
Workgroup: MASQUE

Internet-Draft:

draft-ietf-masque-h3-datagram-02

Published: 27 May 2021

Intended Status: Standards Track

Expires: 28 November 2021

Authors: D. Schinazi

Google LLC

L. Pardue

Cloudflare

Using QUIC Datagrams with HTTP/3

Abstract

The QUIC DATAGRAM extension provides application protocols running

over QUIC with a mechanism to send unreliable data while leveraging

the security and congestion-control properties of QUIC. However,

QUIC DATAGRAM frames do not provide a means to demultiplex

application contexts. This document describes how to use QUIC

DATAGRAM frames when the application protocol running over QUIC is

HTTP/3. It associates datagrams with client-initiated bidirectional

streams and defines an optional additional demultiplexing layer.

Discussion of this work is encouraged to happen on the MASQUE IETF

mailing list (masque@ietf.org) or on the GitHub repository which

contains the draft: https://github.com/ietf-wg-masque/draft-ietf-

masque-h3-datagram.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 November 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

mailto:masque@ietf.org
https://github.com/ietf-wg-masque/draft-ietf-masque-h3-datagram
https://github.com/ietf-wg-masque/draft-ietf-masque-h3-datagram
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Conventions and Definitions

2. Multiplexing

2.1. Datagram Contexts

2.2. Context ID Allocation

3. HTTP/3 DATAGRAM Format

4. CAPSULE HTTP/3 Frame Definition

4.1. The REGISTER_DATAGRAM_CONTEXT Capsule

4.2. The REGISTER_DATAGRAM_NO_CONTEXT Capsule

4.3. The CLOSE_DATAGRAM_CONTEXT Capsule

4.4. The DATAGRAM Capsule

5. Context Extensibility

5.1. The CLOSE_CODE Context Extension Type

5.2. The DETAILS Context Extension Type

6. The H3_DATAGRAM HTTP/3 SETTINGS Parameter

7. Prioritization

8. HTTP/1.x and HTTP/2 Support

9. Security Considerations

10. IANA Considerations

10.1. HTTP/3 CAPSULE Frame

10.2. HTTP SETTINGS Parameter

10.3. Capsule Types

10.4. Context Extension Types

10.5. Context Close Codes

11. Normative References

Appendix A. Examples

A.1. CONNECT-UDP

A.2. CONNECT-UDP with Timestamp Extension

A.3. CONNECT-IP with IP compression

A.4. WebTransport

Acknowledgments

Authors' Addresses

1. Introduction

The QUIC DATAGRAM extension [DGRAM] provides application protocols

running over QUIC [QUIC] with a mechanism to send unreliable data

¶

https://trustee.ietf.org/license-info

while leveraging the security and congestion-control properties of

QUIC. However, QUIC DATAGRAM frames do not provide a means to

demultiplex application contexts. This document describes how to use

QUIC DATAGRAM frames when the application protocol running over QUIC

is HTTP/3 [H3]. It associates datagrams with client-initiated

bidirectional streams and defines an optional additional

demultiplexing layer.

Discussion of this work is encouraged to happen on the MASQUE IETF

mailing list (masque@ietf.org) or on the GitHub repository which

contains the draft: https://github.com/ietf-wg-masque/draft-ietf-

masque-h3-datagram.

1.1. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Multiplexing

In order to allow multiple exchanges of datagrams to coexist on a

given QUIC connection, HTTP datagrams contain two layers of

multiplexing. First, the QUIC DATAGRAM frame payload starts with an

encoded stream identifier that associates the datagram with a given

QUIC stream. Second, datagrams optionally carry a context identifier

(see Section 2.1) that allows multiplexing multiple datagram

contexts related to a given HTTP request. Conceptually, the first

layer of multiplexing is per-hop, while the second is end-to-end.

2.1. Datagram Contexts

Within the scope of a given HTTP request, contexts provide an

additional demultiplexing layer. Contexts determine the encoding of

datagrams, and can be used to implicitly convey metadata. For

example, contexts can be used for compression to elide some parts of

the datagram: the context identifier then maps to a compression

context that the receiver can use to reconstruct the elided data.

Contexts are optional, their use is negotiated on each request

stream using registration capsules, see Section 4.1 and Section 4.2.

When contexts are used, they are identified within the scope of a

given request by a numeric value, referred to as the context ID. A

context ID is a 62-bit integer (0 to 2^62-1).

While stream IDs are a per-hop concept, context IDs are an end-to-

end concept. In other words, if a datagram travels through one or

more intermediaries on its way from client to server, the stream ID

¶

¶

¶

¶

¶

¶

mailto:masque@ietf.org
https://github.com/ietf-wg-masque/draft-ietf-masque-h3-datagram
https://github.com/ietf-wg-masque/draft-ietf-masque-h3-datagram

Quarter Stream ID:

Context ID:

will most likely change from hop to hop, but the context ID will

remain the same. Context IDs are opaque to intermediaries.

