
Network Working Group S. Venaas

Internet-Draft cisco Systems

Intended status: Standards Track October 05, 2011

Expires: April 07, 2012

Multicast Ping Protocol

draft-ietf-mboned-ssmping-09.txt

Abstract

The Multicast Ping Protocol specified in this document allows for

checking whether an endpoint can receive multicast, both Source-

Specific Multicast (SSM) and Any-Source Multicast (ASM). It can also be

used to obtain additional multicast-related information such as

multicast tree setup time. This protocol is based on an implementation

of tools called ssmping and asmping.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on April 07, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Architecture

3. Protocol Specification

3.1. Option Format

3.2. Defined Options

3.3. Packet Format

3.4. Message Types and Options

3.5. Rate Limiting

3.5.1. Message Rate Variables

4. Client Behaviour

5. Server Behaviour

6. Recommendations for Implementers

7. Acknowledgments

8. IANA Considerations

9. Security Considerations

10. References

10.1. Normative References

10.2. Informative References

Author's Address

1. Introduction

The Multicast Ping Protocol specified in this document allows for

checking multicast connectivity. In addition to checking reception of

multicast (SSM or ASM), the protocol can provide related information

such as multicast tree setup time, the number of hops the packets have

traveled, as well as packet delay and loss. This functionality

resembles, in part, the ICMP Echo Request/Reply mechanism [RFC0792],

but uses UDP [RFC0768] and requires both a client and a server

implementing this protocol. Intermediate routers are not required to

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

support this protocol. They forward Protocol Messages and data traffic

as usual.

This protocol is based on the current implementation of the ssmping and

asmping tools [impl] which are widely used by the Internet community to

conduct multicast connectivity tests.

2. Architecture

Before describing the protocol in detail, we provide a brief overview

of how the protocol may be used and what information it may provide.

The protocol is used between clients and servers to check multicast

connectivity. Servers are multicast sources and clients are multicast

receivers. A server may be configured with a set of ranges of multicast

addresses that can be used for testing, or it may use some

implementation defaults. Depending on the server configuration or the

implementation it may control which clients (which unicast addresses)

are allowed to use different group ranges, and also whether clients can

select a group address, or if the group address is selected by the

server. It also depends on configuration and/or implementation whether

several clients are allowed to simultaneously use the same multicast

address.

In addition to the above state, a server normally has runtime soft

state. The server must generally perform rate limiting to restrict the

number of client requests it handles. This rate limiting is per client

IP address. This state need usually only be maintained for a few

seconds, depending on the limit used. If the server provides unique

multicast addresses to clients, it must also have soft state tracking

which multicast addresses are used by which client IP address. This

state should expire if the server has not received requests within a

few minutes. The exact timeout should ideally be configurable to cope

with different environments. If a client is expected to perform

multicast ping checks continuously for a long period of time, and to

cope with requests not reaching the client for several minutes, then

this timeout needs to be extended. In order to verify the client IP

address, the server should perform a return routability check by giving

the client a non-predictable session ID. This would then also be part

of the server soft-state for that client.

A client must before it can perform a multicast ping test, know the

unicast address of a server. In addition it may be configured with a

multicast address or range to use. In that case the client will tell

the server which group or range it wishes to use. If not, the server is

left to decide the group. Normally a client sends Default-Client-

Request-Rate requests per second. It may however be configured to use

another rate. See definition of Default-Client-Request-Rate in Section

3.5.1. Note that the value can be less than 1.

At runtime, a client generates a client ID that is unique for the ping

test. This ID is included in all messages sent by the client. Further,

if not supplied with a specific group address, the client will receive

a group address from the server, that is used for the ping requests. It

The typical protocol usage is as follows:

may also receive a Session ID from the server. The client ID, group

address and Session ID (if received) will then be fixed for all ping

requests in this session. When a client receives replies from a server,

it will verify the client ID in the reply, and ignore it if not

matching what it used in the requests. For each reply it may print or

record information like round trip time, number of hops etc. The client

may once a ping session is ended, calculate and print or record

statistics based on the entire ping session.

A server runs continuously to serve requests from clients. A client

has somehow learned the unicast address of the server and tests the

multicast reception from the server.

The client application will then send a unicast message to the

server asking for a group to use. Optionally a user may request a

specific group or scope, in which case the client will ask for a

group matching the user's request. The server will respond with a

group to use, or an error if no group is available.

Next, for ASM, the client joins an ASM group G, while for SSM it

joins a channel (S,G), where G is the multicast group address

specified by the server, and S is the unicast address used to reach

the server.

