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Abstract

This document describes how to proxy IP packets in HTTP. This

protocol is similar to UDP proxying in HTTP, but allows transmitting

arbitrary IP packets. More specifically, this document defines a

protocol that allows an HTTP client to create an IP tunnel through

an HTTP server that acts as an IP proxy. This document updates RFC

9298.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://ietf-wg-

masque.github.io/draft-ietf-masque-connect-ip/draft-ietf-masque-

connect-ip.html. Status information for this document may be found

at https://datatracker.ietf.org/doc/draft-ietf-masque-connect-ip/.

Discussion of this document takes place on the MASQUE Working Group

mailing list (mailto:masque@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/masque/. Subscribe at https://

www.ietf.org/mailman/listinfo/masque/.

Source for this draft and an issue tracker can be found at https://

github.com/ietf-wg-masque/draft-ietf-masque-connect-ip.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc9298
https://ietf-wg-masque.github.io/draft-ietf-masque-connect-ip/draft-ietf-masque-connect-ip.html
https://ietf-wg-masque.github.io/draft-ietf-masque-connect-ip/draft-ietf-masque-connect-ip.html
https://ietf-wg-masque.github.io/draft-ietf-masque-connect-ip/draft-ietf-masque-connect-ip.html
https://datatracker.ietf.org/doc/draft-ietf-masque-connect-ip/
mailto:masque@ietf.org
https://mailarchive.ietf.org/arch/browse/masque/
https://mailarchive.ietf.org/arch/browse/masque/
https://www.ietf.org/mailman/listinfo/masque/
https://www.ietf.org/mailman/listinfo/masque/
https://github.com/ietf-wg-masque/draft-ietf-masque-connect-ip
https://github.com/ietf-wg-masque/draft-ietf-masque-connect-ip
https://datatracker.ietf.org/drafts/current/


Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 22 October 2023.
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Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with
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document must include Revised BSD License text as described in
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1. Introduction

HTTP provides the CONNECT method (see Section 9.3.6 of [HTTP]) for

creating a TCP [TCP] tunnel to a destination and a similar mechanism

for UDP [CONNECT-UDP]. However, these mechanisms cannot tunnel other

IP protocols [IANA-PN] nor convey fields of the IP header.

This document describes a protocol for tunnelling IP through an HTTP

server acting as an IP-specific proxy over HTTP. This can be used

for various use cases such as remote access VPN, site-to-site VPN,

secure point-to-point communication, or general-purpose packet

tunnelling.

IP proxying operates similarly to UDP proxying [CONNECT-UDP],

whereby the proxy itself is identified with an absolute URL,

optionally containing the traffic's destination. Clients generate

these URLs using a URI Template [TEMPLATE], as described in 

Section 3.

This protocol supports all existing versions of HTTP by using HTTP

Datagrams [HTTP-DGRAM]. When using HTTP/2 [HTTP/2] or HTTP/3 

[HTTP/3], it uses HTTP Extended CONNECT as described in 

[EXT-CONNECT2] and [EXT-CONNECT3]. When using HTTP/1.x [HTTP/1.1],

it uses HTTP Upgrade as defined in Section 7.8 of [HTTP].

This document updates [CONNECT-UDP] to change the "masque" well-

known URI, see Section 12.3.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
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"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

In this document, we use the term "IP proxy" to refer to the HTTP

server that responds to the IP proxying request. The term "client"

is used in the HTTP sense; the client constructs the IP proxying

request. If there are HTTP intermediaries (as defined in Section 3.7

of [HTTP]) between the client and the IP proxy, those are referred

to as "intermediaries" in this document. The term "IP proxying

endpoints" refers to both the client and the IP proxy.

This document uses terminology from [QUIC]. Where this document

defines protocol types, the definition format uses the notation from

Section 1.3 of [QUIC]. This specification uses the variable-length

integer encoding from Section 16 of [QUIC]. Variable-length integer

values do not need to be encoded in the minimum number of bytes

necessary.

Note that, when the HTTP version in use does not support

multiplexing streams (such as HTTP/1.1), any reference to "stream"

in this document represents the entire connection.

3. Configuration of Clients

Clients are configured to use IP proxying over HTTP via a URI

Template [TEMPLATE]. The URI Template MAY contain two variables:

"target" and "ipproto"; see Section 4.6. The optionality of the

variables needs to be considered when defining the template so that

either the variable is self-identifying or it is possible to exclude

it in the syntax.

Examples are shown below:

Figure 1: URI Template Examples

The following requirements apply to the URI Template:

The URI Template MUST be a level 3 template or lower.

The URI Template MUST be in absolute form, and MUST include non-

empty scheme, authority and path components.
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https://example.org/.well-known/masque/ip/{target}/{ipproto}/

https://proxy.example.org:4443/masque/ip?t={target}&i={ipproto}

https://proxy.example.org:4443/masque/ip{?target,ipproto}

https://masque.example.org/?user=bob
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The path component of the URI Template MUST start with a slash

"/".

All template variables MUST be within the path or query

components of the URI.

The URI Template MAY contain the two variables "target" and

"ipproto" and MAY contain other variables. If the "target" or

"ipproto" variables are included, their values MUST NOT be empty.

Clients can instead use "*" to indicate wildcard or no-preference

values; see Section 4.6.

The URI Template MUST NOT contain any non-ASCII unicode

characters and MUST only contain ASCII characters in the range

0x21-0x7E inclusive (note that percent-encoding is allowed; see

Section 2.1 of [URI]).

The URI Template MUST NOT use Reserved Expansion ("+" operator),

Fragment Expansion ("#" operator), Label Expansion with Dot-

Prefix, Path Segment Expansion with Slash-Prefix, nor Path-Style

Parameter Expansion with Semicolon-Prefix.

Clients SHOULD validate the requirements above; however, clients MAY

use a general-purpose URI Template implementation that lacks this

specific validation. If a client detects that any of the

requirements above are not met by a URI Template, the client MUST

reject its configuration and abort the request without sending it to

the IP proxy.

As with UDP proxying, some client configurations for IP proxies will

only allow the user to configure the proxy host and proxy port.

Clients with such limitations MAY attempt to access IP proxying

capabilities using the default template, which is defined as:

"https://$PROXY_HOST:$PROXY_PORT/.well-known/masque/ip/{target}/

{ipproto}/", where $PROXY_HOST and $PROXY_PORT are the configured

host and port of the IP proxy, respectively. IP proxy deployments 

SHOULD offer service at this location if they need to interoperate

with such clients.

4. Tunnelling IP over HTTP

To allow negotiation of a tunnel for IP over HTTP, this document

defines the "connect-ip" HTTP upgrade token. The resulting IP

tunnels use the Capsule Protocol (see Section 3.2 of [HTTP-DGRAM])

with HTTP Datagrams in the format defined in Section 6.

To initiate an IP tunnel associated with a single HTTP stream, a

client issues a request containing the "connect-ip" upgrade token.

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9297#section-3.2


When sending its IP proxying request, the client SHALL perform URI

Template expansion to determine the path and query of its request,

see Section 3.

By virtue of the definition of the Capsule Protocol (see Section 3.2

of [HTTP-DGRAM]), IP proxying requests do not carry any message

content. Similarly, successful IP proxying responses also do not

carry any message content.

IP proxying over HTTP MUST be operated over TLS or QUIC encryption,

or another equivalent encryption protocol, to provide

confidentiality, integrity, and authentication.

4.1. IP Proxy Handling

Upon receiving an IP proxying request:

if the recipient is configured to use another HTTP proxy, it will

act as an intermediary by forwarding the request to another HTTP

server. Note that such intermediaries may need to re-encode the

request if they forward it using a version of HTTP that is

different from the one used to receive it, as the request

encoding differs by version (see below).

otherwise, the recipient will act as an IP proxy. The IP proxy

can choose to reject the IP proxying request. Otherwise, it

extracts the optional "target" and "ipproto" variables from the

URI it has reconstructed from the request headers, decodes their

percent-encoding, and establishes an IP tunnel.

IP proxies MUST validate whether the decoded "target" and "ipproto"

variables meet the requirements in Section 4.6. If they do not, the

IP proxy MUST treat the request as malformed; see Section 8.1.1 of

[HTTP/2] and Section 4.1.2 of [HTTP/3]. If the "target" variable is

a DNS name, the IP proxy MUST perform DNS resolution (to obtain the

corresponding IPv4 and/or IPv6 addresses via A and/or AAAA records)

before replying to the HTTP request. If errors occur during this

process, the IP proxy MUST reject the request and SHOULD send

details using an appropriate Proxy-Status header field 

[PROXY-STATUS]. For example, if DNS resolution returns an error, the

proxy can use the dns_error Proxy Error Type from Section 2.3.2 of

[PROXY-STATUS].