2.2. Context ID Allocation

Implementations of HTTP/3 that support the DATAGRAM extension MUST

provide a context ID allocation service. That service will allow

applications co-located with HTTP/3 to request a unique context ID

that they can subsequently use for their own purposes. The HTTP/3

implementation will then parse the context ID of incoming DATAGRAM

frames and use it to deliver the frame to the appropriate

application context.

Even-numbered context IDs are client-initiated, while odd-numbered

context IDs are server-initiated. This means that an HTTP/3 client

implementation of the context ID allocation service MUST only

provide even-numbered IDs, while a server implementation MUST only

provide odd-numbered IDs. Note that, once allocated, any context ID

can be used by both client and server - only allocation carries

separate namespaces to avoid requiring synchronization.

Additionally, note that the context ID namespace is tied to a given

HTTP request: it is possible for the same numeral context ID to be

used simultaneously in distinct requests.

3. HTTP/3 DATAGRAM Format

When used with HTTP/3, the Datagram Data field of QUIC DATAGRAM

frames uses the following format (using the notation from the

"Notational Conventions" section of [QUIC]):

Figure 1: HTTP/3 DATAGRAM Format

A variable-length integer that contains the

value of the client-initiated bidirectional stream that this

datagram is associated with, divided by four. (The division by

four stems from the fact that HTTP requests are sent on client-

initiated bidirectional streams, and those have stream IDs that

are divisible by four.)

A variable-length integer indicating the context ID of

the datagram (see Section 2.1). Whether or not this field is

present depends on which registration capsules were exchanged on

the associated stream: if a REGISTER_DATAGRAM_CONTEXT capsule

¶

¶

¶

¶

HTTP/3 Datagram {

 Quarter Stream ID (i),

 [Context ID (i)],

 HTTP/3 Datagram Payload (..),

}

¶

HTTP/3 Datagram Payload:

(see Section 4.1) has been sent or received on this stream, then

the field is present; if a REGISTER_DATAGRAM_NO_CONTEXT capsule

(see Section 4.2) has been sent or received, then this field is

absent; if neither has been sent or received, then it is not yet

possible to parse this datagram and the receiver MUST either drop

that datagram silently or buffer it temporarily while awaiting

the registration capsule.

The payload of the datagram, whose

semantics are defined by individual applications. Note that this

field can be empty.

Intermediaries parse the Quarter Stream ID field in order to

associate the QUIC DATAGRAM frame with a stream. If an intermediary

receives a QUIC DATAGRAM frame whose payload is too short to allow

parsing the Quarter Stream ID field, the intermediary MUST treat it

as an HTTP/3 connection error of type H3_GENERAL_PROTOCOL_ERROR. The

Context ID field is optional and its use is negotiated end-to-end,

see Section 4.2. Therefore intermediaries cannot know whether the

Context ID field is present or absent and they MUST ignore any HTTP/

3 Datagram fields after the Quarter Stream ID.

Endpoints parse both the Quarter Stream ID field and the Context ID

field in order to associate the QUIC DATAGRAM frame with a stream

and context within that stream. If an endpoint receives a QUIC

DATAGRAM frame whose payload is too short to allow parsing the

Quarter Stream ID field, the endpoint MUST treat it as an HTTP/3

connection error of type H3_GENERAL_PROTOCOL_ERROR. If an endpoint

receives a QUIC DATAGRAM frame whose payload is long enough to allow

parsing the Quarter Stream ID field but too short to allow parsing

the Context ID field, the endpoint MUST abruptly terminate the

corresponding stream with a stream error of type

H3_GENERAL_PROTOCOL_ERROR.

Endpoints MUST NOT send HTTP/3 datagrams unless the corresponding

stream's send side is open. On a given endpoint, once the receive

side of a stream is closed, incoming datagrams for this stream are

no longer expected so the endpoint can release related state.

Endpoints MAY keep state for a short time to account for reordering.

Once the state is released, the endpoint MUST silently drop received

associated datagrams.

If an HTTP/3 datagram is received and its Quarter Stream ID maps to

a stream that has not yet been created, the receiver SHALL either

drop that datagram silently or buffer it temporarily while awaiting

the creation of the corresponding stream.

¶

¶

¶

¶

¶

¶

Capsule Type:

Capsule Data:

4. CAPSULE HTTP/3 Frame Definition

CAPSULE allows reliably sending request-related information end-to-

end, even in the presence of HTTP intermediaries.

CAPSULE is an HTTP/3 Frame (as opposed to a QUIC frame) which SHALL

only be sent in client-initiated bidirectional streams.

Intermediaries forward received CAPSULE frames on the same stream

where it would forward DATA frames. Each Capsule Type determines

whether it is opaque or transparent to intermediaries: opaque

capsules are forwarded unmodified while transparent ones can be

parsed, added, or removed by intermediaries.

This specification of CAPSULE currently uses HTTP/3 frame type

0xffcab5. If this document is approved, a lower number will be

requested from IANA.

