. Introduction

This document describes a method of proxying IP packets over HTTP.

When using HTTP/2 or HTTP/3, IP proxying uses HTTP Extended CONNECT

as described in [EXT-CONNECT2] and [EXT-CONNECT3]. When using HTTP/

1.x, IP proxying uses HTTP Upgrade as defined in Section 7.8 of

[SEMANTICS]. This protocol is similar to CONNECT-UDP [CONNECT-UDP],

¶

¶

https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-7.8

but allows transmitting arbitrary IP packets, without being limited

to just TCP like CONNECT [SEMANTICS] or UDP like CONNECT-UDP.

The HTTP Upgrade Token defined for this mechanism is "connect-ip",

which is also referred to as CONNECT-IP in this document.

The CONNECT-IP protocol allows endpoints to set up a tunnel for

proxying IP packets using an HTTP proxy. This can be used for

various solutions that include general-purpose packet tunnelling,

such as for a point-to-point or point-to-network VPN, or for limited

forwarding of packets to specific hosts.

Forwarded IP packets can be sent efficiently via the proxy using

HTTP Datagram support [HTTP-DGRAM].

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

In this document, we use the term "proxy" to refer to the HTTP

server that responds to the CONNECT-IP request. If there are HTTP

intermediaries (as defined in Section 3.7 of [SEMANTICS]) between

the client and the proxy, those are referred to as "intermediaries"

in this document.

3. Configuration of Clients

Clients are configured to use IP Proxying over HTTP via an URI

Template [TEMPLATE]. The URI template MAY contain two variables:

"target" and "ip_proto". Examples are shown below:

Figure 1: URI Template Examples

4. The CONNECT-IP Protocol

This document defines the "connect-ip" HTTP Upgrade Token. "connect-

ip" uses the Capsule Protocol as defined in [HTTP-DGRAM].

¶

¶

¶

¶

¶

¶

¶

https://masque.example.org/{target}/{ip_proto}/

https://proxy.example.org:4443/masque?t={target}&p={ip_proto}

https://proxy.example.org:4443/masque{?target,ip_proto}

https://masque.example.org/?user=bob

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-3.7

When sending its IP proxying request, the client SHALL perform URI

template expansion to determine the path and query of its request,

see Section 3.

When using HTTP/2 or HTTP/3, the following requirements apply to

requests:

The ":method" pseudo-header field SHALL be set to "CONNECT".

The ":protocol" pseudo-header field SHALL be set to "connect-ip".

The ":authority" pseudo-header field SHALL contain the host and

port of the proxy, not an individual endpoint with which a

connection is desired.

The contents of the ":path" pseudo-header SHALL be determined by

the URI template expansion, see Section 3. Variables in the URI

template can determine the scope of the request, such as

requesting full-tunnel IP packet forwarding, or a specific

proxied flow, see Section 4.1.

The client SHOULD also include the "Capsule-Protocol" header with a

value of "?1" to negotiate support for sending and receiving HTTP

capsules ([HTTP-DGRAM]).

Any 2xx (Successful) response indicates that the proxy is willing to

open an IP forwarding tunnel between it and the client. Any response

other than a successful response indicates that the tunnel has not

been formed.

A proxy MUST NOT send any Transfer-Encoding or Content-Length header

fields in a 2xx (Successful) response to the IP Proxying request. A

client MUST treat a successful response containing any Content-

Length or Transfer-Encoding header fields as malformed.

The lifetime of the forwarding tunnel is tied to the CONNECT stream.

Closing the stream (in HTTP/3 via the FIN bit on a QUIC STREAM

frame, or a QUIC RESET_STREAM frame) closes the associated

forwarding tunnel.

Along with a successful response, the proxy can send capsules to

assign addresses and advertise routes to the client (Section 4.2).

The client can also assign addresses and advertise routes to the

proxy for network-to-network routing.

4.1. Limiting Request Scope

Unlike CONNECT-UDP requests, which require specifying a target host,

CONNECT-IP requests can allow endpoints to send arbitrary IP packets

to any host. The client can choose to restrict a given request to a

¶

¶

* ¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

¶

target:

ipproto:

specific host or IP protocol by adding parameters to its request.

When the server knows that a request is scoped to a target host or

protocol, it can leverage this information to optimize its resource

allocation; for example, the server can assign the same public IP

address to two CONNECT-IP requests that are scoped to different

hosts and/or different protocols.

