Network Working Group S. Venaas _TOC

Internet-Draft UNINETT
Intended status: Standards November 03,
Track 2008

Expires: May 7, 2009

Multicast Ping Protocol
draft-ietf-mboned-ssmping-06

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware have
been or will be disclosed, and any of which he or she becomes aware
will be disclosed, in accordance with Section 6 of BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on May 7, 2009.

Abstract

The Multicast Ping Protocol specified in this document allows for
checking whether an endpoint can receive multicast, both Source-
Specific Multicast (SSM) and Any-Source Multicast (ASM). It can also be
used to obtain additional multicast related information like multicast
tree setup time etc. This protocol is based on an implementation of
tools called ssmping and asmping.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.) [1].

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Table of Contents

Introduction
Architecture
Protocol specification
3.1. Option format
3.2. Defined Options
Packet Format
Message types and options
Client Behaviour
Server Behaviour
Recommendations for Implementers
Acknowledgments
IANA Considerations
Security Considerations
References
12.1. Normative References
12.2. Informative References
Author's Address
Intellectual Property and Copyright Statements

[

R PP © (N e 0
REBIPE P

o |un

1. Introduction TOC

The Multicast Ping Protocol specified in this document allows for
checking multicast connectivity. In addition to checking reception of
multicast (SSM or ASM), the protocol can provide related information
like multicast tree setup time, the number of hops the packets have
traveled, as well as packet delay and loss. This functionality
resembles, in part, the ICMP Echo Request/Reply mechanism, but uses UDP
RFC 768 (Postel, J., "“User Datagram Protocol,” August 1980.) [2] and
requires both a client and a server implementing this protocol.
Intermediate routers are not required to support this protocol. They
forward Protocol Messages and data traffic as usual.

The protocol here specified is based on the actual implementation of
the ssmping and asmping tools [4] (, “ssmping implementation,” .) which
are widely used by the Internet community to conduct multicast
connectivity tests.

2. Architecture TOC

Before describing the protocol in detail, we provide a brief overview
of how the protocol may be used and what information it may provide.
The typical protocol usage is as follows: A server runs continuously to

serve requests from clients. A client can test the multicast reception
from this server, provided it knows a unicast address of the server. It
will then send a unicast message to the server asking for a group to
use. Optionally the user may have requested a specific group or scope,
in which case the client will ask for a group matching the user's
request. The server will respond with a group to use, or an error if no
group is available. Next, for ASM, the client joins an ASM group G,
while for SSM it joins a channel (S,G). Here G is the group specified
by the server, and S is the unicast address used to reach the server.
After joining the channel, the client unicasts multicast ping requests
to the server. The requests are sent using UDP with destination port
set to the standardised multicast ping port [TBD]. The requests are
sent periodically, e.g., once per second, to the server. The requests
contain a sequence number, and typically a timestamp. The requests are
echoed by the server, except the server may add a few options. For each
request, the server sends two replies. One reply is unicast back to the
source IP address and source UDP port of the request, while another is
multicast to the requested multicast group G and the source UDP port of
the request. Both replies are sent from the same port on which the
request was received. The server should specify the TTL used for both
the unicast and multicast messages (we recommend at least 64) by
including a TTL option; allowing the client to compute the number of
hops. The client should leave the channel/group when it has finished
its measurements.

By use of this protocol, a client can obtain information about several
multicast delivery characteristics. First, by receiving unicast
replies, it can verify that the server is receiving the unicast
requests, is operational and responding. Hence, provided that the
client receives unicast replies, a failure to receive multicast
indicates either a multicast problem or a multicast administrative
restriction. If it does receive multicast, it knows not only that it
can receive; it may also estimate the amount of time it took to
establish the multicast tree (at least if it is in the range of
seconds), whether there are packet drops, and the length and variation
of Round Trip Times (RTT). For unicast, the RTT is the time from when
the unicast request is sent to when the reply is received. The measured
multicast RTT also references the client's unicast request. By use of
the TTL option specifying the TTL of the replies when they are
originated, the client can also determine the number of router hops it
is from the source. Since similar information is obtained in the
unicast replies, the host may compare its multicast and unicast results
and is able to check for differences in the number of hops, RTT, etc.
The number of multicast hops and changes in the number of hops over
time, may also reveal details about the multicast tree and multicast
tree changes. Provided that the server sends the unicast and multicast
replies nearly simultaneously, the client may also be able to measure
the difference in one way delay for unicast and multicast on the path
from server to client, and also differences in delay. Servers may
optionally specify a timestamp. This may be useful since the unicast