Figure 2: CAPSULE HTTP/3 Frame Format

The Type and Length fields follows the definition of HTTP/3 frames

from [H3]. The payload consists of:

The type of this capsule.

Data whose semantics depends on the Capsule Type.

Unless otherwise specified, all Capsule Types are defined as opaque

to intermediaries. Intermediaries MUST forward all received opaque

CAPSULE frames in their unmodified entirety. Intermediaries MUST NOT

send any opaque CAPSULE frames other than the ones it is forwarding.

All Capsule Types defined in this document are opaque, with the

exception of the DATAGRAM Capsule, see Section 4.4. Definitions of

new Capsule Types MAY specify that the newly introduced type is

transparent. Intermediaries MUST treat unknown Capsule Types as

opaque.

Intermediaries respect the order of opaque CAPSULE frames: if an

intermediary receives two opaque CAPSULE frames in a given order, it

MUST forward them in the same order.

Endpoints which receive a Capsule with an unknown Capsule Type MUST

silently drop that Capsule.

¶

¶

¶

CAPSULE HTTP/3 Frame {

 Type (i) = 0xffcab5,

 Length (i),

 Capsule Type (i),

 Capsule Data (..),

}

¶

¶

¶

¶

¶

¶

Context ID:

Context Extensions:

Receipt of a CAPSULE HTTP/3 Frame on a stream that is not a client-

initiated bidirectional stream MUST be treated as a connection error

of type H3_FRAME_UNEXPECTED.

4.1. The REGISTER_DATAGRAM_CONTEXT Capsule

The REGISTER_DATAGRAM_CONTEXT capsule (type=0x00) allows an endpoint

to inform its peer of the encoding and semantics of datagrams

associated with a given context ID. Its Capsule Data field consists

of:

Figure 3: REGISTER_DATAGRAM_CONTEXT Capsule Format

The context ID to register.

See Section 5.

Note that these registrations are unilateral and bidirectional: the

sender of the frame unilaterally defines the semantics it will apply

to the datagrams it sends and receives using this context ID. Once a

context ID is registered, it can be used in both directions.

Endpoints MUST NOT send DATAGRAM frames using a Context ID until

they have either sent or received a REGISTER_DATAGRAM_CONTEXT

Capsule with the same Context ID. However, due to reordering, an

endpoint that receives a DATAGRAM frame with an unknown Context ID

MUST NOT treat it as an error, it SHALL instead drop the DATAGRAM

frame silently, or buffer it temporarily while awaiting the

corresponding REGISTER_DATAGRAM_CONTEXT Capsule.

Endpoints MUST NOT register the same Context ID twice on the same

stream. This also applies to Context IDs that have been closed using

a CLOSE_DATAGRAM_CONTEXT capsule. Clients MUST NOT register server-

initiated Context IDs and servers MUST NOT register client-initiated

Context IDs. If an endpoint receives a REGISTER_DATAGRAM_CONTEXT

capsule that violates one or more of these requirements, the

endpoint MUST abruptly terminate the corresponding stream with a

stream error of type H3_GENERAL_PROTOCOL_ERROR.

Endpoints MUST NOT send a REGISTER_DATAGRAM_CONTEXT capsule on a

stream before they have sent at least one HEADERS frame on that

stream. This removes the need to buffer REGISTER_DATAGRAM_CONTEXT

capsules when the endpoint needs information from headers to

determine how to react to the capsule. If an endpoint receives a

¶

¶

REGISTER_DATAGRAM_CONTEXT Capsule {

 Context ID (i),

 Context Extensions (..),

}

¶

¶

¶

¶

¶

Context Extensions:

REGISTER_DATAGRAM_CONTEXT capsule on a stream that hasn't yet

received a HEADERS frame, the endpoint MUST abruptly terminate the

corresponding stream with a stream error of type

H3_GENERAL_PROTOCOL_ERROR.

Servers MUST NOT send a REGISTER_DATAGRAM_CONTEXT capsule on a

stream before they have received at least one

REGISTER_DATAGRAM_CONTEXT capsule or one

REGISTER_DATAGRAM_NO_CONTEXT capsule from the client on that stream.

This ensures that clients control whether datagrams are allowed for

a given request. If a client receives a REGISTER_DATAGRAM_CONTEXT

capsule on a stream where the client has not yet sent a

REGISTER_DATAGRAM_CONTEXT capsule, the client MUST abruptly

terminate the corresponding stream with a stream error of type

H3_GENERAL_PROTOCOL_ERROR.

Servers MUST NOT send a REGISTER_DATAGRAM_CONTEXT capsule on a

stream where it has received a REGISTER_DATAGRAM_NO_CONTEXT capsule.

If a client receives a REGISTER_DATAGRAM_CONTEXT capsule on a stream

where the client has sent a REGISTER_DATAGRAM_NO_CONTEXT capsule,

the client MUST abruptly terminate the corresponding stream with a

stream error of type H3_GENERAL_PROTOCOL_ERROR.