After joining the group/channel, the client unicasts multicast ping

requests to the server. The requests are sent using UDP with the

destination port set to the standardised multicast ping port [TBD].

The requests are sent periodically to the server. The rate is by

default Default-Client-Request-Rate Section 3.5.1 requests per

second, but the client may be configured to use another rate. These

requests contain a sequence number, and typically a timestamp. The

requests are echoed by the server, which may add a few options.

For each request, the server sends two replies. One reply is unicast

to the source IP address and source UDP port of the requesting

client. The other reply is multicast to the requested multicast

group G and the source UDP port of the requesting client.

Both replies are sent from the same port on which the request was

received. The server should specify the TTL (IPv4 time-to-live or

IPv6 hop-count) used for both the unicast and multicast messages

(TTL of at least 64 is recommended) by including a TTL option. This

allows the client to compute the number of hops. The client should

leave the group/channel when it has finished its measurements.

By use of this protocol, a client (or a user of the client) can obtain

information about several multicast delivery characteristics. First, by

receiving unicast replies, the client can verify that the server is

receiving the unicast requests, is operational and responding. Hence,

provided that the client receives unicast replies, a failure to receive

multicast indicates either a multicast problem or a multicast

administrative restriction. If it does receive multicast, it knows not

only that it can receive multicast traffic, it may also estimate the

amount of time it took to establish the multicast tree (at least if it

is in the range of seconds), whether there are packet drops, and the

length and variation of Round Trip Times (RTT).

For unicast, the RTT is the time from when the unicast request is sent

to the time when the reply is received. The measured multicast RTT also

references the client's unicast request. By specifying the TTL of the

replies when they are originated, the client can also determine the

number of router hops it is from the source. Since similar information

is obtained in the unicast replies, the host may compare its multicast

and unicast results and is able to check for differences such as the

number of hops, and RTT.

The number of multicast hops and changes in the number of hops over

time may reveal details about the multicast tree and multicast tree

changes. Provided that the server sends the unicast and multicast

replies nearly simultaneously, the client may also be able to measure

the difference in one way delay for unicast and multicast on the path

from server to client, and also differences in delay.

Servers may optionally specify a timestamp. This may be useful since

the unicast and multicast replies can not be sent simultaneously (the

delay is dependent on the host's operating system and load).

3. Protocol Specification

There are four different message types. Echo Request and Echo Reply

messages are used for the actual measurements. An Init message SHOULD

be used to initialise a ping session and negotiate which group to use.

Finally a Server Response message that is mainly used in response to

the Init message. The messages MUST always be in network byte order.

UDP checksums MUST always be used.

The messages share a common format: one octet specifying the message

type, followed by a number of options in TLV (Type, Length and Value)

format. This makes the protocol easily extendible.

Message types in the range 0-253 are reserved and available for

allocation in an IANA Registry. Message types 254 and 255 are not

registered and are freely available for experimental use. See Section

8.

The Init message generally contains some prefix options asking the

server for a group from one of the specified prefixes. The server

responds with a Server Response message that contains the group address

to use, or possibly prefix options describing what multicast groups the

server may be able to provide.

For an Echo Request the client includes a number of options, and a

server MAY simply echo the contents (only changing the message type)

without inspecting the options if it does not support any options. This

might be true for a simple Multicast Ping Protocol server, but it

severly limits what information a client can obtain, and hence makes

the protocol less useful. However, the server SHOULD add a TTL option

(allowing the client to determine the number of router hops a reply has

traversed), and there are other options that a server implementation

MAY support, e.g., the client may ask for certain information or a

specific behaviour from the server. The Echo Replies (one unicast and

one multicast) MUST first contain the exact options from the request

(in the same order), and then, immediately following, any options

appended by the server. A server MUST NOT process unknown options, but

they MUST still be included in the Echo Reply. A client MUST ignore any

unknown options.

The size of the protocol messages is generally smaller than the Path

MTU and fragmentation is not a concern. There may however be cases

where the Path MTU is really small, or that a client sends large

requests in order to verify that it can receive fragmented multicast

datagrams. This document does not specify whether Path MTU Discovery

should be performed, etc. A possible extension could be an option where

a client requests Path MTU Discovery and receives the current Path MTU

from the server.

This document defines a number of different options. Some options do

not require processing by servers and are simply returned unmodified in

the reply. There are, however, other client options that the server may

care about, as well as server options that may be requested by a

client. Unless otherwise specified, an option MUST NOT be used multiple

times in the same message.

3.1. Option Format

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type | Length |

 +-+

 | Value |

 | . |

 | . |

 | . |

 +-+

All options are TLVs formatted as below.