and multicast replies can not be sent simultaneously (the delay
depending on the host's operating system and load).

3. Protocol specification TOC

There are four different message types. There are Echo Request and Echo
Reply messages used for the actual measurements; there is an Init
message that SHOULD be used to initialise a ping session and negotiate
which group to use; and finally a Server Response message that is
mainly used in response to the Init message. The messages MUST always
be in network byte order. UDP checksums MUST always be used.

The messages share a common format: one octet specifying the message
type, followed by a number of options in TLV (Type, Length and Value)
format. This makes the protocol easily extendible. The Init message
generally contains some prefix options asking the server for a group
from one of the specified prefixes. The server responds with a Server
Response message that contains the group address to use, or possibly
prefix options describing what multicast groups the server may be able
to provide. For an Echo Request the client generally includes a number
of options, and a server MAY simply echo the contents (only changing
the message type) without inspecting the options if it does not support
any options. This might be true for a simple Multicast Ping Protocol
server. However, the server SHOULD add a TTL option, and there are
other options that a server implementation MAY support, e.g., the
client may ask for certain information or a specific behaviour from the
server. The Echo Replies (one unicast and one multicast) MUST first
contain the exact options from the request (in the same order), and
then, immediately following, any options appended by the server. A
server MUST NOT process unknown options, but they MUST still be
included in the Echo Reply. A client MUST ignore any unknown options.
The size of the protocol messages is generally smaller than the Path
MTU and fragmentation is not a concern. There may however be cases
where the Path MTU is really small, or that a client sends large
requests in order to verify that it can receive fragmented multicast
datagrams. This document does not specify whether Path MTU Discovery
should be performed, etc. A possible extension could be an option where
a client requests Path MTU Discovery and receives the current Path MTU
from the server.

This document defines a number of different options. Some options do
not require processing by servers and are simply returned unmodified in
the reply. There are, however, other client options that the server may
care about, and also server options that may be requested by a client.
Unless otherwise specified, an option MUST NOT be used multiple times
in the same message.

3.1. Option format TOC
All options are TLVs formatted as specified below.

0] 1 2 3

012345678901 234567890123456789601
B S s o ST SPU Sy S Sy Sy S T S S S U S S s ok s S
| Type | Length |
B S s S S e T S e s sESr SPEP S S
Value

I I
I I
I I
I I
B b ok o e e e S e e T T R e ok T e S e S S e e
Type (2 octets) specifies the option. The different options are defined
below.

Length (2 octets) specifies the length of the value field. Depending on
the option type, it can be from 0 to 65535.

Value. The value must always be of the specified length. See the
respective option definitions for possible values. If the length is 0O,
the value field is not included.

3.2. Defined Options TOC

This document defines the following options: Version (0), Client ID
(1), Sequence Number (2), Client Timestamp (3), Multicast Group (4),
Option Request Option (5), Server Information (6), TTL (9), Multicast
Prefix (10), Session ID (11) and Server Timestamp (12). Values 7 and 8
are reserved. The options are defined below.

Version, type 0

Length MUST be 1. This option MUST always be included in all
messages, and the value MUST be set to 2 (in decimal). Note that
there are implementations of older revisions of this protocol
that only partly follow this specification. They can be regarded
as version 1 and do not use this option. If a server receives a
message with a version other than 2 (or missing), the server
SHOULD (unless it supports the particular version) send a
Response message back with version set to 2. Client ID and
Sequence Number options SHOULD be echoed if present. It SHOULD
not include any other options. A client receiving a response with
a version other than 2, MUST (unless it supports the particular
version), stop sending requests to the server.