4.2. The REGISTER_DATAGRAM_NO_CONTEXT Capsule

The REGISTER_DATAGRAM_NO_CONTEXT capsule (type=0x03) allows a client

to inform the server that datagram contexts will not be used with

this stream. It also informs the server of the encoding and

semantics of datagrams associated with this stream. Its Capsule Data

field consists of:

Figure 4: REGISTER_DATAGRAM_NO_CONTEXT Capsule Format

See Section 5.

Note that this registration is unilateral and bidirectional: the

client unilaterally defines the semantics it will apply to the

datagrams it sends and receives with this stream.

Endpoints MUST NOT send DATAGRAM frames without a Context ID until

they have either sent or received a REGISTER_DATAGRAM_NO_CONTEXT

Capsule. However, due to reordering, an endpoint that receives a

DATAGRAM frame before receiving either a REGISTER_DATAGRAM_CONTEXT

capsule or a REGISTER_DATAGRAM_NO_CONTEXT capsule MUST NOT treat it

as an error, it SHALL instead drop the DATAGRAM frame silently, or

¶

¶

¶

¶

REGISTER_DATAGRAM_NO_CONTEXT Capsule {

 Context Extensions (..),

}

¶

¶

Context ID:

buffer it temporarily while awaiting a REGISTER_DATAGRAM_NO_CONTEXT

capsule or the corresponding REGISTER_DATAGRAM_CONTEXT capsule.

Servers MUST NOT send the REGISTER_DATAGRAM_NO_CONTEXT capsule. If a

client receives a REGISTER_DATAGRAM_NO_CONTEXT capsule, the client

MUST abruptly terminate the corresponding stream with a stream error

of type H3_GENERAL_PROTOCOL_ERROR.

Clients MUST NOT send more than one REGISTER_DATAGRAM_NO_CONTEXT

capsule on a stream. If a server receives a second

REGISTER_DATAGRAM_NO_CONTEXT capsule on the same stream, the server

MUST abruptly terminate the corresponding stream with a stream error

of type H3_GENERAL_PROTOCOL_ERROR.

Clients MUST NOT send a REGISTER_DATAGRAM_NO_CONTEXT capsule on a

stream before they have sent at least one HEADERS frame on that

stream. This removes the need to buffer REGISTER_DATAGRAM_CONTEXT

capsules when the server needs information from headers to determine

how to react to the capsule. If a server receives a

REGISTER_DATAGRAM_NO_CONTEXT capsule on a stream that hasn't yet

received a HEADERS frame, the server MUST abruptly terminate the

corresponding stream with a stream error of type

H3_GENERAL_PROTOCOL_ERROR.

Clients MUST NOT send both REGISTER_DATAGRAM_CONTEXT capsules and

REGISTER_DATAGRAM_NO_CONTEXT capsules on the same stream. If a

server receives both a REGISTER_DATAGRAM_CONTEXT capsule and a

REGISTER_DATAGRAM_NO_CONTEXT capsule on the same stream, the server

MUST abruptly terminate the corresponding stream with a stream error

of type H3_GENERAL_PROTOCOL_ERROR.

Extensions MAY define a different mechanism to negotiate the

presence of contexts, and they MAY do so in a way which is opaque to

intermediaries.

4.3. The CLOSE_DATAGRAM_CONTEXT Capsule

The CLOSE_DATAGRAM_CONTEXT capsule (type=0x01) allows an endpoint to

inform its peer that it will no longer send or parse received

datagrams associated with a given context ID. Its Capsule Data field

consists of:

Figure 5: CLOSE_DATAGRAM_CONTEXT Capsule Format

¶

¶

¶

¶

¶

¶

¶

CLOSE_DATAGRAM_CONTEXT Capsule {

 Context ID (i),

 Context Extensions (..),

}

Context Extensions:

Context ID:

The context ID to close.

See Section 5.

Note that this close is unilateral and bidirectional: the sender of

the frame unilaterally informs its peer of the closure. Endpoints

can use CLOSE_DATAGRAM_CONTEXT capsules to close a context that was

initially registered by either themselves, or by their peer.

Endpoints MAY use the CLOSE_DATAGRAM_CONTEXT capsule to immediately

reject a context that was just registered using a

REGISTER_DATAGRAM_CONTEXT capsule if they find its Context

Extensions field to be unacceptable.

After an endpoint has either sent or received a

CLOSE_DATAGRAM_CONTEXT frame, it MUST NOT send any DATAGRAM frames

with that Context ID. However, due to reordering, an endpoint that

receives a DATAGRAM frame with a closed Context ID MUST NOT treat it

as an error, it SHALL instead drop the DATAGRAM frame silently.

Endpoints MUST NOT close a Context ID that was not previously

registered. Endpoints MUST NOT close a Context ID that has already

been closed. If an endpoint receives a CLOSE_DATAGRAM_CONTEXT

capsule that violates one or more of these requirements, the

endpoint MUST abruptly terminate the corresponding stream with a

stream error of type H3_GENERAL_PROTOCOL_ERROR.

