
Workgroup: MASQUE

Internet-Draft:

draft-ietf-masque-h3-datagram-01

Published: 13 May 2021

Intended Status: Standards Track

Expires: 14 November 2021

Authors: D. Schinazi

Google LLC

L. Pardue

Cloudflare

Using QUIC Datagrams with HTTP/3

Abstract

The QUIC DATAGRAM extension provides application protocols running

over QUIC with a mechanism to send unreliable data while leveraging

the security and congestion-control properties of QUIC. However,

QUIC DATAGRAM frames do not provide a means to demultiplex

application contexts. This document describes how to use QUIC

DATAGRAM frames when the application protocol running over QUIC is

HTTP/3. It associates datagrams with client-initiated bidirectional

streams and defines an optional additional demultiplexing layer.

Discussion of this work is encouraged to happen on the MASQUE IETF

mailing list (masque@ietf.org) or on the GitHub repository which

contains the draft: https://github.com/ietf-wg-masque/draft-ietf-

masque-h3-datagram.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 November 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

mailto:masque@ietf.org
https://github.com/ietf-wg-masque/draft-ietf-masque-h3-datagram
https://github.com/ietf-wg-masque/draft-ietf-masque-h3-datagram
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Conventions and Definitions

2. Multiplexing

2.1. Datagram Contexts

2.2. Context ID Allocation

3. HTTP/3 DATAGRAM Frame Format

4. CAPSULE HTTP/3 Frame Definition

4.1. The REGISTER_DATAGRAM_CONTEXT Capsule

4.2. The CLOSE_DATAGRAM_CONTEXT Capsule

4.3. The DATAGRAM Capsule

5. The H3_DATAGRAM HTTP/3 SETTINGS Parameter

6. HTTP/1.x and HTTP/2 Support

7. Security Considerations

8. IANA Considerations

8.1. HTTP/3 CAPSULE Frame

8.2. HTTP SETTINGS Parameter

8.3. Capsule Types

8.4. Context Extension Keys

9. Normative References

Appendix A. Examples

A.1. CONNECT-UDP

A.2. CONNECT-UDP with Timestamp Extension

A.3. CONNECT-IP with IP compression

A.4. WebTransport

Acknowledgments

Authors' Addresses

1. Introduction

The QUIC DATAGRAM extension [DGRAM] provides application protocols

running over QUIC [QUIC] with a mechanism to send unreliable data

while leveraging the security and congestion-control properties of

QUIC. However, QUIC DATAGRAM frames do not provide a means to

demultiplex application contexts. This document describes how to use

QUIC DATAGRAM frames when the application protocol running over QUIC

is HTTP/3 [H3]. It associates datagrams with client-initiated

¶

https://trustee.ietf.org/license-info

bidirectional streams and defines an optional additional

demultiplexing layer.

Discussion of this work is encouraged to happen on the MASQUE IETF

mailing list (masque@ietf.org) or on the GitHub repository which

contains the draft: https://github.com/ietf-wg-masque/draft-ietf-

masque-h3-datagram.

1.1. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Multiplexing

In order to allow multiple exchanges of datagrams to coexist on a

given QUIC connection, HTTP datagrams contain two layers of

multiplexing. First, the QUIC DATAGRAM frame payload starts with an

encoded stream identifier that associates the datagram with a given

QUIC stream. Second, datagrams carry a context identifier (see

Section 2.1) that allows multiplexing multiple datagram contexts

related to a given HTTP request. Conceptually, the first layer of

multiplexing is per-hop, while the second is end-to-end.

2.1. Datagram Contexts

Within the scope of a given HTTP request, contexts provide an

additional demultiplexing layer. Contexts determine the encoding of

datagrams, and can be used to implicitly convey metadata. For

example, contexts can be used for compression to elide some parts of

the datagram: the context identifier then maps to a compression

context that the receiver can use to reconstruct the elided data.

Contexts are identified within the scope of a given request by a

numeric value, referred to as the context ID. A context ID is a 62-

bit integer (0 to 2^62-1).

While stream IDs are a per-hop concept, context IDs are an end-to-

end concept. In other words, if a datagram travels through one or

more intermediaries on its way from client to server, the stream ID

will most likely change from hop to hop, but the context ID will

remain the same. Context IDs are opaque to intermediaries.

