
Workgroup: MASQUE

Internet-Draft:

draft-ietf-masque-h3-datagram-11

Published: 17 June 2022

Intended Status: Standards Track

Expires: 19 December 2022

Authors: D. Schinazi

Google LLC

L. Pardue

Cloudflare

HTTP Datagrams and the Capsule Protocol

Abstract

This document describes HTTP Datagrams, a convention for conveying

multiplexed, potentially unreliable datagrams inside an HTTP

connection.

In HTTP/3, HTTP Datagrams can be sent unreliably using the QUIC

DATAGRAM extension. When the QUIC DATAGRAM frame is unavailable or

undesirable, they can be sent using the Capsule Protocol, a more

general convention for conveying data in HTTP connections.

HTTP Datagrams and the Capsule Protocol are intended for use by HTTP

extensions, not applications.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://ietf-wg-

masque.github.io/draft-ietf-masque-h3-datagram/draft-ietf-masque-h3-

datagram.html. Status information for this document may be found at

https://datatracker.ietf.org/doc/draft-ietf-masque-h3-datagram/.

Discussion of this document takes place on the MASQUE Working Group

mailing list (mailto:masque@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/masque/.

Source for this draft and an issue tracker can be found at https://

github.com/ietf-wg-masque/draft-ietf-masque-h3-datagram.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://ietf-wg-masque.github.io/draft-ietf-masque-h3-datagram/draft-ietf-masque-h3-datagram.html
https://ietf-wg-masque.github.io/draft-ietf-masque-h3-datagram/draft-ietf-masque-h3-datagram.html
https://ietf-wg-masque.github.io/draft-ietf-masque-h3-datagram/draft-ietf-masque-h3-datagram.html
https://datatracker.ietf.org/doc/draft-ietf-masque-h3-datagram/
mailto:masque@ietf.org
https://mailarchive.ietf.org/arch/browse/masque/
https://mailarchive.ietf.org/arch/browse/masque/
https://github.com/ietf-wg-masque/draft-ietf-masque-h3-datagram
https://github.com/ietf-wg-masque/draft-ietf-masque-h3-datagram
https://datatracker.ietf.org/drafts/current/

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 19 December 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Conventions and Definitions

2. HTTP Datagrams

2.1. HTTP/3 Datagrams

2.1.1. The SETTINGS_H3_DATAGRAM HTTP/3 Setting

2.2. HTTP Datagrams using Capsules

3. Capsules

3.1. HTTP Data Streams

3.2. The Capsule Protocol

3.3. Error Handling

3.4. The Capsule-Protocol Header Field

3.5. The DATAGRAM Capsule

4. Security Considerations

5. IANA Considerations

5.1. HTTP/3 Setting

5.2. HTTP/3 Error Code

5.3. HTTP Header Field Name

5.4. Capsule Types

6. References

6.1. Normative References

6.2. Informative References

Acknowledgments

Authors' Addresses

¶

¶

¶

¶

https://trustee.ietf.org/license-info

1. Introduction

HTTP extensions (as defined in Section 16 of [HTTP]) sometimes need

to access underlying transport protocol features such as unreliable

delivery (as offered by [DGRAM]) to enable desirable features. For

example, this could allow introducing an unreliable version of the

CONNECT method, or adding unreliable delivery to WebSockets

[WEBSOCKET].

In Section 2, this document describes HTTP Datagrams, a convention

that supports the bidirectional and optionally multiplexed exchange

of data inside an HTTP connection. While HTTP Datagrams are

associated with HTTP requests, they are not part of message content;

instead, they are intended for use by HTTP extensions (such as the

CONNECT method), and are compatible with all versions of HTTP.

When HTTP is running over a transport protocol that supports

unreliable delivery (such as when the QUIC DATAGRAM extension

[DGRAM] is available to HTTP/3 [HTTP/3]), HTTP Datagrams can use

that capability.

This document also describes the HTTP Capsule Protocol in Section 3,

to allow conveyance of HTTP Datagrams using reliable delivery. This

addresses HTTP/3 cases where use of the QUIC DATAGRAM frame is

unavailable or undesirable, or where the transport protocol only

provides reliable delivery, such as with HTTP/1.1 [HTTP/1.1] or

HTTP/2 [HTTP/2] over TCP [TCP].