The lifetime of the IP forwarding tunnel is tied to the IP proxying

request stream. The IP proxy MUST maintain all IP address and route

assignments associated with the IP forwarding tunnel while the

request stream is open. IP proxies MAY choose to tear down the

tunnel due to a period of inactivity, but they MUST close the

request stream when doing so.

¶

¶

¶

¶

*

¶

*

¶

¶

¶

https://rfc-editor.org/rfc/rfc9297#section-3.2
https://rfc-editor.org/rfc/rfc9113#section-8.1.1
https://rfc-editor.org/rfc/rfc9114#section-4.1.2
https://rfc-editor.org/rfc/rfc9209#section-2.3.2


A successful response (as defined in Sections 4.3 and 4.5) indicates

that the IP proxy has established an IP tunnel and is willing to

proxy IP payloads. Any response other than a successful response

indicates that the request has failed; thus, the client MUST abort

the request.

Along with a successful response, the IP proxy can send capsules to

assign addresses and advertise routes to the client (Section 4.7).

The client can also assign addresses and advertise routes to the IP

proxy for network-to-network routing.

4.2. HTTP/1.1 Request

When using HTTP/1.1 [HTTP/1.1], an IP proxying request will meet the

following requirements:

the method SHALL be "GET".

the request SHALL include a single Host header field containing

the host and optional port of the IP proxy.

the request SHALL include a Connection header field with value

"Upgrade" (note that this requirement is case-insensitive as per 

Section 7.6.1 of [HTTP]).

the request SHALL include an Upgrade header field with value

"connect-ip".

An IP proxying request that does not conform to these restrictions

is malformed. The recipient of such a malformed request MUST respond

with an error and SHOULD use the 400 (Bad Request) status code.

For example, if the client is configured with URI Template "https://

example.org/.well-known/masque/ip/{target}/{ipproto}/" and wishes to

open an IP forwarding tunnel with no target or protocol limitations,

it could send the following request:

Figure 2: Example HTTP/1.1 Request
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GET https://example.org/.well-known/masque/ip/*/*/ HTTP/1.1

Host: example.org

Connection: Upgrade

Upgrade: connect-ip

Capsule-Protocol: ?1
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4.3. HTTP/1.1 Response

The server indicates a successful response by replying with the

following requirements:

the HTTP status code on the response SHALL be 101 (Switching

Protocols).

the response SHALL include a Connection header field with value

"Upgrade" (note that this requirement is case-insensitive as per 

Section 7.6.1 of [HTTP]).

the response SHALL include a single Upgrade header field with

value "connect-ip".

the response SHALL meet the requirements of HTTP responses that

start the Capsule Protocol; see Section 3.2 of [HTTP-DGRAM].

If any of these requirements are not met, the client MUST treat this

proxying attempt as failed and close the connection.

For example, the server could respond with:

Figure 3: Example HTTP/1.1 Response

4.4. HTTP/2 and HTTP/3 Requests

When using HTTP/2 [HTTP/2] or HTTP/3 [HTTP/3], IP proxying requests

use HTTP Extended CONNECT. This requires that servers send an HTTP

Setting as specified in [EXT-CONNECT2] and [EXT-CONNECT3] and that

requests use HTTP pseudo-header fields with the following

requirements:

The :method pseudo-header field SHALL be "CONNECT".

The :protocol pseudo-header field SHALL be "connect-ip".

The :authority pseudo-header field SHALL contain the authority of

the IP proxy.

The :path and :scheme pseudo-header fields SHALL NOT be empty.

Their values SHALL contain the scheme and path from the URI

Template after the URI Template expansion process has been

completed; see Section 3. Variables in the URI Template can
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HTTP/1.1 101 Switching Protocols

Connection: Upgrade

Upgrade: connect-ip

Capsule-Protocol: ?1
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determine the scope of the request, such as requesting full-

tunnel IP packet forwarding, or a specific proxied flow; see 

Section 4.6.

An IP proxying request that does not conform to these restrictions

is malformed; see Section 8.1.1 of [HTTP/2] and Section 4.1.2 of

[HTTP/3].

For example, if the client is configured with URI Template "https://

example.org/.well-known/masque/ip/{target}/{ipproto}/" and wishes to

open an IP forwarding tunnel with no target or protocol limitations,

it could send the following request:

Figure 4: Example HTTP/2 or HTTP/3 Request

4.5. HTTP/2 and HTTP/3 Responses

The server indicates a successful response by replying with the

following requirements:

the HTTP status code on the response SHALL be in the 2xx

(Successful) range.

the response SHALL meet the requirements of HTTP responses that

start the Capsule Protocol; see Section 3.2 of [HTTP-DGRAM].

If any of these requirements are not met, the client MUST treat this

proxying attempt as failed and abort the request. As an example, any

status code in the 3xx range will be treated as a failure and cause

the client to abort the request.

For example, the server could respond with:

Figure 5: Example HTTP/2 or HTTP/3 Response

¶

¶

¶

HEADERS

:method = CONNECT

:protocol = connect-ip

:scheme = https

:path = /.well-known/masque/ip/*/*/

:authority = example.org

capsule-protocol = ?1
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HEADERS

:status = 200

capsule-protocol = ?1
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target:

ipproto:

4.6. Limiting Request Scope

Unlike UDP proxying requests, which require specifying a target

host, IP proxying requests can allow endpoints to send arbitrary IP

packets to any host. The client can choose to restrict a given

request to a specific IP prefix or IP protocol by adding parameters

to its request. When the IP proxy knows that a request is scoped to

a target prefix or protocol, it can leverage this information to

optimize its resource allocation; for example, the IP proxy can

assign the same public IP address to two IP proxying requests that

are scoped to different prefixes and/or different protocols.

The scope of the request is indicated by the client to the IP proxy

via the "target" and "ipproto" variables of the URI Template; see 

Section 3. Both the "target" and "ipproto" variables are optional;

if they are not included, they are considered to carry the wildcard

value "*".

The variable "target" contains a hostname or IP prefix of a

specific host to which the client wants to proxy packets. If the

"target" variable is not specified or its value is "*", the

client is requesting to communicate with any allowable host.

"target" supports using DNS names, IPv6 prefixes and IPv4

prefixes. Note that IPv6 scoped addressing zone identifiers

([RFC6874]) are not supported. If the target is an IP prefix (IP

address optionally followed by a percent-encoded slash followed

by the prefix length in bits), the request will only support a

single IP version. If the target is a hostname, the IP proxy is

expected to perform DNS resolution to determine which route(s) to

advertise to the client. The IP proxy SHOULD send a

ROUTE_ADVERTISEMENT capsule that includes routes for all

addresses that were resolved for the requested hostname, that are

accessible to the IP proxy, and belong to an address family for

which the IP proxy also sends an Assigned Address.

The variable "ipproto" contains an IP protocol number, as

defined in the "Assigned Internet Protocol Numbers" IANA registry

[IANA-PN]. If present, it specifies that a client only wants to

proxy a specific IP protocol for this request. If the value is

"*", or the variable is not included, the client is requesting to

use any IP protocol. The IP protocol indicated in the "ipproto"

variable represents an allowable next header value carried in IP

headers that are directly sent in HTTP datagrams (the outermost

IP headers). ICMP traffic is always allowed, regardless of the

value of this field.
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Using the terms IPv6address, IPv4address, and reg-name from [URI],

the "target" and "ipproto" variables MUST adhere to the format in 

Figure 6, using notation from [ABNF]. Additionally:

if "target" contains an IPv6 literal or prefix, the colons (":") 

MUST be percent-encoded. For example, if the target host is

"2001:db8::42", it will be encoded in the URI as

"2001%3Adb8%3A%3A42".

If present, the IP prefix length in "target" SHALL be preceded by

a percent-encoded slash ("/"): "%2F". The IP prefix length MUST

represent a decimal integer between 0 and the length of the IP

address in bits, inclusive.

If "target" contains an IP prefix and the prefix length is

strictly less than the length of the IP address in bits, the

lower bits of the IP address that are not covered by the prefix

length MUST all be set to 0.

"ipproto" MUST represent a decimal integer between 0 and 255

inclusive, or the wildcard value "*".

Figure 6: URI Template Variable Format

IP proxies MAY perform access control using the scoping information

provided by the client: if the client is not authorized to access

any of the destinations included in the scope, then the IP proxy can

immediately fail the request.

4.7. Capsules

This document defines multiple new capsule types that allow

endpoints to exchange IP configuration information. Both endpoints 

MAY send any number of these new capsules.

4.7.1. ADDRESS_ASSIGN Capsule

The ADDRESS_ASSIGN capsule (see Section 12.4 for the value of the

capsule type) allows an endpoint to inform its peer of the list of

IP addresses or prefixes it has assigned to it. Every capsule

contains the full list of IP prefixes currently assigned to the

receiver. Any of these addresses can be used as the source address

on IP packets originated by the receiver of this capsule.

