
Network Working Group D. Schinazi
Internet-Draft Google LLC
Intended status: Standards Track 5 January 2021
Expires: 9 July 2021

 The CONNECT-UDP HTTP Method
 draft-ietf-masque-connect-udp-03

Abstract

 This document describes the CONNECT-UDP HTTP method. CONNECT-UDP is
 similar to the HTTP CONNECT method, but it uses UDP instead of TCP.

 Discussion of this work is encouraged to happen on the MASQUE IETF
 mailing list masque@ietf.org or on the GitHub repository which
 contains the draft: https://github.com/ietf-wg-masque/draft-ietf-
 masque-connect-udp.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Source for this draft and an issue tracker can be found at
 https://github.com/ietf-wg-masque/draft-ietf-masque-connect-udp.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 9 July 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

https://github.com/ietf-wg-masque/draft-ietf-masque-connect-udp
https://github.com/ietf-wg-masque/draft-ietf-masque-connect-udp
https://github.com/ietf-wg-masque/draft-ietf-masque-connect-udp
https://datatracker.ietf.org/doc/pdf/bcp78
https://datatracker.ietf.org/doc/pdf/bcp79
https://datatracker.ietf.org/drafts/current/

Schinazi Expires 9 July 2021 [Page 1]

Internet-Draft CONNECT-UDP January 2021

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Conventions and Definitions 2
 2. Supported HTTP Versions 3
 3. The CONNECT-UDP Method 3
 4. Datagram Encoding of Proxied UDP Packets 4
 5. Stream Chunks . 6
 6. Stream Encoding of Proxied UDP Packets 6
 7. Proxy Handling . 7
 8. HTTP Intermediaries . 7
 9. Performance Considerations 8
 10. Security Considerations 8
 11. IANA Considerations . 8
 11.1. HTTP Method . 9
 11.2. URI Scheme Registration 9
 11.3. Stream Chunk Type Registration 9
 12. Normative References . 10
 Acknowledgments . 11
 Author's Address . 11

1. Introduction

 This document describes the CONNECT-UDP HTTP method. CONNECT-UDP is
 similar to the HTTP CONNECT method (see section 4.3.6 of [RFC7231]),
 but it uses UDP [UDP] instead of TCP [TCP].

 Discussion of this work is encouraged to happen on the MASQUE IETF
 mailing list masque@ietf.org or on the GitHub repository which
 contains the draft: https://github.com/ietf-wg-masque/draft-ietf-
 masque-connect-udp.

1.1. Conventions and Definitions

https://datatracker.ietf.org/doc/pdf/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/pdf/rfc7231#section-4.3.6
https://github.com/ietf-wg-masque/draft-ietf-masque-connect-udp
https://github.com/ietf-wg-masque/draft-ietf-masque-connect-udp

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Schinazi Expires 9 July 2021 [Page 2]

Internet-Draft CONNECT-UDP January 2021

 In this document, we use the term "proxy" to refer to the HTTP server
 that opens the UDP socket and responds to the CONNECT-UDP request.
 If there are HTTP intermediaries (as defined in Section 2.3 of
 [RFC7230]) between the client and the proxy, those are referred to as
 "intermediaries" in this document.

2. Supported HTTP Versions

 The CONNECT-UDP method is defined for all versions of HTTP. When the
 HTTP version used runs over QUIC [QUIC], UDP payloads can be sent
 over QUIC DATAGRAM frames [DGRAM]. Otherwise they are sent on the
 stream where the CONNECT-UDP request was made. Note that, when the
 HTTP version in use does not support multiplexing streams (such as
 HTTP/1.1), then any reference to "stream" in this document is meant
 to represent the entire connection.

3. The CONNECT-UDP Method

 The CONNECT-UDP method requests that the recipient establish a tunnel
 over a single HTTP stream to the destination origin server identified
 by the request-target and, if successful, thereafter restrict its
 behavior to blind forwarding of packets, in both directions, until
 the tunnel is closed. Tunnels are commonly used to create an end-to-
 end virtual connection, which can then be secured using QUIC or
 another protocol running over UDP.