Client ID, type 1

Length MUST be non-zero. A client SHOULD always include this
option in all messages (both Init and Request). The client may
use any value it likes to be able to detect whether a reply is a
reply to its Init/Request or not. A server should treat this as
opaque data, and MUST echo this option back in the reply if
present (both Server Response and Reply). The value might be a
process ID, perhaps process ID combined with an IP address
because it may receive multicast responses to queries from other
clients. It is left to the client implementer how to make use of
this option.

Sequence Number, type 2

Length MUST be 4. A client MUST always include this in Request
messages and MUST NOT include it in Init messages. A server
replying to a Request message MUST copy it into the Reply (or
Server Response message on error). This contains a 32 bit
sequence number. The values would typically start at 1 and
increase by one for each request in a sequence.

Client Timestamp, type 3

Length MUST be 8 bytes. A client SHOULD include this in Request
messages and MUST NOT include it in Init messages. A server
replying to a Request message MUST copy it into the Reply. The
timestamp specifies the time when the Request message is sent.
The first 4 bytes specify the number of seconds since the Epoch
(00O UTC Jan 1, 1970). The next 4 bytes specify the number of
microseconds since the last second since the Epoch.

Multicast Group, type 4

Length MUST be greater than 2. It MAY be used in Server Response
messages to tell the client what group to use in subsequent
Request messages. It MUST be used in Request messages to tell the
server what group address to respond to (this group would
typically be previously obtained in a Server Response message).
It MUST be used in Reply messages (copied from the Request
message). It MUST NOT be used in Init messages. The format of the
option value is as below.

0 1 2 3
©12345678901234567890123456789601
tot-t-t-t-t-t-t-t-t-tot-t-totot-t-t-t-t-t-t-Ft-t-t-t-F-F-t-F-F+-+-+
| Address Family | Multicast group address... |
ek T T S T Tt ok T T P T e e A |

The address family is a value 0-65535 as assigned by IANA for
Internet Address Families [3] (, “IANA, Address Family Numbers,”
.). This is followed by the group address. Length of the option
value will be 6 for IPv4, and 18 for IPv6.

Option Request Option, type 5

Length MUST be greater than 1. This option MAY be used in client
messages (Init and Request messages). A server MUST NOT send this
option, except that if it is present in a Request message, the
server MUST echo it in replies (Reply message) to the Request.
This option contains a list of option types for options that the
client is requesting from the server. Support for this option is
optional for both clients and servers. The length of this option
will be a non-zero even number, since it contains one or more
option types that are two octets each. The format of the option
value is as below.

0] 1 2 3
©1234567890123456789012345678901
+-t-F-t-F-F-F-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-F-F-F-+-F-+-+-+
| Option Type | Option Type |
+-+-F-+-F+-+-+-+

This option might be used by the client to ask the server to
include options like Timestamp or Server Information. A client
MAY request Server Information in Init messages; it MUST NOT
request it in other messages. A client MAY request a Timestamp in
Request messages; it MUST NOT request it in other messages.
Subject to enforcing the above restrictions, a server supporting
this option SHOULD include the requested options in responses
(Reply messages) to the Request containing the Option Request
Option. The server may according to implementation or local
configuration, not necessarily include all the requested options,
or possibly none. Any options included are appended to the echoed
options, similar to other options included by the server.

Server Information, type 6

Length MUST be non-zero. It MAY be used in Server Response
messages and MUST NOT be used in other messages. Support for this
option is optional. A server supporting this option SHOULD add it
in Server Response messages if and only if requested by the
client. The value is a UTF-8 string that might contain vendor and
version information for the server implementation. It may also
contain information on which options the server supports. An

interactive client MAY support this option, and SHOULD then allow
a user to request this string and display it.