¶

*

¶

*

¶

*

¶

*

¶

target = IPv6prefix / IPv4prefix / reg-name / "*"

IPv6prefix = IPv6address ["%2F" 1*3DIGIT]

IPv4prefix = IPv4address ["%2F" 1*2DIGIT]

ipproto = 1*3DIGIT / "*"
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Request ID:

IP Version:

IP Address:

IP Prefix Length:

Figure 7: ADDRESS_ASSIGN Capsule Format

The ADDRESS_ASSIGN capsule contains a sequence of zero or more

Assigned Addresses.

Figure 8: Assigned Address Format

Each Assigned Address contains the following fields:

Request identifier, encoded as a variable-length

integer. If this address assignment is in response to an Address

Request (see Section 4.7.2), then this field SHALL contain the

value of the corresponding field in the request. Otherwise, this

field SHALL be zero.

IP Version of this address assignment, encoded as an

unsigned 8-bit integer. MUST be either 4 or 6.

Assigned IP address. If the IP Version field has value

4, the IP Address field SHALL have a length of 32 bits. If the IP

Version field has value 6, the IP Address field SHALL have a

length of 128 bits.

The number of bits in the IP address that are

used to define the prefix that is being assigned, encoded as an

unsigned 8-bit integer. This MUST be less than or equal to the

length of the IP Address field, in bits. If the prefix length is

equal to the length of the IP address, the receiver of this

capsule is allowed to send packets from a single source address.

If the prefix length is less than the length of the IP address,

the receiver of this capsule is allowed to send packets from any

source address that falls within the prefix. If the prefix length

is strictly less than the length of the IP address in bits, the

lower bits of the IP Address field that are not covered by the

prefix length MUST all be set to 0.

If any of the capsule fields are malformed upon reception, the

receiver of the capsule MUST follow the error handling procedure

defined in Section 3.3 of [HTTP-DGRAM].

ADDRESS_ASSIGN Capsule {

  Type (i) = ADDRESS_ASSIGN,

  Length (i),

  Assigned Address (..) ...,

}

¶

Assigned Address {

  Request ID (i),

  IP Version (8),

  IP Address (32..128),

  IP Prefix Length (8),

}

¶

¶

¶

¶

¶
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If an ADDRESS_ASSIGN capsule does not contain an address that was

previously transmitted in another ADDRESS_ASSIGN capsule, that

indicates that the address has been removed. An ADDRESS_ASSIGN

capsule can also be empty, indicating that all addresses have been

removed.

In some deployments of IP proxying in HTTP, an endpoint needs to be

assigned an address by its peer before it knows what source address

to set on its own packets. For example, in the Remote Access VPN

case (Section 8.1) the client cannot send IP packets until it knows

what address to use. In these deployments, the endpoint that is

expecting an address assignment MUST send an ADDRESS_REQUEST

capsule. This isn't required if the endpoint does not need any

address assignment, for example when it is configured out-of-band

with static addresses.

While ADDRESS_ASSIGN capsules are commonly sent in response to

ADDRESS_REQUEST capsules, endpoints MAY send ADDRESS_ASSIGN capsules

unprompted.

4.7.2. ADDRESS_REQUEST Capsule

The ADDRESS_REQUEST capsule (see Section 12.4 for the value of the

capsule type) allows an endpoint to request assignment of IP

addresses from its peer. The capsule allows the endpoint to

optionally indicate a preference for which address it would get

assigned.

Figure 9: ADDRESS_REQUEST Capsule Format

The ADDRESS_REQUEST capsule contains a sequence of one or more

Requested Addresses.

Figure 10: Requested Address Format
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ADDRESS_REQUEST Capsule {

  Type (i) = ADDRESS_REQUEST,

  Length (i),

  Requested Address (..) ...,

}

¶

Requested Address {

  Request ID (i),

  IP Version (8),

  IP Address (32..128),

  IP Prefix Length (8),

}



Request ID:

IP Version:

IP Address:

IP Prefix Length:

Each Requested Address contains the following fields:

Request identifier, encoded as a variable-length

integer. This is the identifier of this specific address request.

Each request from a given endpoint carries a different

identifier. Request IDs MUST NOT be reused by an endpoint, and 

MUST NOT be zero.

IP Version of this address request, encoded as an

unsigned 8-bit integer. MUST be either 4 or 6.

Requested IP address. If the IP Version field has value

4, the IP Address field SHALL have a length of 32 bits. If the IP

Version field has value 6, the IP Address field SHALL have a

length of 128 bits.

Length of the IP Prefix requested, in bits,

encoded as an unsigned 8-bit integer. MUST be less than or equal

to the length of the IP Address field, in bits. If the prefix

length is strictly less than the length of the IP address in

bits, the lower bits of the IP Address field that are not covered

by the prefix length MUST all be set to 0.

If the IP address is all-zero (0.0.0.0 or ::), this indicates that

the sender is requesting an address of that address family but does

not have a preference for a specific address. In that scenario, the

prefix length still indicates the sender's preference for the prefix

length it is requesting.

If any of the capsule fields are malformed upon reception, the

receiver of the capsule MUST follow the error handling procedure

defined in Section 3.3 of [HTTP-DGRAM].

Upon receiving the ADDRESS_REQUEST capsule, an endpoint SHOULD

assign one or more IP addresses to its peer, and then respond with

an ADDRESS_ASSIGN capsule to inform the peer of the assignment. For

each Requested Address, the receiver of the ADDRESS_REQUEST capsule 

SHALL respond with an Assigned Address with a matching Request ID.

If the requested address was assigned, the IP Address and IP Prefix

Length fields in the Assigned Address response SHALL be set to the

assigned values. If the requested address was not assigned, the IP

address SHALL be all-zero and the IP Prefix Length SHALL be the

maximum length (0.0.0.0/32 or ::/128) to indicate that no address

was assigned. These address rejections SHOULD NOT be included in

subsequent ADDRESS_ASSIGN capsules. Note that other Assigned Address

entries that do not correspond to any Request ID can also be

contained in the same ADDRESS_ASSIGN response.

If an endpoint receives an ADDRESS_REQUEST capsule that contains

zero Requested Addresses, it MUST abort the IP proxying request

stream.
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IP Version:

Start IP Address and End IP Address:

Note that the ordering of Requested Addresses does not carry any

semantics. Similarly, the Request ID is only meant as a unique

identifier, it does not convey any priority or importance.

4.7.3. ROUTE_ADVERTISEMENT Capsule

The ROUTE_ADVERTISEMENT capsule (see Section 12.4 for the value of

the capsule type) allows an endpoint to communicate to its peer that

it is willing to route traffic to a set of IP address ranges. This

indicates that the sender has an existing route to each address

range, and notifies its peer that if the receiver of the

ROUTE_ADVERTISEMENT capsule sends IP packets for one of these ranges

in HTTP Datagrams, the sender of the capsule will forward them along

its preexisting route. Any address which is in one of the address

ranges can be used as the destination address on IP packets

originated by the receiver of this capsule.

Figure 11: ROUTE_ADVERTISEMENT Capsule Format

The ROUTE_ADVERTISEMENT capsule contains a sequence of zero or more

IP Address Ranges.

Figure 12: IP Address Range Format

Each IP Address Range contains the following fields:

IP Version of this range, encoded as an unsigned 8-bit

integer. MUST be either 4 or 6.

Inclusive start and end IP

address of the advertised range. If the IP Version field has

value 4, these fields SHALL have a length of 32 bits. If the IP

Version field has value 6, these fields SHALL have a length of

¶

¶

ROUTE_ADVERTISEMENT Capsule {

  Type (i) = ROUTE_ADVERTISEMENT,

  Length (i),

  IP Address Range (..) ...,

}

¶

IP Address Range {

  IP Version (8),

  Start IP Address (32..128),

  End IP Address (32..128),

  IP Protocol (8),

}

¶

¶



IP Protocol:

128 bits. The Start IP Address MUST be less than or equal to the

End IP Address.

The Internet Protocol Number for traffic that can be

sent to this range, encoded as an unsigned 8-bit integer. If the

value is 0, all protocols are allowed. If the value is not 0, it

represents an allowable next header value carried in IP headers

that are directly sent in HTTP datagrams (the outermost IP

headers). ICMP traffic is always allowed, regardless of the value

of this field.

If any of the capsule fields are malformed upon reception, the

receiver of the capsule MUST follow the error handling procedure

defined in Section 3.3 of [HTTP-DGRAM].

Upon receiving the ROUTE_ADVERTISEMENT capsule, an endpoint MAY

update its local state regarding what its peer is willing to route

(subject to local policy), such as by installing entries in a

routing table.

Each ROUTE_ADVERTISEMENT contains the full list of address ranges.

