
Workgroup: MASQUE

Internet-Draft:

draft-ietf-masque-connect-udp-14

Published: 8 June 2022

Intended Status: Standards Track

Expires: 10 December 2022

Authors: D. Schinazi

Google LLC

Proxying UDP in HTTP

Abstract

This document describes how to proxy UDP in HTTP, similar to how the

HTTP CONNECT method allows proxying TCP in HTTP. More specifically,

this document defines a protocol that allows an HTTP client to

create a tunnel for UDP communications through an HTTP server that

acts as a proxy.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://ietf-wg-

masque.github.io/draft-ietf-masque-connect-udp/draft-ietf-masque-

connect-udp.html. Status information for this document may be found

at https://datatracker.ietf.org/doc/draft-ietf-masque-connect-udp/.

Discussion of this document takes place on the MASQUE Working Group

mailing list (mailto:masque@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/masque/.

Source for this draft and an issue tracker can be found at https://

github.com/ietf-wg-masque/draft-ietf-masque-connect-udp.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

¶

¶

¶

¶

¶

¶

¶

¶

https://ietf-wg-masque.github.io/draft-ietf-masque-connect-udp/draft-ietf-masque-connect-udp.html
https://ietf-wg-masque.github.io/draft-ietf-masque-connect-udp/draft-ietf-masque-connect-udp.html
https://ietf-wg-masque.github.io/draft-ietf-masque-connect-udp/draft-ietf-masque-connect-udp.html
https://datatracker.ietf.org/doc/draft-ietf-masque-connect-udp/
mailto:masque@ietf.org
https://mailarchive.ietf.org/arch/browse/masque/
https://mailarchive.ietf.org/arch/browse/masque/
https://github.com/ietf-wg-masque/draft-ietf-masque-connect-udp
https://github.com/ietf-wg-masque/draft-ietf-masque-connect-udp
https://datatracker.ietf.org/drafts/current/

This Internet-Draft will expire on 10 December 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Conventions and Definitions

2. Client Configuration

3. Tunnelling UDP over HTTP

3.1. UDP Proxy Handling

3.2. HTTP/1.1 Request

3.3. HTTP/1.1 Response

3.4. HTTP/2 and HTTP/3 Requests

3.5. HTTP/2 and HTTP/3 Responses

3.6. Note About Draft Versions

4. Context Identifiers

5. HTTP Datagram Payload Format

6. Performance Considerations

6.1. MTU Considerations

6.2. Tunneling of ECN Marks

7. Security Considerations

8. IANA Considerations

8.1. HTTP Upgrade Token

8.2. Well-Known URI

9. References

9.1. Normative References

9.2. Informative References

Acknowledgments

Author's Address

1. Introduction

While HTTP provides the CONNECT method (see Section 9.3.6 of [HTTP])

for creating a TCP [TCP] tunnel to a proxy, prior to this

specification it lacked a method for doing so for UDP [UDP] traffic.

¶

¶

¶

¶

https://trustee.ietf.org/license-info
https://rfc-editor.org/rfc/rfc9110#section-9.3.6

This document describes a protocol for tunnelling UDP to a server

acting as a UDP-specific proxy over HTTP. UDP tunnels are commonly

used to create an end-to-end virtual connection, which can then be

secured using QUIC [QUIC] or another protocol running over UDP.

Unlike CONNECT, the UDP proxy itself is identified with an absolute

URL containing the traffic's destination. Clients generate those

URLs using a URI Template [TEMPLATE], as described in Section 2.

This protocol supports all existing versions of HTTP by using HTTP

Datagrams [HTTP-DGRAM]. When using HTTP/2 [HTTP/2] or HTTP/3 [HTTP/

3], it uses HTTP Extended CONNECT as described in [EXT-CONNECT2] and

[EXT-CONNECT3]. When using HTTP/1.x [HTTP/1.1], it uses HTTP Upgrade

as defined in Section 7.8 of [HTTP].

1.1. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

In this document, we use the term "UDP proxy" to refer to the HTTP

server that acts upon the client's UDP tunnelling request to open a

UDP socket to a target server, and generates the response to this

request. If there are HTTP intermediaries (as defined in Section 3.7

of [HTTP]) between the client and the UDP proxy, those are referred

to as "intermediaries" in this document.