Reserved, type 7

This option code value was used by early implementations for an
option that is now deprecated. This option should no longer be
used. Clients MUST NOT use this option. Servers MUST treat it as
an unknown option (not process it if received, but if received in
a Request message, it MUST be echoed in the Reply message).

Reserved, type 8

This option code value was used by early implementations for an
option that is now deprecated. This option should no longer be
used. Clients MUST NOT use this option. Servers MUST treat it as
an unknown option (not process it if received, but if received in
a Request message, it MUST be echoed in the Reply message).

TTL, type 9

Length MUST be 1. This option contains a single octet specifying
the TTL of a Reply message. Every time a server sends a unicast
or multicast Reply message, it SHOULD include this option
specifying the TTL. This is used by clients to determine the
number of hops the messages have traversed. It MUST NOT be used
in other messages. A server SHOULD specify this option if it
knows what the TTL of the Reply will be. In general the server
can specify a specific TTL to the host stack. Note that the TTL
is not necessarily the same for unicast and multicast.

Multicast Prefix, type 10

Length MUST be greater than 2. It MAY be used in Init messages to
request a group within the prefix(es), it MAY be used in Server
Response messages to tell the client what prefix(es) it may try
to obtain a group from. It MUST NOT be used in Request/Reply
messages. Note that this option MAY be included multiple times to
specify multiple prefixes.

0 1 2 3
0123456789061 234567890612345678901
tott-t-F-t-+-+
| Address Family | Prefix Length |Partial address|
+-t-F-F-t-t-t-F-F-t-t-b -ttt -b -ttt -+ -+ R |

The address family is a value 0-65535 as assigned by IANA for
Internet Address Families [3] (, “IANA, Address Family Numbers,”
.). This is followed by a prefix length (4-32 for IPv4, 8-128 for

IPv6, or 0 for the special 'wildcard' use discussed below), and
finally a group address. For any family, prefix length O means
that any multicast address from that family is acceptable. This
is what we call 'wildcard'. The group address need only contain
enough octets to cover the prefix length bits (i.e., the group
address would have to be 3 octets long if the prefix length is
17-24, and there need be no group address for the wildcard with
prefix length ©). Any bits past the prefix length MUST be
ignored. For IPv4, the option value length will be 4-7, while for
IPv6, it will be 4-19, and for the wildcard, it will be 3.

Session ID, type 11

Length MUST be non-zero. A server SHOULD include this in Server
Response and Reply messages. If a client receives this option in
a message, the client MUST echo the Session ID option in
subsequent Request messages, with the exact same value, until the
next message is received from the server. If the next message
from the server has no Session ID or a new Session ID value, the
client should do the same, either not use the Session ID, or use
the new value. The Session ID may help the server in keeping
track of clients and possibly manage per client state. The value
of a new Session ID should be chosen pseudo randomly so that it
is hard to predict. This can be used to prevent spoofing of the
source address of Request messages, see the Security
Considerations for details.

Server Timestamp, type 12

Length MUST be 8 bytes. A server supporting this option, SHOULD
include it in Reply messages, if requested by the client. The
timestamp specifies the time when the Reply message is sent. The
first 4 bytes specify the number of seconds since the Epoch (0000
UTC Jan 1, 1970). The next 4 bytes specify the number of
microseconds since the last second since the Epoch.

4. Packet Format

The format of all messages is a one octet message type, directly
followed by a variable number of options.

There
ASCII)
ASCII)
ASCII)
Server
The op
way (n
bounda

(C] 1 2 3
012345678901 23456789012345678901
+-t-F-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-F-F-F-F-F-F+-+-+-+
| Type | Options
-ttt -t-F-F+-+-+
|
|

Bk R e e ek e S e R ek kit S TR S P S
are four message types defined. Type 81 (the character Q in
specifies an Echo Request (Query). Type 65 (the character A in
specifies an Echo Reply (Answer). Type 73 (the character I in
is an Init message, and type 83 (the character S in ASCII) is a
Response message.

tions directly follow the type octet and are not aligned in any

0 spacing or padding), i.e., options might start at any octet
ry. The option format is specified above.