If multiple ROUTE_ADVERTISEMENT capsules are sent in one direction,

each ROUTE_ADVERTISEMENT capsule supersedes prior ones. In other

words, if a given address range was present in a prior capsule but

the most recently received ROUTE_ADVERTISEMENT capsule does not

contain it, the receiver will consider that range withdrawn.

If multiple ranges using the same IP protocol were to overlap, some

routing table implementations might reject them. To prevent overlap,

the ranges are ordered; this places the burden on the sender and

makes verification by the receiver much simpler. If an IP Address

Range A precedes an IP Address Range B in the same

ROUTE_ADVERTISEMENT capsule, they MUST follow these requirements:

IP Version of A MUST be less than or equal to IP Version of B

If the IP Version of A and B are equal, the IP Protocol of A MUST

be less than or equal to IP Protocol of B.

If the IP Version and IP Protocol of A and B are both equal, the

End IP Address of A MUST be strictly less than the Start IP

Address of B.

If an endpoint receives a ROUTE_ADVERTISEMENT capsule that does not

meet these requirements, it MUST abort the IP proxying request

stream.

Since setting the IP protocol to zero indicates all protocols are

allowed, the requirements above make it possible for two routes to

overlap when one has IP protocol set to zero and the other set to

non-zero. Endpoints MUST NOT send a ROUTE_ADVERTISEMENT capsule with
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routes that overlap in such a way. Validating this requirement is 

OPTIONAL, but if an endpoint detects the violation, it MUST abort

the IP proxying request stream.

4.8. IPv6 Extension Headers

Both request scoping (see Section 4.6) and the ROUTE_ADVERTISEMENT

capsule (see Section 4.7.3) use IP protocol numbers. These numbers

represent both upper layers (as defined in Section 2 of [IPv6],

examples include TCP and UDP) and IPv6 extension headers (as defined

in Section 4 of [IPv6], examples include Fragment and Options

headers). IP proxies MAY reject requests to scope to protocol

numbers that are used for extension headers. Upon receiving packets,

implementations that support scoping or routing by IP protocol

number MUST walk the chain of extensions to find outermost non-

extension IP protocol number to match against the scoping rule. Note

that the ROUTE_ADVERTISEMENT capsule uses IP protocol number 0 to

indicate that all protocols are allowed, it does not restrict the

route to the IPv6 Hop-by-Hop Options Header (Section 4.3 of [IPv6]).

5. Context Identifiers

The mechanism for proxying IP in HTTP defined in this document

allows future extensions to exchange HTTP Datagrams that carry

different semantics from IP payloads. Some of these extensions can

augment IP payloads with additional data or compress IP header

fields, while others can exchange data that is completely separate

from IP payloads. In order to accomplish this, all HTTP Datagrams

associated with IP proxying request streams start with a Context ID

field; see Section 6.

Context IDs are 62-bit integers (0 to 2 -1). Context IDs are encoded

as variable-length integers; see Section 16 of [QUIC]. The Context

ID value of 0 is reserved for IP payloads, while non-zero values are

dynamically allocated. Non-zero even-numbered Context IDs are

client-allocated, and odd-numbered Context IDs are proxy-allocated.

The Context ID namespace is tied to a given HTTP request; it is

possible for a Context ID with the same numeric value to be

simultaneously allocated in distinct requests, potentially with

different semantics. Context IDs MUST NOT be re-allocated within a

given HTTP request but MAY be allocated in any order. The Context ID

allocation restrictions to the use of even-numbered and odd-numbered

Context IDs exist in order to avoid the need for synchronization

between endpoints. However, once a Context ID has been allocated,

those restrictions do not apply to the use of the Context ID; it can

be used by either the client or the IP proxy, independent of which

endpoint initially allocated it.
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Context ID:

Payload:

Registration is the action by which an endpoint informs its peer of

the semantics and format of a given Context ID. This document does

not define how registration occurs. Future extensions MAY use HTTP

header fields or capsules to register Context IDs. Depending on the

method being used, it is possible for datagrams to be received with

Context IDs that have not yet been registered. For instance, this

can be due to reordering of the packet containing the datagram and

the packet containing the registration message during transmission.

6. HTTP Datagram Payload Format

When associated with IP proxying request streams, the HTTP Datagram

Payload field of HTTP Datagrams (see [HTTP-DGRAM]) has the format

defined in Figure 13. Note that when HTTP Datagrams are encoded

using QUIC DATAGRAM frames, the Context ID field defined below

directly follows the Quarter Stream ID field which is at the start

of the QUIC DATAGRAM frame payload:

Figure 13: IP Proxying HTTP Datagram Format

The IP Proxying HTTP Datagram Payload contains the following fields:

A variable-length integer that contains the value of

the Context ID. If an HTTP/3 datagram which carries an unknown

Context ID is received, the receiver SHALL either drop that

datagram silently or buffer it temporarily (on the order of a

round trip) while awaiting the registration of the corresponding

Context ID.

The payload of the datagram, whose semantics depend on

value of the previous field. Note that this field can be empty.

IP packets are encoded using HTTP Datagrams with the Context ID set

to zero. When the Context ID is set to zero, the Payload field

contains a full IP packet (from the IP Version field until the last

byte of the IP Payload).

7. IP Packet Handling

This document defines a tunneling mechanism that is conceptually an

IP link. However, because links are attached to IP routers,

implementations might need to handle some of the responsibilities of

IP routers if they do not delegate them to another implementation

such as a kernel.

¶
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IP Proxying HTTP Datagram Payload {

  Context ID (i),

  Payload (..),

}

¶
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7.1. Link Operation

The IP forwarding tunnels described in this document are not fully

featured "interfaces" in the IPv6 addressing architecture sense 

[IPv6-ADDR]. In particular, they do not necessarily have IPv6 link-

local addresses. Additionally, IPv6 stateless autoconfiguration or

router advertisement messages are not used in such interfaces, and

neither is neighbor discovery.

Clients MAY optimistically start sending proxied IP packets before

receiving the response to its IP proxying request, noting however

that those may not be processed by the IP proxy if it responds to

the request with a failure, or if the datagrams are received by the

IP proxy before the request. Since receiving addresses and routes is

required in order to know that a packet can be sent through the

tunnel, such optimistic packets might be dropped by the IP proxy if

it chooses to provide different addressing or routing information

than what the client assumed.

Note that it is possible for multiple proxied IP packets to be

encapsulated in the same outer packet, for example because a QUIC

packet can carry two QUIC DATAGRAM frames. It is also possible for a

proxied IP packet to span multiple outer packets, because a DATAGRAM

capsule can be split across multiple QUIC or TCP packets.

7.2. Routing Operation

The requirements in this section are a repetition of requirements

that apply to IP routers in general, and might not apply to

implementations of IP proxying that rely on external software for

routing.

When an endpoint receives an HTTP Datagram containing an IP packet,

it will parse the packet's IP header, perform any local policy

checks (e.g., source address validation), check their routing table

to pick an outbound interface, and then send the IP packet on that

interface or pass it to a local application. The endpoint can also

choose to drop any received packets instead of forwarding them. If a

received IP packet fails any correctness or policy checks, that is a

forwarding error, not a protocol violation as far as IP proxying is

concerned; see Section 7.2.1. IP proxying endpoints MAY implement

additional filtering policies on the IP packets they forward.

In the other direction, when an endpoint receives an IP packet, it

checks to see if the packet matches the routes mapped for an IP

tunnel, and performs the same forwarding checks as above before

transmitting the packet over HTTP Datagrams.

When IP proxying endpoints forward IP packets between different

links, they will decrement the IP Hop Count (or TTL) upon
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encapsulation, but not upon decapsulation. In other words, the Hop

Count is decremented right before an IP packet is transmitted in an

HTTP Datagram. This prevents infinite loops in the presence of

routing loops, and matches the choices in IPsec [IPSEC]. This does

not apply to IP packets generated by the IP proxying endpoint

itself.

Implementers need to ensure that they do not forward any link-local

traffic beyond the IP proxying interface that it was received on. IP

proxying endpoints also need to properly reply to packets destined

to link-local multicast addresses.

IPv6 requires that every link have an MTU of at least 1280 bytes 

[IPv6]. Since IP proxying in HTTP conveys IP packets in HTTP

Datagrams and those can in turn be sent in QUIC DATAGRAM frames

which cannot be fragmented [DGRAM], the MTU of an IP tunnel can be

limited by the MTU of the QUIC connection that IP proxying is

operating over. This can lead to situations where the IPv6 minimum

link MTU is violated. IP proxying endpoints that operate as routers

and support IPv6 MUST ensure that the IP tunnel link MTU is at least

1280 (i.e., that they can send HTTP Datagrams with payloads of at

least 1280 bytes). This can be accomplished using various

techniques:

if both IP proxying endpoints know for certain that HTTP

intermediaries are not in use, the endpoints can pad the QUIC

INITIAL packets of the outer QUIC connection that IP proxying is

running over. (Assuming QUIC version 1 is in use, the overhead is

1 byte type, 20 bytes maximal connection ID length, 4 bytes

maximal packet number length, 1 byte DATAGRAM frame type, 8 bytes

maximal quarter stream ID, one byte for the zero Context ID, and

16 bytes for the AEAD authentication tag, for a total of 51 bytes

of overhead which corresponds to padding QUIC INITIAL packets to

1331 bytes or more.)