1.1. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document uses terminology from [QUIC].

Where this document defines protocol types, the definition format

uses the notation from Section 1.3 of [QUIC]. Where fields within

types are integers, they are encoded using the variable-length

integer encoding from Section 16 of [QUIC]. Integer values do not

need to be encoded on the minimum number of bytes necessary.

In this document, the term "intermediary" refers to an HTTP

intermediary as defined in Section 3.7 of [HTTP].

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-16
https://rfc-editor.org/rfc/rfc9000#section-1.3
https://rfc-editor.org/rfc/rfc9000#section-16
https://rfc-editor.org/rfc/rfc9110#section-3.7

Quarter Stream ID:

2. HTTP Datagrams

HTTP Datagrams are a convention for conveying bidirectional and

potentially unreliable datagrams inside an HTTP connection, with

multiplexing when possible. All HTTP Datagrams are associated with

an HTTP request.

When HTTP Datagrams are conveyed on an HTTP/3 connection, the QUIC

DATAGRAM frame can be used to achieve these goals, including

unreliable delivery; see Section 2.1. Negotiating the use of QUIC

DATAGRAM frames for HTTP Datagrams is achieved via the exchange of

HTTP/3 settings; see Section 2.1.1.

When running over HTTP/2, demultiplexing is provided by the HTTP/2

framing layer, but unreliable delivery is unavailable. HTTP

Datagrams are negotiated and conveyed using the Capsule Protocol;

see Section 3.5.

When running over HTTP/1.x, requests are strictly serialized in the

connection, and therefore demultiplexing is not available.

Unreliable delivery is likewise not available. HTTP Datagrams are

negotiated and conveyed using the Capsule Protocol; see Section 3.5.

HTTP Datagrams MUST only be sent with an association to an HTTP

request that explicitly supports them. For example, existing HTTP

methods GET and POST do not define semantics for associated HTTP

Datagrams; therefore, HTTP Datagrams cannot be sent associated with

GET or POST request streams.

If an HTTP Datagram is received and it is associated with a request

that has no known semantics for HTTP Datagrams, the receiver MUST

terminate the request; if HTTP/3 is in use, the request stream MUST

be aborted with H3_DATAGRAM_ERROR (0x33). HTTP extensions MAY

override these requirements by defining a negotiation mechanism and

semantics for HTTP Datagrams.

2.1. HTTP/3 Datagrams

When used with HTTP/3, the Datagram Data field of QUIC DATAGRAM

frames uses the following format:

Figure 1: HTTP/3 Datagram Format

¶

¶

¶

¶

¶

¶

¶

HTTP/3 Datagram {

 Quarter Stream ID (i),

 HTTP Datagram Payload (..),

}

HTTP Datagram Payload:

A variable-length integer that contains the value of the client-

initiated bidirectional stream that this datagram is associated

with, divided by four (the division by four stems from the fact

that HTTP requests are sent on client-initiated bidirectional

streams, and those have stream IDs that are divisible by four).

The largest legal QUIC stream ID value is 2 -1, so the largest

legal value of Quarter Stream ID is 2 -1. Receipt of an HTTP/3

Datagram that includes a larger value MUST be treated as an HTTP/

3 connection error of type H3_DATAGRAM_ERROR (0x33).

The payload of the datagram, whose semantics

are defined by the extension that is using HTTP Datagrams. Note

that this field can be empty.

Receipt of a QUIC DATAGRAM frame whose payload is too short to allow

parsing the Quarter Stream ID field MUST be treated as an HTTP/3

connection error of type H3_DATAGRAM_ERROR (0x33).

HTTP/3 Datagrams MUST NOT be sent unless the corresponding stream's

send side is open. If a datagram is received after the corresponding

stream's receive side is closed, the received datagrams MUST be

silently dropped.

If an HTTP/3 Datagram is received and its Quarter Stream ID maps to

a stream that has not yet been created, the receiver SHALL either

drop that datagram silently or buffer it temporarily (on the order

of a round trip) while awaiting the creation of the corresponding

stream.