5. Message types and options TOC

There are four message types defined. We will now describe each of the
message types and which options they may contain.

Init, type 73

This message is sent by a client to request information from a
server. It is mainly used for requesting a group address, but it
may also be used to check which group prefixes the server may
provide groups from, or other server information. It MUST include
a Version option, and SHOULD include a Client ID. It MAY include
Option Request and Multicast Prefix Options. This message is a
request for a group address if and only if it contains Multicast
Prefix options. If multiple Prefix options are included, they
should be in prioritised order. I.e., the server will consider
the prefixes in the order they are specified, and if it finds a
group for a prefix, it will only return that one group, not
considering the remaining prefixes.

Server Response, type 83

This message is sent by a server. Either as a response to an
Init, or in response to a Request. When responding to Init, it
may provide the client with a multicast group (if requested by
the client), or it may provide other server information. In
response to a Request, the message tells the client to stop
sending Requests. The Version option MUST always be included.

Client ID and Sequence Number options are echoed if present in
the client message. When providing a group to the client, it
includes a Multicast Group option. It SHOULD include Server
Information and Prefix options if requested.

Echo Request, type 81

This message is sent by a client, asking the server to send
unicast and multicast replies. It MUST include Version, Sequence
Number and Multicast Group options. If the last message (if any)

received from the server contained a Session 1ID,

also be included. It SHOULD include Client ID and Client
Timestamp options. It MAY include an Option Request option.

Echo Reply, type 65

then this MUST

This message is sent by a server in response to an Echo Request
message. This message is always sent in pairs, one as unicast and
one as multicast. The contents of the messages are mostly the
same. The server echoes most of the options from the Echo Request
(any options in the Request that are unsupported by the server,
are always echoed). The only option that may be present in the
Request which is not always echoed, is the Session ID option. In
most cases the server would echo it, but the server may also
change or omit it. The two Reply messages SHOULD both contain a
TTL option (not necessarily equal), and both SHOULD also contain
Server Timestamps (not necessarily equal) when requested.

For the reader's convenience we provide the matrix below, showing what

options can go in what messages.

Option / Message Type | Init

| Server Response | Request |

Version (0) | MUST |
Client ID (1) | SHOULD |
Sequence Number (2) | NOT
Client Timestamp (3) | NOT
Multicast Group (4) | NOT
Option Request (5) | MAY
Server Information (6)| NOT
Reserved (7) | NOT
Reserved (8) | NOT
TTL (9) | NOT
Multicast Prefix (10) | MAY
Session ID (11) | NOT
Server Timestamp (12) | NOT

| MUST |
| SHOULD |
| MUST |
| SHOULD |
| MUST |
| MAY |
| NOT |
| NOT |
| NOT |
| NOT |
| NOT |
I I
I I

S

ECHO
HOULD
NOT
MAY

RQ

NOT means that the option MUST NOT be included. ECHO for a server means
that if the option is specified by the client,

then the server MUST

echo the option in the response, with the exact same option value. ECHO
for a client means that it MUST echo the option it got in the last
message from the server in any subsequent messages it sends. RQ means
that the server SHOULD include the option in the response, when
requested by the client using the Option Request option.

6. Client Behaviour TOC

We will consider how a typical interactive client using the above
protocol would behave. A client need only require a user to specify the
unicast address of the server. It can then send an Init message with a
prefix option containing the desired address family and zero prefix
length (wildcard entry). The server is then free to decide which group,
from the specified family, it should return. A client may also allow a
user to specify group address(es) or prefix(es) (for IPv6, the user may
only be required to specify a scope or an RP address, from which the
client can construct the desired prefix, possibly embedded-RP). From
this the client can specify one or more prefix options in an Init
message to tell the server which address it would prefer. If the user
specifies a group address, that can be encoded as a prefix of maximal
length (e.g., 32 for IPv4). The prefix options are in prioritised
order, i.e., the client should put the most preferred prefix first.