IP proxying endpoints can also send ICMPv6 echo requests with

1232 bytes of data to ascertain the link MTU and tear down the

tunnel if they do not receive a response. Unless endpoints have

an out-of-band means of guaranteeing that the previous techniques

is sufficient, they MUST use this method. If an endpoint does not

know an IPv6 address of its peer, it can send the ICMPv6 echo

request to the link local all nodes multicast address (ff02::1).

If an endpoint is using QUIC DATAGRAM frames to convey IPv6 packets,

and it detects that the QUIC MTU is too low to allow sending 1280

bytes, it MUST abort the IP proxying request stream.
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7.2.1. Error Signalling

Since IP proxying endpoints often forward IP packets onwards to

other network interfaces, they need to handle errors in the

forwarding process. For example, forwarding can fail if the endpoint

does not have a route for the destination address, or if it is

configured to reject a destination prefix by policy, or if the MTU

of the outgoing link is lower than the size of the packet to be

forwarded. In such scenarios, IP proxying endpoints SHOULD use ICMP 

[ICMP] [ICMPv6] to signal the forwarding error to its peer by

generating ICMP packets and sending them using HTTP Datagrams.

Endpoints are free to select the most appropriate ICMP errors to

send. Some examples that are relevant for IP proxying include:

For invalid source addresses, send Destination Unreachable

(Section 3.1 of [ICMPv6]) with code 5, "Source address failed

ingress/egress policy".

For unroutable destination addresses, send Destination

Unreachable (Section 3.1 of [ICMPv6]) with a code 0, "No route to

destination", or code 1, "Communication with destination

administratively prohibited".

For packets that cannot fit within the MTU of the outgoing link,

send Packet Too Big (Section 3.2 of [ICMPv6]).

In order to receive these errors, endpoints need to be prepared to

receive ICMP packets. If an endpoint does not send

ROUTE_ADVERTISEMENT capsules, such as a client opening an IP flow

through an IP proxy, it SHOULD process proxied ICMP packets from its

peer in order to receive these errors. Note that ICMP messages can

originate from a source address different from that of the IP

proxying peer, and also from outside the target if scoping is in use

(see Section 4.6).

8. Examples

IP proxying in HTTP enables many different use cases that can

benefit from IP packet proxying and tunnelling. These examples are

provided to help illustrate some of the ways in which IP proxying in

HTTP can be used.

8.1. Remote Access VPN

The following example shows a point-to-network VPN setup, where a

client receives a set of local addresses, and can send to any remote

host through the IP proxy. Such VPN setups can be either full-tunnel

or split-tunnel.
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IP A IP B IP D
IP IP C

Client IP Subnet C ? Proxy IP E

IP ...

Figure 14: VPN Tunnel Setup

In this case, the client does not specify any scope in its request.

The IP proxy assigns the client an IPv4 address (192.0.2.11) and a

full-tunnel route of all IPv4 addresses (0.0.0.0/0). The client can

then send to any IPv4 host using its assigned address as its source

address.

¶

¶



[[ From Client ]]             [[ From IP Proxy ]]

SETTINGS

  H3_DATAGRAM = 1

                              SETTINGS

                                ENABLE_CONNECT_PROTOCOL = 1

                                H3_DATAGRAM = 1

STREAM(44): HEADERS

:method = CONNECT

:protocol = connect-ip

:scheme = https

:path = /vpn

:authority = proxy.example.com

capsule-protocol = ?1

                              STREAM(44): HEADERS

                              :status = 200

                              capsule-protocol = ?1

STREAM(44): DATA

Capsule Type = ADDRESS_REQUEST

(Request ID = 1

 IP Version = 4

 IP Address = 0.0.0.0

 IP Prefix Length = 32)

                              STREAM(44): DATA

                              Capsule Type = ADDRESS_ASSIGN

                              (Request ID = 1

                               IP Version = 4

                               IP Address = 192.0.2.11

                               IP Prefix Length = 32)

                              STREAM(44): DATA

                              Capsule Type = ROUTE_ADVERTISEMENT

                              (IP Version = 4

                               Start IP Address = 0.0.0.0

                               End IP Address = 255.255.255.255

                               IP Protocol = 0) // Any

DATAGRAM

Quarter Stream ID = 11

Context ID = 0

Payload = Encapsulated IP Packet

                              DATAGRAM

                              Quarter Stream ID = 11



                              Context ID = 0

                              Payload = Encapsulated IP Packet



Figure 15: VPN Full-Tunnel Example

A setup for a split-tunnel VPN (the case where the client can only

access a specific set of private subnets) is quite similar. In this

case, the advertised route is restricted to 192.0.2.0/24, rather

than 0.0.0.0/0.

Figure 16: VPN Split-Tunnel Example

8.2. Site-to-Site VPN

The following example shows how to connect a branch office network

to a corporate network such that all machines on those networks can

communicate. In this example, the IP proxying client is attached to

the branch office network 192.0.2.0/24, and the IP proxy is attached

to the corporate network 203.0.113.0/24. There are legacy clients on

the branch office network that only allow maintenance requests from

machines on their subnet, so the IP Proxy is provisioned with an IP

address from that subnet.

192.0.2.1 203.0.113.9
IP

192.0.2.2 Client IP Proxying Proxy 203.0.113.8

192.0.2.3 203.0.113.7

¶

[[ From Client ]]             [[ From IP Proxy ]]

                              STREAM(44): DATA

                              Capsule Type = ADDRESS_ASSIGN

                              (Request ID = 0

                               IP Version = 4

                               IP Address = 192.0.2.42

                               IP Prefix Length = 32)

                              STREAM(44): DATA

                              Capsule Type = ROUTE_ADVERTISEMENT

                              (IP Version = 4

                               Start IP Address = 192.0.2.0

                               End IP Address = 192.0.2.41

                               IP Protocol = 0) // Any

                              (IP Version = 4

                               Start IP Address = 192.0.2.43

                               End IP Address = 192.0.2.255

                               IP Protocol = 0) // Any

¶

¶



Figure 17: Site-to-site VPN Example

In this case, the client does not specify any scope in its request.

The IP proxy assigns the client an IPv4 address (203.0.113.100) and

a split-tunnel route to the corporate network (203.0.113.0/24). The

client assigns the IP proxy an IPv4 address (192.0.2.200) and a

split-tunnel route to the branch office network (192.0.2.0/24). This

allows hosts on both networks to communicate with each other, and

allows the IP proxy to perform maintenance on legacy hosts in the

branch office. Note that IP proxying endpoints will decrement the IP

Hop Count (or TTL) when encapsulating forwarded packets, so

protocols that require that field be set to 255 will not function.¶



[[ From Client ]]             [[ From IP Proxy ]]

SETTINGS

  H3_DATAGRAM = 1

                              SETTINGS

                                ENABLE_CONNECT_PROTOCOL = 1

                                H3_DATAGRAM = 1

STREAM(44): HEADERS

:method = CONNECT

:protocol = connect-ip

:scheme = https

:path = /corp

:authority = proxy.example.com

capsule-protocol = ?1

                              STREAM(44): HEADERS

                              :status = 200

                              capsule-protocol = ?1

STREAM(44): DATA

Capsule Type = ADDRESS_ASSIGN

(Request ID = 0

IP Version = 4

IP Address = 192.0.2.200

IP Prefix Length = 32)

STREAM(44): DATA

Capsule Type = ROUTE_ADVERTISEMENT

(IP Version = 4

Start IP Address = 192.0.2.0

End IP Address = 192.0.2.255

IP Protocol = 0) // Any

                              STREAM(44): DATA

                              Capsule Type = ADDRESS_ASSIGN

                              (Request ID = 0

                               IP Version = 4

                               IP Address = 203.0.113.100

                               IP Prefix Length = 32)

                              STREAM(44): DATA

                              Capsule Type = ROUTE_ADVERTISEMENT

                              (IP Version = 4

                               Start IP Address = 203.0.113.0

                               End IP Address = 203.0.113.255

                               IP Protocol = 0) // Any

DATAGRAM



Quarter Stream ID = 11

Context ID = 0

Payload = Encapsulated IP Packet

                              DATAGRAM

                              Quarter Stream ID = 11

                              Context ID = 0

                              Payload = Encapsulated IP Packet



Figure 18: Site-to-site VPN Capsule Example

8.3. IP Flow Forwarding

The following example shows an IP flow forwarding setup, where a

client requests to establish a forwarding tunnel to

target.example.com using SCTP (IP protocol 132), and receives a

single local address and remote address it can use for transmitting

packets. A similar approach could be used for any other IP protocol

that isn't easily proxied with existing HTTP methods, such as ICMP,

ESP, etc.

