
MBONED Working Group H. Asaeda
Internet-Draft NICT
Intended status: Standards Track K. Meyer
Expires: September 13, 2017 Cisco
 W. Lee, Ed.
 March 12, 2017

Mtrace Version 2: Traceroute Facility for IP Multicast
draft-ietf-mboned-mtrace-v2-17

Abstract

 This document describes the IP multicast traceroute facility, named
 Mtrace version 2 (Mtrace2). Unlike unicast traceroute, Mtrace2
 requires special implementations on the part of routers. This
 specification describes the required functionality in multicast
 routers, as well as how an Mtrace2 client invokes a query and
 receives a reply.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 13, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Asaeda, et al. Expires September 13, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Mtrace2 March 2017

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 5
2.1. Definitions . 6

3. Packet Formats . 7
3.1. Mtrace2 TLV format 7
3.2. Defined TLVs . 8
3.2.1. Mtrace2 Query . 8
3.2.2. Mtrace2 Request 10
3.2.3. Mtrace2 Reply . 10
3.2.4. IPv4 Mtrace2 Standard Response Block 11
3.2.5. IPv6 Mtrace2 Standard Response Block 14
3.2.6. Mtrace2 Augmented Response Block 17
3.2.7. Mtrace2 Extended Query Block 18

4. Router Behavior . 19
4.1. Receiving Mtrace2 Query 19
4.1.1. Query Packet Verification 19
4.1.2. Query Normal Processing 20

4.2. Receiving Mtrace2 Request 20
4.2.1. Request Packet Verification 20
4.2.2. Request Normal Processing 21

4.3. Forwarding Mtrace2 Request 22
4.3.1. Destination Address 23
4.3.2. Source Address 23
4.3.3. Appending Standard Response Block 23

4.4. Sending Mtrace2 Reply 24
4.4.1. Destination Address 24
4.4.2. Source Address 24
4.4.3. Appending Standard Response Block 24

4.5. Proxying Mtrace2 Query 24
4.6. Hiding Information 25

5. Client Behavior . 25
5.1. Sending Mtrace2 Query 25
5.1.1. Destination Address 25
5.1.2. Source Address 25

5.2. Determining the Path 26
5.3. Collecting Statistics 26
5.4. Last Hop Router (LHR) 26
5.5. First Hop Router (FHR) 26
5.6. Broken Intermediate Router 26
5.7. Non-Supported Router 27
5.8. Mtrace2 Termination 27
5.8.1. Arriving at Source 27

Asaeda, et al. Expires September 13, 2017 [Page 2]

Internet-Draft Mtrace2 March 2017

5.8.2. Fatal Error . 27
5.8.3. No Upstream Router 27
5.8.4. Reply Timeout . 27

5.9. Continuing after an Error 28
6. Protocol-Specific Considerations 28
6.1. PIM-SM . 28
6.2. Bi-Directional PIM 28
6.3. PIM-DM . 29
6.4. IGMP/MLD Proxy . 29

7. Problem Diagnosis . 29
7.1. Forwarding Inconsistencies 29
7.2. TTL or Hop Limit Problems 29
7.3. Packet Loss . 30
7.4. Link Utilization . 30
7.5. Time Delay . 30

8. IANA Considerations . 31
8.1. "Mtrace2 Forwarding Codes" Registry 31
8.2. "Mtrace2 TLV Types" registry 31
8.3. UDP Destination Port 31

9. Security Considerations 31
9.1. Addresses in Mtrace2 Header 31
9.2. Filtering of Clients 31
9.3. Topology Discovery 32
9.4. Characteristics of Multicast Channel 32
9.5. Limiting Query/Request Rates 32
9.6. Limiting Reply Rates 32

10. Acknowledgements . 32
11. References . 33
11.1. Normative References 33
11.2. Informative References 33

 Authors' Addresses . 34

1. Introduction

 Given a multicast distribution tree, tracing from a multicast source
 to a receiver is difficult, since we do not know which branch of the
 multicast tree the receiver lies. This means that we have to flood
 the whole tree to find the path from a source to a receiver. On the
 other hand, walking up the tree from a receiver to a source is easy,
 as most existing multicast routing protocols know the upstream router
 for each source. Tracing from a receiver to a source can involve
 only the routers on the direct path.

 This document specifies the multicast traceroute facility named
 Mtrace version 2 or Mtrace2 which allows the tracing of an IP
 multicast routing path. Mtrace2 is usually initiated from an Mtrace2
 client by sending an Mtrace2 Query to a Last Hop Router (LHR) or to a
 Rendezvous Point (RP). The RP is a special router where sources and

Asaeda, et al. Expires September 13, 2017 [Page 3]

Internet-Draft Mtrace2 March 2017

 receivers meet in PIM-SM [5]. From the LHR/RP receiving the query,
 the tracing is directed towards a specified source if a source
 address is specified and source specific state exists on the
 receiving router. If no source address is specified or if no source
 specific state exists on a receiving LHR, the tracing is directed
 toward the RP for the specified group address. Moreover, Mtrace2
 provides additional information such as the packet rates and losses,
 as well as other diagnostic information. Mtrace2 is primarily
 intended for the following purposes:

 o To trace the path that a packet would take from a source to a
 receiver.

 o To isolate packet loss problems (e.g., congestion).

 o To isolate configuration problems (e.g., TTL threshold).

 Figure 1 shows a typical case on how Mtrace2 is used. FHR represents
 the first-hop router, LHR represents the last-hop router, and the
 arrow lines represent the Mtrace2 messages that are sent from one
 node to another. The numbers before the Mtrace2 messages represent
 the sequence of the messages that would happen. Source, Receiver and
 Mtrace2 client are typically hosts.

 2. Request 2. Request
 +----+ +----+
 | | | |
 v | v |
 +--------+ +-----+ +-----+ +----------+
 | Source |----| FHR |----- The Internet -----| LHR |----| Receiver |
 +--------+ +-----+ | +-----+ +----------+
 \ | ^
 \ | /
 \ | /
 \ | /
 3. Reply \ | / 1. Query
 \ | /
 \ | /
 \ +---------+ /
 v | Mtrace2 |/
 | client |
 +---------+

 Figure 1

 When an Mtrace2 client initiates a multicast trace, it sends an
 Mtrace2 Query packet to the LHR or RP for a multicast group and,
 optionally, a source address. The LHR/RP turns the Query packet into

Asaeda, et al. Expires September 13, 2017 [Page 4]

Internet-Draft Mtrace2 March 2017

 a Request. The Request message type enables each of the upstream
 routers processing the message to apply different packet and message
 validation rules than those required for handling of a Query message.
 The LHR/RP then appends a standard response block containing its
 interface addresses and packet statistics to the Request packet, then
 forwards the packet towards the source/RP. The Request packet is
 either unicasted to its upstream router towards the source/RP, or
 multicasted to the group if the upstream router's IP address is not
 known. In a similar fashion, each router along the path to the
 source/RP appends a standard response block to the end of the Request
 packet before forwarding it to its upstream router. When the FHR
 receives the Request packet, it appends its own standard response
 block, turns the Request packet into a Reply, and unicasts the Reply
 back to the Mtrace2 client.

 The Mtrace2 Reply may be returned before reaching the FHR under some
 circumstances. This can happen if a Request packet is received at an
 RP or gateway, or when any of several types of error or exception
 conditions occur which prevent sending of a request to the next
 upstream router.

 The Mtrace2 client waits for the Mtrace2 Reply message and displays
 the results. When not receiving an Mtrace2 Reply message due to
 network congestion, a broken router (see Section 5.6), or a non-
 responding router (see Section 5.7), the Mtrace2 client may resend
 another Mtrace2 Query with a lower hop count (see Section 3.2.1), and
 repeat the process until it receives an Mtrace2 Reply message. The
 details are Mtrace2 client specific, and it is outside the scope of
 this document.