Type (2 octets) specifies the option.

Length (2 octets) specifies the length of the value field. Depending on

the option type, it can be from 0 to 65535.

Value must always be of the specified length. See the respective option

definitions for possible values. If the length is 0, the value field is

not included.

3.2. Defined Options

This document defines the following options: Version (0), Client ID

(1), Sequence Number (2), Client Timestamp (3), Multicast Group (4),

Option Request Option (5), Server Information (6), TTL (9), Multicast

Prefix (10), Session ID (11) and Server Timestamp (12). Values 7 and 8

are deprecated and must not be allocated by any future document. The

options are defined below.

Option types in the range 0-65531 are reserved and available for

allocation in an IANA Registry. Option types in the range 65532-65535

are not registered and are freely available for experimental use. See

Section 8.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Address Family | Multicast group address... |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Option Type | Option Type |

 +-+

 | |

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Address Family | Prefix Length |Partial address|

 +-+ |

Version, type 0

Length MUST be 1. This option MUST always be included in all

messages, and for the current specified protocol this value

MUST be set to 2 (in decimal). Note that there are

implementations of older revisions of this protocol that only

partly follow this specification. They can be regarded as

version 1 and do not use this option. If a server receives a

message with a version other than 2 (or missing), the server

SHOULD (unless it supports the particular version) send a

Server Response message back with version set to 2. This tells

the client that the server expects version 2 messages. Client

ID and Sequence Number options MUST be echoed if present, so

that a client can be certain it is a response to one of its

messages, and exactly which message. The server SHOULD NOT

*

-

include any other options. A client receiving a response with

a version other than 2 MUST stop sending requests to the

server (unless it supports the particular version).

Client ID, type 1

Length MUST be non-zero. A client SHOULD always include this

option in all messages (both Init and Echo Request). The

client may use any value it likes to detect whether a reply is

a reply to its Init/Echo Request or not. A server should treat

this as opaque data, and MUST echo this option back in the

reply if present (both Server Response and Echo Reply). The

value might be a pseudo random byte string that is likely to

be unique, possibly combined with the client IP address.

Predictability is not a big concern here. This is used by the

client to ensure that server messages are in response to its

requests. In some cases a client may receive multicast

responses to queries from other clients. It is left to the

client implementer how to use this option.

Sequence Number, type 2

Length MUST be 4. A client MUST always include this in Echo

Request messages and MUST NOT include it in Init messages. A

server replying to an Echo Request message MUST copy it into

the Echo Reply (or Server Response message on error). The

sequence number is a 32-bit integer. Values typically start at

1 and increase by one for each Echo Request in a sequence.

Client Timestamp, type 3

Length MUST be 8. A client SHOULD include this in Echo Request

messages and MUST NOT include it in Init messages. A server

replying to an Echo Request message MUST copy it into the Echo

Reply. The timestamp specifies the time when the Echo Request

message is sent. The first 4 bytes specify the number of

seconds since the Epoch (0000 UTC Jan 1, 1970). The next 4

bytes specify the number of microseconds since the second

specified in the first 4 bytes. This option would typically be

used by a client to compute round trip times.

Note that while this protocol uses the above 32 bit format, it

would have been better to use another format, such as the one

defined in NTPv4 [RFC5905]. This should be considered for

future extensions of the protocol.

Multicast Group, type 4

Length MUST be greater than 2. It MAY be used in Server

Response messages to tell the client what group to use in

*

-

*

-

*

-

-

*

-

subsequent Echo Request messages. It MUST be used in Echo

Request messages to tell the server what group address to

respond to (this group would typically be previously obtained

in a Server Response message). It MUST be used in Echo Reply

messages (copied from the Echo Request message). It MUST NOT

be used in Init messages. The format of the option value is as

below. [addrfamily]. This is followed by the group address.

Length of the option value will be 6 for IPv4, and 18 for

IPv6.

Option Request Option, type 5

Length MUST be greater than 1. This option MAY be used in

client messages (Init and Echo Request messages). A server

MUST NOT send this option, except that if it is present in an

Echo Request message, the server MUST echo it in replies (Echo

Reply message) to the Echo Request. This option contains a

list of option types for options that the client is requesting

from the server. Support for this option is OPTIONAL for both

clients and servers. The length of this option will be a non-

zero even number, since it contains one or more option types

that are two octets each. The format of the option value is as

below.