 The request-target of a CONNECT-UDP request is a URI [RFC3986] which
 uses the "masque" scheme and an immutable path of "/". For example:

 CONNECT-UDP masque://target.example.com:443/ HTTP/1.1
 Host: target.example.com:443

 When using HTTP/2 [H2] or later, CONNECT-UDP requests use HTTP
 pseudo-headers with the following requirements:

 * The ":method" pseudo-header field is set to "CONNECT-UDP".

https://datatracker.ietf.org/doc/pdf/bcp14
https://datatracker.ietf.org/doc/pdf/bcp14
https://datatracker.ietf.org/doc/pdf/rfc2119
https://datatracker.ietf.org/doc/pdf/rfc8174
https://datatracker.ietf.org/doc/pdf/rfc7230#section-2.3
https://datatracker.ietf.org/doc/pdf/rfc7230#section-2.3
https://datatracker.ietf.org/doc/pdf/rfc3986

 * The ":scheme" pseudo-header field is set to "masque".

 * The ":path" pseudo-header field is set to "/".

 * The ":authority" pseudo-header field contains the host and port to
 connect to (similar to the authority-form of the request-target of
 CONNECT requests; see [RFC7230], Section 5.3).

 A CONNECT-UDP request that does not conform to these restrictions is
 malformed (see [H2], Section 8.1.2.6).

Schinazi Expires 9 July 2021 [Page 3]

Internet-Draft CONNECT-UDP January 2021

 The recipient proxy establishes a tunnel by directly opening a UDP
 socket to the request-target. Any 2xx (Successful) response
 indicates that the proxy has opened a socket to the request-target
 and is willing to proxy UDP payloads. Any response other than a
 successful response indicates that the tunnel has not yet been
 formed.

 A proxy MUST NOT send any Transfer-Encoding or Content-Length header
 fields in a 2xx (Successful) response to CONNECT-UDP. A client MUST
 treat a response to CONNECT-UDP containing any Content-Length or
 Transfer-Encoding header fields as malformed.

 A payload within a CONNECT-UDP request message has no defined
 semantics; a CONNECT-UDP request with a non-empty payload is
 malformed. Note that the CONNECT-UDP stream is used to convey UDP
 packets, but they are not semantically part of the request or
 response themselves.

 Responses to the CONNECT-UDP method are not cacheable.

4. Datagram Encoding of Proxied UDP Packets

 When the HTTP connection supports HTTP/3 datagrams [H3DGRAM], UDP
 packets can be encoded using QUIC DATAGRAM frames. This support is
 ascertained by checking the received value of the H3_DATAGRAM
 SETTINGS Parameter.

 If the client has both sent and received the H3_DATAGRAM SETTINGS
 Parameter with value 1 on this connection, it SHOULD attempt to use

https://datatracker.ietf.org/doc/pdf/rfc7230#section-5.3

 HTTP/3 datagrams. This is accomplished by requesting a datagram flow
 identifier from the flow identifier allocation service [H3DGRAM].
 That service generates an even flow identifier, and the client sends
 it to the proxy by using the unnamed element in a "Datagram-Flow-Id"
 header; see [H3DGRAM]. A CONNECT-UDP request with an odd flow
 identifier is malformed.

Schinazi Expires 9 July 2021 [Page 4]

Internet-Draft CONNECT-UDP January 2021

 The proxy that is creating the UDP socket to the destination responds
 to the CONNECT-UDP request with a 2xx (Successful) response, and
 indicates it supports datagram encoding by sending a "Datagram-Flow-
 Id" header with the same unnamed element from the "Datagram-Flow-Id"
 header it received. Once the client has received the "Datagram-Flow-
 Id" header on the successful response, it knows that it can use the
 HTTP/3 datagram encoding to send proxied UDP packets for this
 particular request. It then encodes the payload of UDP datagrams
 into the payload of HTTP/3 datagrams. If the CONNECT-UDP response
 does not carry the "Datagram-Flow-Id" header, then the datagram
 encoding is not available for this request. A CONNECT-UDP response
 that carries the "Datagram-Flow-Id" header but with a different
 unnamed flow identifier than the one sent on the request is
 malformed.

 When the proxy processes a new CONNECT-UDP request, it MUST ensure
 that the unnamed datagram flow identifier is not equal to flow
 identifiers from other requests: if it is, the proxy MUST reject the
 request with a 4xx (Client Error) status code. Extensions MAY weaken
 or remove this requirement.

 Clients MAY optimistically start sending proxied UDP packets before

 receiving the response to its CONNECT-UDP request, noting however
 that those may not be processed by the proxy if it responds to the
 CONNECT-UDP request with a failure or without echoing the "Datagram-
 Flow-Id" header, or if the datagrams arrive before the CONNECT-UDP
 request.