CONNECT-IP uses URI template variables (Section 3) to determine the

scope of the request for packet proxying. All variables defined here

are optional, and have default values if not included.

The defined variables are:

The variable "target" contains a hostname or IP address of

a specific host to which the client wants to proxy packets. If

the "target" variable is not specified, the client is requesting

to communicate with any allowable host. If the target is an IP

address, the request will only support a single IP version. If

the target is a hostname, the server is expected to perform DNS

resolution to determine which route(s) to advertise to the

client. The server SHOULD send a ROUTE_ADVERTISEMENT capsule that

includes routes for all usable resolved addresses for the

requested hostname.

The variable "ipproto" contains an IP protocol number, as

defined in the "Assigned Internet Protocol Numbers" IANA

registry. If present, it specifies that a client only wants to

proxy a specific IP protocol for this request. If the value is 0,

or the variable is not included, the client is requesting to use

any IP protocol.

4.2. Capsules

This document defines multiple new capsule types that allow

endpoints to exchange IP configuration information. Both endpoints

MAY send any number of these new capsules.

4.2.1. ADDRESS_ASSIGN Capsule

The ADDRESS_ASSIGN capsule (see Section 9.2 for the value of the

capsule type) allows an endpoint to inform its peer that it has

assigned an IP address or prefix to it. The ADDRESS_ASSIGN capsule

allows assigning a prefix which can contain multiple addresses. Any

of these addresses can be used as the source address on IP packets

originated by the receiver of this capsule.

¶

¶

¶

¶

¶

¶

¶

IP Version:

IP Address:

IP Prefix Length:

Figure 2: ADDRESS_ASSIGN Capsule Format

IP Version of this address assignment. MUST be either 4

or 6.

Assigned IP address. If the IP Version field has value

4, the IP Address field SHALL have a length of 32 bits. If the IP

Version field has value 6, the IP Address field SHALL have a

length of 128 bits.

The number of bits in the IP Address that are

used to define the prefix that is being assigned. This MUST be

less than or equal to the length of the IP Address field, in

bits. If the prefix length is equal to the length of the IP

Address, the receiver of this capsule is only allowed to send

packets from a single source address. If the prefix length is

less than the length of the IP address, the receiver of this

capsule is allowed to send packets from any source address that

falls within the prefix.

If an endpoint receives multiple ADDRESS_ASSIGN capsules, all of the

assigned addresses or prefixes can be used. For example, multiple

ADDRESS_ASSIGN capsules are necessary to assign both IPv4 and IPv6

addresses.

4.2.2. ADDRESS_REQUEST Capsule

The ADDRESS_REQUEST capsule (see Section 9.2 for the value of the

capsule type) allows an endpoint to request assignment of an IP

address from its peer. This capsule is not required for simple

client/proxy communication where the client only expects to receive

one address from the proxy. The capsule allows the endpoint to

optionally indicate a preference for which address it would get

assigned.

ADDRESS_ASSIGN Capsule {

 Type (i) = ADDRESS_ASSIGN,

 Length (i),

 IP Version (8),

 IP Address (32..128),

 IP Prefix Length (8),

}

¶

¶

¶

¶

¶

IP Version:

IP Address:

IP Prefix Length:

Figure 3: ADDRESS_REQUEST Capsule Format

IP Version of this address request. MUST be either 4 or

6.

Requested IP address. If the IP Version field has value

4, the IP Address field SHALL have a length of 32 bits. If the IP

Version field has value 6, the IP Address field SHALL have a

length of 128 bits.

Length of the IP Prefix requested, in bits. MUST

be lesser or equal to the length of the IP Address field, in

bits.

Upon receiving the ADDRESS_REQUEST capsule, an endpoint SHOULD

assign an IP address to its peer, and then respond with an

ADDRESS_ASSIGN capsule to inform the peer of the assignment.

4.2.3. ROUTE_ADVERTISEMENT Capsule

The ROUTE_ADVERTISEMENT capsule (see Section 9.2 for the value of

the capsule type) allows an endpoint to communicate to its peer that

it is willing to route traffic to a set of IP address ranges. This

indicates that the sender has an existing route to each address

range, and notifies its peer that if the receiver of the

ROUTE_ADVERTISEMENT capsule sends IP packets for one of these ranges

in HTTP Datagrams, the sender of the capsule will forward them along

its preexisting route. Any address which is in one of the address

ranges can be used as the destination address on IP packets

originated by the receiver of this capsule.