Server Information, type 6

Length MUST be non-zero. It MAY be used in Server Response

messages and MUST NOT be used in other messages. Support for

this option is OPTIONAL. A server supporting this option

SHOULD add it in Server Response messages if and only if

requested by the client. The value is a UTF-8 [RFC3629] string

that might contain vendor and version information for the

server implementation. It may also contain information on

which options the server supports. An interactive client MAY

support this option, and SHOULD then allow a user to request

this string and display it. Although support for this is

OPTIONAL, we say that a server SHOULD return it if requested,

since this may be helpful to a user running the client. It is

however purely informational, it is not needed for the

protocol to function.

Deprecated, type 7

This option code value was used by implementations of version

1 of this protocol, and is not used in this version. Servers

MUST treat it as an unknown option (not process it if

received, but if received in an Echo Request message, it MUST

be echoed in the Echo Reply message).

*

-

*

-

*

-

Deprecated, type 8

This option code value was used by implementations of version

1 of this protocol, and is not used in this version. Servers

MUST treat it as an unknown option (not process it if

received, but if received in an Echo Request message, it MUST

be echoed in the Echo Reply message).

TTL, type 9

Length MUST be 1. This option contains a single octet

specifying the TTL of an Echo Reply message. Every time a

server sends a unicast or multicast Echo Reply message, it

SHOULD include this option specifying the TTL. This is used by

clients to determine the number of hops the messages have

traversed. It MUST NOT be used in other messages. A server

SHOULD specify this option if it knows what the TTL of the

Echo Reply will be. In general the server can specify a

specific TTL to the host stack. Note that the TTL is not

necessarily the same for unicast and multicast. Also note that

this option SHOULD be included even when not requested by the

client. The protocol will work even if this option is not

included, but it limits what information a client can obtain.

If the server did not include this TTL option, there is no

reliable way for the client to know the initial TTL of the

Echo Reply, and therefore the client SHOULD NOT attempt to

calculate the number of hops the message has traversed.

Multicast Prefix, type 10

Length MUST be greater than 2. It MAY be used in Init messages

to request a group within the prefix(es) and it MAY be used in

Server Response messages to tell the client what prefix(es) it

may try to obtain a group from. It MUST NOT be used in Echo

Request/Reply messages. Note that this option MAY be included

multiple times to specify multiple prefixes. [addrfamily].

This is followed by a prefix length (4-32 for IPv4, 8-128 for

IPv6, or 0 for the special "wildcard" use discussed below),

and finally a group address. For any family, prefix length 0

means that any multicast address from that family is

acceptable. This is what we call "wildcard." The group address

need only contain enough octets to cover the prefix length

bits (i.e., the group address would have to be 3 octets long

if the prefix length is 17-24, and there need be no group

address for the wildcard with prefix length 0). Any bits past

the prefix length MUST be ignored. For IPv4, the option value

length will be 4-7, while for IPv6, it will be 4-19, and for

the wildcard, it will be 3.

*

-

*

-

-

*

-

Session ID, type 11

Length MUST be 4 or larger. A server SHOULD include this in

Server Response messages. If a client receives this option in

a message, the client MUST echo the Session ID option in

subsequent Echo Request messages, with the exact same value.

The Session ID may help the server in keeping track of clients

and possibly manage per client state. The value of a new

Session ID SHOULD be a pseudo random byte string that is hard

to predict, see [RFC4086]. The string MUST be at least 4 bytes

long. The Session ID can be used to mitigate spoofing of the

source address of Echo Request messages. We say that this

option SHOULD be used, because it is important for security

reasons. There may however be environments where this is not

required. See the Security Considerations for details.

Server Timestamp, type 12

Length MUST be 8 bytes. A server supporting this option,

SHOULD include it in Echo Reply messages, if requested by the

client. The timestamp specifies the time when the Echo Reply

message is sent. The first 4 bytes specify the number of

seconds since the Epoch (0000 UTC Jan 1, 1970). The next 4

bytes specify the number of microseconds since the second

specified in the first 4 bytes. If this option is not

included, the protocol will still work, but it makes it

impossible for a client to compute one way delay.

Note that while this protocol uses the above 32 bit format, it

would have been better to use another format, such as the one

defined in NTPv4 [RFC5905]. This should be considered for

future extensions of the protocol.

3.3. Packet Format

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type | Options ... |

 +-+-+-+-+-+-+-+-+ . |

 | . |

 | . |

 +-

The format of all messages is a one octet message type, followed by a

variable number of options.

There are four message types defined. Type 81 (the character Q in

ASCII) specifies an Echo Request (Query). Type 65 (the character A in

ASCII) specifies an Echo Reply (Answer). Type 73 (the character I in

*

-

*

-

-

ASCII) is an Init message, and type 83 (the character S in ASCII) is a

Server Response message.