2.2. Context ID Allocation

Implementations of HTTP/3 that support the DATAGRAM extension MUST

provide a context ID allocation service. That service will allow

¶

¶

¶

¶

¶

¶

¶

mailto:masque@ietf.org
https://github.com/ietf-wg-masque/draft-ietf-masque-h3-datagram
https://github.com/ietf-wg-masque/draft-ietf-masque-h3-datagram

Quarter Stream ID:

Context ID:

HTTP/3 Datagram Payload:

applications co-located with HTTP/3 to request a unique context ID

that they can subsequently use for their own purposes. The HTTP/3

implementation will then parse the context ID of incoming DATAGRAM

frames and use it to deliver the frame to the appropriate

application context.

Even-numbered context IDs are client-initiated, while odd-numbered

context IDs are server-initiated. This means that an HTTP/3 client

implementation of the context ID allocation service MUST only

provide even-numbered IDs, while a server implementation MUST only

provide odd-numbered IDs. Note that, once allocated, any context ID

can be used by both client and server - only allocation carries

separate namespaces to avoid requiring synchronization.

Additionally, note that the context ID namespace is tied to a given

HTTP request: it is possible for the same numeral context ID to be

used simultaneously in distinct requests.

3. HTTP/3 DATAGRAM Frame Format

When used with HTTP/3, the Datagram Data field of QUIC DATAGRAM

frames uses the following format (using the notation from the

"Notational Conventions" section of [QUIC]):

Figure 1: HTTP/3 DATAGRAM Frame Format

A variable-length integer that contains the

value of the client-initiated bidirectional stream that this

datagram is associated with, divided by four. (The division by

four stems from the fact that HTTP requests are sent on client-

initiated bidirectional streams, and those have stream IDs that

are divisible by four.)

A variable-length integer indicating the context ID of

the datagram (see Section 2.1).

The payload of the datagram, whose

semantics are defined by individual applications. Note that this

field can be empty.

Intermediaries parse the Quarter Stream ID field in order to

associate the QUIC DATAGRAM frame with a stream. If an intermediary

receives a QUIC DATAGRAM frame whose payload is too short to allow

parsing the Quarter Stream ID field, the intermediary MUST treat it

¶

¶

¶

HTTP/3 Datagram {

 Quarter Stream ID (i),

 Context ID (i),

 HTTP/3 Datagram Payload (..),

}

¶

¶

¶

as an HTTP/3 connection error of type H3_GENERAL_PROTOCOL_ERROR.

Intermediaries MUST ignore any HTTP/3 Datagram fields after the

Quarter Stream ID.

Endpoints parse both the Quarter Stream ID field and the Context ID

field in order to associate the QUIC DATAGRAM frame with a stream

and context within that stream. If an endpoint receives a QUIC

DATAGRAM frame whose payload is too short to allow parsing the

Quarter Stream ID field, the endpoint MUST treat it as an HTTP/3

connection error of type H3_GENERAL_PROTOCOL_ERROR. If an endpoint

receives a QUIC DATAGRAM frame whose payload is long enough to allow

parsing the Quarter Stream ID field but too short to allow parsing

the Context ID field, the endpoint MUST abruptly terminate the

corresponding stream with a stream error of type

H3_GENERAL_PROTOCOL_ERROR.

If a DATAGRAM frame is received and its Quarter Stream ID maps to a

stream that has already been closed, the receiver MUST silently drop

that frame. If a DATAGRAM frame is received and its Quarter Stream

ID maps to a stream that has not yet been created, the receiver

SHALL either drop that frame silently or buffer it temporarily while

awaiting the creation of the corresponding stream.

4. CAPSULE HTTP/3 Frame Definition

CAPSULE allows reliably sending request-related information end-to-

end, even in the presence of HTTP intermediaries.

CAPSULE is an HTTP/3 Frame (as opposed to a QUIC frame) which SHALL

only be sent in client-initiated bidirectional streams.

Intermediaries MUST forward all received CAPSULE frames in their

unmodified entirety on the same stream where it would forward DATA

frames. Intermediaries MUST NOT send any CAPSULE frames other than

the ones it is forwarding.

This specification of CAPSULE currently uses HTTP/3 frame type

0xffcab5. If this document is approved, a lower number will be

requested from IANA.

Figure 2: CAPSULE HTTP/3 Frame Format

¶

¶

¶

¶

¶

¶

CAPSULE HTTP/3 Frame {

 Type (i) = 0xffcab5,

 Length (i),

 Capsule Type (i),

 Capsule Data (..),

}

Capsule Type:

Capsule Data:

Context ID:

Extension String:

The Type and Length fields follows the definition of HTTP/3 frames

from [H3]. The payload consists of:

The type of this capsule.