If an HTTP/3 Datagram is received and its Quarter Stream ID maps to

a stream that cannot be created due to client-initiated

bidirectional stream limits, it SHOULD be treated as an HTTP/3

connection error of type H3_ID_ERROR. Generating an error is not

mandatory in this case because HTTP/3 implementations might have

practical barriers to determining the active stream concurrency

limit that is applied by the QUIC layer.

Prioritization of HTTP/3 Datagrams is not defined in this document.

Future extensions MAY define how to prioritize datagrams, and MAY

define signaling to allow communicating prioritization preferences.

2.1.1. The SETTINGS_H3_DATAGRAM HTTP/3 Setting

Endpoints can indicate to their peer that they are willing to

receive HTTP/3 Datagrams by sending the SETTINGS_H3_DATAGRAM (0x33)

setting with a value of 1.

The value of the SETTINGS_H3_DATAGRAM setting MUST be either 0 or 1.

A value of 0 indicates that the implementation is not willing to

receive HTTP Datagrams. If the SETTINGS_H3_DATAGRAM setting is

62

60

¶

¶

¶

¶

¶

¶

¶

¶

received with a value that is neither 0 nor 1, the receiver MUST

terminate the connection with error H3_SETTINGS_ERROR.

QUIC DATAGRAM frames MUST NOT be sent until the SETTINGS_H3_DATAGRAM

setting has been both sent and received with a value of 1.

When clients use 0-RTT, they MAY store the value of the server's

SETTINGS_H3_DATAGRAM setting. Doing so allows the client to send

QUIC DATAGRAM frames in 0-RTT packets. When servers decide to accept

0-RTT data, they MUST send a SETTINGS_H3_DATAGRAM setting greater

than or equal to the value they sent to the client in the connection

where they sent them the NewSessionTicket message. If a client

stores the value of the SETTINGS_H3_DATAGRAM setting with their 0-

RTT state, they MUST validate that the new value of the

SETTINGS_H3_DATAGRAM setting sent by the server in the handshake is

greater than or equal to the stored value; if not, the client MUST

terminate the connection with error H3_SETTINGS_ERROR. In all cases,

the maximum permitted value of the SETTINGS_H3_DATAGRAM setting

parameter is 1.

It is RECOMMENDED that implementations that support receiving HTTP/3

Datagrams always send the SETTINGS_H3_DATAGRAM setting with a value

of 1, even if the application does not intend to use HTTP/3

Datagrams. This helps to avoid "sticking out"; see Section 4.

2.1.1.1. Note About Draft Versions

[[RFC editor: please remove this section before publication.]]

Some revisions of this draft specification use a different value

(the Identifier field of a Setting in the HTTP/3 SETTINGS frame) for

the SETTINGS_H3_DATAGRAM setting. This allows new draft revisions to

make incompatible changes. Multiple draft versions MAY be supported

by sending multiple values for SETTINGS_H3_DATAGRAM. Once SETTINGS

have been sent and received, an implementation that supports

multiple drafts MUST compute the intersection of the values it has

sent and received, and then it MUST select and use the most recent

draft version from the intersection set. This ensures that both

peers negotiate the same draft version.

2.2. HTTP Datagrams using Capsules

When HTTP/3 Datagrams are unavailable or undesirable, HTTP Datagrams

can be sent using the Capsule Protocol, see Section 3.5.

3. Capsules

One mechanism to extend HTTP is to introduce new HTTP Upgrade Tokens

(see Section 16.7 of [HTTP]). In HTTP/1.x, these tokens are used via

the Upgrade mechanism (see Section 7.8 of [HTTP]). In HTTP/2 and

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-16.7
https://rfc-editor.org/rfc/rfc9110#section-7.8

HTTP/3, these tokens are used via the Extended CONNECT mechanism

(see [EXT-CONNECT2] and [EXT-CONNECT3]).