The options immediately follow the type octet and are not aligned in

any way (no spacing or padding), i.e., options might start at any octet

boundary. The option format is specified above.

3.4. Message Types and Options

There are four message types defined. We will now describe each of the

message types and which options they may contain.

Init, type 73

This message is sent by a client to request information from a

server. It is mainly used for requesting a group address, but

it may also be used to check which group prefixes the server

may provide groups from, or other server information. It MUST

include a Version option, and SHOULD include a Client ID. It

MAY include Option Request and Multicast Prefix Options. This

message is a request for a group address if and only if it

contains Multicast Prefix options. If multiple Prefix options

are included, they should be in prioritised order. I.e., the

server will consider the prefixes in the order they are

specified, and if it finds a group for a prefix, it will only

return that one group, not considering the remaining prefixes.

Server Response, type 83

This message is sent by a server, either as a response to an

Init, or in response to an Echo Request. When responding to

Init, it may provide the client with a multicast group (if

requested by the client), or it may provide other server

information. In response to an Echo Request, the message tells

the client to stop sending Echo Requests. The Version option

MUST always be included. Client ID and Sequence Number options

are echoed if present in the client message. When providing a

group to the client, it includes a Multicast Group option. It

SHOULD include Server Information and Prefix options if

requested. It SHOULD also include the Session ID option.

Echo Request, type 81

This message is sent by a client, asking the server to send

unicast and multicast Echo Replies. It MUST include Version,

Sequence Number and Multicast Group options. If a Session ID

was received in a Server Response message, then the Session ID

MUST be included. It SHOULD include Client ID and Client

Timestamp options. It MAY include an Option Request option.

*

-

*

-

*

-

Echo Reply, type 65

This message is sent by a server in response to an Echo

Request message. This message is always sent in pairs, one as

unicast and one as multicast. The contents of the messages are

mostly the same. The server always echoes all of the options

(but never the Session ID) from the Echo Request. Any options

in the Echo Request that are unsupported by the server, are

also to be echoed. The two Echo Reply messages SHOULD both

always contain a TTL option (not necessarily equal). Both Echo

Reply messages SHOULD also when requested contain Server

Timestamps (not necessarily equal).

 \ Message Type | Init | Server | Echo | Echo |

 Option \ | | Response | Request | Reply |

 -----------------------+--------+----------+---------+--------+

 Version (0) | MUST | MUST | MUST | ECHO |

 Client ID (1) | SHOULD | ECHO | SHOULD | ECHO |

 Sequence Number (2) | NOT | ECHO | MUST | ECHO |

 Client Timestamp (3) | NOT | NOT | SHOULD | ECHO |

 Multicast Group (4) | NOT | MAY | MUST | ECHO |

 Option Request (5) | MAY | NOT | MAY | ECHO |

 Server Information (6) | NOT | RQ | NOT | NOT |

 Deprecated (7) | NOT | NOT | NOT | ECHO |

 Deprecated (8) | NOT | NOT | NOT | ECHO |

 TTL (9) | NOT | NOT | NOT | SHOULD |

 Multicast Prefix (10) | MAY | MAY | NOT | NOT |

 Session ID (11) | NOT | SHOULD | ECHO | NOT |

 Server Timestamp (12) | NOT | NOT | NOT | RQ |

 -----------------------+--------+----------+---------+--------+

The below matrix summarises what options can go in what messages.

3.5. Rate Limiting

Clients MUST by default send at most Default-Client-Request-Rate

Section 3.5.1 Echo Requests per second. Note that the value can be less

than 1. Servers MUST by default perform rate limiting, to guard against

this protocol being used for DoS attacks. A server MUST by default

limit the number of clients that can be served at the same time, and a

server MUST also by default for a given client, respond to on average

at most Default-Server-Rate-Limit (see Section 3.5.1) Echo Request

messages per second. Note that the value can be less than 1. Server

implementations should provide configuration options allowing certain

clients to perform more rapid Echo Requests. If higher rates are

allowed for specific client IP addresses, then Init messages and the

Session ID option MUST be used to help mitigate spoofing.

*

-

Implementers of applications/tools using this protocol SHOULD consider

the UDP guidelines [RFC5405], in particular if clients are to send, or

servers are to accept, Echo Requests at rates exceeding the defaults

given in this document. See Section 9, "Security Considerations", for

additional discussion.

3.5.1. Message Rate Variables

There are two variables that control message rates. They are defined as

follows.

