
Workgroup: MASQUE

Internet-Draft:

draft-ietf-masque-connect-udp-05

Published: 7 October 2021

Intended Status: Standards Track

Expires: 10 April 2022

Authors: D. Schinazi

Google LLC

UDP Proxying Support for HTTP

Abstract

This document describes how to proxy UDP over HTTP. Similar to how

the CONNECT method allows proxying TCP over HTTP, this document

defines a new mechanism to proxy UDP. It is built using HTTP

Extended CONNECT.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the MASQUE WG mailing

list (masque@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/masque/.

Source for this draft and an issue tracker can be found at https://

github.com/ietf-wg-masque/draft-ietf-masque-connect-udp.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 April 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/masque/
https://mailarchive.ietf.org/arch/browse/masque/
https://github.com/ietf-wg-masque/draft-ietf-masque-connect-udp
https://github.com/ietf-wg-masque/draft-ietf-masque-connect-udp
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Conventions and Definitions

2. Configuration of Clients

3. HTTP Exchanges

3.1. Proxy Handling

3.2. HTTP Request over HTTP/1.1

3.3. HTTP Response over HTTP/1.1

3.4. HTTP Request over HTTP/2 and HTTP/3

3.5. HTTP Response over HTTP/2 and HTTP/3

3.6. Note About Draft Versions

4. Encoding of Proxied UDP Packets

5. Performance Considerations

5.1. MTU Considerations

5.2. Tunneling of ECN Marks

6. Security Considerations

7. IANA Considerations

7.1. HTTP Upgrade Token

7.2. Datagram Format Type

8. References

8.1. Normative References

8.2. Informative References

Acknowledgments

Author's Address

1. Introduction

This document describes how to proxy UDP over HTTP. Similar to how

the CONNECT method (see Section 9.3.6 of [SEMANTICS]) allows

proxying TCP [TCP] over HTTP, this document defines a new mechanism

to proxy UDP [UDP].

UDP Proxying supports all versions of HTTP and uses HTTP Datagrams

[HTTP-DGRAM]. When using HTTP/2 or HTTP/3, UDP proxying uses HTTP

Extended CONNECT as described in [EXT-CONNECT2] and [EXT-CONNECT3].

When using HTTP/1.x, UDP proxying uses HTTP Upgrade as defined in

Section 7.8 of [SEMANTICS].

¶

¶

¶

https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-9.3.6
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-7.8

1.1. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

In this document, we use the term "proxy" to refer to the HTTP

server that opens the UDP socket and responds to the UDP proxying

request. If there are HTTP intermediaries (as defined in Section 3.7

of [SEMANTICS]) between the client and the proxy, those are referred

to as "intermediaries" in this document.

Note that, when the HTTP version in use does not support

multiplexing streams (such as HTTP/1.1), any reference to "stream"

in this document represents the entire connection.

2. Configuration of Clients

Clients are configured to use UDP Proxying over HTTP via an URI

Template [TEMPLATE]. The URI template MUST contain exactly two

variables: "target_host" and "target_port". Examples are shown

below:

Figure 1: URI Template Examples

Since the original HTTP CONNECT method allowed conveying the target

host and port but not the scheme, proxy authority, path, nor query,

there exist proxy configuration interfaces that only allow the user

to configure the proxy host and the proxy port. Client

implementations of this specification that are constrained by such

limitations MUST use the default template which is defined as:

"https://$PROXY_HOST:$PROXY_PORT/{target_host}/{target_port}/" where

$PROXY_HOST and $PROXY_PORT are the configured host and port of the

proxy respectively. Proxy deployments SHOULD use the default

template to facilitate interoperability with such clients.

3. HTTP Exchanges

This document defines the "connect-udp" HTTP Upgrade Token.

"connect-udp" uses the Capsule Protocol as defined in [HTTP-DGRAM].