 Note that a proxy can send the H3_DATAGRAM SETTINGS Parameter with a
 value of 1 while disabling datagrams on a particular request by not
 echoing the "Datagram-Flow-Id" header. If the proxy does this, it
 MUST NOT treat receipt of datagrams as an error, because the client
 could have sent them optimistically before receiving the response.
 In this scenario, the proxy MUST discard those datagrams.

 Extensions to CONNECT-UDP MAY leverage named elements or parameters
 in the "Datagram-Flow-Id" header (named elements are defined in
 [H3DGRAM] and parameters are defined in Section 3.1.2 of
 [STRUCT-HDR]). Proxies MUST NOT echo named elements or parameters on
 the "Datagram-Flow-Id" header if they do not understand their
 semantics.

Schinazi Expires 9 July 2021 [Page 5]

Internet-Draft CONNECT-UDP January 2021

5. Stream Chunks

 The bidirectional stream that the CONNECT-UDP request was sent on is
 a sequence of CONNECT-UDP Stream Chunks, which are defined as a
 sequence of type-length-value tuples using the following format
 (using the notation from the "Notational Conventions" section of
 [QUIC]):

 CONNECT-UDP Stream {
 CONNECT-UDP Stream Chunk (..) ...,
 }

 Figure 1: CONNECT-UDP Stream Format

 CONNECT-UDP Stream Chunk {

 CONNECT-UDP Stream Chunk Type (i),
 CONNECT-UDP Stream Chunk Length (i),
 CONNECT-UDP Stream Chunk Value (..),
 }

 Figure 2: CONNECT-UDP Stream Chunk Format

 CONNECT-UDP Stream Chunk Type: A variable-length integer indicating
 the Type of the CONNECT-UDP Stream Chunk. Endpoints that receive
 a chunk with an unknown CONNECT-UDP Stream Chunk Type MUST
 silently skip over that chunk.

 CONNECT-UDP Stream Chunk Length: The length of the CONNECT-UDP
 Stream Chunk Value field following this field. Note that this
 field can have a value of zero.

 CONNECT-UDP Stream Chunk Value: The payload of this chunk. Its
 semantics are determined by the value of the CONNECT-UDP Stream
 Chunk Type field.

6. Stream Encoding of Proxied UDP Packets

 CONNECT-UDP Stream Chunks can be used to convey UDP payloads, by
 using a CONNECT-UDP Stream Chunk Type of UDP_PACKET (value 0x00).
 The payload of UDP packets is encoded in its unmodified entirety in
 the CONNECT-UDP Stream Chunk Value field. This is necessary when the
 version of HTTP in use does not support QUIC DATAGRAM frames, but MAY
 also be used when datagrams are supported. Note that empty UDP
 payloads are allowed.

Schinazi Expires 9 July 2021 [Page 6]

Internet-Draft CONNECT-UDP January 2021

7. Proxy Handling

 Unlike TCP, UDP is connection-less. The proxy that opens the UDP
 socket has no way of knowing whether the destination is reachable.
 Therefore it needs to respond to the CONNECT-UDP request without
 waiting for a TCP SYN-ACK.

 Proxies can use connected UDP sockets if their operating system

 supports them, as that allows the proxy to rely on the kernel to only
 send it UDP packets that match the correct 5-tuple. If the proxy
 uses a non-connected socket, it MUST validate the IP source address
 and UDP source port on received packets to ensure they match the
 client's CONNECT-UDP request. Packets that do not match MUST be
 discarded by the proxy.

 The lifetime of the socket is tied to the CONNECT-UDP stream. The
 proxy MUST keep the socket open while the CONNECT-UDP stream is open.
 Proxies MAY choose to close sockets due to a period of inactivity,
 but they MUST close the CONNECT-UDP stream before closing the socket.

8. HTTP Intermediaries

 HTTP/3 DATAGRAM flow identifiers are specific to a given HTTP/3
 connection. However, in some cases, an HTTP request may travel
 across multiple HTTP connections if there are HTTP intermediaries
 involved; see Section 2.3 of [RFC7230].