All CLOSE_DATAGRAM_CONTEXT capsules MUST contain a CLOSE_CODE

context extension, see Section 5.1. If an endpoint receives a

CLOSE_DATAGRAM_CONTEXT capsule without a CLOSE_CODE context

extension, the endpoint MUST abruptly terminate the corresponding

stream with a stream error of type H3_GENERAL_PROTOCOL_ERROR.

4.4. The DATAGRAM Capsule

The DATAGRAM capsule (type=0x02) allows an endpoint to send a

datagram frame over an HTTP stream. This is particularly useful when

using a version of HTTP that does not support QUIC DATAGRAM frames.

Its Capsule Data field consists of:

Figure 6: DATAGRAM Capsule Format

A variable-length integer indicating the context ID of

the datagram (see Section 2.1). Whether or not this field is

present depends on which registration capsules were exchanged on

¶

¶

¶

¶

¶

¶

¶

DATAGRAM Capsule {

 [Context ID (i)],

 HTTP/3 Datagram Payload (..),

}

HTTP/3 Datagram Payload:

the associated stream: if a REGISTER_DATAGRAM_CONTEXT capsule

(see Section 4.1) has been sent or received on this stream, then

the field is present; if a REGISTER_DATAGRAM_NO_CONTEXT capsule

(see Section 4.2) has been sent or received, then this field is

absent; if neither has been sent or received, then it is not yet

possible to parse this datagram and the receiver MUST either drop

that datagram silently or buffer it temporarily while awaiting

the registration capsule.

The payload of the datagram, whose

semantics are defined by individual applications. Note that this

field can be empty.

Datagrams sent using the DATAGRAM Capsule have the exact same

semantics as datagrams sent in QUIC DATAGRAM frames. In particular,

the restrictions on when it is allowed to send an HTTP/3 datagram

and how to process them from Section 3 also apply to HTTP/3

datagrams sent and received using the DATAGRAM capsule.

The DATAGRAM Capsule is transparent to intermediaries, meaning that

intermediaries MAY parse it and send DATAGRAM Capsules that they did

not receive. This allows an intermediary to reencode HTTP/3

Datagrams as it forwards them: in other words, an intermediary MAY

send a DATAGRAM Capsule to forward an HTTP/3 Datagram which was

received in a QUIC DATAGRAM frame, and vice versa.

Note that while DATAGRAM capsules are sent on a stream,

intermediaries can reencode HTTP/3 datagrams into QUIC DATAGRAM

frames over the next hop, and those could be dropped. Because of

this, applications have to always consider HTTP/3 datagrams to be

unreliable, even if they were initially sent in a capsule.

5. Context Extensibility

In order to facilitate extensibility of contexts, the

REGISTER_DATAGRAM_CONTEXT, REGISTER_DATAGRAM_NO_CONTEXT, and the

CLOSE_DATAGRAM_CONTEXT capsules carry a Context Extensions field.

That field contains a sequence of context extensions:

Each context extension is encoded as a (type, length, value) tuple:

¶

¶

¶

¶

¶

¶

 Context Extensions {

 Context Extension (..) ...,

 }

¶

¶

 Context Extension {

 Context Extension Type (i),

 Context Extension Length (i),

 Context Extension Value (..),

 }

¶

NO_ERROR (code=0x00):

DENIED (code=0x01):

RESOURCE_LIMIT (code=0x02):

Context Extension Types are registered with IANA, see Section 10.4.

The Context Extension Length field contains the length of the

Context Extension Value field in bytes. The semantics of the Context

Extension Value field are defined by the corresponding Context

Extension Type.

5.1. The CLOSE_CODE Context Extension Type

The CLOSE_CODE context extension type (type=0x00) allows an endpoint

to provide additional information as to why a datagram context was

closed. This type SHALL only be sent in CLOSE_DATAGRAM_CONTEXT

capsules. Its Context Extension Value field consists of a single

variable-length integer which contains the close code. The following

codes are defined:

This indicates that the registration was

closed without any additional information.

This indicates that the sender has rejected the

context registration based on its local policy. The endpoint that

had originally registered this context MUST NOT try to register

another context with the same context extensions on this stream.

This indicates that the context was

closed to save resources. The recipient SHOULD limit its future

registration of resource-incentive contexts.

Receipt of an unknown close code MUST be treated as if the NO_ERROR

code was present. Close codes are registered with IANA, see Section

10.5.

5.2. The DETAILS Context Extension Type

The DETAILS context extension type (type=0x01) allows an endpoint to

provide additional details to context capsules. It is meant for

debugging purposes. Its Context Extension Value field consists of a

human-readable string encoded in UTF-8.