If the client receives a Server Response message containing a group
address it can start sending Request messages, see the next paragraph.
If there is no group address option, it would typically exit with an
error message. The server may have included some prefix options in the
Server Response. The client may use this to provide the user some
feedback on what prefixes or scopes are available.

Assuming the client got a group address in a Server Response, it can
start pinging. Before it does that, it should let the user know which
group is being used. Normally, a client should send at most one ping
request per second. When sending ping Requests, the client must always
include the group option. If the last message from the server contained
a Session ID, then it must also include that with the same value.
Typically it would receive a Session ID in a Server Response together
with the group address, and then the ID would stay the same during the
entire ping sequence. However, if for instance the server process is
restarted, it may still be possible to continue pinging but the Session
ID may be changed by the server. Hence a client implementation must
always use the last Session ID it received, and not necessarily the one
from the Server Response message. If a client receives a Server
Response message in response to a Request message (that is, a Server
Response message containing a sequence number), this means there is an
error and it should stop sending Requests. This may for instance happen
after server restart.

The client may allow the user to request server information. If the
user requests server information, the client can send an Init message
with no prefix options, but with an Option Request Option, requesting
the server to return a Server Information option. The server will
return server information if supported, and it may also return a list
of prefixes it supports. It will however not return a group address.
The client may also try to obtain only a list of prefixes by sending an
Init message with no prefixes and not requesting any specific options.
Note that a client may pick a multicast group and send Request messages
without first going through the Init - Server Response negotiation. If
this is supported by the server and the server is okay with the group
used, the server can then send Reply messages as usual. If the server
is not okay, it will send a Server Response telling the client to stop.

7. Server Behaviour TOC

We will consider how a typical server using the above protocol would
behave. First we consider how to respond to Init messages. If the Init
message contains prefix options, the server should look at them in
order and see if it can assign a multicast address from the given
prefix. The server would be configured, possibly have a default,
specifying which groups it can offer. It may have a large pool just
picking a group at random, possibly choose a group based on hashing of
the client's IP address or identifier, or just use a fixed group. A
server could possibly decide whether to include site scoped group
ranges based on the client's IP address. It is left to the server to
decide whether it should allow the same address to be used
simultaneously by multiple clients. If the server finds a suitable
group address, it returns this in a group option in a Server Response
message. The server should additionally include a Session ID. This may
help the server if it is to keep some state, for instance for making
sure the client uses the group it got assigned. A good Session ID would
be a pseudo random byte string that is hard to predict. If the server
cannot find a suitable group address, or if there were no prefixes in
the Init message, it may send a Server Response message containing
prefix options listing what prefixes may be available to the client.
Finally, if the Init message requests the Server Information option, it
should include that.

When the server receives a Request message, it may first check that the
group address and Session ID (if provided) are valid. If the server is
satisfied, it will send a unicast Reply message back to the client, and
also a multicast Reply message to the group address. The Reply messages
contain the exact options and in the same order, as in the Request, and
after that the server adds a TTL option and additional options if
needed. E.g., it may add a timestamp if requested by the client. If the
server is not happy with the Request (bad group address or Session ID,

request is too large etc), it may send a Server Response message asking
the client to stop. This Server Response must echo the sequence number
from the Request. This Server Response may contain group prefixes from
which a client can try to request a group address. The unicast and
multicast Reply messages have identical UDP payload apart from possibly
TTL and timestamp option values.

Note that the server may receive Request messages with no prior Init
message. This may happen when the server restarts or if a client sends
a Request with no prior Init message. The server may go ahead and
respond if it is okay with the group used. In the responses it may add
a Session ID which will then be in later requests from the client. If
the group is not okay, the server sends back a Server Response. The
Response is just as if it got an Init message with no prefixes. If the
server adds or modifies the SessionID in replies, it must use the exact
same SessionID in the unicast and multicast replies.