 Note that when a router's control plane and forwarding plane are out
 of sync, the Mtrace2 Requests might be forwarded based on the control
 states instead. In which case, the traced path might not represent
 the real path the data packets would follow.

 Mtrace2 supports both IPv4 and IPv6. Unlike the previous version of
 Mtrace, which implements its query and response as IGMP messages [8],
 all Mtrace2 messages are UDP-based. Although the packet formats of
 IPv4 and IPv6 Mtrace2 are different because of the address families,
 the syntax between them is similar.

2. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in RFC 2119 [1],
 and indicate requirement levels for compliant Mtrace2
 implementations.

https://datatracker.ietf.org/doc/html/rfc2119

Asaeda, et al. Expires September 13, 2017 [Page 5]

Internet-Draft Mtrace2 March 2017

2.1. Definitions

 Since Mtrace2 Queries and Requests flow in the opposite direction to
 the data flow, we refer to "upstream" and "downstream" with respect
 to data, unless explicitly specified.

 Incoming interface
 The interface on which data is expected to arrive from the
 specified source and group.

 Outgoing interface
 This is one of the interfaces to which data from the source or RP
 is expected to be transmitted for the specified source and group.
 It is also the interface on which the Mtrace2 Request was
 received.

 Upstream router
 The router, connecting to the Incoming interface of the current
 router, which is responsible for forwarding data for the specified
 source and group to the current router.

 First-hop router (FHR)
 The router that is directly connected to the source the Mtrace2
 Query specifies.

 Last-hop router (LHR)
 A router that is directly connected to a receiver. It is also the
 router that receives the Mtrace2 Query from an Mtrace2 client.

 Group state
 It is the state a shared-tree protocol, such as PIM-SM [5], uses
 to choose the upstream router towards the RP for the specified
 group. In this state, source-specific state is not available for
 the corresponding group address on the router.

 Source-specific state
 It is the state that is used to choose the path towards the source
 for the specified source and group.

 ALL-[protocol]-ROUTERS.MCAST.NET
 It is a link-local multicast address for multicast routers to
 communicate with their adjacent routers that are running the same
 routing protocol. For instance, the address of ALL-PIM-
 ROUTERS.MCAST.NET [5] is '224.0.0.13' for IPv4 and 'ff02::d' for
 IPv6.

Asaeda, et al. Expires September 13, 2017 [Page 6]

Internet-Draft Mtrace2 March 2017

3. Packet Formats

 This section describes the details of the packet formats for Mtrace2
 messages.

 All Mtrace2 messages are encoded in TLV format (see Section 3.1).
 The first TLV of a message is a message header TLV specifying the
 type of message and additional context information required for
 processing of the message and for parsing of subsequent TLVs in the
 message. Subsequent TLVs in a message, referred to as Blocks, are
 appended after the header TLV to provide additional information
 associated with the message. If an implementation receives an
 unknown TLV type for the first TLV in a message, it SHOULD ignore and
 silently discard the TLV and any subsequent TLVs in the packet
 containing the TLV. If an implementation receives an unknown TLV
 type for a subsequent TLV within a message, it SHOULD ignore and
 silently discard the TLV. If the length of a TLV exceeds the
 available space in the containing packet, the implementation MUST
 ignore and silently discard the TLV and any remaining portion of the
 containing packet. Any data in the packet after the specified TLV
 length is considered to be outside the boundary of the TLV and MUST
 be ignored during processing of the TLV.

 All Mtrace2 messages are UDP packets. For IPv4, Mtrace2 Query and
 Request messages MUST NOT be fragmented. For IPv6, the packet size
 for the Mtrace2 messages MUST NOT exceed 1280 bytes, which is the
 smallest MTU for an IPv6 interface [2]. The source port is uniquely
 selected by the local host operating system. The destination port is
 the IANA reserved Mtrace2 port number (see Section 8). All Mtrace2
 messages MUST have a valid UDP checksum.

 Additionally, Mtrace2 supports both IPv4 and IPv6, but not mixed.
 For example, if an Mtrace2 Query or Request message arrives in as an
 IPv4 packet, all addresses specified in the Mtrace2 messages MUST be
 IPv4 as well. Same rule applies to IPv6 Mtrace2 messages.

3.1. Mtrace2 TLV format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Value |
 +-+

 Type: 8 bits

 Describes the format of the Value field. For all the available
 types, please see Section 3.2

Asaeda, et al. Expires September 13, 2017 [Page 7]

Internet-Draft Mtrace2 March 2017

 Length: 16 bits

 Length of Type, Length, and Value fields in octets. Minimum
 length required is 3 octets. The maximum TLV length is not
 defined; however the entire Mtrace2 packet length SHOULD NOT
 exceed the available MTU.

 Value: variable length

 The format is based on the Type value. The length of the value
 field is Length field minus 3. All reserved fields in the Value
 field MUST be transmitted as zeros and ignored on receipt.

3.2. Defined TLVs

 The following TLV Types are defined:

 Code Type
 ==== ================================
 0x01 Mtrace2 Query
 0x02 Mtrace2 Request
 0x03 Mtrace2 Reply
 0x04 Mtrace2 Standard Response Block
 0x05 Mtrace2 Augmented Response Block
 0x06 Mtrace2 Extended Query Block

 Each Mtrace2 message MUST begin with either a Query, Request or Reply
 TLV. The first TLV determines the type of each Mtrace2 message.
 Following a Query TLV, there can be a sequence of optional Extended
 Query Blocks. In the case of a Request or a Reply TLV, it is then
 followed by a sequence of Standard Response Blocks, each from a
 multicast router on the path towards the source or the RP. In the
 case more information is needed, a Standard Response Block can be
 followed by one or multiple Augmented Response Blocks.

 We will describe each message type in detail in the next few
 sections.

3.2.1. Mtrace2 Query

 An Mtrace2 Query is usually originated by an Mtrace2 client which
 sends an Mtrace2 Query message to the LHR. When tracing towards the
 source or the RP, the intermediate routers MUST NOT modify the Query
 message except the Type field.

 An Mtrace2 Query message is shown as follows:

Asaeda, et al. Expires September 13, 2017 [Page 8]

Internet-Draft Mtrace2 March 2017

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | # Hops |
 +-+
 | |
 | Multicast Address |
 | |
 +=+
 | |
 | Source Address |
 | |
 +-+
 | |
 | Mtrace2 Client Address |
 | |
 +-+
 | Query ID | Client Port # |
 +-+

 Figure 2

 # Hops: 8 bits
 This field specifies the maximum number of hops that the Mtrace2
 client wants to trace. If there are some error conditions in the
 middle of the path that prevent an Mtrace2 Reply from being
 received by the client, the client MAY issue another Mtrace2 Query
 with a lower number of hops until it receives a Reply.

 Multicast Address: 32 bits or 128 bits
 This field specifies an IPv4 or IPv6 address, which can be either:

 m-1: a multicast group address to be traced; or,

 m-2: all 1's in case of IPv4 or the unspecified address (::) in
 case of IPv6 if no group-specific information is desired.

 Source Address: 32 bits or 128 bits
 This field specifies an IPv4 or IPv6 address, which can be either:

 s-1: an unicast address of the source to be traced; or,

 s-2: all 1's in case of IPv4 or the unspecified address (::) in
 case of IPv6 if no source-specific information is desired.
 For example, the client is tracing a (*,g) group state.

Asaeda, et al. Expires September 13, 2017 [Page 9]

Internet-Draft Mtrace2 March 2017

 Note that it is invalid to have a source-group combination of
 (s-2, m-2). If a router receives such combination in an Mtrace2
 Query, it MUST silently discard the Query.

 Mtrace2 Client Address: 32 bits or 128 bits
 This field specifies the Mtrace2 client's IPv4 address or IPv6
 global address. This address MUST be a valid unicast address, and
 therefore, MUST NOT be all 1's or an unspecified address. The
 Mtrace2 Reply will be sent to this address.