IP A IP B
IP IP C

Client IP C D Proxy IP D

Figure 19: Proxied Flow Setup

In this case, the client specfies both a target hostname and an IP

protocol number in the scope of its request, indicating that it only

needs to communicate with a single host. The IP proxy is able to

perform DNS resolution on behalf of the client and allocate a

specific outbound socket for the client instead of allocating an

entire IP address to the client. In this regard, the request is

similar to a regular CONNECT proxy request.

The IP proxy assigns a single IPv6 address to the client

(2001:db8:1234::a) and a route to a single IPv6 host

(2001:db8:3456::b), scoped to SCTP. The client can send and receive

SCTP IP packets to the remote host.
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Figure 20: Proxied SCTP Flow Example

[[ From Client ]]             [[ From IP Proxy ]]

SETTINGS

  H3_DATAGRAM = 1

                              SETTINGS

                                ENABLE_CONNECT_PROTOCOL = 1

                                H3_DATAGRAM = 1

STREAM(44): HEADERS

:method = CONNECT

:protocol = connect-ip

:scheme = https

:path = /proxy?target=target.example.com&ipproto=132

:authority = proxy.example.com

capsule-protocol = ?1

                              STREAM(44): HEADERS

                              :status = 200

                              capsule-protocol = ?1

                              STREAM(44): DATA

                              Capsule Type = ADDRESS_ASSIGN

                              (Request ID = 0

                               IP Version = 6

                               IP Address = 2001:db8:1234::a

                               IP Prefix Length = 128)

                              STREAM(44): DATA

                              Capsule Type = ROUTE_ADVERTISEMENT

                              (IP Version = 6

                               Start IP Address = 2001:db8:3456::b

                               End IP Address = 2001:db8:3456::b

                               IP Protocol = 132)

DATAGRAM

Quarter Stream ID = 11

Context ID = 0

Payload = Encapsulated SCTP/IP Packet

                              DATAGRAM

                              Quarter Stream ID = 11

                              Context ID = 0

                              Payload = Encapsulated SCTP/IP Packet



8.4. Proxied Connection Racing

The following example shows a setup where a client is proxying UDP

packets through an IP proxy in order to control connection

establishment racing through an IP proxy, as defined in Happy

Eyeballs [HEv2]. This example is a variant of the proxied flow, but

highlights how IP-level proxying can enable new capabilities even

for TCP and UDP.

IP A IP B IP C
IP E

Client IP C E IP
D F Proxy

IP F
IP D

Figure 21: Proxied Connection Racing Setup

As with proxied flows, the client specifies both a target hostname

and an IP protocol number in the scope of its request. When the IP

proxy performs DNS resolution on behalf of the client, it can send

the various remote address options to the client as separate routes.

It can also ensure that the client has both IPv4 and IPv6 addresses

assigned.

The IP proxy assigns both an IPv4 address (192.0.2.3) and an IPv6

address (2001:db8:1234::a) to the client, as well as an IPv4 route

(198.51.100.2) and an IPv6 route (2001:db8:3456::b), which represent

the resolved addresses of the target hostname, scoped to UDP. The

client can send and receive UDP IP packets to either one of the IP

proxy addresses to enable Happy Eyeballs through the IP proxy.
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[[ From Client ]]             [[ From IP Proxy ]]

SETTINGS

  H3_DATAGRAM = 1

                              SETTINGS

                                ENABLE_CONNECT_PROTOCOL = 1

                                H3_DATAGRAM = 1

STREAM(44): HEADERS

:method = CONNECT

:protocol = connect-ip

:scheme = https

:path = /proxy?target=target.example.com&ipproto=17

:authority = proxy.example.com

capsule-protocol = ?1

                              STREAM(44): HEADERS

                              :status = 200

                              capsule-protocol = ?1

                              STREAM(44): DATA

                              Capsule Type = ADDRESS_ASSIGN

                              (Request ID = 0

                               IP Version = 4

                               IP Address = 192.0.2.3

                               IP Prefix Length = 32),

                              (Request ID = 0

                               IP Version = 6

                               IP Address = 2001:db8::1234:1234

                               IP Prefix Length = 128)

                              STREAM(44): DATA

                              Capsule Type = ROUTE_ADVERTISEMENT

                              (IP Version = 4

                               Start IP Address = 198.51.100.2

                               End IP Address = 198.51.100.2

                               IP Protocol = 17),

                              (IP Version = 6

                               Start IP Address = 2001:db8:3456::b

                               End IP Address = 2001:db8:3456::b

                               IP Protocol = 17)

...

DATAGRAM

Quarter Stream ID = 11

Context ID = 0

Payload = Encapsulated IPv6 Packet

DATAGRAM



Quarter Stream ID = 11

Context ID = 0

Payload = Encapsulated IPv4 Packet



Figure 22: Proxied Connection Racing Example

9. Extensibility Considerations

Extensions to IP proxying in HTTP can define behavior changes to

this mechanism. Such extensions SHOULD define new capsule types to

exchange configuration information if needed. It is RECOMMENDED for

extensions that modify addressing to specify that their extension

capsules be sent before the ADDRESS_ASSIGN capsule and that they do

not take effect until the ADDRESS_ASSIGN capsule is parsed. This

allows modifications to address assignment to operate atomically.

Similarly, extensions that modify routing SHOULD behave similarly

with regard to the ROUTE_ADVERTISEMENT capsule.

10. Performance Considerations

Bursty traffic can often lead to temporally-correlated packet

losses; in turn, this can lead to suboptimal responses from

congestion controllers in protocols running inside the tunnel. To

avoid this, IP proxying endpoints SHOULD strive to avoid increasing

burstiness of IP traffic; they SHOULD NOT queue packets in order to

increase batching beyond the minimal amount required to take

advantage of hardware offloads.

When the protocol running inside the tunnel uses congestion control

(e.g., [TCP] or [QUIC]), the proxied traffic will incur at least two

nested congestion controllers. When tunneled packets are sent using

QUIC DATAGRAM frames, the outer HTTP connection MAY disable

congestion control for those packets that contain only QUIC DATAGRAM

frames encapsulating IP packets. Implementers will benefit from

reading the guidance in Section 3.1.11 of [UDP-USAGE].

When the protocol running inside the tunnel uses loss recovery

(e.g., [TCP] or [QUIC]), and the outer HTTP connection runs over

TCP, the proxied traffic will incur at least two nested loss

recovery mechanisms. This can reduce performance as both can

sometimes independently retransmit the same data. To avoid this, IP

proxying SHOULD be performed over HTTP/3 to allow leveraging the

QUIC DATAGRAM frame.

10.1. MTU Considerations

When using HTTP/3 with the QUIC Datagram extension [DGRAM], IP

packets are transmitted in QUIC DATAGRAM frames. Since these frames

cannot be fragmented, they can only carry packets up to a given

length determined by the QUIC connection configuration and the Path

MTU (PMTU). If an endpoint is using QUIC DATAGRAM frames and it

attempts to route an IP packet through the tunnel that will not fit

inside a QUIC DATAGRAM frame, the IP proxy SHOULD NOT send the IP

packet in a DATAGRAM capsule, as that defeats the end-to-end
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unreliability characteristic that methods such as Datagram

Packetization Layer PMTU Discovery (DPLPMTUD) depend on [DPLPMTUD].

In this scenario, the endpoint SHOULD drop the IP packet and send an

ICMP Packet Too Big message to the sender of the dropped packet; see

Section 3.2 of [ICMPv6].

10.2. ECN Considerations

If an IP proxying endpoint with a connection containing an IP

Proxying request stream disables congestion control, it cannot

signal Explicit Congestion Notification (ECN) [ECN] support on that

outer connection. That is, the QUIC sender MUST mark all IP headers

with the Not-ECT codepoint for QUIC packets which are outside of

congestion control. The endpoint can still report ECN feedback via

QUIC ACK_ECN frames or the TCP ECE bit, as the peer might not have

disabled congestion control.

Conversely, if congestion control is not disabled on the outer

congestion, the guidance in [ECN-TUNNEL] about transferring ECN

marks between inner and outer IP headers does not apply because the

outer connection will react correctly to congestion notifications if

it uses ECN. The inner traffic can also use ECN, independently of

whether it is in use on the outer connection.