Note that, when the HTTP version in use does not support

multiplexing streams (such as HTTP/1.1), any reference to "stream"

in this document represents the entire connection.

2. Client Configuration

HTTP clients are configured to use a UDP proxy with a URI Template

[TEMPLATE] that has the variables "target_host" and "target_port".

Examples are shown below:

Figure 1: URI Template Examples

The following requirements apply to the URI Template:

The URI Template MUST be a level 3 template or lower.

¶

¶

¶

¶

¶

¶

https://masque.example.org/.well-known/masque/udp/{target_host}/{target_port}/

https://proxy.example.org:4443/masque?h={target_host}&p={target_port}

https://proxy.example.org:4443/masque{?target_host,target_port}

¶

* ¶

https://rfc-editor.org/rfc/rfc9110#section-7.8
https://rfc-editor.org/rfc/rfc9110#section-3.7

The URI Template MUST be in absolute form, and MUST include non-

empty scheme, authority and path components.

The path component of the URI Template MUST start with a slash

"/".

All template variables MUST be within the path or query

components of the URI.

The URI template MUST contain the two variables "target_host" and

"target_port" and MAY contain other variables.

The URI Template MUST NOT contain any non-ASCII unicode

characters and MUST only contain ASCII characters in the range

0x21-0x7E inclusive (note that percent-encoding is allowed).

The URI Template MUST NOT use Reserved Expansion ("+" operator),

Fragment Expansion ("#" operator), Label Expansion with Dot-

Prefix, Path Segment Expansion with Slash-Prefix, nor Path-Style

Parameter Expansion with Semicolon-Prefix.

Clients SHOULD validate the requirements above; however, clients MAY

use a general-purpose URI Template implementation that lacks this

specific validation. If a client detects that any of the

requirements above are not met by a URI Template, the client MUST

reject its configuration and fail the request without sending it to

the UDP proxy.

Since the original HTTP CONNECT method allowed conveying the target

host and port but not the scheme, proxy authority, path, nor query,

there exist clients with proxy configuration interfaces that only

allow the user to configure the proxy host and the proxy port.

Client implementations of this specification that are constrained by

such limitations MAY attempt to access UDP proxying capabilities

using the default template, which is defined as: "https://

$PROXY_HOST:$PROXY_PORT/.well-known/masque/udp/{target_host}/

{target_port}/" where $PROXY_HOST and $PROXY_PORT are the configured

host and port of the UDP proxy respectively. UDP proxy deployments

SHOULD offer service at this location if they need to interoperate

with such clients.

3. Tunnelling UDP over HTTP

To allow negotiation of a tunnel for UDP over HTTP, this document

defines the "connect-udp" HTTP Upgrade Token. The resulting UDP

tunnels use the Capsule Protocol (see Section 3.2 of [HTTP-DGRAM])

with HTTP Datagram in the format defined in Section 5.

To initiate a UDP tunnel associated with a single HTTP stream, a

client issues a request containing the "connect-udp" upgrade token.

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram-10#section-3.2

The target of the tunnel is indicated by the client to the UDP proxy

via the "target_host" and "target_port" variables of the URI

Template, see Section 2. If the request is successful, the UDP proxy

commits to converting received HTTP Datagrams into UDP packets and

vice versa until the tunnel is closed.

When sending its UDP proxying request, the client SHALL perform URI

Template expansion to determine the path and query of its request.

target_host supports using DNS names, IPv6 literals and IPv4

literals. Note that this URI Template expansion requires using pct-

encoding, so for example if the target_host is "2001:db8::42", it

will be encoded in the URI as "2001%3Adb8%3A%3A42".

By virtue of the definition of the Capsule Protocol (see [HTTP-

DGRAM]), UDP proxying requests do not carry any message content.

Similarly, successful UDP proxying responses also do not carry any

message content.

3.1. UDP Proxy Handling

Upon receiving a UDP proxying request:

if the recipient is configured to use another HTTP proxy, it will

act as an intermediary: it forwards the request to another HTTP

server. Note that such intermediaries may need to reencode the

request if they forward it using a version of HTTP that is

different from the one used to receive it, as the request

encoding differs by version (see below).

otherwise, the recipient will act as a UDP proxy: it extracts the

"target_host" and "target_port" variables from the URI it has

reconstructed from the request headers, and establishes a tunnel

by directly opening a UDP socket to the requested target.