 Query ID: 16 bits
 This field is used as a unique identifier for this Mtrace2 Query
 so that duplicate or delayed Reply messages may be detected.

 Client Port #: 16 bits
 This field specifies the destination UDP port number for receiving
 the Mtrace2 Reply packet.

3.2.2. Mtrace2 Request

 The format of an Mtrace2 Request message is similar to an Mtrace2
 Query except the Type field is 0x02.

 When a LHR receives an Mtrace2 Query message, it would turn the Query
 into a Request by changing the Type field of the Query from 0x01 to
 0x02. The LHR would then append an Mtrace2 Standard Response Block
 (see Section 3.2.4) of its own to the Request message before sending
 it upstream. The upstream routers would do the same without changing
 the Type field until one of them is ready to send a Reply.

3.2.3. Mtrace2 Reply

 The format of an Mtrace2 Reply message is similar to an Mtrace2 Query
 except the Type field is 0x03.

 When a FHR or a RP receives an Mtrace2 Request message which is
 destined to itself, it would append an Mtrace2 Standard Response
 Block (see Section 3.2.4) of its own to the Request message. Next,
 it would turn the Request message into a Reply by changing the Type
 field of the Request from 0x02 to 0x03. The Reply message would then
 be unicasted to the Mtrace2 client specified in the Mtrace2 Client
 Address field.

 There are a number of cases an intermediate router might return a
 Reply before a Request reaches the FHR or the RP. See Section 4.1.1,

Section 4.2.2, Section 4.3.3, and Section 4.5 for more details.

Asaeda, et al. Expires September 13, 2017 [Page 10]

Internet-Draft Mtrace2 March 2017

3.2.4. IPv4 Mtrace2 Standard Response Block

 This section describes the message format of an IPv4 Mtrace2 Standard
 Response Block. The Type field is 0x04.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | MBZ |
 +-+
 | Query Arrival Time |
 +-+
 | Incoming Interface Address |
 +-+
 | Outgoing Interface Address |
 +-+
 | Upstream Router Address |
 +-+
 | |
 . Input packet count on incoming interface .
 | |
 +-+
 | |
 . Output packet count on outgoing interface .
 | |
 +-+
 | |
 . Total number of packets for this source-group pair .
 | |
 +-+
 | Rtg Protocol | Multicast Rtg Protocol |
 +-+
 | Fwd TTL | MBZ |S| Src Mask |Forwarding Code|
 +-+

 MBZ: 8 bits
 This field MUST be zeroed on transmission and ignored on
 reception.

 Query Arrival Time: 32 bits
 The Query Arrival Time is a 32-bit NTP timestamp specifying the
 arrival time of the Mtrace2 Query or Request packet at this
 router. The 32-bit form of an NTP timestamp consists of the
 middle 32 bits of the full 64-bit form; that is, the low 16 bits
 of the integer part and the high 16 bits of the fractional part.

 The following formula converts from a UNIX timeval to a 32-bit NTP
 timestamp:

Asaeda, et al. Expires September 13, 2017 [Page 11]

Internet-Draft Mtrace2 March 2017

 query_arrival_time
 = ((tv.tv_sec + 32384) << 16) + ((tv.tv_nsec << 7) / 1953125)

 The constant 32384 is the number of seconds from Jan 1, 1900 to
 Jan 1, 1970 truncated to 16 bits. ((tv.tv_nsec << 7) / 1953125)
 is a reduction of ((tv.tv_nsec / 1000000000) << 16).

 Note that Mtrace2 does not require all the routers on the path to
 have synchronized clocks in order to measure one-way latency.

 Additionally, Query Arrival Time is useful for measuring the
 packet rate. For example, suppose that a client issues two
 queries, and the corresponding requests R1 and R2 arrive at router
 X at time T1 and T2, then the client would be able to compute the
 packet rate on router X by using the packet count information
 stored in the R1 and R2, and the time T1 and T2.

 Incoming Interface Address: 32 bits
 This field specifies the address of the interface on which packets
 from the source or the RP are expected to arrive, or 0 if unknown
 or unnumbered.

 Outgoing Interface Address: 32 bits
 This field specifies the address of the interface on which packets
 from the source or the RP are expected to transmit towards the
 receiver, or 0 if unknown or unnumbered. This is also the address
 of the interface on which the Mtrace2 Query or Request arrives.

 Upstream Router Address: 32 bits
 This field specifies the address of the upstream router from which
 this router expects packets from this source. This may be a
 multicast group (e.g. ALL-[protocol]-ROUTERS.MCAST.NET) if the
 upstream router is not known because of the workings of the
 multicast routing protocol. However, it should be 0 if the
 incoming interface address is unknown or unnumbered.

 Input packet count on incoming interface: 64 bits
 This field contains the number of multicast packets received for
 all groups and sources on the incoming interface, or all 1's if no
 count can be reported. This counter may have the same value as
 ifHCInMulticastPkts from the IF-MIB [10] for this interface.

 Output packet count on outgoing interface: 64 bit
 This field contains the number of multicast packets that have been
 transmitted or queued for transmission for all groups and sources
 on the outgoing interface, or all 1's if no count can be reported.
 This counter may have the same value as ifHCOutMulticastPkts from
 the IF-MIB [10] for this interface.

Asaeda, et al. Expires September 13, 2017 [Page 12]

Internet-Draft Mtrace2 March 2017

 Total number of packets for this source-group pair: 64 bits
 This field counts the number of packets from the specified source
 forwarded by the router to the specified group, or all 1's if no
 count can be reported. If the S bit is set (see below), the count
 is for the source network, as specified by the Src Mask field (see
 below). If the S bit is set and the Src Mask field is 127,
 indicating no source-specific state, the count is for all sources
 sending to this group. This counter should have the same value as
 ipMcastRoutePkts from the IPMROUTE-STD-MIB [11] for this
 forwarding entry.

 Rtg Protocol: 16 bits
 This field describes the unicast routing protocol running between
 this router and the upstream router, and it is used to determine
 the RPF interface for the specified source or RP. This value
 should have the same value as ipMcastRouteRtProtocol from the
 IPMROUTE-STD-MIB [11] for this entry. If the router is not able
 to obtain this value, all 0's must be specified.

 Multicast Rtg Protocol: 16 bits
 This field describes the multicast routing protocol in use between
 the router and the upstream router. This value should have the
 same value as ipMcastRouteProtocol from the IPMROUTE-STD-MIB [11]
 for this entry. If the router cannot obtain this value, all 0's
 must be specified.

 Fwd TTL: 8 bits
 This field contains the configured multicast TTL threshold, if
 any, of the outgoing interface.

 S: 1 bit
 If this bit is set, it indicates that the packet count for the
 source-group pair is for the source network, as determined by
 masking the source address with the Src Mask field.

 Src Mask: 7 bits
 This field contains the number of 1's in the netmask the router
 has for the source (i.e. a value of 24 means the netmask is
 0xffffff00). If the router is forwarding solely on group state,
 this field is set to 127 (0x7f).