10.3. Differentiated Services Considerations

Tunneled IP packets can have Differentiated Services Code Points

(DSCP) [DSCP] set in the traffic class IP header field to request a

particular per-hop behavior. If an IP proxying endpoint is

configured as part of a Differentiated Services domain, it MAY

implement traffic differentiation based on these markings. However,

the use of HTTP can limit the possibilities for differentiated

treatment of the tunneled IP packets on the path between the IP

proxying endpoints.

If tunneled packets are subject to congestion control by the outer

connection, the tunneled packets need to be treated equally

regardless of their DSCP markings to not disrupt the congestion

controller. In this scenario, the IP proxying endpoint MUST NOT copy

the DSCP field from the inner IP header to the outer IP header of

the packet carrying this packet. Instead, an application would need

to use separate connections to the proxy, one for each DSCP. Note

that this document does not define a way for requests to scope to

particular DSCP values; such support is left to future extensions.

If tunneled packets use QUIC datagrams and are not subject to

congestion control by the outer connection, the IP proxying

endpoints MAY translate the DSCP field value from the tunneled

traffic to the outer IP header. IP proxying endpoints MUST NOT
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coalesce multiple inner packets into the same outer packet unless

they have the same DSCP marking or an equivalent traffic class. Note

that the ability to translate DSCP values is dependent on the tunnel

ingress and egress belonging to the same differentiated service

domain or not.

11. Security Considerations

There are significant risks in allowing arbitrary clients to

establish a tunnel that permits sending to arbitrary hosts,

regardless of whether tunnels are scoped to specific hosts or not.

Bad actors could abuse this capability to send traffic and have it

attributed to the IP proxy. HTTP servers that support IP proxying 

SHOULD restrict its use to authenticated users. Depending on the

deployment, possible authentication mechanisms include mutual TLS

between IP proxying endpoints, HTTP-based authentication via the

HTTP Authorization header [HTTP], or even bearer tokens. Proxies can

enforce policies for authenticated users to further constrain client

behavior or deal with possible abuse. For example, proxies can rate

limit individual clients that send an excessively large amount of

traffic through the proxy. As another example, proxies can restrict

address (prefix) assignment to clients based on certain client

attributes such as geographic location.

Address assignment can have privacy implications for endpoints. For

example, if a proxy partitions its address space by the number of

authenticated clients and then assigns distinct address ranges to

each client, target hosts could use this information to determine

when IP packets correspond to the same client. Avoiding such

tracking vectors may be important for certain proxy deployments.

Proxies SHOULD avoid persistent per-client address (prefix)

assignment when possible.

Falsifying IP source addresses in sent traffic has been common for

denial of service attacks. Implementations of this mechanism need to

ensure that they do not facilitate such attacks. In particular,

there are scenarios where an endpoint knows that its peer is only

allowed to send IP packets from a given prefix. For example, that

can happen through out-of-band configuration information, or when

allowed prefixes are shared via ADDRESS_ASSIGN capsules. In such

scenarios, endpoints MUST follow the recommendations from [BCP38] to

prevent source address spoofing.

Limiting request scope (see Section 4.6) allows two clients to share

one of the proxy's external IP addresses if their requests are

scoped to different IP protocol numbers. If the proxy receives an

ICMP packet destined for that external IP address, it has the option

to forward it back to the clients. However, some of these ICMP

packets carry part of the original IP packet that triggered the ICMP
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Value:

Description:

Expected Version Tokens:

References:

Path Segment:

Description:

Reference:

response. Forwarding such packets can accidentally divulge

information about one client's traffic to another client. To avoid

this, proxies that forward ICMP on shared external IP addresses MUST

inspect the invoking packet included in the ICMP packet and only

forward the ICMP packet to the client whose scoping matches the

invoking packet.

Implementers will benefit from reading the guidance in 

[TUNNEL-SECURITY]. Since there are known risks with some IPv6

extension headers (e.g., [ROUTING-HDR]), implementers need to follow

the latest guidance regarding handling of IPv6 extension headers.

Transferring DSCP markings from inner to outer packets (see 

Section 10.3) exposes end-to-end flow level information to an on-

path observer between the IP proxying endpoints. This can

potentially expose a single end-to-end flow. Because of this, such

use of DSCP in privacy-sensitive contexts is NOT RECOMMENDED.

12. IANA Considerations

12.1. HTTP Upgrade Token

This document will request IANA to register "connect-ip" in the HTTP

Upgrade Token Registry maintained at <https://www.iana.org/

assignments/http-upgrade-tokens>.

connect-ip

Proxying of IP Payloads

None

This document

12.2. Creation of the MASQUE URI Suffixes Registry

This document requests that IANA create a new "MASQUE URI Suffixes"

registry maintained at IANA_URL_TBD. This new registry governs the

path segment that immediately follows "masque" in paths that start

with "/.well-known/masque/", see <https://www.iana.org/assignments/

well-known-uris> for the registration of "masque" in the "Well-Known

URIs" registry. This new registry contains three columns:

An ASCII string containing only characters allowed in

tokens; see Section 5.6.2 of [HTTP]. Entries in this registry 

MUST all have distinct entries in this column.

A description of the entry.

An optional reference defining the use of the entry.

The registration policy for this registry is Expert Review; see 

Section 4.5 of [IANA-POLICY].
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Status:

Reference:

Change Controller:

Contact:

There are initially two entries in this registry:

Path Segment Description Reference

udp UDP Proxying RFC 9298

ip IP Proxying This Document

Table 1: New MASQUE URI Suffixes

Designated experts for this registry are advised that they should

approve all requests as long as the expert believes that both (1)

the requested Path Segment will not conflict with existing or

expected future IETF work and (2) the use case is relevant to

proxying.

12.3. Updates to masque Well-Known URI

This document will request IANA to update the entry for the "masque"

URI suffix in the "Well-Known URIs" registry maintained at <https://

www.iana.org/assignments/well-known-uris>.

IANA is requested to update the "Reference" field to include this

document in addition to previous values from that field.

IANA is requested to replace the "Related Information" field with

"For sub-suffix allocations, see registry at IANA_URL_TBD." where

IANA_URL_TBD is the URL of the new registry described in 

Section 12.2.

12.4. Capsule Type Registrations

This document requests IANA to add the following values to the "HTTP

Capsule Types" registry maintained at <https://www.iana.org/

assignments/http-capsule-protocol>.

Value Capsule Type Description

0x01 ADDRESS_ASSIGN Address Assignment

0x02 ADDRESS_REQUEST Address Request

0x03 ROUTE_ADVERTISEMENT Route Advertisement

Table 2: New Capsules

All of these new entries use the following values for these fields:

provisional (permanent when this document is approved)

This Document

IETF

masque@ietf.org

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.iana.org/assignments/well-known-uris
https://www.iana.org/assignments/well-known-uris
https://www.iana.org/assignments/http-capsule-protocol
https://www.iana.org/assignments/http-capsule-protocol


Notes:

[ABNF]

[BCP38]

[DGRAM]

[DSCP]

[ECN]

Empty

RFC Editor: please remove the rest of this subsection before

publication.

Since this document has not yet been published, it might still

change before publication as RFC. Any implementer that wishes to

deploy IP proxying in production before publication MUST use the

following temporary codepoints instead: 0x2575D601 for

ADDRESS_ASSIGN, 0x2575D602 for ADDRESS_REQUEST, and 0x2575D603 for

ROUTE_ADVERTISEMENT.

13. References

13.1. Normative References

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/rfc/rfc5234>. 

Ferguson, P. and D. Senie, "Network Ingress Filtering:

Defeating Denial of Service Attacks which employ IP

Source Address Spoofing", BCP 38, RFC 2827, DOI 10.17487/

RFC2827, May 2000, <https://www.rfc-editor.org/rfc/

rfc2827>. 

Pauly, T., Kinnear, E., and D. Schinazi, "An Unreliable

Datagram Extension to QUIC", RFC 9221, DOI 10.17487/

RFC9221, March 2022, <https://www.rfc-editor.org/rfc/

rfc9221>. 

Nichols, K., Blake, S., Baker, F., and D. Black, 

"Definition of the Differentiated Services Field (DS

Field) in the IPv4 and IPv6 Headers", RFC 2474, DOI

10.17487/RFC2474, December 1998, <https://www.rfc-

editor.org/rfc/rfc2474>. 

Ramakrishnan, K., Floyd, S., and D. Black, "The Addition

of Explicit Congestion Notification (ECN) to IP", RFC

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc2827
https://www.rfc-editor.org/rfc/rfc2827
https://www.rfc-editor.org/rfc/rfc9221
https://www.rfc-editor.org/rfc/rfc9221
https://www.rfc-editor.org/rfc/rfc2474
https://www.rfc-editor.org/rfc/rfc2474


[EXT-CONNECT2]

[EXT-CONNECT3]

[HTTP]

[HTTP-DGRAM]

[HTTP/1.1]

[HTTP/2]

[HTTP/3]

[IANA-POLICY]

[ICMP]

[ICMPv6]

[IPv6]

3168, DOI 10.17487/RFC3168, September 2001, <https://

www.rfc-editor.org/rfc/rfc3168>. 