Default-Client-Request-Rate

This variable defines the default client echo request rate,

specifying the number of requests per second. Note that the

value may be less than one. E.g., a value of 0.1 means one

packet per 10 seconds. The value 1 is RECOMMENDED, but the

value might be too small or large depending on the type of

network the client is deployed in. The value 1 is chosen

because it should be safe in most deployments, and it is

similar to what is typically used for the common tool "ping"

for ICMP Echo Requests.

Default-Server-Rate-Limit

This variable defines the default per client rate limit that a

server uses for responding to Echo Request messages. The

average rate of replies, MUST NOT exceed Default-Server-Rate-

Limit per second. Note that the value may be less than one.

E.g., a value of 0.1 means an average of one packet per 10

seconds. The value 1 is RECOMMENDED, but the value might be

too small or large depending on the type of network the client

is deployed in. The value 1 is chosen because it should be

safe in most deployments. This value SHOULD be high enough to

accept the value chosen for the Default-Client-Request-Rate.

4. Client Behaviour

We will consider how a typical interactive client using the above

protocol would behave.

A client only requires a user to specify the unicast address of the

server. It can then send an Init message with a prefix option

containing the desired address family and zero prefix length (wildcard

entry). The server can then decide which group, from the specified

family, it should return. A client may also allow the user to specify

group address(es) or prefix(es) (for IPv6, the user may only be

required to specify a scope or an RP address, from which the client can

construct the desired prefix, possibly embedded-RP). From this the

client can specify one or more prefix options in an Init message to

tell the server which address it would prefer. If the user specifies a

*

-

*

-

group address, that can be encoded as a prefix of maximal length (e.g.,

32 for IPv4). The prefix options are in prioritised order, i.e., the

client should put the most preferred prefix first.

If the client receives a Server Response message containing a group

address it can start sending Echo Request messages, see the next

paragraph. If there is no group address option, the client would

typically exit with an error message. The server may have included some

prefix options in the Server Response. The client may use this to

provide the user some feedback on what prefixes or scopes are

available.

Assuming the client got a group address in a Server Response, it can

start the multicast pings, after letting the user know which group is

being used. Normally, a client should send at most Default-Client-

Request-Rate Section 3.5.1 Echo Requests per second.

When sending the Echo Requests, the client must always include the

group option. If the Server Response contained a Session ID, then it

must also include that, with the exact same value, in the Echo

Requests. If a client receives a Server Response message in response to

an Echo Request (that is, a Server Response message containing a

sequence number), this means there is an error and it should stop

sending Echo Requests. This could happen after server restart.

The client may allow the user to request server information. If the

user requests server information, the client can send an Init message

with no prefix options, but with an Option Request Option, requesting

the server to return a Server Information option. The server will

return server information if supported, and it may also return a list

of prefixes it supports. It will however not return a group address.

The client may also try to obtain only a list of prefixes by sending an

Init message with no prefixes and not requesting any specific options.

Although not recommended, a client may pick a multicast group and send

Echo Request messages without first going through the Init - Server

Response negotiation. If this is supported by the server and the server

is okay with the group used, the server can then send Echo Reply

messages as usual. If the server is not okay, it will send a Server

Response telling the client to stop.

5. Server Behaviour

We will consider how a typical server using the above protocol would

behave, first looking at how to respond to Init messages.

If the Init message contains prefix options, the server should look at

them in order and see if it can assign a multicast address from the

given prefix. The server would be configured with, possibly have a

default, a set of groups it can offer. It may have a large pool and

pick a group at random, or possibly choosing a group based on hashing

of the client's IP address or identifier, or simply use a fixed group.

A server could possibly decide whether to include site scoped group

ranges based on the client's IP address. It is left to the server to

decide whether it should allow the same address to be used

simultaneously by multiple clients.

If the server finds a suitable group address, it returns this in a

group option in a Server Response message. The server should

additionally include a Session ID. This may help the server if it is to

keep some state, for instance to make sure the client uses the group it

got assigned. A good Session ID would be a pseudo random byte string

that is hard to predict, see [RFC4086]. If the server cannot find a

suitable group address, or if there were no prefixes in the Init

message, it may send a Server Response message containing prefix

options listing what prefixes may be available to the client. Finally,

if the Init message requests the Server Information option, the server

should include that.