Unlike TCP, UDP is connection-less. The UDP proxy that opens the UDP

socket has no way of knowing whether the destination is reachable.

Therefore it needs to respond to the request without waiting for a

packet from the target. However, if the target_host is a DNS name,

the UDP proxy MUST perform DNS resolution before replying to the

HTTP request. If errors occur during this process, the UDP proxy

MUST fail the request and SHOULD send details using an appropriate

"Proxy-Status" header field [PROXY-STATUS] (for example, if DNS

resolution returns an error, the proxy can use the dns_error Proxy

Error Type from Section 2.3.2 of [PROXY-STATUS]).

UDP proxies can use connected UDP sockets if their operating system

supports them, as that allows the UDP proxy to rely on the kernel to

only send it UDP packets that match the correct 5-tuple. If the UDP

proxy uses a non-connected socket, it MUST validate the IP source

address and UDP source port on received packets to ensure they match

¶

¶

¶

¶

*

¶

*

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-proxy-status-08#section-2.3.2

the client's request. Packets that do not match MUST be discarded by

the UDP proxy.

The lifetime of the socket is tied to the request stream. The UDP

proxy MUST keep the socket open while the request stream is open. If

a UDP proxy is notified by its operating system that its socket is

no longer usable (for example, this can happen when an ICMP

"Destination Unreachable" message is received, see Section 3.1 of

[ICMP6]), it MUST close the request stream. UDP proxies MAY choose

to close sockets due to a period of inactivity, but they MUST close

the request stream when closing the socket. UDP proxies that close

sockets after a period of inactivity SHOULD NOT use a period lower

than two minutes, see Section 4.3 of [BEHAVE].

A successful response (as defined in Section 3.3 and Section 3.5)

indicates that the UDP proxy has opened a socket to the requested

target and is willing to proxy UDP payloads. Any response other than

a successful response indicates that the request has failed, and the

client MUST therefore abort the request.

UDP proxies MUST NOT introduce fragmentation at the IP layer when

forwarding HTTP Datagrams onto a UDP socket. In IPv4, the Don't

Fragment (DF) bit MUST be set if possible, to prevent fragmentation

on the path. Future extensions MAY remove these requirements.

3.2. HTTP/1.1 Request

When using HTTP/1.1 [HTTP/1.1], a UDP proxying request will meet the

following requirements:

the method SHALL be "GET".

the request SHALL include a single "Host" header field containing

the origin of the UDP proxy.

the request SHALL include a "Connection" header field with value

"Upgrade" (note that this requirement is case-insensitive as per

Section 7.6.1 of [HTTP]).

the request SHALL include an "Upgrade" header field with value

"connect-udp".

For example, if the client is configured with URI Template "https://

proxy.example.org/.well-known/masque/udp/{target_host}/

{target_port}/" and wishes to open a UDP proxying tunnel to target

192.0.2.42:443, it could send the following request:

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

¶

https://rfc-editor.org/rfc/rfc4443#section-3.1
https://rfc-editor.org/rfc/rfc4787#section-4.3
https://rfc-editor.org/rfc/rfc9110#section-7.6.1

Figure 2: Example HTTP/1.1 Request

In HTTP/1.1, this protocol uses the GET method to mimic the design

of the WebSocket Protocol [WEBSOCKET].

3.3. HTTP/1.1 Response

The UDP proxy SHALL indicate a successful response by replying with

the following requirements:

the HTTP status code on the response SHALL be 101 (Switching

Protocols).

the reponse SHALL include a single "Connection" header field with

value "Upgrade" (note that this requirement is case-insensitive

as per Section 7.6.1 of [HTTP]).

the response SHALL include a single "Upgrade" header field with

value "connect-udp".

the response SHALL NOT include any "Transfer-Encoding" or

"Content-Length" header fields.

If any of these requirements are not met, the client MUST treat this

proxying attempt as failed and abort the connection.