Figure 4: ROUTE_ADVERTISEMENT Capsule Format

The ROUTE_ADVERTISEMENT capsule contains a sequence of IP Address

Ranges.

ADDRESS_REQUEST Capsule {

 Type (i) = ADDRESS_REQUEST,

 Length (i),

 IP Version (8),

 IP Address (32..128),

 IP Prefix Length (8),

}

¶

¶

¶

¶

¶

ROUTE_ADVERTISEMENT Capsule {

 Type (i) = ROUTE_ADVERTISEMENT,

 Length (i),

 IP Address Range (..) ...,

}

¶

IP Version:

Start IP Address and End IP Address:

IP Protocol:

Figure 5: IP Address Range Format

IP Version of this range. MUST be either 4 or 6.

Inclusive start and end IP

address of the advertised range. If the IP Version field has

value 4, these fields SHALL have a length of 32 bits. If the IP

Version field has value 6, these fields SHALL have a length of

128 bits. The Start IP Address MUST be lesser or equal to the End

IP Address.

The Internet Protocol Number for traffic that can be

sent to this range. If the value is 0, all protocols are allowed.

Upon receiving the ROUTE_ADVERTISEMENT capsule, an endpoint MAY

start routing IP packets in these ranges to its peer.

Each ROUTE_ADVERTISEMENT contains the full list of address ranges.

If multiple ROUTE_ADVERTISEMENT capsules are sent in one direction,

each ROUTE_ADVERTISEMENT capsule supersedes prior ones. In other

words, if a given address range was present in a prior capsule but

the most recently received ROUTE_ADVERTISEMENT capsule does not

contain it, the receiver will consider that range withdrawn.

If multiple ranges using the same IP protocol were to overlap, some

routing table implementations might reject them. To prevent overlap,

the ranges are ordered; this places the burden on the sender and

makes verification by the receiver much simpler. If an IP Address

Range A precedes an IP address range B in the same

ROUTE_ADVERTISEMENT capsule, they MUST follow these requirements:

IP Version of A MUST be lesser or equal than IP Version of B

If the IP Version of A and B are equal, the IP Protocol of A MUST

be lesser or equal than IP Protocol of B.

If the IP Version and IP Protocol of A and B are both equal, the

End IP Address of A MUST be strictly lesser than the Start IP

Address of B.

If an endpoint received a ROUTE_ADVERTISEMENT capsule that does not

meet these requirements, it MUST abort the stream.

IP Address Range {

 IP Version (8),

 Start IP Address (32..128),

 End IP Address (32..128),

 IP Protocol (8),

}

¶

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

¶

Context ID:

5. Context Identifiers

This protocol allows future extensions to exchange HTTP Datagrams

which carry different semantics from IP packets. For example, an

extension could define a way to send compressed IP header fields. In

order to allow for this extensibility, all HTTP Datagrams associated

with IP proxying request streams start with a context ID, see

Section 6.

Context IDs are 62-bit integers (0 to 2 -1). Context IDs are encoded

as variable-length integers, see Section 16 of [QUIC]. The context

ID value of 0 is reserved for IP packets, while non-zero values are

dynamically allocated: non-zero even-numbered context IDs are

client-allocated, and odd-numbered context IDs are server-allocated.

The context ID namespace is tied to a given HTTP request: it is

possible for a context ID with the same numeric value to be

simultaneously assigned different semantics in distinct requests,

potentially with different semantics. Context IDs MUST NOT be re-

allocated within a given HTTP namespace but MAY be allocated in any

order. Once allocated, any context ID can be used by both client and

server - only allocation carries separate namespaces to avoid

requiring synchronization.

Registration is the action by which an endpoint informs its peer of

the semantics and format of a given context ID. This document does

not define how registration occurs. Depending on the method being

used, it is possible for datagrams to be received with Context IDs

which have not yet been registered, for instance due to reordering

of the datagram and the registration packets during transmission.