When the server receives an Echo Request message, it must first check

that the group address and Session ID (if provided) are valid. If the

server is satisfied, it will send a unicast Echo Reply message back to

the client, and also a multicast Echo Reply message to the group

address. The Echo Reply messages contain the exact options (but no

Session ID) and in the same order, as in the Echo Request, and after

that the server adds a TTL option and additional options if needed. For

example, it may add a timestamp if requested by the client. If the

server is not happy with the Echo Request (such as bad group address or

Session ID, request is too large), it may send a Server Response

message asking the client to stop. This Server Response must echo the

sequence number from the Echo Request. This Server Response may contain

group prefixes from which a client can try to request a group address.

The unicast and multicast Echo Reply messages have identical UDP

payload apart from possibly TTL and timestamp option values.

Note that the server may receive Echo Request messages with no prior

Init message. This may happen when the server restarts or if a client

sends an Echo Request with no prior Init message. The server may go

ahead and respond if it is okay with the group and Session ID (if

included) used. If it is not okay, the server sends back a Server

Response.

6. Recommendations for Implementers

The protocol as specified is fairly flexible and leaves a lot of

freedom for implementers. In this section we present some

recommendations.

Server administrators should be able to configure one or multiple group

prefixes in a server implementation. When deploying servers on the

Internet and in other environments, the server administrator should be

able to restrict the server to respond to only a few multicast groups

which should not be currently used by multicast applications. A server

implementation should also provide flexibility for an administrator to

apply various policies to provide one or multiple group prefixes to

specific clients, e.g., site scoped addresses for clients that are

inside the site.

As specified in Section 3.5, a server must by default for a given

client, respond to at most an average rate of Default-Server-Rate-Limit

Echo Request messages per second. A leaky bucket algorithm is

suggested, where the rate can be higher for a few seconds, but the

average rate should by default be limited to Default-Server-Rate-Limit

messages per per client per second. Server implementations should

provide administrative control of which client IP addresses to serve,

and may also allow certain clients to perform more rapid Echo Requests.

If a server uses different policies for different IP addresses, it

should require clients to send Init messages and return an

unpredictable Session ID to help mitigate spoofing. This is an absolute

requirement if exceeding the default rate limit. See specification in

Section 3.5.

7. Acknowledgments

The ssmping concept was proposed by Pavan Namburi, Kamil Sarac and

Kevin C. Almeroth in the paper SSM-Ping: A Ping Utility for Source

Specific Multicast, and also the Internet Draft draft-sarac-

mping-00.txt. Mickael Hoerdt has contributed with several ideas.

Alexander Gall, Nicholas Humfrey, Nick Lamb and Dave Thaler have

contributed in different ways to the implementation of the ssmping

tools at [impl]. Many people in communities like TERENA, Internet2 and

the M6Bone have used early implementations of ssmping and provided

feedback that have influenced the current protocol. Thanks to Kevin

Almeroth, Tony Ballardie, Bill Cerveny, Toerless Eckert, Marshall

Eubanks, Gorry Fairhurst, Alfred Hoenes, Liu Hui, Bharat Joshi, Olav

Kvittem, Hugo Santos, Kamil Sarac, Pekka Savola, Trond Skjesol and Cao

Wei for reviewing and providing feedback on this draft. In particular

Hugo, Gorry and Bharat have provided lots of input on several revisions

of the draft.

8. IANA Considerations

IANA is requested to assign a UDP user-port in the range 1024-49151 for

use by this protocol, and also to provide registries for message and

option types. The string "[TBD]" in this document should be replaced

with the assigned port.

There should be a message types registry. Message types are in the

range 0-255. Message types 0-253 are registered following the

procedures for Specification Required from RFC 5226 [RFC5226], while

types 254 and 255 are for experimental use and are not registered. The

registry should include the messages defined in Section 3.4. A message

specification MUST describe the behaviour with known option types as

well as the default behaviour with unknown ones.

There should also be an option type registry. Option types 0-65531 are

registered following the procedures for Specification Required from RFC

5226 [RFC5226], while types 65532-65535 are for experimental use and

are not registered. The registry should include the options defined in

Section 3.2. An option specification must describe how the option may

be used with the known message types. This includes which message types

the option may be used with.