Data whose semantics depends on the Capsule Type.

Endpoints which receive a Capsule with an unknown Capsule Type MUST

silently drop that Capsule. Intermediaries MUST forward Capsules,

even if they do not know the Capsule Type or cannot parse the

Capsule Data.

4.1. The REGISTER_DATAGRAM_CONTEXT Capsule

The REGISTER_DATAGRAM_CONTEXT capsule (type=0x00) allows an endpoint

to inform its peer of the encoding and semantics of datagrams

associated with a given context ID. Its Capsule Data field consists

of:

Figure 3: REGISTER_DATAGRAM_CONTEXT Capsule Format

The context ID to register.

A string of comma-separated key-value pairs to

enable extensibility. Keys are registered with IANA, see Section

8.4.

The ABNF for the Extension String field is as follows (using syntax

from Section 3.2.6 of [RFC7230]):

Note that these registrations are unilateral and bidirectional: the

sender of the frame unilaterally defines the semantics it will apply

to the datagrams it sends and receives using this context ID. Once a

context ID is registered, it can be used in both directions.

Endpoints MUST NOT send DATAGRAM frames using a Context ID until

they have either sent or received a REGISTER_DATAGRAM_CONTEXT

Capsule with the same Context ID. However, due to reordering, an

endpoint that receives a DATAGRAM frame with an unknown Context ID

¶

¶

¶

¶

¶

REGISTER_DATAGRAM_CONTEXT Capsule {

 Context ID (i),

 Extension String (..),

}

¶

¶

¶

 extension-string = [ext-member *("," ext-member)]

 ext-member = ext-member-key "=" ext-member-value

 ext-member-key = token

 ext-member-value = token

¶

¶

https://rfc-editor.org/rfc/rfc7230#section-3.2.6

Context ID:

Extension String:

MUST NOT treat it as an error, it SHALL instead drop the DATAGRAM

frame silently, or buffer it temporarily while awaiting the

corresponding REGISTER_DATAGRAM_CONTEXT Capsule.

Endpoints MUST NOT register the same Context ID twice on the same

stream. This also applies to Context IDs that have been closed using

a CLOSE_DATAGRAM_CONTEXT capsule. Clients MUST NOT register server-

initiated Context IDs and servers MUST NOT register client-initiated

Context IDs. If an endpoint receives a REGISTER_DATAGRAM_CONTEXT

capsule that violates one or more of these requirements, the

endpoint MUST abruptly terminate the corresponding stream with a

stream error of type H3_GENERAL_PROTOCOL_ERROR.

4.2. The CLOSE_DATAGRAM_CONTEXT Capsule

The CLOSE_DATAGRAM_CONTEXT capsule (type=0x01) allows an endpoint to

inform its peer that it will no longer send or parse received

datagrams associated with a given context ID. Its Capsule Data field

consists of:

Figure 4: CLOSE_DATAGRAM_CONTEXT Capsule Format

The context ID to close.

A string of comma-separated key-value pairs to

enable extensibility, see the definition of the same field in

Section 4.1 for details.

Note that this close is unilateral and bidirectional: the sender of

the frame unilaterally informs its peer of the closure. Endpoints

can use CLOSE_DATAGRAM_CONTEXT capsules to close a context that was

initially registered by either themselves, or by their peer.

Endpoints MAY use the CLOSE_DATAGRAM_CONTEXT capsule to immediately

reject a context that was just registered using a

REGISTER_DATAGRAM_CONTEXT capsule if they find its Extension String

to be unacceptable.

After an endpoint has either sent or received a

CLOSE_DATAGRAM_CONTEXT frame, it MUST NOT send any DATAGRAM frames

with that Context ID. However, due to reordering, an endpoint that

receives a DATAGRAM frame with a closed Context ID MUST NOT treat it

as an error, it SHALL instead drop the DATAGRAM frame silently.

¶

¶

¶

CLOSE_DATAGRAM_CONTEXT Capsule {

 Context ID (i),

 Extension String (..),

}

¶

¶

¶

¶

Context ID:

HTTP/3 Datagram Payload:

Endpoints MUST NOT close a Context ID that was not previously

registered. Endpoints MUST NOT close a Context ID that has already

been closed. If an endpoint receives a CLOSE_DATAGRAM_CONTEXT

capsule that violates one or more of these requirements, the

endpoint MUST abruptly terminate the corresponding stream with a

stream error of type H3_GENERAL_PROTOCOL_ERROR.