6. HTTP Datagram Payload Format

When associated with IP proxying request streams, the HTTP Datagram

Payload field of HTTP Datagrams (see [HTTP-DGRAM]) has the format

defined in Figure 6. Note that when HTTP Datagrams are encoded using

QUIC DATAGRAM frames, the Context ID field defined below directly

follows the Quarter Stream ID field which is at the start of the

QUIC DATAGRAM frame payload:

Figure 6: IP Proxying HTTP Datagram Format

A variable-length integer that contains the value of

the Context ID. If an HTTP/3 datagram which carries an unknown

Context ID is received, the receiver SHALL either drop that

¶

62

¶

¶

¶

IP Proxying HTTP Datagram Payload {

 Context ID (i),

 Payload (..),

}

https://rfc-editor.org/rfc/rfc9000#section-16

Payload:

datagram silently or buffer it temporarily (on the order of a

round trip) while awaiting the registration of the corresponding

Context ID.

The payload of the datagram, whose semantics depend on

value of the previous field. Note that this field can be empty.

IP packets are encoded using HTTP Datagrams with the Context ID set

to zero. When the Context ID is set to zero, the Payload field

contains a full IP packet (from the IP Version field until the last

byte of the IP Payload).

Clients MAY optimistically start sending proxied IP packets before

receiving the response to its IP proxying request, noting however

that those may not be processed by the proxy if it responds to the

request with a failure, or if the datagrams are received by the

proxy before the request.

When a CONNECT-IP endpoint receives an HTTP Datagram containing an

IP packet, it will parse the packet's IP header, perform any local

policy checks (e.g., source address validation), check their routing

table to pick an outbound interface, and then send the IP packet on

that interface.

In the other direction, when a CONNECT-IP endpoint receives an IP

packet, it checks to see if the packet matches the routes mapped for

a CONNECT-IP forwarding tunnel, and performs the same forwarding

checks as above before transmitting the packet over HTTP Datagrams.

Note that CONNECT-IP endpoints will decrement the IP Hop Count (or

TTL) upon encapsulation but not decapsulation. In other words, the

Hop Count is decremented right before an IP packet is transmitted in

an HTTP Datagram. This prevents infinite loops in the presence of

routing loops, and matches the choices in IPsec [IPSEC].

Endpoints MAY implement additional filtering policies on the IP

packets they forward.

7. Examples

CONNECT-IP enables many different use cases that can benefit from IP

packet proxying and tunnelling. These examples are provided to help

illustrate some of the ways in which CONNECT-IP can be used.

7.1. Remote Access VPN

The following example shows a point-to-network VPN setup, where a

client receives a set of local addresses, and can send to any remote

server through the proxy. Such VPN setups can be either full-tunnel

or split-tunnel.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Figure 7: VPN Tunnel Setup

In this case, the client does not specify any scope in its request.

The server assigns the client an IPv4 address to the client

(192.0.2.11) and a full-tunnel route of all IPv4 addresses

(0.0.0.0/0). The client can then send to any IPv4 host using a

source address in its assigned prefix.

+--------+ IP A IP B +--------+ +---> IP D

| |-------------------| | IP C |

| Client | IP Subnet C <-> * | Server |--------------+---> IP E

| |-------------------| | |

+--------+ +--------+ +---> IP ...

¶

Figure 8: VPN Full-Tunnel Example

A setup for a split-tunnel VPN (the case where the client can only

access a specific set of private subnets) is quite similar. In this

case, the advertised route is restricted to 192.0.2.0/24, rather

than 0.0.0.0/0.

[[From Client]] [[From Server]]

SETTINGS

H3_DATAGRAM = 1

 SETTINGS

 SETTINGS_ENABLE_CONNECT_PROTOCOL = 1

 H3_DATAGRAM = 1

STREAM(44): HEADERS

:method = CONNECT

:protocol = connect-ip

:scheme = https

:path = /vpn

:authority = server.example.com

capsule-protocol = ?1

 STREAM(44): HEADERS

 :status = 200

 capsule-protocol = ?1

 STREAM(44): CAPSULE

 Capsule Type = ADDRESS_ASSIGN

 IP Version = 4

 IP Address = 192.0.2.11

 IP Prefix Length = 32

 STREAM(44): CAPSULE

 Capsule Type = ROUTE_ADVERTISEMENT

 (IP Version = 4

 Start IP Address = 0.0.0.0

 End IP Address = 255.255.255.255

 IP Protocol = 0) // Any

DATAGRAM

Quarter Stream ID = 11

Context ID = 0

Payload = Encapsulated IP Packet

 DATAGRAM

 Quarter Stream ID = 11

 Context ID = 0

 Payload = Encapsulated IP Packet

¶

Figure 9: VPN Split-Tunnel Capsule Example

7.2. IP Flow Forwarding

The following example shows an IP flow forwarding setup, where a

client requests to establish a forwarding tunnel to

target.example.com using SCTP (IP protocol 132), and receives a

single local address and remote address it can use for transmitting

packets. A similar approach could be used for any other IP protocol

that isn't easily proxied with existing HTTP methods, such as ICMP,

ESP, etc.