8. Recommendations for Implementers TOC

The protocol as specified is fairly flexible and leaves a lot of
freedom for implementers. In this section we present some
recommendations.

Server administrators should be able to configure one or multiple group
prefixes in a server implementation. When deploying servers on the
Internet and in other environments, the server administrator should be
able to restrict the server to respond to only a few multicast groups
which should not be currently used by multicast applications. A server
implementation should also provide flexibility for an administrator to
apply various policies to provide one or multiple group prefixes to
specific clients, e.g., site scoped addresses for clients that are
inside the site. Clients could be identified by their IP address
provided that clients are required to send Init messages, and they
receive an unpredictable Session ID. See also Section 11 (Security
Considerations).

Clients should by default send at most one request per second. Servers
should perform rate limiting, to guard against this protocol being used
for DoS attacks. The server should for a given client, respond to at
most one Request message per second. A leaky bucket algorithm is
suggested, where the rate can be higher for a few seconds, but the
average rate should by default be limited to a message per client per
second. Server implementations should provide administrative control of
which client IP addresses to serve, and may also allow certain clients
to perform more rapid requests. Implementers of applications/tools
using this protocol should consider the UDP guidelines (Eggert, L. and
G. Fairhurst, “Unicast UDP Usage Guidelines for Application Designers,”

October 2008.) [5], in particular if clients are to send, or servers
are to accept, requests at rates exceeding one per second. If higher
rates are allowed for specific IP addresses, then Init messages and the

Session ID option should be used to help prevent spoofing. See
Section 11 (Security Considerations).

9. Acknowledgments TOC

The ssmping concept was proposed by Pavan Namburi, Kamil Sarac and
Kevin C. Almeroth in the paper SSM-Ping: A Ping Utility for Source
Specific Multicast, and also the Internet Draft draft-sarac-
mping-00.txt. Mickael Hoerdt has contributed with several ideas.
Alexander Gall, Nicholas Humfrey, Nick Lamb and Dave Thaler have
contributed in different ways to the implementation of the ssmping
tools at [4] (, “ssmping implementation,” .). Many people in
communities like TERENA, Internet2 and the M6Bone have used early
implementations of ssmping and provided feedback that have influenced
the current protocol. Thanks to Kevin Almeroth, Toerless Eckert, Gorry
Fairhurst, Alfred Hoenes, Liu Hui, Bharat Joshi, Olav Kvittem, Hugo
Santos, Kamil Sarac, Pekka Savola, Trond Skjesol and Cao Wei for
reviewing and providing feedback on this draft. In particular Hugo,
Gorry and Bharat have provided lots of input on several revisions of
the draft.

10. IANA Considerations TOC

IANA is requested to provide a well-known UDP port number for use by
this protocol, and also to provide registries for message and option
types.

There should be a message types registry. Message types are in the
range 0-255. Message types 0-191 require specification (an RFC or other
permanent and readily available reference), while types 192-255 are for
experimental use and are not registered. The registry should include
the messages defined in Section 5 (Message types and options). A
message specification must describe the behaviour with known option
types as well as the default behaviour with unknown ones.

There should also be an option type registry. Option types 0-49151
require specification (an RFC or other permanent and readily available
reference), while types 49152-65535 are for experimental use and are
not registered. The registry should include the options defined in
Section 3.2 (Defined Options). An option specification must describe
how the option may be used with the known message types. This includes
which message types the option may be used with.