 Forwarding Code: 8 bits
 This field contains a forwarding information/error code. Values
 with the high order bit set (0x80-0xff) are intended for use as
 error or exception codes. Section 4.1 and Section 4.2 explain how
 and when the Forwarding Code is filled. Defined values are as
 follows:

Asaeda, et al. Expires September 13, 2017 [Page 13]

Internet-Draft Mtrace2 March 2017

 Value Name Description
 ----- -------------- --
 0x00 NO_ERROR No error
 0x01 WRONG_IF Mtrace2 Request arrived on an interface
 to which this router would not forward for
 the specified group towards the source or RP.
 0x02 PRUNE_SENT This router has sent a prune upstream which
 applies to the source and group in the
 Mtrace2 Request.
 0x03 PRUNE_RCVD This router has stopped forwarding for this
 source and group in response to a request
 from the downstream router.
 0x04 SCOPED The group is subject to administrative
 scoping at this router.
 0x05 NO_ROUTE This router has no route for the source or
 group and no way to determine a potential
 route.
 0x06 WRONG_LAST_HOP This router is not the proper LHR.
 0x07 NOT_FORWARDING This router is not forwarding this source and
 group out the outgoing interface for an
 unspecified reason.
 0x08 REACHED_RP Reached the Rendezvous Point.
 0x09 RPF_IF Mtrace2 Request arrived on the expected
 RPF interface for this source and group.
 0x0A NO_MULTICAST Mtrace2 Request arrived on an interface
 which is not enabled for multicast.
 0x0B INFO_HIDDEN One or more hops have been hidden from this
 trace.
 0x0C REACHED_GW Mtrace2 Request arrived on a gateway (e.g.,
 a NAT or firewall) that hides the
 information between this router and the
 Mtrace2 client.
 0x0D UNKNOWN_QUERY A non-transitive Extended Query Type was
 received by a router which does not support
 the type.
 0x80 FATAL_ERROR A fatal error is one where the router may
 know the upstream router but cannot forward
 the message to it.
 0x81 NO_SPACE There was not enough room to insert another
 Standard Response Block in the packet.
 0x83 ADMIN_PROHIB Mtrace2 is administratively prohibited.

3.2.5. IPv6 Mtrace2 Standard Response Block

 This section describes the message format of an IPv6 Mtrace2 Standard
 Response Block. The Type field is also 0x04.

Asaeda, et al. Expires September 13, 2017 [Page 14]

Internet-Draft Mtrace2 March 2017

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | MBZ |
 +-+
 | Query Arrival Time |
 +-+
 | Incoming Interface ID |
 +-+
 | Outgoing Interface ID |
 +-+
 | |
 * Local Address *
 | |
 +-+
 | |
 * Remote Address *
 | |
 +-+
 | |
 . Input packet count on incoming interface .
 | |
 +-+
 | |
 . Output packet count on outgoing interface .
 | |
 +-+
 | |
 . Total number of packets for this source-group pair .
 | |
 +-+
 | Rtg Protocol | Multicast Rtg Protocol |
 +-+
 | MBZ 2 |S|Src Prefix Len |Forwarding Code|
 +-+

 MBZ: 8 bits
 This field MUST be zeroed on transmission and ignored on
 reception.

 Query Arrival Time: 32 bits
 Same definition as in IPv4.

 Incoming Interface ID: 32 bits
 This field specifies the interface ID on which packets from the
 source or RP are expected to arrive, or 0 if unknown. This ID
 should be the value taken from InterfaceIndex of the IF-MIB [10]
 for this interface.

Asaeda, et al. Expires September 13, 2017 [Page 15]

Internet-Draft Mtrace2 March 2017

 Outgoing Interface ID: 32 bits
 This field specifies the interface ID to which packets from the
 source or RP are expected to transmit, or 0 if unknown. This ID
 should be the value taken from InterfaceIndex of the IF-MIB [10]
 for this interface

 Local Address: 128 bits
 This field specifies a global IPv6 address that uniquely
 identifies the router. An unique local unicast address [9] SHOULD
 NOT be used unless the router is only assigned link-local and
 unique local addresses. If the router is only assigned link-local
 addresses, its link-local address can be specified in this field.

 Remote Address: 128 bits
 This field specifies the address of the upstream router, which, in
 most cases, is a link-local unicast address for the upstream
 router.

 Although a link-local address does not have enough information to
 identify a node, it is possible to detect the upstream router with
 the assistance of Incoming Interface ID and the current router
 address (i.e., Local Address).

 Note that this may be a multicast group (e.g., ALL-[protocol]-
 ROUTERS.MCAST.NET) if the upstream router is not known because of
 the workings of a multicast routing protocol. However, it should
 be the unspecified address (::) if the incoming interface address
 is unknown.

 Input packet count on incoming interface: 64 bits
 Same definition as in IPv4.

 Output packet count on outgoing interface: 64 bits
 Same definition as in IPv4.

 Total number of packets for this source-group pair: 64 bits
 Same definition as in IPv4, except if the S bit is set (see
 below), the count is for the source network, as specified by the
 Src Prefix Len field. If the S bit is set and the Src Prefix Len
 field is 255, indicating no source-specific state, the count is
 for all sources sending to this group. This counter should have
 the same value as ipMcastRoutePkts from the IPMROUTE-STD-MIB [11]
 for this forwarding entry.

 Rtg Protocol: 16 bits
 Same definition as in IPv4.

 Multicast Rtg Protocol: 16 bits

Asaeda, et al. Expires September 13, 2017 [Page 16]

Internet-Draft Mtrace2 March 2017

 Same definition as in IPv4.

 MBZ 2: 15 bits
 This field MUST be zeroed on transmission and ignored on
 reception.

 S: 1 bit
 Same definition as in IPv4, except the Src Prefix Len field is
 used to mask the source address.

 Src Prefix Len: 8 bits
 This field contains the prefix length this router has for the
 source. If the router is forwarding solely on group state, this
 field is set to 255 (0xff).

 Forwarding Code: 8 bits
 Same definition as in IPv4.

3.2.6. Mtrace2 Augmented Response Block

 In addition to the Standard Response Block, a multicast router on the
 traced path can optionally add one or multiple Augmented Response
 Blocks before sending the Request to its upstream router.

 The Augmented Response Block is flexible for various purposes such as
 providing diagnosis information (see Section 7) and protocol
 verification. Its Type field is 0x05, and its format is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | MBZ |
 +-+
 | Augmented Response Type | Value |
 +-+

 MBZ: 8 bits
 This field MUST be zeroed on transmission and ignored on
 reception.

 Augmented Response Type: 16 bits
 This field specifies the type of various responses from a
 multicast router that might need to communicate back to the
 Mtrace2 client as well as the multicast routers on the traced
 path.

 The Augmented Response Type is defined as follows:

Asaeda, et al. Expires September 13, 2017 [Page 17]

Internet-Draft Mtrace2 March 2017

 Code Type
 ==== ===
 0x01 # of the returned Standard Response Blocks

 When the NO_SPACE error occurs on a router, the router should send
 the original Mtrace2 Request received from the downstream router
 as a Reply back to the Mtrace2 client, and continue with a new
 Mtrace2 Request. In the new Request, the router would add a
 Standard Response Block followed by an Augmented Response Block
 with 0x01 as the Augmented Response Type, and the number of the
 returned Mtrace2 Standard Response Blocks as the Value.

 Each upstream router would recognize the total number of hops the
 Request has been traced so far by adding this number and the
 number of the Standard Response Block in the current Request
 message.

 This document only defines one Augmented Response Type in the
 Augmented Response Block. The description on how to provide
 diagnosis information using the Augmented Response Block is out of
 the scope of this document, and will be addressed in separate
 documents.

 Value: variable length
 The format is based on the Augmented Response Type value. The
 length of the value field is Length field minus 6.

3.2.7. Mtrace2 Extended Query Block

 There may be a sequence of optional Extended Query Blocks that follow
 an Mtrace2 Query to further specify any information needed for the
 Query. For example, an Mtrace2 client might be interested in tracing
 the path the specified source and group would take based on a certain
 topology. In which case, the client can pass in the multi-topology
 ID as the Value for an Extended Query Type (see below). The Extended
 Query Type is extensible and the behavior of the new types will be
 addressed by separate documents.

 The Mtrace2 Extended Query Block's Type field is 0x06, and is
 formatted as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | MBZ |T|
 +-+
 | Extended Query Type | Value |
 +-+

Asaeda, et al. Expires September 13, 2017 [Page 18]

Internet-Draft Mtrace2 March 2017

 MBZ: 7 bits
 This field MUST be zeroed on transmission and ignored on
 reception.

 T-bit (Transitive Attribute): 1 bit
 If the TLV type is unrecognized by the receiving router, then this
 TLV is either discarded or forwarded along with the Query,
 depending on the value of this bit. If this bit is set, then the
 router MUST forward this TLV. If this bit is clear, the router
 MUST send an Mtrace2 Reply with an UNKNOWN_QUERY error.