Figure 10: Proxied Flow Setup

In this case, the client specfies both a target hostname and an IP

protocol number in the scope of its request, indicating that it only

needs to communicate with a single host. The proxy server is able to

perform DNS resolution on behalf of the client and allocate a

specific outbound socket for the client instead of allocating an

entire IP address to the client. In this regard, the request is

similar to a traditional CONNECT proxy request.

The server assigns a single IPv6 address to the client

(2001:db8::1234:1234) and a route to a single IPv6 host

(2001:db8::3456), scoped to SCTP. The client can send and recieve

SCTP IP packets to the remote host.

[[From Client]] [[From Server]]

 STREAM(44): CAPSULE

 Capsule Type = ADDRESS_ASSIGN

 IP Version = 4

 IP Address = 192.0.2.42

 IP Prefix Length = 32

 STREAM(44): CAPSULE

 Capsule Type = ROUTE_ADVERTISEMENT

 (IP Version = 4

 Start IP Address = 192.0.2.0

 End IP Address = 192.0.2.255

 IP Protocol = 0) // Any

¶

+--------+ IP A IP B +--------+

| |-------------------| | IP C

| Client | IP C <-> D | Server |---------> IP D

| |-------------------| |

+--------+ +--------+

¶

¶

Figure 11: Proxied SCTP Flow Example

7.3. Proxied Connection Racing

The following example shows a setup where a client is proxying UDP

packets through a CONNECT-IP proxy in order to control connection

[[From Client]] [[From Server]]

SETTINGS

H3_DATAGRAM = 1

 SETTINGS

 SETTINGS_ENABLE_CONNECT_PROTOCOL = 1

 H3_DATAGRAM = 1

STREAM(52): HEADERS

:method = CONNECT

:protocol = connect-ip

:scheme = https

:path = /proxy?target=target.example.com&ipproto=132

:authority = server.example.com

capsule-protocol = ?1

 STREAM(52): HEADERS

 :status = 200

 capsule-protocol = ?1

 STREAM(52): CAPSULE

 Capsule Type = ADDRESS_ASSIGN

 IP Version = 6

 IP Address = 2001:db8::1234:1234

 IP Prefix Length = 128

 STREAM(52): CAPSULE

 Capsule Type = ROUTE_ADVERTISEMENT

 (IP Version = 6

 Start IP Address = 2001:db8::3456

 End IP Address = 2001:db8::3456

 IP Protocol = 132)

DATAGRAM

Quarter Stream ID = 13

Context ID = 0

Payload = Encapsulated SCTP/IP Packet

 DATAGRAM

 Quarter Stream ID = 13

 Context ID = 0

 Payload = Encapsulated SCTP/IP Packet

establishement racing through a proxy, as defined in Happy Eyeballs

[HEv2]. This example is a variant of the proxied flow, but

highlights how IP-level proxying can enable new capabilities even

for TCP and UDP.

Figure 12: Proxied Connection Racing Setup

As with proxied flows, the client specfies both a target hostname

and an IP protocol number in the scope of its request. When the

proxy server performs DNS resolution on behalf of the client, it can

send the various remote address options to the client as separate

routes. It can also ensure that the client has both IPv4 and IPv6

addresses assigned.

The server assigns the client both an IPv4 address (192.0.2.3) and

an IPv6 address (2001:db8::1234:1234) to the client, as well as an

IPv4 route (198.51.100.2) and an IPv6 route (2001:db8::3456), which

represent the resolved addresses of the target hostname, scoped to

UDP. The client can send and recieve UDP IP packets to the either of

the server addresses to enable Happy Eyeballs through the proxy.