 Intermediaries that support both CONNECT-UDP and HTTP/3 datagrams
 MUST negotiate flow identifiers separately on the client-facing and
 server-facing connections. This is accomplished by having the
 intermediary parse the unnamed element of the "Datagram-Flow-Id"
 header on all CONNECT-UDP requests it receives, and sending the same
 unnamed element in the "Datagram-Flow-Id" header on the response.
 The intermediary then ascertains whether it can use datagrams on the
 server-facing connection. If they are supported (as indicated by the
 H3_DATAGRAM SETTINGS parameter), the intermediary uses its own flow
 identifier allocation service to allocate a flow identifier for the
 server-facing connection, and waits for the server's reply to see if
 the server sent the "Datagram-Flow-Id" header on the response. The
 intermediary then translates datagrams between the two connections by
 using the flow identifier specific to that connection. An
 intermediary MAY also choose to use datagrams on only one of the two
 connections, and translate between datagrams and streams.

Schinazi Expires 9 July 2021 [Page 7]

Internet-Draft CONNECT-UDP January 2021

 Intermediaries MUST NOT echo nor forward named elements or parameters

https://datatracker.ietf.org/doc/pdf/rfc7230#section-2.3

 on the "Datagram-Flow-Id" header if they do not understand their
 semantics. Extensions to CONNECT-UDP that leverage named elements or
 parameters in the "Datagram-Flow-Id" header MUST specify how they are
 handled by intermediaries.

9. Performance Considerations

 Proxies SHOULD strive to avoid increasing burstiness of UDP traffic:
 they SHOULD NOT queue packets in order to increase batching.

 When the protocol running over UDP that is being proxied uses
 congestion control (e.g., [QUIC]), the proxied traffic will incur at
 least two nested congestion controllers. This can reduce performance
 but the underlying HTTP connection MUST NOT disable congestion
 control unless it has an out-of-band way of knowing with absolute
 certainty that the inner traffic is congestion-controlled.

 When the protocol running over UDP that is being proxied uses loss
 recovery (e.g., [QUIC]), and the underlying HTTP connection runs over
 TCP, the proxied traffic will incur at least two nested loss recovery
 mechanisms. This can reduce performance as both can sometimes
 independently retransmit the same data. To avoid this, HTTP/3
 datagrams SHOULD be used.

10. Security Considerations

 There are significant risks in allowing arbitrary clients to
 establish a tunnel to arbitrary servers, as that could allow bad
 actors to send traffic and have it attributed to the proxy. Proxies
 that support CONNECT-UDP SHOULD restrict its use to authenticated
 users.

 Because the CONNECT method creates a TCP connection to the target,
 the target has to indicate its willingness to accept TCP connections
 by responding with a TCP SYN-ACK before the proxy can send it
 application data. UDP doesn't have this property, so a CONNECT-UDP
 proxy could send more data to an unwilling target than a CONNECT
 proxy. However, in practice denial of service attacks target open
 TCP ports so the TCP SYN-ACK does not offer much protection in real
 scenarios. Proxies MUST NOT introspect the contents of UDP payloads
 as that would lead to ossification of UDP-based protocols by proxies.

11. IANA Considerations

Schinazi Expires 9 July 2021 [Page 8]

Internet-Draft CONNECT-UDP January 2021

11.1. HTTP Method

 This document will request IANA to register "CONNECT-UDP" in the HTTP
 Method Registry (IETF review) maintained at
 <https://www.iana.org/assignments/http-methods>.

 +-------------+------+------------+---------------+
 | Method Name | Safe | Idempotent | Reference |
 +-------------+------+------------+---------------+
 | CONNECT-UDP | no | no | This document |
 +-------------+------+------------+---------------+

11.2. URI Scheme Registration

 This document will request IANA to register the URI scheme "masque".

 The syntax definition below uses Augmented Backus-Naur Form (ABNF)
 [RFC5234]. The definitions of "host" and "port" are adopted from
 [RFC3986]. The syntax of a MASQUE URI is:

 masque-URI = "masque:" "//" host ":" port "/"

 The "host" and "port" component MUST NOT be empty, and the "port"
 component MUST NOT be 0.

11.3. Stream Chunk Type Registration

 This document will request IANA to create a "CONNECT-UDP Stream Chunk
 Type" registry. This registry governs a 62-bit space, and follows
 the registration policy for QUIC registries as defined in [QUIC]. In
 addition to the fields required by the QUIC policy, registrations in
 this registry MUST include the following fields:

 Type: A short mnemonic for the type.

 Description: A brief description of the type semantics, which MAY be
 a summary if a specification reference is provided.