For example, the UDP proxy could respond with:

Figure 3: Example HTTP/1.1 Response

3.4. HTTP/2 and HTTP/3 Requests

When using HTTP/2 [HTTP/2] or HTTP/3 [HTTP/3], UDP proxying requests

use Extended CONNECT. This requires that servers send an HTTP

Setting as specified in [EXT-CONNECT2] and [EXT-CONNECT3], and that

requests use HTTP pseudo-header fields with the following

requirements:

The ":method" pseudo-header field SHALL be "CONNECT".

GET https://proxy.example.org/.well-known/masque/udp/192.0.2.42/443/ HTTP/1.1

Host: proxy.example.org

Connection: Upgrade

Upgrade: connect-udp

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

HTTP/1.1 101 Switching Protocols

Connection: Upgrade

Upgrade: connect-udp

¶

* ¶

https://rfc-editor.org/rfc/rfc9110#section-7.6.1

The ":protocol" pseudo-header field SHALL be "connect-udp".

The ":authority" pseudo-header field SHALL contain the authority

of the UDP proxy.

The ":path" and ":scheme" pseudo-header fields SHALL NOT be

empty. Their values SHALL contain the scheme and path from the

URI Template after the URI template expansion process has been

completed.

A UDP proxying request that does not conform to these restrictions

is malformed (see Section 8.1.1 of [HTTP/2]).

For example, if the client is configured with URI Template "https://

proxy.example.org/{target_host}/{target_port}/" and wishes to open a

UDP proxying tunnel to target 192.0.2.42:443, it could send the

following request:

Figure 4: Example HTTP/2 Request

3.5. HTTP/2 and HTTP/3 Responses

The UDP proxy SHALL indicate a successful response by replying with

any 2xx (Successful) HTTP status code, without any "Transfer-

Encoding" or "Content-Length" header fields.

If any of these requirements are not met, the client MUST treat this

proxying attempt as failed and abort the request.

For example, the UDP proxy could respond with:

Figure 5: Example HTTP/2 Response

3.6. Note About Draft Versions

[[RFC editor: please remove this section before publication.]]

* ¶

*

¶

*

¶

¶

¶

HEADERS

:method = CONNECT

:protocol = connect-udp

:scheme = https

:path = /.well-known/masque/udp/192.0.2.42/443/

:authority = proxy.example.org

¶

¶

¶

HEADERS

:status = 200

¶

https://rfc-editor.org/rfc/rfc9113#section-8.1.1

In order to allow implementations to support multiple draft versions

of this specification during its development, we introduce the

"connect-udp-version" header field. When sent by the client, it

contains a list of draft numbers supported by the client (e.g.,

"connect-udp-version: 0, 2"). When sent by the UDP proxy, it

contains a single draft number selected by the UDP proxy from the

list provided by the client (e.g., "connect-udp-version: 2").

Sending this header field is RECOMMENDED but not required. The

"connect-udp-version" header field is a List Structured Field, see

Section 3.1 of [STRUCT-FIELD]. Each list member MUST be an Integer.

4. Context Identifiers

The mechanism for proxying UDP in HTTP defined in this document

allows future extensions to exchange HTTP Datagrams which carry

different semantics from UDP payloads. Some of these extensions can

augment UDP payloads with additional data, while others can exchange

data that is completely separate from UDP payloads. In order to

accomplish this, all HTTP Datagrams associated with UDP Proxying

request streams start with a context ID, see Section 5.

Context IDs are 62-bit integers (0 to 2 -1). Context IDs are encoded

as variable-length integers, see Section 16 of [QUIC]. The context

ID value of 0 is reserved for UDP payloads, while non-zero values

are dynamically allocated: non-zero even-numbered context IDs are

client-allocated, and odd-numbered context IDs are proxy-allocated.

The context ID namespace is tied to a given HTTP request: it is

possible for a context ID with the same numeric value to be

simultaneously allocated in distinct requests, potentially with

different semantics. Context IDs MUST NOT be re-allocated within a

given HTTP namespace but MAY be allocated in any order. The context

ID allocation restrictions to the use of even-numbered and odd-

numbered context IDs exist in order to avoid the need for

synchronisation between endpoints. However, once a context ID has

been allocated, those restrictions do not apply to the use of the

context ID: it can be used by any client or UDP proxy, independent

of which endpoint initially allocated it.