6. The H3_DATAGRAM HTTP/3 SETTINGS Parameter

Implementations of HTTP/3 that support this mechanism can indicate

that to their peer by sending the H3_DATAGRAM SETTINGS parameter

with a value of 1. The value of the H3_DATAGRAM SETTINGS parameter

MUST be either 0 or 1. A value of 0 indicates that this mechanism is

not supported. An endpoint that receives the H3_DATAGRAM SETTINGS

parameter with a value that is neither 0 or 1 MUST terminate the

connection with error H3_SETTINGS_ERROR.

An endpoint that sends the H3_DATAGRAM SETTINGS parameter with a

value of 1 MUST send the max_datagram_frame_size QUIC Transport

¶

¶

¶

¶

¶

¶

¶

¶

Parameter [DGRAM]. An endpoint that receives the H3_DATAGRAM

SETTINGS parameter with a value of 1 on a QUIC connection that did

not also receive the max_datagram_frame_size QUIC Transport

Parameter MUST terminate the connection with error

H3_SETTINGS_ERROR.

When clients use 0-RTT, they MAY store the value of the server's

H3_DATAGRAM SETTINGS parameter. Doing so allows the client to use

HTTP/3 datagrams in 0-RTT packets. When servers decide to accept 0-

RTT data, they MUST send a H3_DATAGRAM SETTINGS parameter greater

than or equal to the value they sent to the client in the connection

where they sent them the NewSessionTicket message. If a client

stores the value of the H3_DATAGRAM SETTINGS parameter with their 0-

RTT state, they MUST validate that the new value of the H3_DATAGRAM

SETTINGS parameter sent by the server in the handshake is greater

than or equal to the stored value; if not, the client MUST terminate

the connection with error H3_SETTINGS_ERROR. In all cases, the

maximum permitted value of the H3_DATAGRAM SETTINGS parameter is 1.

7. Prioritization

Prioritization of HTTP/3 datagrams is not defined in this document.

Future extensions MAY define how to prioritize datagrams, and MAY

define signaling to allow endpoints to communicate their

prioritization preferences.

8. HTTP/1.x and HTTP/2 Support

We can provide DATAGRAM support in HTTP/2 by defining the CAPSULE

frame in HTTP/2.

We can provide DATAGRAM support in HTTP/1.x by defining its data

stream format to a sequence of length-value capsules.

TODO: Refactor this document into "HTTP Datagrams" with definitions

for HTTP/1.x, HTTP/2, and HTTP/3.

9. Security Considerations

Since this feature requires sending an HTTP/3 Settings parameter, it

"sticks out". In other words, probing clients can learn whether a

server supports this feature. Implementations that support this

feature SHOULD always send this Settings parameter to avoid leaking

the fact that there are applications using HTTP/3 datagrams enabled

on this endpoint.

¶

¶

¶

¶

¶

¶

¶

Value:

Reference:

10. IANA Considerations

10.1. HTTP/3 CAPSULE Frame

This document will request IANA to register the following entry in

the "HTTP/3 Frames" registry:

10.2. HTTP SETTINGS Parameter

This document will request IANA to register the following entry in

the "HTTP/3 Settings" registry:

10.3. Capsule Types

This document establishes a registry for HTTP/3 capsule type codes.

The "HTTP Capsule Types" registry governs a 62-bit space.

Registrations in this registry MUST include the following fields:

Type:

A name or label for the capsule type.

The value of the Capsule Type field (see Section 4) is a

62bit integer.

An optional reference to a specification for the type.

This field MAY be empty.

Registrations follow the "First Come First Served" policy (see

Section 4.4 of [IANA-POLICY]) where two registrations MUST NOT have

the same Type.

This registry initially contains the following entries:

¶

 +------------+----------+---------------+

 | Frame Type | Value | Specification |

 +============+==========+===============+

 | CAPSULE | 0xffcab5 | This Document |

 +------------+----------+---------------+

¶

¶

 +--------------+----------+---------------+---------+

 | Setting Name | Value | Specification | Default |

 +==============+==========+===============+=========+

 | H3_DATAGRAM | 0xffd276 | This Document | 0 |

 +--------------+----------+---------------+---------+

¶

¶

¶

¶

¶

¶

¶

¶

Value:

Reference:

Capsule types with a value of the form 41 * N + 23 for integer

values of N are reserved to exercise the requirement that unknown

capsule types be ignored. These capsules have no semantics and can

carry arbitrary values. These values MUST NOT be assigned by IANA

and MUST NOT appear in the listing of assigned values.

10.4. Context Extension Types

This document establishes a registry for HTTP/3 datagram context

extension type codes. The "HTTP Context Extension Types" registry

governs a 62-bit space. Registrations in this registry MUST include

the following fields:

Type:

A name or label for the context extension type.

The value of the Context Extension Type field (see Section

5) is a 62bit integer.

An optional reference to a specification for the

parameter. This field MAY be empty.

Registrations follow the "First Come First Served" policy (see

Section 4.4 of [IANA-POLICY]) where two registrations MUST NOT have

the same Type nor Value.