A "connect-udp" request requests that the recipient establish a

tunnel over a single HTTP stream to the destination target server

¶

¶

¶

¶

https://masque.example.org/{target_host}/{target_port}/

https://proxy.example.org:4443/masque?h={target_host}&p={target_port}

https://proxy.example.org:4443/masque{?target_host,target_port}

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-3.7

identified by the "target_host" and "target_port" variables of the

URI template (see Section 2). If the request is successful, the

proxy commits to converting received HTTP Datagrams into UDP packets

and vice versa until the tunnel is closed. Tunnels are commonly used

to create an end-to-end virtual connection, which can then be

secured using QUIC [QUIC] or another protocol running over UDP.

When sending its UDP proxying request, the client SHALL perform URI

template expansion to determine the path and query of its request.

target_host supports using DNS names, IPv6 literals and IPv4

literals. Note that this URI template expansion requires using pct-

encoding, so for example if the target_host is "2001:db8::42", it

will be encoded in the URI as "2001%3Adb8%3A%3A42".

A payload within a UDP proxying request message has no defined

semantics; a UDP proxying request with a non-empty payload is

malformed.

Responses to UDP proxying requests are not cacheable.

3.1. Proxy Handling

Upon receiving a UDP proxying request, the recipient proxy extracts

the "target_host" and "target_port" variables from the URI it has

reconstructed from the request headers, and establishes a tunnel by

directly opening a UDP socket to the requested target.

Unlike TCP, UDP is connection-less. The proxy that opens the UDP

socket has no way of knowing whether the destination is reachable.

Therefore it needs to respond to the request without waiting for a

packet from the target. However, if the target_host is a DNS name,

the proxy MUST perform DNS resolution before replying to the HTTP

request. If DNS resolution fails, the proxy MUST fail the request

and SHOULD send details using the Proxy-Status header [PROXY-

STATUS].

Proxies can use connected UDP sockets if their operating system

supports them, as that allows the proxy to rely on the kernel to

only send it UDP packets that match the correct 5-tuple. If the

proxy uses a non-connected socket, it MUST validate the IP source

address and UDP source port on received packets to ensure they match

the client's request. Packets that do not match MUST be discarded by

the proxy.

The lifetime of the socket is tied to the request stream. The proxy

MUST keep the socket open while the request stream is open. If a

proxy is notified by its operating system that its socket is no

longer usable, it MUST close the request stream. Proxies MAY choose

to close sockets due to a period of inactivity, but they MUST close

the request stream before closing the socket. Proxies that close

¶

¶

¶

¶

¶

¶

¶

sockets after a period of inactivity SHOULD NOT use a period lower

than two minutes, see Section 4.3 of [BEHAVE].

A successful response (as defined in Section 3.3 and Section 3.5)

indicates that the proxy has opened a socket to the requested target

and is willing to proxy UDP payloads. Any response other than a

successful response indicates that the request has failed, and the

client MUST therefore abort the request.

3.2. HTTP Request over HTTP/1.1

When using HTTP/1.1, a UDP proxying request will meet the following

requirements:

the method SHALL be "CONNECT".

the request-target SHALL use absolute-form (see Section 3.2.2 of

[MESSAGING]).

the request SHALL include a single Host header containing the

origin of the proxy.

the request SHALL include a single "Connection" header with value

"Upgrade".

the request SHALL include a single "Upgrade" header with value

"connect-udp".

For example, if the client is configured with URI template "https://

proxy.example.org/{target_host}/{target_port}/" and wishes to open a

UDP proxying tunnel to target 192.0.2.42:443, it could send the

following request:

Figure 2: Example HTTP Request over HTTP/1.1

3.3. HTTP Response over HTTP/1.1

The proxy SHALL indicate a successful response by replying with the

following requirements:

the HTTP status code on the response SHALL be 101 (Switching

Protocols).