4.3. The DATAGRAM Capsule

The DATAGRAM capsule (type=0x02) allows an endpoint to send a

datagram frame over an HTTP stream. This is particularly useful when

using a version of HTTP that does not support QUIC DATAGRAM frames.

Its Capsule Data field consists of:

Figure 5: DATAGRAM Capsule Format

A variable-length integer indicating the context ID of

the datagram (see Section 2.1).

The payload of the datagram, whose

semantics are defined by individual applications. Note that this

field can be empty.

Datagrams sent using the DATAGRAM Capsule have the exact same

semantics as datagrams sent in QUIC DATAGRAM frames.

5. The H3_DATAGRAM HTTP/3 SETTINGS Parameter

Implementations of HTTP/3 that support this mechanism can indicate

that to their peer by sending the H3_DATAGRAM SETTINGS parameter

with a value of 1. The value of the H3_DATAGRAM SETTINGS parameter

MUST be either 0 or 1. A value of 0 indicates that this mechanism is

not supported. An endpoint that receives the H3_DATAGRAM SETTINGS

parameter with a value that is neither 0 or 1 MUST terminate the

connection with error H3_SETTINGS_ERROR.

An endpoint that sends the H3_DATAGRAM SETTINGS parameter with a

value of 1 MUST send the max_datagram_frame_size QUIC Transport

Parameter [DGRAM]. An endpoint that receives the H3_DATAGRAM

SETTINGS parameter with a value of 1 on a QUIC connection that did

not also receive the max_datagram_frame_size QUIC Transport

Parameter MUST terminate the connection with error

H3_SETTINGS_ERROR.

¶

¶

DATAGRAM Capsule {

 Context ID (i),

 HTTP/3 Datagram Payload (..),

}

¶

¶

¶

¶

¶

When clients use 0-RTT, they MAY store the value of the server's

H3_DATAGRAM SETTINGS parameter. Doing so allows the client to use

HTTP/3 datagrams in 0-RTT packets. When servers decide to accept 0-

RTT data, they MUST send a H3_DATAGRAM SETTINGS parameter greater

than or equal to the value they sent to the client in the connection

where they sent them the NewSessionTicket message. If a client

stores the value of the H3_DATAGRAM SETTINGS parameter with their 0-

RTT state, they MUST validate that the new value of the H3_DATAGRAM

SETTINGS parameter sent by the server in the handshake is greater

than or equal to the stored value; if not, the client MUST terminate

the connection with error H3_SETTINGS_ERROR. In all cases, the

maximum permitted value of the H3_DATAGRAM SETTINGS parameter is 1.

6. HTTP/1.x and HTTP/2 Support

We can provide DATAGRAM support in HTTP/2 by defining the CAPSULE

frame in HTTP/2.

We can provide DATAGRAM support in HTTP/1.x by defining its data

stream format to a sequence of length-value capsules.

TODO: Refactor this document into "HTTP Datagrams" with definitions

for HTTP/1.x, HTTP/2, and HTTP/3.

7. Security Considerations

Since this feature requires sending an HTTP/3 Settings parameter, it

"sticks out". In other words, probing clients can learn whether a

server supports this feature. Implementations that support this

feature SHOULD always send this Settings parameter to avoid leaking

the fact that there are applications using HTTP/3 datagrams enabled

on this endpoint.

8. IANA Considerations

8.1. HTTP/3 CAPSULE Frame

This document will request IANA to register the following entry in

the "HTTP/3 Frames" registry:

8.2. HTTP SETTINGS Parameter

This document will request IANA to register the following entry in

the "HTTP/3 Settings" registry:

¶

¶

¶

¶

¶

¶

 +------------+----------+---------------+

 | Frame Type | Value | Specification |

 +============+==========+===============+

 | CAPSULE | 0xffcab5 | This Document |

 +------------+----------+---------------+

¶

¶

Value:

Reference:

Key:

Description:

8.3. Capsule Types

This document establishes a registry for HTTP/3 frame type codes.

The "HTTP Capsule Types" registry governs a 62-bit space.

Registrations in this registry MUST include the following fields:

Type:

A name or label for the capsule type.

The value of the Capsule Type field (see Section 4) is a

62bit integer.

An optional reference to a specification for the type.

This field MAY be empty.