 Extended Query Type: 16 bits
 This field specifies the type of the Extended Query Block.

 Value: 16 bits
 This field specifies the value of this Extended Query.

4. Router Behavior

 This section describes the router behavior in the context of Mtrace2
 in detail.

4.1. Receiving Mtrace2 Query

 An Mtrace2 Query message is an Mtrace2 message with no response
 blocks filled in, and uses TLV type of 0x01.

4.1.1. Query Packet Verification

 Upon receiving an Mtrace2 Query message, a router MUST examine
 whether the Multicast Address and the Source Address are a valid
 combination as specified in Section 3.2.1, and whether the Mtrace2
 Client Address is a valid IP unicast address. If either one is
 invalid, the Query MUST be silently ignored.

 Mtrace2 supports a non-local client to the LHR/RP. A router SHOULD,
 however, support a mechanism to filter out queries from clients
 beyond a specified administrative boundary. The potential approaches
 are described in Section 9.2.

 In the case where a local LHR client is required, the router must
 then examine the Query to see if it is the proper LHR/RP for the
 destination address in the packet. It is the proper local LHR if it
 has a multicast-capable interface on the same subnet as the Mtrace2
 Client Address and is the router that would forward traffic from the
 given (S,G) or (*,G) onto that subnet. It is the proper RP if the
 multicast group address specified in the query is 0 and if the IP
 header destination address is a valid RP address on this router.

Asaeda, et al. Expires September 13, 2017 [Page 19]

Internet-Draft Mtrace2 March 2017

 If the router determines that it is not the proper LHR/RP, or it
 cannot make that determination, it does one of two things depending
 on whether the Query was received via multicast or unicast. If the
 Query was received via multicast, then it MUST be silently discarded.
 If it was received via unicast, the router turns the Query into a
 Reply message by changing the TLV type to 0x03 and appending a
 Standard Response Block with a Forwarding Code of WRONG_LAST_HOP.
 The rest of the fields in the Standard Response Block MUST be zeroed.
 The router then sends the Reply message to the Mtrace2 Client Address
 on the Client Port # as specified in the Mtrace2 Query.

 Duplicate Query messages as identified by the tuple (Mtrace2 Client
 Address, Query ID) SHOULD be ignored. This MAY be implemented using
 a cache of previously processed queries keyed by the Mtrace2 Client
 Address and Query ID pair. The duration of the cached entries is
 implementation specific. Duplicate Request messages MUST NOT be
 ignored in this manner.

4.1.2. Query Normal Processing

 When a router receives an Mtrace2 Query and it determines that it is
 the proper LHR/RP, it turns the Query to a Request by changing the
 TLV type from 0x01 to 0x02, and performs the steps listed in

Section 4.2.

4.2. Receiving Mtrace2 Request

 An Mtrace2 Request is an Mtrace2 message that uses TLV type of 0x02.
 With the exception of the LHR, whose Request was just converted from
 a Query, each Request received by a router should have at least one
 Standard Response Block filled in.

4.2.1. Request Packet Verification

 If the Mtrace2 Request does not come from an adjacent router, or if
 the Request is not addressed to this router, or if the Request is
 addressed to a multicast group which is not a link-scoped group (i.e.
 224.0.0.0/24 for IPv4, FFx2::/16 [3] for IPv6), it MUST be silently
 ignored. GTSM [12] SHOULD be used by the router to determine whether
 the router is adjacent or not.

 If the sum of the number of the Standard Response Blocks in the
 received Mtrace2 Request and the value of the Augmented Response Type
 of 0x01, if any, is equal or more than the # Hops in the Mtrace2
 Request, it MUST be silently ignored.

Asaeda, et al. Expires September 13, 2017 [Page 20]

Internet-Draft Mtrace2 March 2017

4.2.2. Request Normal Processing

 When a router receives an Mtrace2 Request message, it performs the
 following steps. Note that it is possible to have multiple
 situations covered by the Forwarding Codes. The first one
 encountered is the one that is reported, i.e. all "note Forwarding
 Code N" should be interpreted as "if Forwarding Code is not already
 set, set Forwarding Code to N". Note that in the steps described
 below the "Outgoing Interface" is the one on which the Mtrace2
 Request message arrives.

 1. Prepare a Standard Response Block to be appended to the packet,
 setting all fields to an initial default value of zero.

 2. If Mtrace2 is administratively prohibited, note the Forwarding
 Code of ADMIN_PROHIB and skip to step 4.

 3. In the Standard Response Block, fill in the Query Arrival Time,
 Outgoing Interface Address (for IPv4) or Outgoing Interface ID
 (for IPv6), Output Packet Count, and Fwd TTL (for IPv4).

 4. Attempt to determine the forwarding information for the
 specified source and group, using the same mechanisms as would
 be used when a packet is received from the source destined for
 the group. A state need not be instantiated, it can be a
 "phantom" state created only for the purpose of the trace, such
 as "dry-run."

 If using a shared-tree protocol and there is no source-specific
 state, or if no source-specific information is desired (i.e.,
 all 1's for IPv4 or unspecified address (::) for IPv6), group
 state should be used. If there is no group state or no group-
 specific information is desired, potential source state (i.e.,
 the path that would be followed for a source-specific Join)
 should be used.

 5. If no forwarding information can be determined, the router notes
 a Forwarding Code of NO_ROUTE, sets the remaining fields that
 have not yet been filled in to zero, and then sends an Mtrace2
 Reply back to the Mtrace2 client.

 6. If a Forwarding Code of ADMIN_PROHIB has been set, skip to step
 7. Otherwise, fill in the Incoming Interface Address (or
 Incoming Interface ID and Local Address for IPv6), Upstream
 Router Address (or Remote Address for IPv6), Input Packet Count,
 Total Number of Packets, Routing Protocol, S, and Src Mask (or
 Src Prefix Len for IPv6) using the forwarding information
 determined in step 4.

Asaeda, et al. Expires September 13, 2017 [Page 21]

Internet-Draft Mtrace2 March 2017

 7. If the Outgoing interface is not enabled for multicast, note
 Forwarding Code of NO_MULTICAST. If the Outgoing interface is
 the interface from which the router would expect data to arrive
 from the source, note forwarding code RPF_IF. If the Outgoing
 interface is not one to which the router would forward data from
 the source or RP to the group, a Forwarding code of WRONG_IF is
 noted. In the above three cases, the router will return an
 Mtrace2 Reply and terminate the trace.

 8. If the group is subject to administrative scoping on either the
 Outgoing or Incoming interfaces, a Forwarding Code of SCOPED is
 noted.

 9. If this router is the RP for the group for a non-source-specific
 query, note a Forwarding Code of REACHED_RP. The router will
 send an Mtrace2 Reply and terminate the trace.

 10. If this router is directly connected to the specified source or
 source network on the Incoming interface, it sets the Upstream
 Router Address (for IPv4) or the Remote Address (for IPv6) of
 the response block to zero. The router will send an Mtrace2
 Reply and terminate the trace.

 11. If this router has sent a prune upstream which applies to the
 source and group in the Mtrace2 Request, it notes a Forwarding
 Code of PRUNE_SENT. If the router has stopped forwarding
 downstream in response to a prune sent by the downstream router,
 it notes a Forwarding Code of PRUNE_RCVD. If the router should
 normally forward traffic downstream for this source and group
 but is not, it notes a Forwarding Code of NOT_FORWARDING.

 12. If this router is a gateway (e.g., a NAT or firewall) that hides
 the information between this router and the Mtrace2 client, it
 notes a Forwarding Code of REACHED_GW. The router continues the
 processing as described in Section 4.5.

 13. If the total number of the Standard Response Blocks, including
 the newly prepared one, and the value of the Augmented Response
 Type of 0x01, if any, is less than the # Hops in the Request,
 the packet is then forwarded to the upstream router as described
 in Section 4.3; otherwise, the packet is sent as an Mtrace2
 Reply to the Mtrace2 client as described in Section 4.4.