This specification introduces the Capsule Protocol. The Capsule

Protocol is a sequence of type-length-value tuples that definitions

of new HTTP Upgrade Tokens can choose to use. It allows endpoints to

reliably communicate request-related information end-to-end on HTTP

request streams, even in the presence of HTTP intermediaries. The

Capsule Protocol can be used to exchange HTTP Datagrams, which is

necessary when HTTP is running over a transport that does not

support the QUIC DATAGRAM frame. The Capsule Protocol can also be

used to communicate reliable and bidirectional control messages

associated with a datagram-based protocol even when HTTP/3 Datagrams

are in use.

3.1. HTTP Data Streams

This specification defines the "data stream" of an HTTP request as

the bidirectional stream of bytes that follows the header section of

the request message and the final response message that is either

successful (i.e., 2xx) or upgraded (i.e., 101).

In HTTP/1.x, the data stream consists of all bytes on the connection

that follow the blank line that concludes either the request header

section, or the final response header section. As a result, only the

last HTTP request on an HTTP/1.x connection can start the capsule

protocol.

In HTTP/2 and HTTP/3, the data stream of a given HTTP request

consists of all bytes sent in DATA frames with the corresponding

stream ID.

The concept of a data stream is particularly relevant for methods

such as CONNECT where there is no HTTP message content after the

headers.

Data streams can be prioritized using any means suited to stream or

request prioritization. For example, see Section 11 of [PRIORITY].

Data streams are subject to the flow control mechanisms of the

underlying layers (for example, HTTP/2 stream flow control, HTTP/2

connection flow control, and TCP flow control).

3.2. The Capsule Protocol

Definitions of new HTTP Upgrade Tokens can state that their

associated request's data stream uses the Capsule Protocol. If they

do so, that means that the contents of the associated request's data

stream uses the following format:

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9218#section-11

Capsule Type:

Capsule Length:

Capsule Value:

Figure 2: Capsule Protocol Stream Format

Figure 3: Capsule Format

A variable-length integer indicating the Type of the

capsule. An IANA registry is used to manage the assignment of

Capsule Types; see Section 5.4.

The length in bytes of the Capsule Value field

following this field, encoded as a variable-length integer. Note

that this field can have a value of zero.

The payload of this capsule. Its semantics are

determined by the value of the Capsule Type field.

An intermediary can identify the use of the capsule protocol either

through the presence of the Capsule-Protocol header field (Section

3.4) or by understanding the chosen HTTP Upgrade token.

Because new protocols or extensions might define new capsule types,

intermediaries that wish to allow for future extensibility SHOULD

forward capsules without modification, unless the definition of the

Capsule Type in use specifies additional intermediary processing.

One such Capsule Type is the DATAGRAM capsule; see Section 3.5. In

particular, intermediaries SHOULD forward Capsules with an unknown

Capsule Type without modification.

Endpoints which receive a Capsule with an unknown Capsule Type MUST

silently drop that Capsule and skip over it to parse the next

Capsule.

By virtue of the definition of the data stream:

The Capsule Protocol is not in use unless the response includes a

2xx (Successful) or 101 (Switching Protocols) status code.

When the Capsule Protocol is in use, the associated HTTP request

and response do not carry HTTP content. A future extension MAY

define a new capsule type to carry HTTP content.

Capsule Protocol {

 Capsule (..) ...,

}

Capsule {

 Capsule Type (i),

 Capsule Length (i),

 Capsule Value (..),

}

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

Since the Capsule Protocol only applies to definitions of new HTTP

Upgrade Tokens, in HTTP/2 and HTTP/3 it can only be used with the

CONNECT method. Therefore, once both endpoints agree to use the

Capsule Protocol, the frame usage requirements of the stream change

as specified in Section 8.5 of [HTTP/2] and Section 4.2 of [HTTP/3].

The Capsule Protocol MUST NOT be used with messages that contain

Content-Length, Content-Type, or Transfer-Encoding header fields.

Additionally, HTTP status codes 204 (No Content), 205 (Reset

Content), and 206 (Partial Content) MUST NOT be sent on responses

that use the Capsule Protocol. A receiver that observes a violation

of these requirements MUST treat the HTTP message as malformed.

When processing capsules, a receiver might be tempted to accumulate

the full length of the capsule value in the data stream before

handling it. This approach SHOULD be avoided, because it can consume

flow control in underlying layers, and that might lead to deadlocks

if the capsule data exhausts the flow control window.