This registry initially contains the following entries:

+------------------------------+-------+---------------+

| Capsule Type | Value | Specification |

+------------------------------+-------+---------------+

| REGISTER_DATAGRAM_CONTEXT | 0x00 | This Document |

+------------------------------+-------+---------------+

| CLOSE_DATAGRAM_CONTEXT | 0x01 | This Document |

+------------------------------+-------+---------------+

| DATAGRAM | 0x02 | This Document |

+------------------------------+-------+---------------+

| REGISTER_DATAGRAM_NO_CONTEXT | 0x03 | This Document |

+------------------------------+-------+---------------+

¶

¶

¶

¶

¶

¶

¶

¶

¶

+------------------------------+-------+---------------+

| Context Extension Type | Value | Specification |

+------------------------------+-------+---------------+

| CLOSE_CODE | 0x00 | This Document |

+------------------------------+-------+---------------+

| DETAILS | 0x01 | This Document |

+------------------------------+-------+---------------+

¶

Value:

Reference:

[DGRAM]

Context extension types with a value of the form 41 * N + 17 for

integer values of N are reserved to exercise the requirement that

unknown context extension types be ignored. These extensions have no

semantics and can carry arbitrary values. These values MUST NOT be

assigned by IANA and MUST NOT appear in the listing of assigned

values.

10.5. Context Close Codes

This document establishes a registry for HTTP/3 context extension

type codes. The "HTTP Context Close Codes" registry governs a 62-bit

space. Registrations in this registry MUST include the following

fields:

Type:

A name or label for the close code.

The value of the CLOSE_CODE Context Extension Value field

(see Section 5.1) is a 62bit integer.

An optional reference to a specification for the

parameter. This field MAY be empty.

Registrations follow the "First Come First Served" policy (see

Section 4.4 of [IANA-POLICY]) where two registrations MUST NOT have

the same Type nor Value.

This registry initially contains the following entries:

Context close codes with a value of the form 41 * N + 19 for integer

values of N are reserved to exercise the requirement that unknown

context close codes be treated as NO_ERROR. These values MUST NOT be

assigned by IANA and MUST NOT appear in the listing of assigned

values.

11. Normative References

Pauly, T., Kinnear, E., and D. Schinazi, "An Unreliable

Datagram Extension to QUIC", Work in Progress, Internet-

¶

¶

¶

¶

¶

¶

¶

¶

+------------------------------+-------+---------------+

| Context Close Code | Value | Specification |

+------------------------------+-------+---------------+

| NO_ERROR | 0x00 | This Document |

+------------------------------+-------+---------------+

| DENIED | 0x01 | This Document |

+------------------------------+-------+---------------+

| RESOURCE_LIMIT | 0x02 | This Document |

+------------------------------+-------+---------------+

¶

¶

[H3]

[IANA-POLICY]

[QUIC]

[RFC2119]

[RFC8174]

Draft, draft-ietf-quic-datagram-02, 16 February 2021,

<https://tools.ietf.org/html/draft-ietf-quic-

datagram-02>.

Bishop, M., "Hypertext Transfer Protocol Version 3 (HTTP/

3)", Work in Progress, Internet-Draft, draft-ietf-quic-

http-34, 2 February 2021, <https://tools.ietf.org/html/

draft-ietf-quic-http-34>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/rfc/rfc8126>.

Iyengar, J. and M. Thomson, "QUIC: A UDP-Based

Multiplexed and Secure Transport", Work in Progress,

Internet-Draft, draft-ietf-quic-transport-34, 14 January

2021, <https://tools.ietf.org/html/draft-ietf-quic-

transport-34>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

https://tools.ietf.org/html/draft-ietf-quic-datagram-02
https://tools.ietf.org/html/draft-ietf-quic-datagram-02
https://tools.ietf.org/html/draft-ietf-quic-http-34
https://tools.ietf.org/html/draft-ietf-quic-http-34
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8126
https://tools.ietf.org/html/draft-ietf-quic-transport-34
https://tools.ietf.org/html/draft-ietf-quic-transport-34
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174