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

*

¶

¶

CONNECT https://proxy.example.org/192.0.2.42/443/ HTTP/1.1

Host: proxy.example.org

Connection: upgrade

Upgrade: connect-udp

¶

*

¶

https://rfc-editor.org/rfc/rfc4787#section-4.3
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-messaging-19#section-3.2.2

the reponse SHALL include a single "Connection" header with value

"Upgrade".

the response SHALL include a single "Upgrade" header with value

"connect-udp".

the response SHALL NOT include any Transfer-Encoding or Content-

Length header fields.

If any of these requirements are not met, the client MUST treat this

proxying attempt as failed and abort the connection.

For example, the proxy could respond with:

Figure 3: Example HTTP Response over HTTP/1.1

3.4. HTTP Request over HTTP/2 and HTTP/3

When using HTTP/2 [H2] or HTTP/3 [H3], UDP proxying requests use

HTTP pseudo-headers with the following requirements:

The ":method" pseudo-header field SHALL be "CONNECT".

The ":protocol" pseudo-header field SHALL be "connect-udp".

The ":authority" pseudo-header field SHALL contain the authority

of the proxy.

The ":path" and ":scheme" pseudo-header fields SHALL NOT be

empty. Their values SHALL contain the scheme and path from the

URI template after the URI template expansion process has been

completed.

A UDP proxying request that does not conform to these restrictions

is malformed (see Section 8.1.2.6 of [H2]).

For example, if the client is configured with URI template "https://

proxy.example.org/{target_host}/{target_port}/" and wishes to open a

UDP proxying tunnel to target 192.0.2.42:443, it could send the

following request:

*

¶

*

¶

*

¶

¶

¶

HTTP/1.1 101 Switching Protocols

Connection: upgrade

Upgrade: connect-udp

¶

* ¶

* ¶

*

¶

*

¶

¶

¶

https://rfc-editor.org/rfc/rfc7540#section-8.1.2.6

Figure 4: Example HTTP Request over HTTP/2

3.5. HTTP Response over HTTP/2 and HTTP/3

The proxy SHALL indicate a successful response by replying with any

2xx (Successful) HTTP status code, without any Transfer-Encoding or

Content-Length header fields.

If any of these requirements are not met, the client MUST treat this

proxying attempt as failed and abort the request.

For example, the proxy could respond with:

Figure 5: Example HTTP Response over HTTP/2

3.6. Note About Draft Versions

[[RFC editor: please remove this section before publication.]]

In order to allow implementations to support multiple draft versions

of this specification during its development, we introduce the

"connect-udp-version" header. When sent by the client, it contains a

list of draft numbers supported by the client (e.g., "connect-udp-

version: 0, 2"). When sent by the proxy, it contains a single draft

number selected by the proxy from the list provided by the client

(e.g., "connect-udp-version: 2"). Sending this header is RECOMMENDED

but not required.

4. Encoding of Proxied UDP Packets

UDP packets are encoded using HTTP Datagrams [HTTP-DGRAM] with the

UDP_PAYLOAD HTTP Datagram Format Type (see value in Section 7.2).

When using the UDP_PAYLOAD HTTP Datagram Format Type, the payload of

a UDP packet (referred to as "data octets" in [UDP]) is sent

unmodified in the "HTTP Datagram Payload" field of an HTTP Datagram.

In order to use HTTP Datagrams, the client will first decide whether

or not to use HTTP Datagram Contexts and then register its context

HEADERS

:method = CONNECT

:protocol = connect-udp

:scheme = https

:path = /192.0.2.42/443/

:authority = proxy.example.org

¶

¶

¶

HEADERS

:status = 200

¶

¶

¶

ID (or lack thereof) using the corresponding registration capsule,

see [HTTP-DGRAM].