4.3. Forwarding Mtrace2 Request

 This section describes how an Mtrace2 Request should be forwarded.

Asaeda, et al. Expires September 13, 2017 [Page 22]

Internet-Draft Mtrace2 March 2017

4.3.1. Destination Address

 If the upstream router for the Mtrace2 Request is known for this
 request, the Mtrace2 Request is sent to that router. If the Incoming
 interface is known but the upstream router is not, the Mtrace2
 Request is sent to an appropriate multicast address on the Incoming
 interface. The multicast address SHOULD depend on the multicast
 routing protocol in use, such as ALL-[protocol]-ROUTERS.MCAST.NET.
 It MUST be a link-scoped group (i.e. 224.0.0.0/24 for IPv4, FF02::/16
 for IPv6), and MUST NOT be ALL-SYSTEMS.MCAST.NET (224.0.0.1) for IPv4
 and All Nodes Address (FF02::1) for IPv6. It MAY also be ALL-
 ROUTERS.MCAST.NET (224.0.0.2) for IPv4 or All Routers Address
 (FF02::2) for IPv6 if the routing protocol in use does not define a
 more appropriate multicast address.

4.3.2. Source Address

 An Mtrace2 Request should be sent with the address of the Incoming
 interface. However, if the Incoming interface is unnumbered, the
 router can use one of its numbered interface addresses as the source
 address.

4.3.3. Appending Standard Response Block

 An Mtrace2 Request MUST be sent upstream towards the source or the RP
 after appending a Standard Response Block to the end of the received
 Mtrace2 Request. The Standard Response Block includes the multicast
 states and statistics information of the router described in

Section 3.2.4.

 If appending the Standard Response Block would make the Mtrace2
 Request packet longer than the MTU of the Incoming Interface, or, in
 the case of IPv6, longer than 1280 bytes, the router MUST change the
 Forwarding Code in the last Standard Response Block of the received
 Mtrace2 Request into NO_SPACE. The router then turns the Request
 into a Reply, and sends the Reply as described in Section 4.4.

 The router will continue with a new Request by copying from the old
 Request excluding all the response blocks, followed by the previously
 prepared Standard Response Block, and an Augmented Response Block
 with Augmented Response Type of 0x01 and the number of the returned
 Standard Response Blocks as the value. The new Request is then
 forwarded upstream.

Asaeda, et al. Expires September 13, 2017 [Page 23]

Internet-Draft Mtrace2 March 2017

4.4. Sending Mtrace2 Reply

 An Mtrace2 Reply MUST be returned to the client by a router if the
 total number of the traced routers is equal to the # Hops in the
 Request. The total number of the traced routers is the sum of the
 Standard Response Blocks in the Request (including the one just
 added) and the number of the returned blocks, if any.

4.4.1. Destination Address

 An Mtrace2 Reply MUST be sent to the address specified in the Mtrace2
 Client Address field in the Mtrace2 Request.

4.4.2. Source Address

 An Mtrace2 Reply SHOULD be sent with the address of the router's
 Outgoing interface. However, if the Outgoing interface address is
 unnumbered, the router can use one of its numbered interface
 addresses as the source address.

4.4.3. Appending Standard Response Block

 An Mtrace2 Reply MUST be sent with the prepared Standard Response
 Block appended at the end of the received Mtrace2 Request except in
 the case of NO_SPACE forwarding code.

4.5. Proxying Mtrace2 Query

 When a gateway (e.g., a NAT or firewall), which needs to block
 unicast packets to the Mtrace2 client, or hide information between
 the gateway and the Mtrace2 client, receives an Mtrace2 Query from an
 adjacent host or Mtrace2 Request from an adjacent router, it appends
 a Standard Response Block with REACHED_GW as the Forwarding Code. It
 turns the Query or Request into a Reply, and sends the Reply back to
 the client.

 At the same time, the gateway originates a new Mtrace2 Query message
 by copying the original Mtrace2 header (the Query or Request without
 any of the response blocks), and makes the changes as follows:

 o sets the RPF interface's address as the Mtrace2 Client Address;

 o uses its own port number as the Client Port #; and,

 o decreases # Hops by ((number of the Standard Response Blocks that
 were just returned in a Reply) - 1). The "-1" in this expression
 accounts for the additional Standard Response Block appended by
 the gateway router.

Asaeda, et al. Expires September 13, 2017 [Page 24]

Internet-Draft Mtrace2 March 2017

 The new Mtrace2 Query message is then sent to the upstream router or
 to an appropriate multicast address on the RPF interface.

 When the gateway receives an Mtrace2 Reply whose Query ID matches the
 one in the original Mtrace2 header, it MUST relay the Mtrace2 Reply
 back to the Mtrace2 client by replacing the Reply's header with the
 original Mtrace2 header. If the gateway does not receive the
 corresponding Mtrace2 Reply within the [Mtrace Reply Timeout] period
 (see Section 5.8.4), then it silently discards the original Mtrace2
 Query or Request message, and terminates the trace.

4.6. Hiding Information

 Information about a domain's topology and connectivity may be hidden
 from the Mtrace2 Requests. The Forwarding Code of INFO_HIDDEN may be
 used to note that. For example, the incoming interface address and
 packet count on the ingress router of a domain, and the outgoing
 interface address and packet count on the egress router of the domain
 can be specified as all 1's. Additionally, the source-group packet
 count (see Section 3.2.4 and Section 3.2.5) within the domain may be
 all 1's if it is hidden.

5. Client Behavior

 This section describes the behavior of an Mtrace2 client in detail.

5.1. Sending Mtrace2 Query

 An Mtrace2 client initiates an Mtrace2 Query by sending the Query to
 the LHR of interest.

5.1.1. Destination Address

 If an Mtrace2 client knows the proper LHR, it unicasts an Mtrace2
 Query packet to that router; otherwise, it MAY send the Mtrace2 Query
 packet to the ALL-ROUTERS.MCAST.NET (224.0.0.2) for IPv4 or All
 Routers Address (FF02::2) for IPv6. This will ensure that the packet
 is received by the LHR on the subnet.

 See also Section 5.4 on determining the LHR.

5.1.2. Source Address

 An Mtrace2 Query MUST be sent with the client's interface address,
 which would be the Mtrace2 Client Address.

Asaeda, et al. Expires September 13, 2017 [Page 25]

Internet-Draft Mtrace2 March 2017

5.2. Determining the Path

 An Mtrace2 client could send an initial Query messages with a large #
 Hops, in order to try to trace the full path. If this attempt fails,
 one strategy is to perform a linear search (as the traditional
 unicast traceroute program does); set the # Hops field to 1 and try
 to get a Reply, then 2, and so on. If no Reply is received at a
 certain hop, the hop count can continue past the non-responding hop,
 in the hopes that further hops may respond. These attempts should
 continue until the [Mtrace Reply Timeout] timeout has occurred.

 See also Section 5.6 on receiving the results of a trace.

5.3. Collecting Statistics

 After a client has determined that it has traced the whole path or as
 much as it can expect to (see Section 5.8), it might collect
 statistics by waiting a short time and performing a second trace. If
 the path is the same in the two traces, statistics can be displayed
 as described in Section 7.3 and Section 7.4.

5.4. Last Hop Router (LHR)

 The Mtrace2 client may not know which is the last-hop router, or that
 router may be behind a firewall that blocks unicast packets but
 passes multicast packets. In these cases, the Mtrace2 Request should
 be multicasted to ALL-ROUTERS.MCAST.NET (224.0.0.2) for IPv4 or All
 Routers Address (FF02::2) for IPv6. All routers except the correct
 last-hop router SHOULD ignore any Mtrace2 Request received via
 multicast.