Appendix A. Examples

A.1. CONNECT-UDP

Client Server

STREAM(44): HEADERS -------->

 :method = CONNECT-UDP

 :scheme = https

 :path = /

 :authority = target.example.org:443

STREAM(44): CAPSULE -------->

 Capsule Type = REGISTER_DATAGRAM_CONTEXT

 Context ID = 0

 Context Extension = {}

DATAGRAM -------->

 Quarter Stream ID = 11

 Context ID = 0

 Payload = Encapsulated UDP Payload

 <-------- STREAM(44): HEADERS

 :status = 200

/* Wait for target server to respond to UDP packet. */

 <-------- DATAGRAM

 Quarter Stream ID = 11

 Context ID = 0

 Payload = Encapsulated UDP Payload

¶

A.2. CONNECT-UDP with Timestamp Extension

Client Server

STREAM(44): HEADERS -------->

 :method = CONNECT-UDP

 :scheme = https

 :path = /

 :authority = target.example.org:443

STREAM(44): CAPSULE -------->

 Capsule Type = REGISTER_DATAGRAM_CONTEXT

 Context ID = 0

 Context Extension = {}

DATAGRAM -------->

 Quarter Stream ID = 11

 Context ID = 0

 Payload = Encapsulated UDP Payload

 <-------- STREAM(44): HEADERS

 :status = 200

/* Wait for target server to respond to UDP packet. */

 <-------- DATAGRAM

 Quarter Stream ID = 11

 Context ID = 0

 Payload = Encapsulated UDP Payload

STREAM(44): CAPSULE -------->

 Capsule Type = REGISTER_DATAGRAM_CONTEXT

 Context ID = 2

 Context Extension = {TIMESTAMP=""}

DATAGRAM -------->

 Quarter Stream ID = 11

 Context ID = 2

 Payload = Encapsulated UDP Payload With Timestamp

¶

A.3. CONNECT-IP with IP compression

Client Server

STREAM(44): HEADERS -------->

 :method = CONNECT-IP

 :scheme = https

 :path = /

 :authority = proxy.example.org:443

 <-------- STREAM(44): HEADERS

 :status = 200

/* Exchange CONNECT-IP configuration information. */

STREAM(44): CAPSULE -------->

 Capsule Type = REGISTER_DATAGRAM_CONTEXT

 Context ID = 0

 Context Extension = {}

DATAGRAM -------->

 Quarter Stream ID = 11

 Context ID = 0

 Payload = Encapsulated IP Packet

/* Endpoint happily exchange encapsulated IP packets */

/* using Quarter Stream ID 11 and Context ID 0. */

DATAGRAM -------->

 Quarter Stream ID = 11

 Context ID = 0

 Payload = Encapsulated IP Packet

/* After performing some analysis on traffic patterns, */

/* the client decides it wants to compress a 5-tuple. */

STREAM(44): CAPSULE -------->

 Capsule Type = REGISTER_DATAGRAM_CONTEXT

 Context ID = 2

 Context Extension = {IP_COMPRESSION=tcp,192.0.2.6:9876,192.0.2.7:443}

DATAGRAM -------->

 Quarter Stream ID = 11

 Context ID = 2

 Payload = Compressed IP Packet

¶

A.4. WebTransport

Acknowledgments

The DATAGRAM context identifier was previously part of the DATAGRAM

frame definition itself, the authors would like to acknowledge the

authors of that document and the members of the IETF MASQUE working

group for their suggestions. Additionally, the authors would like to

thank Martin Thomson for suggesting the use of an HTTP/3 SETTINGS

parameter. Furthermore, the authors would like to thank Ben Schwartz

for writing the first proposal that used two layers of indirection.

Authors' Addresses

David Schinazi

Google LLC

1600 Amphitheatre Parkway

Mountain View, California 94043,

United States of America

Email: dschinazi.ietf@gmail.com

Lucas Pardue

Cloudflare

Email: lucaspardue.24.7@gmail.com

Client Server

STREAM(44): HEADERS -------->

 :method = CONNECT

 :scheme = https

 :method = webtransport

 :path = /hello

 :authority = webtransport.example.org:443

 Origin = https://www.example.org:443

STREAM(44): CAPSULE -------->

 Capsule Type = REGISTER_DATAGRAM_NO_CONTEXT

 Context Extension = {}

 <-------- STREAM(44): HEADERS

 :status = 200

/* Both endpoints can now send WebTransport datagrams. */

¶

¶

mailto:dschinazi.ietf@gmail.com
mailto:lucaspardue.24.7@gmail.com

	Using QUIC Datagrams with HTTP/3
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Definitions

	2. Multiplexing
	2.1. Datagram Contexts
	2.2. Context ID Allocation

	3. HTTP/3 DATAGRAM Format
	4. CAPSULE HTTP/3 Frame Definition
	4.1. The REGISTER_DATAGRAM_CONTEXT Capsule
	4.2. The REGISTER_DATAGRAM_NO_CONTEXT Capsule
	4.3. The CLOSE_DATAGRAM_CONTEXT Capsule
	4.4. The DATAGRAM Capsule

	5. Context Extensibility
	5.1. The CLOSE_CODE Context Extension Type
	5.2. The DETAILS Context Extension Type

	6. The H3_DATAGRAM HTTP/3 SETTINGS Parameter
	7. Prioritization
	8. HTTP/1.x and HTTP/2 Support
	9. Security Considerations
	10. IANA Considerations
	10.1. HTTP/3 CAPSULE Frame
	10.2. HTTP SETTINGS Parameter
	10.3. Capsule Types
	10.4. Context Extension Types
	10.5. Context Close Codes

	11. Normative References
	Appendix A. Examples
	A.1. CONNECT-UDP
	A.2. CONNECT-UDP with Timestamp Extension
	A.3. CONNECT-IP with IP compression
	A.4. WebTransport
	Acknowledgments
	Authors' Addresses