Registrations follow the "First Come First Served" policy (see

Section 4.4 of [IANA-POLICY]) where two registrations MUST NOT have

the same Type.

This registry initially contains the following entries:

8.4. Context Extension Keys

REGISTER_DATAGRAM_CONTEXT capsules carry key-value pairs, see

Section 4.1. This document will request IANA to create an "HTTP

Datagram Context Extension Keys" registry. Registrations in this

registry MUST include the following fields:

The key (see Section 4.1). Keys MUST be valid tokens as

defined in Section 3.2.6 of [RFC7230].

A brief description of the key semantics, which MAY be

a summary if a specification reference is provided.

 +--------------+----------+---------------+---------+

 | Setting Name | Value | Specification | Default |

 +==============+==========+===============+=========+

 | H3_DATAGRAM | 0xffd276 | This Document | 0 |

 +--------------+----------+---------------+---------+

¶

¶

¶

¶

¶

¶

¶

¶

+---------------------------+-------+---------------+

| Capsule Type | Value | Specification |

+---------------------------+-------+---------------+

| REGISTER_DATAGRAM_CONTEXT | 0x00 | This Document |

+---------------------------+-------+---------------+

| CLOSE_DATAGRAM_CONTEXT | 0x01 | This Document |

+---------------------------+-------+---------------+

| DATAGRAM | 0x02 | This Document |

+---------------------------+-------+---------------+

¶

¶

¶

¶

Reference:

[DGRAM]

[H3]

[IANA-POLICY]

[QUIC]

[RFC2119]

[RFC7230]

[RFC8174]

An optional reference to a specification for the

parameter. This field MAY be empty.

Registrations follow the "First Come First Served" policy (see

Section 4.4 of [IANA-POLICY]) where two registrations MUST NOT have

the same Key. This registry is initially empty.

9. Normative References

Pauly, T., Kinnear, E., and D. Schinazi, "An Unreliable

Datagram Extension to QUIC", Work in Progress, Internet-

Draft, draft-ietf-quic-datagram-02, 16 February 2021,

<https://tools.ietf.org/html/draft-ietf-quic-

datagram-02>.

Bishop, M., "Hypertext Transfer Protocol Version 3 (HTTP/

3)", Work in Progress, Internet-Draft, draft-ietf-quic-

http-34, 2 February 2021, <https://tools.ietf.org/html/

draft-ietf-quic-http-34>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/rfc/rfc8126>.

Iyengar, J. and M. Thomson, "QUIC: A UDP-Based

Multiplexed and Secure Transport", Work in Progress,

Internet-Draft, draft-ietf-quic-transport-34, 14 January

2021, <https://tools.ietf.org/html/draft-ietf-quic-

transport-34>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/rfc/rfc7230>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

¶

¶

https://tools.ietf.org/html/draft-ietf-quic-datagram-02
https://tools.ietf.org/html/draft-ietf-quic-datagram-02
https://tools.ietf.org/html/draft-ietf-quic-http-34
https://tools.ietf.org/html/draft-ietf-quic-http-34
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8126
https://tools.ietf.org/html/draft-ietf-quic-transport-34
https://tools.ietf.org/html/draft-ietf-quic-transport-34
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc7230
https://www.rfc-editor.org/rfc/rfc8174

Appendix A. Examples

A.1. CONNECT-UDP

Client Server

STREAM(44): HEADERS -------->

 :method = CONNECT-UDP

 :scheme = https

 :path = /

 :authority = target.example.org:443

STREAM(44): CAPSULE -------->

 Capsule Type = REGISTER_DATAGRAM_CONTEXT

 Context ID = 0

 Extension String = ""

DATAGRAM -------->

 Quarter Stream ID = 11

 Context ID = 0

 Payload = Encapsulated UDP Payload

 <-------- STREAM(44): HEADERS

 :status = 200

/* Wait for target server to respond to UDP packet. */

 <-------- DATAGRAM

 Quarter Stream ID = 11

 Context ID = 0

 Payload = Encapsulated UDP Payload

¶

A.2. CONNECT-UDP with Timestamp Extension

Client Server

STREAM(44): HEADERS -------->

 :method = CONNECT-UDP

 :scheme = https

 :path = /

 :authority = target.example.org:443

STREAM(44): CAPSULE -------->

 Capsule Type = REGISTER_DATAGRAM_CONTEXT

 Context ID = 0

 Extension String = ""