When sending a REGISTER_DATAGRAM_CONTEXT or

REGISTER_DATAGRAM_NO_CONTEXT capsule using the "Datagram Format

Type" set to UDP_PAYLOAD, the "Datagram Format Additional Data"

field SHALL be empty. Servers MUST NOT register contexts using the

UDP_PAYLOAD HTTP Datagram Format Type. Clients MUST NOT register

more than one context using the UDP_PAYLOAD HTTP Datagram Format

Type. Endpoints MUST NOT close contexts using the UDP_PAYLOAD HTTP

Datagram Format Type. If an endpoint detects a violation of any of

these requirements, it MUST abort the stream.

Clients MAY optimistically start sending proxied UDP packets before

receiving the response to its UDP proxying request, noting however

that those may not be processed by the proxy if it responds to the

request with a failure, or if the datagrams are received by the

proxy before the request.

Extensions to this mechanism MAY define new HTTP Datagram Format

Types in order to use different semantics or encodings for UDP

payloads.

5. Performance Considerations

Proxies SHOULD strive to avoid increasing burstiness of UDP traffic:

they SHOULD NOT queue packets in order to increase batching.

When the protocol running over UDP that is being proxied uses

congestion control (e.g., [QUIC]), the proxied traffic will incur at

least two nested congestion controllers. This can reduce performance

but the underlying HTTP connection MUST NOT disable congestion

control unless it has an out-of-band way of knowing with absolute

certainty that the inner traffic is congestion-controlled.

If a client or proxy with a connection containing a UDP proxying

request stream disables congestion control, it MUST NOT signal ECN

support on that connection. That is, it MUST mark all IP headers

with the Not-ECT codepoint. It MAY continue to report ECN feedback

via ACK_ECN frames, as the peer may not have disabled congestion

control.

When the protocol running over UDP that is being proxied uses loss

recovery (e.g., [QUIC]), and the underlying HTTP connection runs

over TCP, the proxied traffic will incur at least two nested loss

recovery mechanisms. This can reduce performance as both can

sometimes independently retransmit the same data. To avoid this,

HTTP/3 datagrams SHOULD be used.

¶

¶

¶

¶

¶

¶

¶

¶

5.1. MTU Considerations

When using HTTP/3 with the QUIC Datagram extension [DGRAM], UDP

payloads are transmitted in QUIC DATAGRAM frames. Since those cannot

be fragmented, they can only carry payloads up to a given length

determined by the QUIC connection configuration and the path MTU. If

a proxy is using QUIC DATAGRAM frames and it receives a UDP payload

from the target that will not fit inside a QUIC DATAGRAM frame, the

proxy SHOULD NOT send the UDP payload in a DATAGRAM capsule, as that

defeats the end-to-end unreliability characteristic that methods

such as Datagram Packetization Layer Path MTU Discovery (DPLPMTUD)

depend on [RFC8899]. In this scenario, the proxy SHOULD drop the UDP

payload and send an ICMP "Packet Too Big" message to the target

[RFC4443].

5.2. Tunneling of ECN Marks

UDP proxying does not create an IP-in-IP tunnel, so the guidance in

[RFC6040] about transferring ECN marks between inner and outer IP

headers does not apply. There is no inner IP header in UDP proxying

tunnels.

Note that UDP proxying clients do not have the ability in this

specification to control the ECN codepoints on UDP packets the proxy

sends to the server, nor can proxies communicate the markings of

each UDP packet from server to proxy.

A UDP proxy MUST ignore ECN bits in the IP header of UDP packets

received from the server, and MUST set the ECN bits to Not-ECT on

UDP packets it sends to the server. These do not relate to the ECN

markings of packets sent between client and proxy in any way.

6. Security Considerations

There are significant risks in allowing arbitrary clients to

establish a tunnel to arbitrary servers, as that could allow bad

actors to send traffic and have it attributed to the proxy. Proxies

that support UDP proxying SHOULD restrict its use to authenticated

users.

Because the CONNECT method creates a TCP connection to the target,

the target has to indicate its willingness to accept TCP connections

by responding with a TCP SYN-ACK before the proxy can send it

application data. UDP doesn't have this property, so a UDP proxy

could send more data to an unwilling target than a CONNECT proxy.