5.5. First Hop Router (FHR)

 The IANA assigned 224.0.1.32, MTRACE.MCAST.NET as the default
 multicast group for old IPv4 mtrace (v1) responses, in order to
 support mtrace clients that are not unicast reachable from the first-
 hop router. Mtrace2, however, does not require any IPv4/IPv6
 multicast addresses for the Mtrace2 Replies. Every Mtrace2 Reply is
 sent to the unicast address specified in the Mtrace2 Client Address
 field of the Mtrace2 Reply.

5.6. Broken Intermediate Router

 A broken intermediate router might simply not understand Mtrace2
 packets, and drop them. The Mtrace2 client will get no Reply at all
 as a result. It should then perform a hop-by-hop search by setting
 the # Hops field until it gets an Mtrace2 Reply. The client may use
 linear or binary search; however, the latter is likely to be slower

Asaeda, et al. Expires September 13, 2017 [Page 26]

Internet-Draft Mtrace2 March 2017

 because a failure requires waiting for the [Mtrace Reply Timeout]
 period.

5.7. Non-Supported Router

 When a non-supported router receives an Mtrace2 Query or Request
 message whose destination address is a multicast address, the router
 will silently discard the message.

 When the router receives an Mtrace2 Query which is destined to
 itself, the router would return an ICMP port unreachable to the
 Mtrace2 client. On the other hand, when the router receives an
 Mtrace2 Request which is destined to itself, the router would return
 an ICMP port unreachable to its adjacent router from which the
 Request receives. Therefore, the Mtrace2 client needs to terminate
 the trace when the [Mtrace Reply Timeout] timeout has occurred, and
 may then issue another Query with a lower number of # Hops.

5.8. Mtrace2 Termination

 When performing an expanding hop-by-hop trace, it is necessary to
 determine when to stop expanding.

5.8.1. Arriving at Source

 A trace can be determined to have arrived at the source if the
 Incoming Interface of the last router in the trace is non-zero, but
 the Upstream Router is zero.

5.8.2. Fatal Error

 A trace has encountered a fatal error if the last Forwarding Error in
 the trace has the 0x80 bit set.

5.8.3. No Upstream Router

 A trace can not continue if the last Upstream Router in the trace is
 set to 0.

5.8.4. Reply Timeout

 This document defines the [Mtrace Reply Timeout] value, which is used
 to time out an Mtrace2 Reply as seen in Section 4.5, Section 5.2, and

Section 5.7. The default [Mtrace Reply Timeout] value is 10
 (seconds), and can be manually changed on the Mtrace2 client and
 routers.

Asaeda, et al. Expires September 13, 2017 [Page 27]

Internet-Draft Mtrace2 March 2017

5.9. Continuing after an Error

 When the NO_SPACE error occurs, as described in Section 4.2, a router
 will send back an Mtrace2 Reply to the Mtrace2 client, and continue
 with a new Request (see Section 4.3.3). In which case, the Mtrace2
 client may receive multiple Mtrace2 Replies from different routers
 along the path. When this happens, the client MUST treat them as a
 single Mtrace2 Reply message.

 If a trace times out, it is very likely that a router in the middle
 of the path does not support Mtrace2. That router's address will be
 in the Upstream Router field of the last Standard Response Block in
 the last received Reply. A client may be able to determine (via
 mrinfo or SNMP [9][11]) a list of neighbors of the non-responding
 router. If desired, each of those neighbors could be probed to
 determine the remainder of the path. Unfortunately, this heuristic
 may end up with multiple paths, since there is no way of knowing what
 the non-responding router's algorithm for choosing an upstream router
 is. However, if all paths but one flow back towards the non-
 responding router, it is possible to be sure that this is the correct
 path.

6. Protocol-Specific Considerations

 This section describes the Mtrace2 behavior with the presence of
 different multicast protocols.

6.1. PIM-SM

 When an Mtrace2 reaches a PIM-SM RP, and the RP does not forward the
 trace on, it means that the RP has not performed a source-specific
 join so there is no more state to trace. However, the path that
 traffic would use if the RP did perform a source-specific join can be
 traced by setting the trace destination to the RP, the trace source
 to the traffic source, and the trace group to 0. This Mtrace2 Query
 may be unicasted to the RP, and the RP takes the same actions as an
 LHR.

6.2. Bi-Directional PIM

 Bi-directional PIM [6] is a variant of PIM-SM that builds bi-
 directional shared trees connecting multicast sources and receivers.
 Along the bi-directional shared trees, multicast data is natively
 forwarded from the sources to the Rendezvous Point Link (RPL), and
 from which, to receivers without requiring source-specific state. In
 contrast to PIM-SM, Bi-directional PIM always has the state to trace.

Asaeda, et al. Expires September 13, 2017 [Page 28]

Internet-Draft Mtrace2 March 2017

 A Designated Forwarder (DF) for a given Rendezvous Point Address
 (RPA) is in charge of forwarding downstream traffic onto its link,
 and forwarding upstream traffic from its link towards the RPL that
 the RPA belongs to. Hence Mtrace2 Reply reports DF addresses or RPA
 along the path.

6.3. PIM-DM

 Routers running PIM Dense Mode [13] do not know the path packets
 would take unless traffic is flowing. Without some extra protocol
 mechanism, this means that in an environment with multiple possible
 paths with branch points on shared media, Mtrace2 can only trace
 existing paths, not potential paths. When there are multiple
 possible paths but the branch points are not on shared media, the
 upstream router is known, but the LHR may not know that it is the
 appropriate last hop.

 When traffic is flowing, PIM Dense Mode routers know whether or not
 they are the LHR for the link (because they won or lost an Assert
 battle) and know who the upstream router is (because it won an Assert
 battle). Therefore, Mtrace2 is always able to follow the proper path
 when traffic is flowing.

6.4. IGMP/MLD Proxy

 When an IGMP/MLD Proxy [7] receives an Mtrace2 Query packet on an
 incoming interface, it notes a WRONG_IF in the Forwarding Code of the
 last Standard Response Block (see Section 3.2.4), and sends the
 Mtrace2 Reply back to the Mtrace2 client. On the other hand, when an
 Mtrace2 Query packet reaches an outgoing interface of the IGMP/MLD
 proxy, it is forwarded onto its incoming interface towards the
 upstream router.

7. Problem Diagnosis

 This section describes different scenarios Mtrace2 can be used to
 diagnose the multicast problems.

7.1. Forwarding Inconsistencies

 The Forwarding Error code can tell if a group is unexpectedly pruned
 or administratively scoped.

7.2. TTL or Hop Limit Problems

 By taking the maximum of hops from the source and forwarding TTL
 threshold over all hops, it is possible to discover the TTL or hop
 limit required for the source to reach the destination.

Asaeda, et al. Expires September 13, 2017 [Page 29]

Internet-Draft Mtrace2 March 2017

7.3. Packet Loss

 By taking two traces, it is possible to find packet loss information
 by comparing the difference in input packet counts to the difference
 in output packet counts for the specified source-group address pair
 at the previous hop. On a point-to-point link, any difference in
 these numbers implies packet loss. Since the packet counts may be
 changing as the Mtrace2 Request is propagating, there may be small
 errors (off by 1 or 2 or more) in these statistics. However, these
 errors will not accumulate if multiple traces are taken to expand the
 measurement period. On a shared link, the count of input packets can
 be larger than the number of output packets at the previous hop, due
 to other routers or hosts on the link injecting packets. This
 appears as "negative loss" which may mask real packet loss.

 In addition to the counts of input and output packets for all
 multicast traffic on the interfaces, the Standard Response Block
 includes a count of the packets forwarded by a node for the specified
 source-group pair. Taking the difference in this count between two
 traces and then comparing those differences between two hops gives a
 measure of packet loss just for traffic from the specified source to
 the specified receiver via the specified group. This measure is not
 affected by shared links.