¶

+--------+ IP A IP B +--------+ IP C

| |-------------------| |<------------> IP E

| Client | IP C<->E, D<->F | Server |

| |-------------------| |<------------> IP F

+--------+ +--------+ IP D

¶

¶

[[From Client]] [[From Server]]

SETTINGS

H3_DATAGRAM = 1

 SETTINGS

 SETTINGS_ENABLE_CONNECT_PROTOCOL = 1

 H3_DATAGRAM = 1

STREAM(44): HEADERS

:method = CONNECT

:protocol = connect-ip

:scheme = https

:path = /proxy?ipproto=17

:authority = server.example.com

capsule-protocol = ?1

 STREAM(44): HEADERS

 :status = 200

 capsule-protocol = ?1

 STREAM(44): CAPSULE

 Capsule Type = ADDRESS_ASSIGN

 IP Version = 4

 IP Address = 192.0.2.3

 IP Prefix Length = 32

 STREAM(44): CAPSULE

 Capsule Type = ADDRESS_ASSIGN

 IP Version = 6

 IP Address = 2001:db8::1234:1234

 IP Prefix Length = 128

 STREAM(44): CAPSULE

 Capsule Type = ROUTE_ADVERTISEMENT

 (IP Version = 4

 Start IP Address = 198.51.100.2

 End IP Address = 198.51.100.2

 IP Protocol = 17),

 (IP Version = 6

 Start IP Address = 2001:db8::3456

 End IP Address = 2001:db8::3456

 IP Protocol = 17)

...

DATAGRAM

Quarter Stream ID = 11

Context ID = 0

Payload = Encapsulated IPv6 Packet

DATAGRAM

Quarter Stream ID = 11

Context ID = 0

Payload = Encapsulated IPv4 Packet

Value:

Description:

Expected Version Tokens:

References:

[BCP38]

Figure 13: Proxied Connection Racing Example

8. Security Considerations

There are significant risks in allowing arbitrary clients to

establish a tunnel to arbitrary servers, as that could allow bad

actors to send traffic and have it attributed to the proxy. Proxies

that support CONNECT-IP SHOULD restrict its use to authenticated

users. The HTTP Authorization header [AUTH] MAY be used to

authenticate clients. More complex authentication schemes are out of

scope for this document but can be implemented using CONNECT-IP

extensions.

Since CONNECT-IP endpoints can proxy IP packets send by their peer,

they SHOULD follow the guidance in [BCP38] to help prevent denial of

service attacks.

9. IANA Considerations

9.1. CONNECT-IP HTTP Upgrade Token

This document will request IANA to register "connect-ip" in the HTTP

Upgrade Token Registry maintained at <https://www.iana.org/

assignments/http-upgrade-tokens>.

connect-ip

The CONNECT-IP Protocol

None

This document

9.2. Capsule Type Registrations

This document will request IANA to add the following values to the

"HTTP Capsule Types" registry created by [HTTP-DGRAM]:

Value Type Description Reference

0xfff100 ADDRESS_ASSIGN Address Assignment This Document

0xfff101 ADDRESS_REQUEST Address Request This Document

0xfff102 ROUTE_ADVERTISEMENT Route Advertisement This Document

Table 1: New Capsules

10. References

10.1. Normative References

¶

¶

¶

¶

¶

¶

¶

¶

https://www.iana.org/assignments/http-upgrade-tokens
https://www.iana.org/assignments/http-upgrade-tokens

[EXT-CONNECT2]

[EXT-CONNECT3]

[HTTP-DGRAM]

[QUIC]

[RFC2119]

[RFC8174]

[SEMANTICS]

[TEMPLATE]

[AUTH]

Ferguson, P. and D. Senie, "Network Ingress Filtering:

Defeating Denial of Service Attacks which employ IP

Source Address Spoofing", BCP 38, RFC 2827, DOI 10.17487/

RFC2827, May 2000, <https://www.rfc-editor.org/rfc/

rfc2827>.

McManus, P., "Bootstrapping WebSockets with HTTP/2",

RFC 8441, DOI 10.17487/RFC8441, September 2018, <https://

www.rfc-editor.org/rfc/rfc8441>.

Hamilton, R., "Bootstrapping WebSockets with HTTP/3",

Work in Progress, Internet-Draft, draft-ietf-httpbis-h3-

websockets-04, 8 February 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-httpbis-h3-

websockets-04>.

Schinazi, D. and L. Pardue, "Using Datagrams with

HTTP", Work in Progress, Internet-Draft, draft-ietf-

masque-h3-datagram-06, 4 March 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-masque-h3-

datagram-06>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Fielding, R. T., Nottingham, M., and J. Reschke, "HTTP

Semantics", Work in Progress, Internet-Draft, draft-ietf-

httpbis-semantics-19, 12 September 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-httpbis-

semantics-19>.

Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,

and D. Orchard, "URI Template", RFC 6570, DOI 10.17487/

RFC6570, March 2012, <https://www.rfc-editor.org/rfc/

rfc6570>.

10.2. Informative References

https://www.rfc-editor.org/rfc/rfc2827
https://www.rfc-editor.org/rfc/rfc2827
https://www.rfc-editor.org/rfc/rfc8441
https://www.rfc-editor.org/rfc/rfc8441
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-h3-websockets-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-h3-websockets-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-h3-websockets-04
https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram-06
https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram-06
https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram-06
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://www.rfc-editor.org/rfc/rfc6570
https://www.rfc-editor.org/rfc/rfc6570

[CONNECT-UDP]

[HEv2]

[IPSEC]

[PROXY-REQS]

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Authentication", RFC 7235,

DOI 10.17487/RFC7235, June 2014, <https://www.rfc-

editor.org/rfc/rfc7235>.

Schinazi, D., "UDP Proxying Support for HTTP", Work in

Progress, Internet-Draft, draft-ietf-masque-connect-

udp-07, 4 March 2022, <https://datatracker.ietf.org/doc/

html/draft-ietf-masque-connect-udp-07>.

Schinazi, D. and T. Pauly, "Happy Eyeballs Version 2:

Better Connectivity Using Concurrency", RFC 8305, DOI

10.17487/RFC8305, December 2017, <https://www.rfc-

editor.org/rfc/rfc8305>.

Kent, S. and K. Seo, "Security Architecture for the

Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,

December 2005, <https://www.rfc-editor.org/rfc/rfc4301>.

Chernyakhovsky, A., McCall, D., and D. Schinazi,

"Requirements for a MASQUE Protocol to Proxy IP Traffic",

Work in Progress, Internet-Draft, draft-ietf-masque-ip-

proxy-reqs-03, 27 August 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-masque-ip-proxy-

reqs-03>.

Acknowledgments

The design of this method was inspired by discussions in the MASQUE

working group around [PROXY-REQS]. The authors would like to thank

participants in those discussions for their feedback.

Authors' Addresses

Tommy Pauly (editor)

Apple Inc.

Email: tpauly@apple.com

David Schinazi

Google LLC

Email: dschinazi.ietf@gmail.com

Alex Chernyakhovsky

Google LLC

Email: achernya@google.com

Mirja Kuehlewind

¶

https://www.rfc-editor.org/rfc/rfc7235
https://www.rfc-editor.org/rfc/rfc7235
https://datatracker.ietf.org/doc/html/draft-ietf-masque-connect-udp-07
https://datatracker.ietf.org/doc/html/draft-ietf-masque-connect-udp-07
https://www.rfc-editor.org/rfc/rfc8305
https://www.rfc-editor.org/rfc/rfc8305
https://www.rfc-editor.org/rfc/rfc4301
https://datatracker.ietf.org/doc/html/draft-ietf-masque-ip-proxy-reqs-03
https://datatracker.ietf.org/doc/html/draft-ietf-masque-ip-proxy-reqs-03
https://datatracker.ietf.org/doc/html/draft-ietf-masque-ip-proxy-reqs-03
mailto:tpauly@apple.com
mailto:dschinazi.ietf@gmail.com
mailto:achernya@google.com

Ericsson

Email: mirja.kuehlewind@ericsson.com

Magnus Westerlund

Ericsson

Email: magnus.westerlund@ericsson.com

mailto:mirja.kuehlewind@ericsson.com
mailto:magnus.westerlund@ericsson.com

	IP Proxying Support for HTTP
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Configuration of Clients
	4. The CONNECT-IP Protocol
	4.1. Limiting Request Scope
	4.2. Capsules
	4.2.1. ADDRESS_ASSIGN Capsule
	4.2.2. ADDRESS_REQUEST Capsule
	4.2.3. ROUTE_ADVERTISEMENT Capsule

	5. Context Identifiers
	6. HTTP Datagram Payload Format
	7. Examples
	7.1. Remote Access VPN
	7.2. IP Flow Forwarding
	7.3. Proxied Connection Racing

	8. Security Considerations
	9. IANA Considerations
	9.1. CONNECT-IP HTTP Upgrade Token
	9.2. Capsule Type Registrations

	10. References
	10.1. Normative References
	10.2. Informative References

	Acknowledgments
	Authors' Addresses