Registration is the action by which an endpoint informs its peer of

the semantics and format of a given context ID. This document does

not define how registration occurs. Future extensions MAY use HTTP

header fields or capsules to register contexts. Depending on the

method being used, it is possible for datagrams to be received with

Context IDs which have not yet been registered, for instance due to

reordering of the packet containing the datagram and the packet

containing the registration message during transmission.

¶

¶

62

¶

¶

https://rfc-editor.org/rfc/rfc8941#section-3.1
https://rfc-editor.org/rfc/rfc9000#section-16

Context ID:

Payload:

5. HTTP Datagram Payload Format

When HTTP Datagrams (see [HTTP-DGRAM]) are associated with UDP

proxying request streams, the HTTP Datagram Payload field has the

format defined in Figure 6. Note that when HTTP Datagrams are

encoded using QUIC DATAGRAM frames, the Context ID field defined

below directly follows the Quarter Stream ID field which is at the

start of the QUIC DATAGRAM frame payload:

Figure 6: UDP Proxying HTTP Datagram Format

A variable-length integer (see Section 16 of [QUIC])

that contains the value of the Context ID. If an HTTP/3 datagram

which carries an unknown Context ID is received, the receiver

SHALL either drop that datagram silently or buffer it temporarily

(on the order of a round trip) while awaiting the registration of

the corresponding Context ID.

The payload of the datagram, whose semantics depend on

value of the previous field. Note that this field can be empty.

UDP packets are encoded using HTTP Datagrams with the Context ID set

to zero. When the Context ID is set to zero, the Payload field

contains the unmodified payload of a UDP packet (referred to as

"data octets" in [UDP]).

By virtue of the definition of the UDP header [UDP], it is not

possible to encode UDP payloads longer than 65527 bytes. Therefore,

endpoints MUST NOT send HTTP Datagrams with a Payload field longer

than 65527 using Context ID zero. An endpoint that receives a

DATAGRAM capsule using Context ID zero whose Payload field is longer

than 65527 MUST abort the stream. If a UDP proxy knows it can only

send out UDP packets of a certain length due to its underlying link

MTU, it SHOULD discard incoming DATAGRAM capsules using Context ID

zero whose Payload field is longer than that limit without buffering

the capsule contents.

If a UDP proxy receives an HTTP Datagram before it has received the

corresponding request, it SHALL either drop that HTTP Datagram

silently or buffer it temporarily (on the order of a round trip)

while awaiting the corresponding request.

Note that buffering datagrams (either because the request was not

yet received, or because the Context ID is not yet known) consumes

resources. Receivers that buffer datagrams SHOULD apply buffering

limits in order to reduce the risk of resource exhaustion occuring.

¶

UDP Proxying HTTP Datagram Payload {

 Context ID (i),

 Payload (..),

}

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-16

For example, receivers can limit the total number of buffered

datagrams, or the cumulative size of buffered datagrams, on a per-

stream, per-context, or per-connection basis.

A client MAY optimistically start sending UDP packets in HTTP

Datagrams before receiving the response to its UDP proxying request.

However, implementors should note that such proxied packets may not

be processed by the UDP proxy if it responds to the request with a

failure, or if the proxied packets are received by the UDP proxy

before the request and the UDP proxy chooses to not buffer them.

6. Performance Considerations

Bursty traffic can often lead to temporally correlated packet

losses, which in turn can lead to suboptimal responses from

congestion controllers in protocols running over UDP. To avoid this,

UDP proxies SHOULD strive to avoid increasing burstiness of UDP

traffic: they SHOULD NOT queue packets in order to increase

batching.

When the protocol running over UDP that is being proxied uses

congestion control (e.g., [QUIC]), the proxied traffic will incur at

least two nested congestion controllers. This can reduce performance

but the underlying HTTP connection MUST NOT disable congestion

control unless it has an out-of-band way of knowing with absolute

certainty that the inner traffic is congestion-controlled.