However, in practice denial of service attacks target open TCP ports

so the TCP SYN-ACK does not offer much protection in real scenarios.

Proxies MUST NOT introspect the contents of UDP payloads as that

would lead to ossification of UDP-based protocols by proxies.

¶

¶

¶

¶

¶

¶

Value:

Description:

Expected Version Tokens:

Reference:

[DGRAM]

[EXT-CONNECT2]

[EXT-CONNECT3]

[H2]

7. IANA Considerations

7.1. HTTP Upgrade Token

This document will request IANA to register "connect-udp" in the

HTTP Upgrade Token Registry maintained at <https://www.iana.org/

assignments/http-upgrade-tokens>.

connect-udp

Proxying of UDP Payloads.

None.

This document.

7.2. Datagram Format Type

This document will request IANA to register UDP_PAYLOAD in the "HTTP

Datagram Format Types" registry established by [HTTP-DGRAM].

Type Value Specification

UDP_PAYLOAD 0xff6f00 This Document

Table 1: Registered Datagram Format

Type

8. References

8.1. Normative References

Pauly, T., Kinnear, E., and D. Schinazi, "An Unreliable

Datagram Extension to QUIC", Work in Progress, Internet-

Draft, draft-ietf-quic-datagram-06, 5 October 2021,

<https://datatracker.ietf.org/doc/html/draft-ietf-quic-

datagram-06>.

McManus, P., "Bootstrapping WebSockets with HTTP/2",

RFC 8441, DOI 10.17487/RFC8441, September 2018, <https://

www.rfc-editor.org/rfc/rfc8441>.

Hamilton, R., "Bootstrapping WebSockets with HTTP/3",

Work in Progress, Internet-Draft, draft-ietf-httpbis-h3-

websockets-00, 9 September 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-httpbis-h3-

websockets-00>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

¶

¶

¶

¶

¶

¶

https://www.iana.org/assignments/http-upgrade-tokens
https://www.iana.org/assignments/http-upgrade-tokens
https://datatracker.ietf.org/doc/html/draft-ietf-quic-datagram-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-datagram-06
https://www.rfc-editor.org/rfc/rfc8441
https://www.rfc-editor.org/rfc/rfc8441
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-h3-websockets-00
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-h3-websockets-00
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-h3-websockets-00

[H3]

[HTTP-DGRAM]

[MESSAGING]

[QUIC]

[RFC2119]

[RFC8174]

[SEMANTICS]

[TCP]

[TEMPLATE]

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

rfc/rfc7540>.

Bishop, M., "Hypertext Transfer Protocol Version 3 (HTTP/

3)", Work in Progress, Internet-Draft, draft-ietf-quic-

http-34, 2 February 2021, <https://datatracker.ietf.org/

doc/html/draft-ietf-quic-http-34>.

Schinazi, D. and L. Pardue, "Using Datagrams with

HTTP", Work in Progress, Internet-Draft, draft-ietf-

masque-h3-datagram-04, 6 October 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-masque-h3-

datagram-04>.

Fielding, R. T., Nottingham, M., and J. Reschke, "HTTP/

1.1", Work in Progress, Internet-Draft, draft-ietf-

httpbis-messaging-19, 12 September 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-httpbis-

messaging-19>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Fielding, R. T., Nottingham, M., and J. Reschke, "HTTP

Semantics", Work in Progress, Internet-Draft, draft-ietf-

httpbis-semantics-19, 12 September 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-httpbis-

semantics-19>.

Postel, J., "Transmission Control Protocol", STD 7, RFC

793, DOI 10.17487/RFC0793, September 1981, <https://

www.rfc-editor.org/rfc/rfc793>.

Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,

and D. Orchard, "URI Template", RFC 6570, DOI 10.17487/

https://www.rfc-editor.org/rfc/rfc7540
https://www.rfc-editor.org/rfc/rfc7540
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34
https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram-04
https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram-04
https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-messaging-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-messaging-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-messaging-19
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://www.rfc-editor.org/rfc/rfc793
https://www.rfc-editor.org/rfc/rfc793

[UDP]

[BEHAVE]

[PROXY-STATUS]

[RFC4443]

[RFC6040]

[RFC8899]

RFC6570, March 2012, <https://www.rfc-editor.org/rfc/

rfc6570>.

Postel, J., "User Datagram Protocol", STD 6, RFC 768, DOI

10.17487/RFC0768, August 1980, <https://www.rfc-

editor.org/rfc/rfc768>.

8.2. Informative References

Audet, F., Ed. and C. Jennings, "Network Address

Translation (NAT) Behavioral Requirements for Unicast

UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January

2007, <https://www.rfc-editor.org/rfc/rfc4787>.

Nottingham, M. and P. Sikora, "The Proxy-Status HTTP

Response Header Field", Work in Progress, Internet-Draft,

draft-ietf-httpbis-proxy-status-06, 16 August 2021,

<https://datatracker.ietf.org/doc/html/draft-ietf-

httpbis-proxy-status-06>.

Conta, A., Deering, S., and M. Gupta, Ed., "Internet

Control Message Protocol (ICMPv6) for the Internet

Protocol Version 6 (IPv6) Specification", STD 89, RFC

4443, DOI 10.17487/RFC4443, March 2006, <https://www.rfc-

editor.org/rfc/rfc4443>.

Briscoe, B., "Tunnelling of Explicit Congestion

Notification", RFC 6040, DOI 10.17487/RFC6040, November

2010, <https://www.rfc-editor.org/rfc/rfc6040>.

Fairhurst, G., Jones, T., Tüxen, M., Rüngeler, I., and T.

Völker, "Packetization Layer Path MTU Discovery for

Datagram Transports", RFC 8899, DOI 10.17487/RFC8899,

September 2020, <https://www.rfc-editor.org/rfc/rfc8899>.

Acknowledgments

This document is a product of the MASQUE Working Group, and the

author thanks all MASQUE enthusiasts for their contibutions. This

proposal was inspired directly or indirectly by prior work from many

people. In particular, the author would like to thank Eric Rescorla

for suggesting to use an HTTP method to proxy UDP. Thanks to Lucas

Pardue for their inputs on this document.

Author's Address

David Schinazi

Google LLC

1600 Amphitheatre Parkway

Mountain View, California 94043,

¶

https://www.rfc-editor.org/rfc/rfc6570
https://www.rfc-editor.org/rfc/rfc6570
https://www.rfc-editor.org/rfc/rfc768
https://www.rfc-editor.org/rfc/rfc768
https://www.rfc-editor.org/rfc/rfc4787
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-proxy-status-06
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-proxy-status-06
https://www.rfc-editor.org/rfc/rfc4443
https://www.rfc-editor.org/rfc/rfc4443
https://www.rfc-editor.org/rfc/rfc6040
https://www.rfc-editor.org/rfc/rfc8899

United States of America

Email: dschinazi.ietf@gmail.com

mailto:dschinazi.ietf@gmail.com

	UDP Proxying Support for HTTP
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Definitions

	2. Configuration of Clients
	3. HTTP Exchanges
	3.1. Proxy Handling
	3.2. HTTP Request over HTTP/1.1
	3.3. HTTP Response over HTTP/1.1
	3.4. HTTP Request over HTTP/2 and HTTP/3
	3.5. HTTP Response over HTTP/2 and HTTP/3
	3.6. Note About Draft Versions

	4. Encoding of Proxied UDP Packets
	5. Performance Considerations
	5.1. MTU Considerations
	5.2. Tunneling of ECN Marks

	6. Security Considerations
	7. IANA Considerations
	7.1. HTTP Upgrade Token
	7.2. Datagram Format Type

	8. References
	8.1. Normative References
	8.2. Informative References

	Acknowledgments
	Author's Address