3.3. Error Handling

When a receiver encounters an error processing the Capsule Protocol,

the receiver MUST treat it as if it had received a malformed or

incomplete HTTP message. For HTTP/3, the handling of malformed

messages is described in Section 4.1.3 of [HTTP/3]. For HTTP/2, the

handling of malformed messages is described in Section 8.1.1 of

[HTTP/2]. For HTTP/1.x, the handling of incomplete messages is

described in Section 8 of [HTTP/1.1].

Each capsule's payload MUST contain exactly the fields identified in

its description. A capsule payload that contains additional bytes

after the identified fields or a capsule payload that terminates

before the end of the identified fields MUST be treated as it if

were a malformed or incomplete message. In particular, redundant

length encodings MUST be verified to be self-consistent.

If the receive side of a stream carrying capsules is terminated

cleanly (for example, in HTTP/3 this is defined as receiving a QUIC

STREAM frame with the FIN bit set) and the last capsule on the

stream was truncated, this MUST be treated as if it were a malformed

or incomplete message.

3.4. The Capsule-Protocol Header Field

The "Capsule-Protocol" header field is an Item Structured Field, see

Section 3.3 of [STRUCT-FIELD]; its value MUST be a Boolean; any

other value type MUST be handled as if the field were not present by

recipients (for example, if this field is included multiple times,

its type will become a List and the field will therefore be

ignored). This document does not define any parameters for the

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9113#section-8.5
https://rfc-editor.org/rfc/rfc9114#section-4.2
https://rfc-editor.org/rfc/rfc9114#section-4.1.3
https://rfc-editor.org/rfc/rfc9113#section-8.1.1
https://rfc-editor.org/rfc/rfc9112#section-8
https://rfc-editor.org/rfc/rfc8941#section-3.3

HTTP Datagram Payload:

Capsule-Protocol header field value, but future documents might

define parameters. Receivers MUST ignore unknown parameters.

Endpoints indicate that the Capsule Protocol is in use on a data

stream by sending a Capsule-Protocol header field with a true value.

A Capsule-Protocol header field with a false value has the same

semantics as when the header is not present.

Intermediaries MAY use this header field to allow processing of HTTP

Datagrams for unknown HTTP Upgrade Tokens; note that this is only

possible for HTTP Upgrade or Extended CONNECT.

The Capsule-Protocol header field MUST NOT be used on HTTP responses

with a status code that is both different from 101 and outside the

2xx range.

When using the Capsule Protocol, HTTP endpoints SHOULD send the

Capsule-Protocol header field to simplify intermediary processing.

Definitions of new HTTP Upgrade Tokens that use the Capsule Protocol

MAY alter this recommendation.

3.5. The DATAGRAM Capsule

This document defines the DATAGRAM (0x00) capsule type. This capsule

allows HTTP Datagrams to be sent on a stream using the Capsule

Protocol. This is particularly useful when HTTP is running over a

transport that does not support the QUIC DATAGRAM frame.

Figure 4: DATAGRAM Capsule Format

The payload of the datagram, whose semantics

are defined by the extension that is using HTTP Datagrams. Note

that this field can be empty.

HTTP Datagrams sent using the DATAGRAM capsule have the same

semantics as those sent in QUIC DATAGRAM frames. In particular, the

restrictions on when it is allowed to send an HTTP Datagram and how

to process them from Section 2.1 also apply to HTTP Datagrams sent

and received using the DATAGRAM capsule.

An intermediary can reencode HTTP Datagrams as it forwards them. In

other words, an intermediary MAY send a DATAGRAM capsule to forward

an HTTP Datagram that was received in a QUIC DATAGRAM frame, and

¶

¶

¶

¶

¶

¶

Datagram Capsule {

 Type (i) = 0x00,

 Length (i),

 HTTP Datagram Payload (..),

}

¶

¶

vice versa. Intermediaries MUST NOT perform this reencoding unless

they have identified the use of the Capsule Protocol on the

corresponding request stream; see Section 3.2.