If a client or UDP proxy with a connection containing a UDP proxying

request stream disables congestion control, it MUST NOT signal

Explicit Congestion Notification (ECN) [ECN] support on that

connection. That is, it MUST mark all IP headers with the Not-ECT

codepoint. It MAY continue to report ECN feedback via QUIC ACK_ECN

frames or the TCP "ECE" bit, as the peer may not have disabled

congestion control.

When the protocol running over UDP that is being proxied uses loss

recovery (e.g., [QUIC]), and the underlying HTTP connection runs

over TCP, the proxied traffic will incur at least two nested loss

recovery mechanisms. This can reduce performance as both can

sometimes independently retransmit the same data. To avoid this, UDP

proxying SHOULD be performed over HTTP/3 to allow leveraging the

QUIC DATAGRAM frame.

6.1. MTU Considerations

When using HTTP/3 with the QUIC Datagram extension [DGRAM], UDP

payloads are transmitted in QUIC DATAGRAM frames. Since those cannot

be fragmented, they can only carry payloads up to a given length

determined by the QUIC connection configuration and the path MTU. If

a UDP proxy is using QUIC DATAGRAM frames and it receives a UDP

¶

¶

¶

¶

¶

¶

payload from the target that will not fit inside a QUIC DATAGRAM

frame, the UDP proxy SHOULD NOT send the UDP payload in a DATAGRAM

capsule, as that defeats the end-to-end unreliability characteristic

that methods such as Datagram Packetization Layer Path MTU Discovery

(DPLPMTUD) depend on [DPLPMTUD]. In this scenario, the UDP proxy

SHOULD drop the UDP payload and send an ICMP "Packet Too Big"

message to the target, see Section 3.2 of [ICMP6].

6.2. Tunneling of ECN Marks

UDP proxying does not create an IP-in-IP tunnel, so the guidance in

[ECN-TUNNEL] about transferring ECN marks between inner and outer IP

headers does not apply. There is no inner IP header in UDP proxying

tunnels.

Note that UDP proxying clients do not have the ability in this

specification to control the ECN codepoints on UDP packets the UDP

proxy sends to the target, nor can UDP proxies communicate the

markings of each UDP packet from target to UDP proxy.

A UDP proxy MUST ignore ECN bits in the IP header of UDP packets

received from the target, and MUST set the ECN bits to Not-ECT on

UDP packets it sends to the target. These do not relate to the ECN

markings of packets sent between client and UDP proxy in any way.

7. Security Considerations

There are significant risks in allowing arbitrary clients to

establish a tunnel to arbitrary targets, as that could allow bad

actors to send traffic and have it attributed to the UDP proxy. HTTP

servers that support UDP proxying ought to restrict its use to

authenticated users.

UDP proxies have similar properties to TCP proxies when it comes to

facilitating denial of service attacks. In theory the stateful

nature of TCP provides better protection than stateless UDP but in

practice this provides negligible benefits when considering

proxying. Because the CONNECT method creates a TCP connection to the

target, the target has to indicate its willingness to accept TCP

connections by responding with a TCP SYN-ACK before the CONNECT

proxy can send it application data. UDP doesn't have this property,

so a UDP proxy could send more data to an unwilling target than a

CONNECT proxy. However, in practice denial of service attacks target

open TCP ports so the TCP SYN-ACK does not offer much protection in

real scenarios. While a UDP proxy could potentially limit the number

of UDP packets it is willing to forward until it has observed a

response from the target, that is unlikely to provide any protection

against denial of service attacks because such attacks target open

UDP ports where the protocol running over UDP would respond, and

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc4443#section-3.2

Value:

Description:

Expected Version Tokens:

Reference:

URI Suffix:

Change Controller:

Reference:

Status:

Related Information:

[DGRAM]

[ECN]

[EXT-CONNECT2]

that would be interpreted as willingness to accept UDP by the UDP

proxy.

The security considerations described in [HTTP-DGRAM] also apply

here.