 On a point-to-point link that is a multicast tunnel, packet loss is
 usually due to congestion in unicast routers along the path of that
 tunnel. On native multicast links, loss is more likely in the output
 queue of one hop, perhaps due to priority dropping, or in the input
 queue at the next hop. The counters in the Standard Response Block
 do not allow these cases to be distinguished. Differences in packet
 counts between the incoming and outgoing interfaces on one node
 cannot generally be used to measure queue overflow in the node.

7.4. Link Utilization

 Again, with two traces, you can divide the difference in the input or
 output packet counts at some hop by the difference in time stamps
 from the same hop to obtain the packet rate over the link. If the
 average packet size is known, then the link utilization can also be
 estimated to see whether packet loss may be due to the rate limit or
 the physical capacity on a particular link being exceeded.

7.5. Time Delay

 If the routers have synchronized clocks, it is possible to estimate
 propagation and queuing delay from the differences between the
 timestamps at successive hops. However, this delay includes control

Asaeda, et al. Expires September 13, 2017 [Page 30]

Internet-Draft Mtrace2 March 2017

 processing overhead, so is not necessarily indicative of the delay
 that data traffic would experience.

8. IANA Considerations

 The following new registries are to be created and maintained under
 the "RFC Required" registry policy as specified in [4].

8.1. "Mtrace2 Forwarding Codes" Registry

 This is an integer in the range 0-255. Assignment of a Forwarding
 Code requires specification of a value and a name for the Forwarding
 Code. Initial values for the forwarding codes are given in the table
 at the end of Section 3.2.4. Additional values (specific to IPv6)
 may also be specified at the end of Section 3.2.5. Any additions to
 this registry are required to fully describe the conditions under
 which the new Forwarding Code is used.

8.2. "Mtrace2 TLV Types" registry

 Assignment of a TLV Type requires specification of an integer value
 "Code" in the range 0-255 and a name ("Type"). Initial values for
 the TLV Types are given in the table at the beginning of Section 3.2.

8.3. UDP Destination Port

 The Mtrace2 UDP destination port is [TBD].

9. Security Considerations

 This section addresses some of the security considerations related to
 Mtrace2.

9.1. Addresses in Mtrace2 Header

 An Mtrace2 header includes three addresses, source address, multicast
 address, and Mtrace2 client address. These addresses MUST be
 congruent with the definition defined in Section 3.2.1 and forwarding
 Mtrace2 messages having invalid addresses MUST be prohibited. For
 instance, if Mtrace2 Client Address specified in an Mtrace2 header is
 a multicast address, then a router that receives the Mtrace2 message
 MUST silently discard it.

9.2. Filtering of Clients

 A router SHOULD support a mechanism to filter out queries from
 clients beyond a specified administrative boundary. Such a boundary
 could, for example, be specified via a list of allowed/disallowed

Asaeda, et al. Expires September 13, 2017 [Page 31]

Internet-Draft Mtrace2 March 2017

 client addresses or subnets. If a query is received from beyond the
 specified administrative boundary, the Query MUST NOT be processed.
 The router MAY, however, perform rate limited logging of such events.

9.3. Topology Discovery

 Mtrace2 can be used to discover any actively-used topology. If your
 network topology is a secret, Mtrace2 may be restricted at the border
 of your domain, using the ADMIN_PROHIB forwarding code.

9.4. Characteristics of Multicast Channel

 Mtrace2 can be used to discover what sources are sending to what
 groups and at what rates. If this information is a secret, Mtrace2
 may be restricted at the border of your domain, using the
 ADMIN_PROHIB forwarding code.

9.5. Limiting Query/Request Rates

 A router may limit Mtrace2 Queries and Requests by ignoring some of
 the consecutive messages. The router MAY randomly ignore the
 received messages to minimize the processing overhead, i.e., to keep
 fairness in processing queries, or prevent traffic amplification.
 The rate limit is left to the router's implementation.

9.6. Limiting Reply Rates

 The proxying and NO_SPACE behaviors may result in one Query returning
 multiple Reply messages. In order to prevent abuse, the routers in
 the traced path MAY need to rate-limit the Replies. The rate limit
 function is left to the router's implementation.

10. Acknowledgements

 This specification started largely as a transcription of Van
 Jacobson's slides from the 30th IETF, and the implementation in
 mrouted 3.3 by Ajit Thyagarajan. Van's original slides credit Steve
 Casner, Steve Deering, Dino Farinacci and Deb Agrawal. The original
 multicast traceroute client, mtrace (version 1), has been implemented
 by Ajit Thyagarajan, Steve Casner and Bill Fenner. The idea of the
 "S" bit to allow statistics for a source subnet is due to Tom
 Pusateri.

 For the Mtrace version 2 specification, the authors would like to
 give special thanks to Tatsuya Jinmei, Bill Fenner, and Steve Casner.
 Also, extensive comments were received from David L. Black, Ronald
 Bonica, Yiqun Cai, Liu Hui, Bharat Joshi, Robert Kebler, John

Asaeda, et al. Expires September 13, 2017 [Page 32]

Internet-Draft Mtrace2 March 2017

 Kristoff, Heidi Ou, Pekka Savola, Shinsuke Suzuki, Dave Thaler,
 Achmad Husni Thamrin, Stig Venaas, and Cao Wei.

11. References

11.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to indicate
 requirement levels", RFC 2119, March 1997.

 [2] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [3] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006.

 [4] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 5226, May 2008.

 [5] Fenner, B., Handley, M., Holbrook, H., and I. Kouvelas,
 "Protocol Independent Multicast - Sparse Mode (PIM-SM):
 Protocol Specification (Revised)", RFC 4601, August 2006.

 [6] Handley, M., Kouvelas, I., Speakman, T., and L. Vicisano,
 "Bidirectional Protocol Independent Multicast (BIDIR-
 PIM)", RFC 5015, October 2007.

 [7] Fenner, B., He, H., Haberman, B., and H. Sandick,
 "Internet Group Management Protocol (IGMP) / Multicast
 Listener Discovery (MLD)-Based Multicast Forwarding
 ("IGMP/MLD Proxying")", RFC 4605, August 2006.

11.2. Informative References

 [8] Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.
 Thyagarajan, "Internet Group Management Protocol, Version
 3", RFC 3376, October 2002.

 [9] Draves, R. and D. Thaler, "Default Router Preferences and
 More-Specific Routes", RFC 4191, November 2005.

 [10] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
 MIB", RFC 2863, June 2000.

 [11] McWalter, D., Thaler, D., and A. Kessler, "IP Multicast
 MIB", RFC 5132, December 2007.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc4601
https://datatracker.ietf.org/doc/html/rfc5015
https://datatracker.ietf.org/doc/html/rfc4605
https://datatracker.ietf.org/doc/html/rfc3376
https://datatracker.ietf.org/doc/html/rfc4191
https://datatracker.ietf.org/doc/html/rfc2863
https://datatracker.ietf.org/doc/html/rfc5132

Asaeda, et al. Expires September 13, 2017 [Page 33]

Internet-Draft Mtrace2 March 2017

 [12] Gill, V., Heasley, J., Meyer, D., Savola, P., and C.
 Pignataro, "The Generalized TTL Security Mechanism
 (GTSM)", RFC 5082, October 2007.

 [13] Adams, A., Nicholas, J., and W. Siadak, "Protocol
 Independent Multicast - Dense Mode (PIM-DM): Protocol
 Specification (Revised)", RFC 3973, January 2005.

Authors' Addresses

 Hitoshi Asaeda
 National Institute of Information and Communications Technology
 4-2-1 Nukui-Kitamachi
 Koganei, Tokyo 184-8795
 Japan

 Email: asaeda@nict.go.jp

 Kerry Meyer
 Cisco Systems, Inc.
 510 McCarthy Blvd.
 Milpitas, CA 95035
 USA

 Email: kerrymey@cisco.com

 WeeSan Lee (editor)

 Email: weesan@weesan.com

https://datatracker.ietf.org/doc/html/rfc5082
https://datatracker.ietf.org/doc/html/rfc3973

Asaeda, et al. Expires September 13, 2017 [Page 34]