Note that while DATAGRAM capsules that are sent on a stream are

reliably delivered in order, intermediaries can reencode DATAGRAM

capsules into QUIC DATAGRAM frames when forwarding messages, which

could result in loss or reordering.

If an intermediary receives an HTTP Datagram in a QUIC DATAGRAM

frame and is forwarding it on a connection that supports QUIC

DATAGRAM frames, the intermediary SHOULD NOT convert that HTTP

Datagram to a DATAGRAM capsule. If the HTTP Datagram is too large to

fit in a DATAGRAM frame (for example because the path MTU of that

QUIC connection is too low or if the maximum UDP payload size

advertised on that connection is too low), the intermediary SHOULD

drop the HTTP Datagram instead of converting it to a DATAGRAM

capsule. This preserves the end-to-end unreliability characteristic

that methods such as Datagram Packetization Layer Path MTU Discovery

(DPLPMTUD) depend on [DPLPMTUD]. An intermediary that converts QUIC

DATAGRAM frames to DATAGRAM capsules allows HTTP Datagrams to be

arbitrarily large without suffering any loss; this can misrepresent

the true path properties, defeating methods such as DPLPMTUD.

While DATAGRAM capsules can theoretically carry a payload of length

2 -1, most HTTP extensions that use HTTP Datagrams will have their

own limits on what datagram payload sizes are practical.

Implementations SHOULD take those limits into account when parsing

DATAGRAM capsules: if an incoming DATAGRAM capsule has a length that

is known to be so large as to not be usable, the implementation

SHOULD discard the capsule without buffering its contents into

memory.

Since QUIC DATAGRAM frames are required to fit within a QUIC packet,

implementations that reencode DATAGRAM capsules into QUIC DATAGRAM

frames might be tempted to accumulate the entire capsule in the

stream before reencoding it. This SHOULD be avoided, because it can

cause flow control problems; see Section 3.2.

Note that it is possible for an HTTP extension to use HTTP Datagrams

without using the Capsule Protocol. For example, if an HTTP

extension that uses HTTP Datagrams is only defined over transports

that support QUIC DATAGRAM frames, it might not need a stream

encoding. Additionally, HTTP extensions can use HTTP Datagrams with

their own data stream protocol. However, new HTTP extensions that

wish to use HTTP Datagrams SHOULD use the Capsule Protocol as

failing to do so will make it harder for the HTTP extension to

support versions of HTTP other than HTTP/3 and will prevent

¶

¶

¶

62

¶

¶

Value:

Setting Name:

Default:

Status:

Specification:

Change Controller:

Contact:

Value:

Name:

Description:

Status:

Specification:

Change Controller:

interoperability with intermediaries that only support the Capsule

Protocol.

4. Security Considerations

Since transmitting HTTP Datagrams using QUIC DATAGRAM frames

requires sending the HTTP/3 SETTINGS_H3_DATAGRAM setting, it "sticks

out". In other words, probing clients can learn whether a server

supports HTTP Datagrams over QUIC DATAGRAM frames. As some servers

might wish to obfuscate the fact that they offer application

services that use HTTP Datagrams, it's best for all implementations

that support this feature to always send this setting, see Section

2.1.1.

Since use of the Capsule Protocol is restricted to new HTTP Upgrade

Tokens, it is not accessible from Web Platform APIs (such as those

commonly accessed via JavaScript in web browsers).

Definitions of new HTTP Upgrade Tokens that use the Capsule Protocol

need to perform a security analysis that considers the impact of

HTTP Datagrams and Capsules in the context of their protocol.

5. IANA Considerations

5.1. HTTP/3 Setting

This document will request IANA to register the following entry in

the "HTTP/3 Settings" registry maintained at <https://www.iana.org/

assignments/http3-parameters>:

0x33

SETTINGS_H3_DATAGRAM

0

provisional (permanent if this document is approved)

This Document

IETF

HTTP_WG; HTTP working group; ietf-http-wg@w3.org

5.2. HTTP/3 Error Code

This document will request IANA to register the following entry in

the "HTTP/3 Error Codes" registry maintained at <https://

www.iana.org/assignments/http3-parameters>:

0x33

H3_DATAGRAM_ERROR

Datagram or capsule protocol parse error

provisional (permanent if this document is approved)

This Document

IETF

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.iana.org/assignments/http3-parameters
https://www.iana.org/assignments/http3-parameters
https://www.iana.org/assignments/http3-parameters
https://www.iana.org/assignments/http3-parameters

Contact:

Field Name:

Template:

Status:

Reference:

Comments:

Value:

Capsule Type:

Status:

Specification:

Change Controller:

Contact:

Notes:

HTTP_WG; HTTP working group; ietf-http-wg@w3.org

5.3. HTTP Header Field Name

This document will request IANA to register the following entry in

the "HTTP Field Name" registry maintained at <https://www.iana.org/

assignments/http-fields>:

Capsule-Protocol

None

provisional (permanent if this document is approved)

This document

None

5.4. Capsule Types

This document establishes a registry for HTTP capsule type codes.

The "HTTP Capsule Types" registry governs a 62-bit space, and

operates under the QUIC registration policy documented in

Section 22.1 of [QUIC]. This new registry includes the common set of

fields listed in Section 22.1.1 of [QUIC]. In addition to those

common fields, all registrations in this registry MUST include a

"Capsule Type" field which contains a short name or label for the

capsule type.

Permanent registrations in this registry are assigned using the

Specification Required policy (Section 4.6 of [IANA-POLICY]), except

for values between 0x00 and 0x3f (in hexadecimal; inclusive), which

are assigned using Standards Action or IESG Approval as defined in

Sections 4.9 and 4.10 of [IANA-POLICY].

Capsule types with a value of the form 0x29 * N + 0x17 for integer

values of N are reserved to exercise the requirement that unknown

capsule types be ignored. These capsules have no semantics and can

carry arbitrary values. These values MUST NOT be assigned by IANA

and MUST NOT appear in the listing of assigned values.

This registry initially contains the following entry:

0x00

DATAGRAM

permanent

This document

IETF

MASQUE Working Group masque@ietf.org

None

6. References

6.1. Normative References

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.iana.org/assignments/http-fields
https://www.iana.org/assignments/http-fields
https://rfc-editor.org/rfc/rfc9000#section-22.1
https://rfc-editor.org/rfc/rfc9000#section-22.1.1
https://rfc-editor.org/rfc/rfc8126#section-4.6
https://rfc-editor.org/rfc/rfc8126#section-4.9
https://rfc-editor.org/rfc/rfc8126#section-4.10
mailto:masque@ietf.org

[DGRAM]

[HTTP]

[HTTP/1.1]

[HTTP/2]

[HTTP/3]

[IANA-POLICY]

[QUIC]

[RFC2119]

[RFC8174]

[STRUCT-FIELD]

[TCP]

Pauly, T., Kinnear, E., and D. Schinazi, "An Unreliable

Datagram Extension to QUIC", RFC 9221, DOI 10.17487/

RFC9221, March 2022, <https://www.rfc-editor.org/rfc/

rfc9221>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/

RFC9110, June 2022, <https://www.rfc-editor.org/rfc/

rfc9110>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP/1.1", STD 99, RFC 9112, DOI 10.17487/RFC9112,

June 2022, <https://www.rfc-editor.org/rfc/rfc9112>.

Thomson, M., Ed. and C. Benfield, Ed., "HTTP/2", RFC

9113, DOI 10.17487/RFC9113, June 2022, <https://www.rfc-

editor.org/rfc/rfc9113>.

Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/

RFC9114, June 2022, <https://www.rfc-editor.org/rfc/

rfc9114>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/rfc/rfc8126>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Nottingham, M. and P-H. Kamp, "Structured Field

Values for HTTP", RFC 8941, DOI 10.17487/RFC8941,

February 2021, <https://www.rfc-editor.org/rfc/rfc8941>.