8. IANA Considerations

8.1. HTTP Upgrade Token

This document will request IANA to register "connect-udp" in the

"HTTP Upgrade Tokens" registry maintained at <https://www.iana.org/

assignments/http-upgrade-tokens>.

connect-udp

Proxying of UDP Payloads

None

This document

8.2. Well-Known URI

This document will request IANA to register "masque" in the "Well-

Known URIs" registry maintained at <https://www.iana.org/

assignments/well-known-uris>.

masque

IETF

This document

permanent (if this document is approved)

Includes all resources identified with the

path prefix "/.well-known/masque/udp/"

9. References

9.1. Normative References

Pauly, T., Kinnear, E., and D. Schinazi, "An Unreliable

Datagram Extension to QUIC", RFC 9221, DOI 10.17487/

RFC9221, March 2022, <https://www.rfc-editor.org/rfc/

rfc9221>.

Ramakrishnan, K., Floyd, S., and D. Black, "The Addition

of Explicit Congestion Notification (ECN) to IP", RFC

3168, DOI 10.17487/RFC3168, September 2001, <https://

www.rfc-editor.org/rfc/rfc3168>.

McManus, P., "Bootstrapping WebSockets with HTTP/2",

RFC 8441, DOI 10.17487/RFC8441, September 2018, <https://

www.rfc-editor.org/rfc/rfc8441>.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.iana.org/assignments/http-upgrade-tokens
https://www.iana.org/assignments/http-upgrade-tokens
https://www.iana.org/assignments/well-known-uris
https://www.iana.org/assignments/well-known-uris
https://www.rfc-editor.org/rfc/rfc9221
https://www.rfc-editor.org/rfc/rfc9221
https://www.rfc-editor.org/rfc/rfc3168
https://www.rfc-editor.org/rfc/rfc3168
https://www.rfc-editor.org/rfc/rfc8441
https://www.rfc-editor.org/rfc/rfc8441

[EXT-CONNECT3]

[HTTP]

[HTTP-DGRAM]

[HTTP/1.1]

[HTTP/2]

[HTTP/3]

[PROXY-STATUS]

[QUIC]

[RFC2119]

[RFC8174]

Hamilton, R., "Bootstrapping WebSockets with HTTP/3",

Work in Progress, Internet-Draft, draft-ietf-httpbis-h3-

websockets-04, 8 February 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-httpbis-h3-

websockets-04>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/

RFC9110, June 2022, <https://www.rfc-editor.org/rfc/

rfc9110>.

Schinazi, D. and L. Pardue, "HTTP Datagrams and the

Capsule Protocol", Work in Progress, Internet-Draft,

draft-ietf-masque-h3-datagram-10, 8 June 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-masque-h3-

datagram-10>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP/1.1", STD 99, RFC 9112, DOI 10.17487/RFC9112,

June 2022, <https://www.rfc-editor.org/rfc/rfc9112>.

Thomson, M., Ed. and C. Benfield, Ed., "HTTP/2", RFC

9113, DOI 10.17487/RFC9113, June 2022, <https://www.rfc-

editor.org/rfc/rfc9113>.

Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/

RFC9114, June 2022, <https://www.rfc-editor.org/rfc/

rfc9114>.

Nottingham, M. and P. Sikora, "The Proxy-Status HTTP

Response Header Field", Work in Progress, Internet-Draft,

draft-ietf-httpbis-proxy-status-08, 13 October 2021,

<https://datatracker.ietf.org/doc/html/draft-ietf-

httpbis-proxy-status-08>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-h3-websockets-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-h3-websockets-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-h3-websockets-04
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9110
https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram-10
https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram-10
https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram-10
https://www.rfc-editor.org/rfc/rfc9112
https://www.rfc-editor.org/rfc/rfc9113
https://www.rfc-editor.org/rfc/rfc9113
https://www.rfc-editor.org/rfc/rfc9114
https://www.rfc-editor.org/rfc/rfc9114
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-proxy-status-08
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-proxy-status-08
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174

[STRUCT-FIELD]

[TCP]

[TEMPLATE]

[UDP]

[BEHAVE]

[DPLPMTUD]

[ECN-TUNNEL]

[ICMP6]

[WEBSOCKET]

Nottingham, M. and P-H. Kamp, "Structured Field

Values for HTTP", RFC 8941, DOI 10.17487/RFC8941,

February 2021, <https://www.rfc-editor.org/rfc/rfc8941>.

Postel, J., "Transmission Control Protocol", STD 7, RFC

793, DOI 10.17487/RFC0793, September 1981, <https://

www.rfc-editor.org/rfc/rfc793>.

Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,

and D. Orchard, "URI Template", RFC 6570, DOI 10.17487/

RFC6570, March 2012, <https://www.rfc-editor.org/rfc/

rfc6570>.

Postel, J., "User Datagram Protocol", STD 6, RFC 768, DOI

10.17487/RFC0768, August 1980, <https://www.rfc-

editor.org/rfc/rfc768>.

9.2. Informative References

Audet, F., Ed. and C. Jennings, "Network Address

Translation (NAT) Behavioral Requirements for Unicast

UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January

2007, <https://www.rfc-editor.org/rfc/rfc4787>.

Fairhurst, G., Jones, T., Tüxen, M., Rüngeler, I., and T.

Völker, "Packetization Layer Path MTU Discovery for

Datagram Transports", RFC 8899, DOI 10.17487/RFC8899,

September 2020, <https://www.rfc-editor.org/rfc/rfc8899>.

Briscoe, B., "Tunnelling of Explicit Congestion

Notification", RFC 6040, DOI 10.17487/RFC6040, November

2010, <https://www.rfc-editor.org/rfc/rfc6040>.

Conta, A., Deering, S., and M. Gupta, Ed., "Internet

Control Message Protocol (ICMPv6) for the Internet

Protocol Version 6 (IPv6) Specification", STD 89, RFC

4443, DOI 10.17487/RFC4443, March 2006, <https://www.rfc-

editor.org/rfc/rfc4443>.

Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC

6455, DOI 10.17487/RFC6455, December 2011, <https://

www.rfc-editor.org/rfc/rfc6455>.

Acknowledgments

This document is a product of the MASQUE Working Group, and the

author thanks all MASQUE enthusiasts for their contibutions. This

proposal was inspired directly or indirectly by prior work from many

people. In particular, the author would like to thank Eric Rescorla

https://www.rfc-editor.org/rfc/rfc8941
https://www.rfc-editor.org/rfc/rfc793
https://www.rfc-editor.org/rfc/rfc793
https://www.rfc-editor.org/rfc/rfc6570
https://www.rfc-editor.org/rfc/rfc6570
https://www.rfc-editor.org/rfc/rfc768
https://www.rfc-editor.org/rfc/rfc768
https://www.rfc-editor.org/rfc/rfc4787
https://www.rfc-editor.org/rfc/rfc8899
https://www.rfc-editor.org/rfc/rfc6040
https://www.rfc-editor.org/rfc/rfc4443
https://www.rfc-editor.org/rfc/rfc4443
https://www.rfc-editor.org/rfc/rfc6455
https://www.rfc-editor.org/rfc/rfc6455

for suggesting to use an HTTP method to proxy UDP. The author is

indebted to Mark Nottingham and Lucas Pardue for the many

improvements they contributed to this document. The extensibility

design in this document came out of the HTTP Datagrams Design Team,

whose members were Alan Frindell, Alex Chernyakhovsky, Ben Schwartz,

Eric Rescorla, Lucas Pardue, Marcus Ihlar, Martin Thomson, Mike

Bishop, Tommy Pauly, Victor Vasiliev, and the author of this

document.

Author's Address

David Schinazi

Google LLC

1600 Amphitheatre Parkway

Mountain View, CA 94043

United States of America

Email: dschinazi.ietf@gmail.com

¶

mailto:dschinazi.ietf@gmail.com

	Proxying UDP in HTTP
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Definitions

	2. Client Configuration
	3. Tunnelling UDP over HTTP
	3.1. UDP Proxy Handling
	3.2. HTTP/1.1 Request
	3.3. HTTP/1.1 Response
	3.4. HTTP/2 and HTTP/3 Requests
	3.5. HTTP/2 and HTTP/3 Responses
	3.6. Note About Draft Versions

	4. Context Identifiers
	5. HTTP Datagram Payload Format
	6. Performance Considerations
	6.1. MTU Considerations
	6.2. Tunneling of ECN Marks

	7. Security Considerations
	8. IANA Considerations
	8.1. HTTP Upgrade Token
	8.2. Well-Known URI

	9. References
	9.1. Normative References
	9.2. Informative References

	Acknowledgments
	Author's Address