Multicast Ping Protocol Parameters:

Registry Name: Multicast Ping Protocol Message Types

Reference: [this doc]

Registration Procedures: Specification Required

Registry:

Type Name Reference

----------- ------------------------------------ ----------

65 Echo Reply [this doc]

73 Init [this doc]

81 Echo Request [this doc]

83 Server Response [this doc]

254-255 Experimental

Registry Name: Multicast Ping Protocol Option Types

Reference: [this doc]

Registration Procedures: Specification Required

Registry:

Type Name Reference

----------- ------------------------------------ ----------

0 Version [this doc]

1 Client ID [this doc]

2 Sequence Number [this doc]

3 Client Timestamp [this doc]

4 Multicast Group [this doc]

5 Option Request Option [this doc]

6 Server Information [this doc]

7 Deprecated [this doc]

8 Deprecated [this doc]

9 TTL [this doc]

10 Multicast Prefix [this doc]

11 Session ID [this doc]

12 Server Timestamp [this doc]

65532-65535 Experimental

The initial registry definitions are as follows:

9. Security Considerations

There are some security issues to consider. One is that a host may send

an Echo Request with an IP source address of another host, and make an

arbitrary multicast ping server on the Internet send packets to this

other host. This behaviour is fairly harmless. The worst case is if the

host receiving the unicast Echo Replies also happens to be joined to

the multicast group used. This is less of a problem for SSM where also

the source address of the server must match the address joined. In this

case, there would be an amplification effect where the host receives

twice as many replies as there are requests sent. See below for how

spoofing can be mitigated.

For ASM (Any-Source Multicast) a host could also make a multicast ping

server send multicast packets to a group that is used for something

else, possibly disturbing other uses of that group. However, server

implementations should allow administrators to restrict which groups a

server responds to. The administrator should then try to configure a

set of groups that are not used for other purposes. Another concern is

bandwidth. To limit the bandwidth used, a server MUST by default limit

the number of clients that can be served at the same time, and a server

MUST also by default perform per client rate limiting.

In order to help mitigate spoofing, a server SHOULD require the client

to send an Init message, and return an unpredictable Session ID in the

response. The ID should be associated with the IP address and have a

limited lifetime. The server SHOULD then only respond to Echo Request

messages that have a valid Session ID associated with the source IP

address of the Echo Request. Note however that a server is replying

with a Server Response message if the Session ID is invalid. This is

used to tell the client that something is wrong and that is should stop

sending requests, and start over if necessary. This means however, that

someone may spoof a client request, and have the server send a message

back to the client address. One solution here would be for the server

to have a very low rate limit for the Server Responses.

Note that the use of a Session ID only to some degree helps mitigate

spoofing. An attacker that is on the path between a client and a

server, may eavesdrop the traffic, learn a valid Session ID, and

generate Echo Requests using this ID. The server will respond as long

as the Session ID remains valid.

This protocol may be used to establish a covert channel between a

multicast ping client and other hosts listening to a multicast group. A

client can for instance send an Echo Request containing an undefined

option with arbitrary data. The server would echo this back in an Echo

Reply that may reach other hosts listening to that group. One solution

to this which should be considered for future protocol versions, is to

reply with a hash of the data, rather than simply a copy of the same

data.

10. References

10.1. Normative References

, "

[RFC0792]
Postel, J., "Internet Control Message Protocol", STD

5, RFC 792, September 1981.

http://tools.ietf.org/html/rfc792

[RFC0768]
Postel, J., "User Datagram Protocol", STD 6, RFC

768, August 1980.

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC3629]
Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, November 2003.

[RFC4086]

Eastlake, D., Schiller, J. and S. Crocker,

"Randomness Requirements for Security", BCP 106, RFC

4086, June 2005.

[RFC5226]

Narten, T. and H. Alvestrand, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP

26, RFC 5226, May 2008.

[addrfamily] IANA, Address Family Numbers", .

10.2. Informative References

, "

[RFC5405]

Eggert, L. and G. Fairhurst, "Unicast UDP Usage

Guidelines for Application Designers", BCP 145, RFC

5405, November 2008.

[RFC5905]

Mills, D., Martin, J., Burbank, J. and W. Kasch,

"Network Time Protocol Version 4: Protocol and

Algorithms Specification", RFC 5905, June 2010.

[impl] ssmping implementation", .

Author's Address

Stig Venaas Venaas cisco Systems

Tasman Drive San Jose, CA 95134 USA EMail: stig@cisco.com

http://tools.ietf.org/html/rfc768
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc4086
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5405
http://tools.ietf.org/html/rfc5405
http://tools.ietf.org/html/rfc5905
http://tools.ietf.org/html/rfc5905
mailto:stig@cisco.com

	Abstract
	Requirements Language
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Architecture
	3. Protocol Specification
	3.1. Option Format
	3.2. Defined Options
	3.3. Packet Format
	3.4. Message Types and Options
	3.5. Rate Limiting
	3.5.1. Message Rate Variables
	4. Client Behaviour
	5. Server Behaviour
	6. Recommendations for Implementers
	7. Acknowledgments
	8. IANA Considerations
	9. Security Considerations
	10. References
	10.1. Normative References
	10.2. Informative References
	Author's Address