Postel, J., "Transmission Control Protocol", STD 7, RFC

793, DOI 10.17487/RFC0793, September 1981, <https://

www.rfc-editor.org/rfc/rfc793>.

https://www.rfc-editor.org/rfc/rfc9221
https://www.rfc-editor.org/rfc/rfc9221
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9112
https://www.rfc-editor.org/rfc/rfc9113
https://www.rfc-editor.org/rfc/rfc9113
https://www.rfc-editor.org/rfc/rfc9114
https://www.rfc-editor.org/rfc/rfc9114
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8941
https://www.rfc-editor.org/rfc/rfc793
https://www.rfc-editor.org/rfc/rfc793

[DPLPMTUD]

[EXT-CONNECT2]

[EXT-CONNECT3]

[PRIORITY]

[WEBSOCKET]

6.2. Informative References

Fairhurst, G., Jones, T., Tüxen, M., Rüngeler, I., and T.

Völker, "Packetization Layer Path MTU Discovery for

Datagram Transports", RFC 8899, DOI 10.17487/RFC8899,

September 2020, <https://www.rfc-editor.org/rfc/rfc8899>.

McManus, P., "Bootstrapping WebSockets with HTTP/2",

RFC 8441, DOI 10.17487/RFC8441, September 2018, <https://

www.rfc-editor.org/rfc/rfc8441>.

Hamilton, R., "Bootstrapping WebSockets with HTTP/3",

RFC 9220, DOI 10.17487/RFC9220, June 2022, <https://

www.rfc-editor.org/rfc/rfc9220>.

Oku, K. and L. Pardue, "Extensible Prioritization Scheme

for HTTP", RFC 9218, DOI 10.17487/RFC9218, June 2022,

<https://www.rfc-editor.org/rfc/rfc9218>.

Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC

6455, DOI 10.17487/RFC6455, December 2011, <https://

www.rfc-editor.org/rfc/rfc6455>.

Acknowledgments

Portions of this document were previously part of the QUIC DATAGRAM

frame definition itself, the authors would like to acknowledge the

authors of that document and the members of the IETF MASQUE working

group for their suggestions. Additionally, the authors would like to

thank Martin Thomson for suggesting the use of an HTTP/3 setting.

Furthermore, the authors would like to thank Ben Schwartz for

writing the first proposal that used two layers of indirection. The

final design in this document came out of the HTTP Datagrams Design

Team, whose members were Alan Frindell, Alex Chernyakhovsky, Ben

Schwartz, Eric Rescorla, Marcus Ihlar, Martin Thomson, Mike Bishop,

Tommy Pauly, Victor Vasiliev, and the authors of this document. The

authors thank Mark Nottingham and Philipp Tiesel for their helpful

comments.

Authors' Addresses

David Schinazi

Google LLC

1600 Amphitheatre Parkway

Mountain View, CA 94043

United States of America

Email: dschinazi.ietf@gmail.com

Lucas Pardue

¶

https://www.rfc-editor.org/rfc/rfc8899
https://www.rfc-editor.org/rfc/rfc8441
https://www.rfc-editor.org/rfc/rfc8441
https://www.rfc-editor.org/rfc/rfc9220
https://www.rfc-editor.org/rfc/rfc9220
https://www.rfc-editor.org/rfc/rfc9218
https://www.rfc-editor.org/rfc/rfc6455
https://www.rfc-editor.org/rfc/rfc6455
mailto:dschinazi.ietf@gmail.com

Cloudflare

Email: lucaspardue.24.7@gmail.com

mailto:lucaspardue.24.7@gmail.com

	HTTP Datagrams and the Capsule Protocol
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Definitions

	2. HTTP Datagrams
	2.1. HTTP/3 Datagrams
	2.1.1. The SETTINGS_H3_DATAGRAM HTTP/3 Setting
	2.1.1.1. Note About Draft Versions

	2.2. HTTP Datagrams using Capsules

	3. Capsules
	3.1. HTTP Data Streams
	3.2. The Capsule Protocol
	3.3. Error Handling
	3.4. The Capsule-Protocol Header Field
	3.5. The DATAGRAM Capsule

	4. Security Considerations
	5. IANA Considerations
	5.1. HTTP/3 Setting
	5.2. HTTP/3 Error Code
	5.3. HTTP Header Field Name
	5.4. Capsule Types

	6. References
	6.1. Normative References
	6.2. Informative References

	Acknowledgments
	Authors' Addresses