The initial registry definitions could be as follows:

Multicast Ping Protocol Parameters:

Registry Name: Multicast Ping Protocol Message Types
Reference: [this doc]
Registration Procedures: Specification Required

Registry:

Type Name Reference
65 Echo Reply [this doc]
73 Init [this doc]
81 Echo Request [this doc]
83 Server Response [this doc]
192-255 Experimental

Registry Name: Multicast Ping Protocol Option Types
Reference: [this doc]
Registration Procedures: Specification Required

Registry:

Type Name Reference
0] Version [this doc]
1 Client ID [this doc]
2 Sequence Number [this doc]
3 Client Timestamp [this doc]
4 Multicast Group [this doc]
5 Option Request Option [this doc]
6 Server Information [this doc]
7 Reserved [this doc]
8 Reserved [this doc]
9 TTL [this doc]
10 Multicast Prefix [this doc]
11 Session ID [this doc]
12 Server Timestamp [this doc]

49152-65535 Experimental

11. Security Considerations TOC

There are some security issues to consider. One is that a host may send
a request with an IP source address of another host, and make an
arbitrary multicast ping server on the Internet send packets to this
other host. This behaviour is fairly harmless. The worst case is if the
host receiving the unicast replies also happen to be joined to the
multicast group used. In this case, there would be an amplification

effect where the host receives twice as many replies as there are
requests sent. See below for how spoofing can be prevented.

For ASM (Any-Source Multicast) a host could also make a multicast ping
server send multicast packets to a group that is used for something
else, possibly disturbing other uses of that group. The main concern is
bandwidth. Since there is a well-known port, it should not be received
by other applications. Due to this, a server on the Internet SHOULD
perform rate limiting.

In order to help prevent spoofing, a server SHOULD require the client
to send an Init message, and return an unpredictable Session ID in the
response. The ID should be associated with the IP address and have a
limited lifetime. The server SHOULD then only respond to Request
messages that have a valid Session ID associated with the source IP
address of the Request.

Server implementations should allow administrators to restrict which
groups a server responds to, and also perform rate limiting. This is
discussed in Section 8 (Recommendations for Implementers).

12. References TOC

12.1. Normative References
TOC

[1] Bradner, S., “Key words for use in RFCs to Indicate Requirement

Levels,” BCP 14, RFC 2119, March 1997 (TXT, HTML, XML).
[2] Postel, J., “User Datagram Protocol,” STD 6, RFC 768,
August 1980 (TXT).
[3] “IANA, Address Family Numbers.”

12.2. Informative References
TOC
[4] “ssmping implementation.”
[5] Eggert, L. and G. Fairhurst, “Unicast UDP Usage Guidelines for
Application Designers,” draft-ietf-tsvwg-udp-guidelines-11
(work in progress), October 2008 (TXT).

Author's Address
TOC

Stig Venaas
UNINETT
Trondheim NO-7465

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc768
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.iana.org/assignments/address-family-numbers
http://www.venaas.no/multicast/ssmping/
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-udp-guidelines-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-udp-guidelines-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-udp-guidelines-11.txt

Norway
Email: venaas@uninett.no

Full Copyright Statement
TOC
Copyright © The IETF Trust (2008).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
“AS IS” basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has made
any independent effort to identify any such rights. Information on the
procedures with respect to rights in RFC documents can be found in

BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification
can be obtained from the IETF on-line IPR repository at http://
www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary rights
that may cover technology that may be required to implement this
standard. Please address the information to the IETF at ietf-

ipr@ietf.org.

mailto:venaas@uninett.no
http://www.ietf.org/ipr
http://www.ietf.org/ipr
mailto:ietf-ipr@ietf.org
mailto:ietf-ipr@ietf.org

	Multicast Ping Protocoldraft-ietf-mboned-ssmping-06
	Status of this Memo
	Abstract
	Requirements Language
	Table of Contents
	1. Introduction
	2. Architecture
	3. Protocol specification
	3.1. Option format
	3.2. Defined Options
	4. Packet Format
	5. Message types and options
	6. Client Behaviour
	7. Server Behaviour
	8. Recommendations for Implementers
	9. Acknowledgments
	10. IANA Considerations
	11. Security Considerations
	12. References
	12.1. Normative References
	12.2. Informative References
	Author's Address
	Full Copyright Statement
	Intellectual Property