McManus, P., "Bootstrapping WebSockets with HTTP/2", 

RFC 8441, DOI 10.17487/RFC8441, September 2018, <https://

www.rfc-editor.org/rfc/rfc8441>. 

Hamilton, R., "Bootstrapping WebSockets with HTTP/3",

RFC 9220, DOI 10.17487/RFC9220, June 2022, <https://

www.rfc-editor.org/rfc/rfc9220>. 

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/

RFC9110, June 2022, <https://www.rfc-editor.org/rfc/

rfc9110>. 

Schinazi, D. and L. Pardue, "HTTP Datagrams and the

Capsule Protocol", RFC 9297, DOI 10.17487/RFC9297, August

2022, <https://www.rfc-editor.org/rfc/rfc9297>. 

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP/1.1", STD 99, RFC 9112, DOI 10.17487/RFC9112, 

June 2022, <https://www.rfc-editor.org/rfc/rfc9112>. 

Thomson, M., Ed. and C. Benfield, Ed., "HTTP/2", RFC

9113, DOI 10.17487/RFC9113, June 2022, <https://www.rfc-

editor.org/rfc/rfc9113>. 

Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/

RFC9114, June 2022, <https://www.rfc-editor.org/rfc/

rfc9114>. 

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26, 

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/rfc/rfc8126>. 

Postel, J., "Internet Control Message Protocol", STD 5, 

RFC 792, DOI 10.17487/RFC0792, September 1981, <https://

www.rfc-editor.org/rfc/rfc792>. 

Conta, A., Deering, S., and M. Gupta, Ed., "Internet

Control Message Protocol (ICMPv6) for the Internet

Protocol Version 6 (IPv6) Specification", STD 89, RFC

4443, DOI 10.17487/RFC4443, March 2006, <https://www.rfc-

editor.org/rfc/rfc4443>. 

Deering, S. and R. Hinden, "Internet Protocol, Version 6

(IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/

https://www.rfc-editor.org/rfc/rfc3168
https://www.rfc-editor.org/rfc/rfc3168
https://www.rfc-editor.org/rfc/rfc8441
https://www.rfc-editor.org/rfc/rfc8441
https://www.rfc-editor.org/rfc/rfc9220
https://www.rfc-editor.org/rfc/rfc9220
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9297
https://www.rfc-editor.org/rfc/rfc9112
https://www.rfc-editor.org/rfc/rfc9113
https://www.rfc-editor.org/rfc/rfc9113
https://www.rfc-editor.org/rfc/rfc9114
https://www.rfc-editor.org/rfc/rfc9114
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc792
https://www.rfc-editor.org/rfc/rfc792
https://www.rfc-editor.org/rfc/rfc4443
https://www.rfc-editor.org/rfc/rfc4443


[PROXY-STATUS]

[QUIC]

[RFC2119]

[RFC6874]

[RFC8174]

[TCP]

[TEMPLATE]

[URI]

[CONNECT-UDP]

[DPLPMTUD]

RFC8200, July 2017, <https://www.rfc-editor.org/rfc/

rfc8200>. 

Nottingham, M. and P. Sikora, "The Proxy-Status HTTP

Response Header Field", RFC 9209, DOI 10.17487/RFC9209, 

June 2022, <https://www.rfc-editor.org/rfc/rfc9209>. 

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>. 

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>. 

Carpenter, B., Cheshire, S., and R. Hinden, "Representing

IPv6 Zone Identifiers in Address Literals and Uniform

Resource Identifiers", RFC 6874, DOI 10.17487/RFC6874, 

February 2013, <https://www.rfc-editor.org/rfc/rfc6874>. 

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>. 

Eddy, W., Ed., "Transmission Control Protocol (TCP)", STD

7, RFC 9293, DOI 10.17487/RFC9293, August 2022, <https://

www.rfc-editor.org/rfc/rfc9293>. 

Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,

and D. Orchard, "URI Template", RFC 6570, DOI 10.17487/

RFC6570, March 2012, <https://www.rfc-editor.org/rfc/

rfc6570>. 

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/rfc/rfc3986>. 

13.2. Informative References

Schinazi, D., "Proxying UDP in HTTP", RFC 9298, DOI

10.17487/RFC9298, August 2022, <https://www.rfc-

editor.org/rfc/rfc9298>. 

Fairhurst, G., Jones, T., Tüxen, M., Rüngeler, I., and T.

Völker, "Packetization Layer Path MTU Discovery for

Datagram Transports", RFC 8899, DOI 10.17487/RFC8899, 

September 2020, <https://www.rfc-editor.org/rfc/rfc8899>.

https://www.rfc-editor.org/rfc/rfc8200
https://www.rfc-editor.org/rfc/rfc8200
https://www.rfc-editor.org/rfc/rfc9209
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc6874
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc9293
https://www.rfc-editor.org/rfc/rfc9293
https://www.rfc-editor.org/rfc/rfc6570
https://www.rfc-editor.org/rfc/rfc6570
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc9298
https://www.rfc-editor.org/rfc/rfc9298
https://www.rfc-editor.org/rfc/rfc8899


[ECN-TUNNEL]

[HEv2]

[IANA-PN]

[IPSEC]

[IPv6-ADDR]

[PROXY-REQS]

[ROUTING-HDR]

[TUNNEL-SECURITY]

[UDP-USAGE]

Briscoe, B., "Tunnelling of Explicit Congestion

Notification", RFC 6040, DOI 10.17487/RFC6040, November

2010, <https://www.rfc-editor.org/rfc/rfc6040>. 

Schinazi, D. and T. Pauly, "Happy Eyeballs Version 2:

Better Connectivity Using Concurrency", RFC 8305, DOI

10.17487/RFC8305, December 2017, <https://www.rfc-

editor.org/rfc/rfc8305>. 

IANA, "Protocol Numbers", <https://www.iana.org/

assignments/protocol-numbers>. 

Kent, S. and K. Seo, "Security Architecture for the

Internet Protocol", RFC 4301, DOI 10.17487/RFC4301, 

December 2005, <https://www.rfc-editor.org/rfc/rfc4301>. 

Hinden, R. and S. Deering, "IP Version 6 Addressing

Architecture", RFC 4291, DOI 10.17487/RFC4291, February

2006, <https://www.rfc-editor.org/rfc/rfc4291>. 

Chernyakhovsky, A., McCall, D., and D. Schinazi, 

"Requirements for a MASQUE Protocol to Proxy IP Traffic",

Work in Progress, Internet-Draft, draft-ietf-masque-ip-

proxy-reqs-03, 27 August 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-masque-ip-proxy-

reqs-03>. 

Abley, J., Savola, P., and G. Neville-Neil, 

"Deprecation of Type 0 Routing Headers in IPv6", RFC

5095, DOI 10.17487/RFC5095, December 2007, <https://

www.rfc-editor.org/rfc/rfc5095>. 

Krishnan, S., Thaler, D., and J. Hoagland, 

"Security Concerns with IP Tunneling", RFC 6169, DOI

10.17487/RFC6169, April 2011, <https://www.rfc-

editor.org/rfc/rfc6169>. 

Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage

Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085, 

March 2017, <https://www.rfc-editor.org/rfc/rfc8085>. 

Acknowledgments

The design of this method was inspired by discussions in the MASQUE

working group around [PROXY-REQS]. The authors would like to thank

participants in those discussions for their feedback. Additionally, 

Mike Bishop, Lucas Pardue, and Alejandro Sedeño provided valuable

feedback on the document.¶

https://www.rfc-editor.org/rfc/rfc6040
https://www.rfc-editor.org/rfc/rfc8305
https://www.rfc-editor.org/rfc/rfc8305
https://www.iana.org/assignments/protocol-numbers
https://www.iana.org/assignments/protocol-numbers
https://www.rfc-editor.org/rfc/rfc4301
https://www.rfc-editor.org/rfc/rfc4291
https://datatracker.ietf.org/doc/html/draft-ietf-masque-ip-proxy-reqs-03
https://datatracker.ietf.org/doc/html/draft-ietf-masque-ip-proxy-reqs-03
https://datatracker.ietf.org/doc/html/draft-ietf-masque-ip-proxy-reqs-03
https://www.rfc-editor.org/rfc/rfc5095
https://www.rfc-editor.org/rfc/rfc5095
https://www.rfc-editor.org/rfc/rfc6169
https://www.rfc-editor.org/rfc/rfc6169
https://www.rfc-editor.org/rfc/rfc8085


Most of the text on client configuration is based on the

corresponding text in [CONNECT-UDP].
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