 The initial contents of this registry are:

 +-------+------------+-----------------------+---------------+
 | Value | Type | Description | Reference |
 +-------+------------+-----------------------+---------------+
 | 0x00 | UDP_PACKET | Payload of UDP packet | This document |
 +-------+------------+-----------------------+---------------+

https://www.iana.org/assignments/http-methods
https://datatracker.ietf.org/doc/pdf/rfc5234
https://datatracker.ietf.org/doc/pdf/rfc3986

Schinazi Expires 9 July 2021 [Page 9]

Internet-Draft CONNECT-UDP January 2021

 Each value of the format "37 * N + 23" for integer values of N (that
 is, 23, 60, 97, ...) are reserved; these values MUST NOT be assigned
 by IANA and MUST NOT appear in the listing of assigned values.

12. Normative References

 [DGRAM] Pauly, T., Kinnear, E., and D. Schinazi, "An Unreliable
 Datagram Extension to QUIC", Work in Progress, Internet-
 Draft, draft-ietf-quic-datagram-01, 24 August 2020,
 <http://www.ietf.org/internet-drafts/draft-ietf-quic-
 datagram-01.txt>.

 [H2] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [H3DGRAM] Schinazi, D. and L. Pardue, "Using QUIC Datagrams with
 HTTP/3", Work in Progress, Internet-Draft, draft-schinazi-
 masque-h3-datagram-02, 14 December 2020,
 <http://www.ietf.org/internet-drafts/draft-schinazi-
 masque-h3-datagram-02.txt>.

 [QUIC] Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", Work in Progress, Internet-Draft,
 draft-ietf-quic-transport-33, 13 December 2020,
 <http://www.ietf.org/internet-drafts/draft-ietf-quic-
 transport-33.txt>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

https://datatracker.ietf.org/doc/pdf/draft-ietf-quic-datagram-01
http://www.ietf.org/internet-drafts/draft-ietf-quic-datagram-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-datagram-01.txt
https://datatracker.ietf.org/doc/pdf/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/pdf/draft-schinazi-masque-h3-datagram-02
https://datatracker.ietf.org/doc/pdf/draft-schinazi-masque-h3-datagram-02
http://www.ietf.org/internet-drafts/draft-schinazi-masque-h3-datagram-02.txt
http://www.ietf.org/internet-drafts/draft-schinazi-masque-h3-datagram-02.txt
https://datatracker.ietf.org/doc/pdf/draft-ietf-quic-transport-33
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-33.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-33.txt
https://datatracker.ietf.org/doc/pdf/bcp14
https://datatracker.ietf.org/doc/pdf/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/pdf/rfc3986
https://www.rfc-editor.org/info/rfc3986

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

Schinazi Expires 9 July 2021 [Page 10]

Internet-Draft CONNECT-UDP January 2021

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [STRUCT-HDR]
 Nottingham, M. and P. Kamp, "Structured Field Values for
 HTTP", Work in Progress, Internet-Draft, draft-ietf-
 httpbis-header-structure-19, 3 June 2020,
 <http://www.ietf.org/internet-drafts/draft-ietf-httpbis-
 header-structure-19.txt>.

 [TCP] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

 [UDP] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

Acknowledgments

 This document is a product of the MASQUE Working Group, and the
 author thanks all MASQUE enthusiasts for their contibutions. This
 proposal was inspired directly or indirectly by prior work from many
 people. In particular, the author would like to thank Eric Rescorla
 for suggesting to use an HTTP method to proxy UDP. Thanks to Lucas
 Pardue for their inputs on this document.

https://datatracker.ietf.org/doc/pdf/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/pdf/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/pdf/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/pdf/rfc2119
https://datatracker.ietf.org/doc/pdf/rfc2119
https://datatracker.ietf.org/doc/pdf/bcp14
https://datatracker.ietf.org/doc/pdf/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/pdf/draft-ietf-httpbis-header-structure-19
https://datatracker.ietf.org/doc/pdf/draft-ietf-httpbis-header-structure-19
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-header-structure-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-header-structure-19.txt
https://datatracker.ietf.org/doc/pdf/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/pdf/rfc768
https://www.rfc-editor.org/info/rfc768

Author's Address

 David Schinazi
 Google LLC
 1600 Amphitheatre Parkway
 Mountain View, California 94043,
 United States of America

 Email: dschinazi.ietf@gmail.com

Schinazi Expires 9 July 2021 [Page 11]