DATAGRAM -------->

 Quarter Stream ID = 11

 Context ID = 0

 Payload = Encapsulated UDP Payload

 <-------- STREAM(44): HEADERS

 :status = 200

/* Wait for target server to respond to UDP packet. */

 <-------- DATAGRAM

 Quarter Stream ID = 11

 Context ID = 0

 Payload = Encapsulated UDP Payload

STREAM(44): CAPSULE -------->

 Capsule Type = REGISTER_DATAGRAM_CONTEXT

 Context ID = 2

 Extension String = "timestamp"

DATAGRAM -------->

 Quarter Stream ID = 11

 Context ID = 2

 Payload = Encapsulated UDP Payload With Timestamp

¶

A.3. CONNECT-IP with IP compression

Client Server

STREAM(44): HEADERS -------->

 :method = CONNECT-IP

 :scheme = https

 :path = /

 :authority = proxy.example.org:443

 <-------- STREAM(44): HEADERS

 :status = 200

/* Exchange CONNECT-IP configuration information. */

STREAM(44): CAPSULE -------->

 Capsule Type = REGISTER_DATAGRAM_CONTEXT

 Context ID = 0

 Extension String = ""

DATAGRAM -------->

 Quarter Stream ID = 11

 Context ID = 0

 Payload = Encapsulated IP Packet

/* Endpoint happily exchange encapsulated IP packets */

/* using Quarter Stream ID 11 and Context ID 0. */

DATAGRAM -------->

 Quarter Stream ID = 11

 Context ID = 0

 Payload = Encapsulated IP Packet

/* After performing some analysis on traffic patterns, */

/* the client decides it wants to compress a 5-tuple. */

STREAM(44): CAPSULE -------->

 Capsule Type = REGISTER_DATAGRAM_CONTEXT

 Context ID = 2

 Extension String = "ip=192.0.2.42,port=443"

DATAGRAM -------->

 Quarter Stream ID = 11

 Context ID = 2

 Payload = Compressed IP Packet

¶

A.4. WebTransport

Acknowledgments

The DATAGRAM context identifier was previously part of the DATAGRAM

frame definition itself, the authors would like to acknowledge the

authors of that document and the members of the IETF MASQUE working

group for their suggestions. Additionally, the authors would like to

thank Martin Thomson for suggesting the use of an HTTP/3 SETTINGS

parameter. Furthermore, the authors would like to thank Ben Schwartz

for writing the first proposal that used two layers of indirection.

Authors' Addresses

David Schinazi

Google LLC

1600 Amphitheatre Parkway

Mountain View, California 94043,

United States of America

Email: dschinazi.ietf@gmail.com

Lucas Pardue

Cloudflare

Email: lucaspardue.24.7@gmail.com

Client Server

STREAM(44): HEADERS -------->

 :method = CONNECT

 :scheme = https

 :method = webtransport

 :path = /hello

 :authority = webtransport.example.org:443

 Origin = https://www.example.org:443

STREAM(44): CAPSULE -------->

 Capsule Type = REGISTER_DATAGRAM_CONTEXT

 Context ID = 0

 Extension String = ""

 <-------- STREAM(44): HEADERS

 :status = 200

/* Both endpoints can now send WebTransport datagrams. */

¶

¶

mailto:dschinazi.ietf@gmail.com
mailto:lucaspardue.24.7@gmail.com

	Using QUIC Datagrams with HTTP/3
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Definitions

	2. Multiplexing
	2.1. Datagram Contexts
	2.2. Context ID Allocation

	3. HTTP/3 DATAGRAM Frame Format
	4. CAPSULE HTTP/3 Frame Definition
	4.1. The REGISTER_DATAGRAM_CONTEXT Capsule
	4.2. The CLOSE_DATAGRAM_CONTEXT Capsule
	4.3. The DATAGRAM Capsule

	5. The H3_DATAGRAM HTTP/3 SETTINGS Parameter
	6. HTTP/1.x and HTTP/2 Support
	7. Security Considerations
	8. IANA Considerations
	8.1. HTTP/3 CAPSULE Frame
	8.2. HTTP SETTINGS Parameter
	8.3. Capsule Types
	8.4. Context Extension Keys

	9. Normative References
	Appendix A. Examples
	A.1. CONNECT-UDP
	A.2. CONNECT-UDP with Timestamp Extension
	A.3. CONNECT-IP with IP compression
	A.4. WebTransport
	Acknowledgments
	Authors' Addresses

