
Network Working Group C. Boulton
Internet-Draft Avaya
Expires: August 25, 2008 T. Melanchuk
 Rain Willow Communications
 S. McGlashan
 Hewlett-Packard
 February 22, 2008

Media Control Channel Framework
draft-ietf-mediactrl-sip-control-framework-01

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 25, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2008).

Abstract

 This document describes a Framework and protocol for application
 deployment where the application logic and processing are
 distributed. The framework uses the Session Initiation Protocol
 (SIP) to establish an application-level control mechanism between
 application servers and associated external servers such as media

Boulton, et al. Expires August 25, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Media Control Channel Framework February 2008

 servers.

 The motivation for the creation of this Framework is to provide an
 interface suitable to meet the requirements of a distributed,
 centralized conference system, as defined by the IETF. It is not,
 however, limited to this scope and it is envisioned that this generic
 Framework will be used for a wide variety of de-coupled control
 architectures between network entities.

Table of Contents

1. Introduction . 4
2. Conventions and Terminology 4
3. Overview . 6
4. Control Client SIP UAC Behavior - Control Channel Setup . . . 9
4.1. Control Client SIP UAC Behavior - Media Dialogs 12

5. Control Server SIP UAS Behavior - Control Channel Setup . . . 13
6. Control Framework Interactions 14
6.1. Constructing Requests 15
6.1.1. Sending CONTROL 16
6.1.2. Sending REPORT . 16
6.1.3. Control Channel Keep-Alive 18
6.1.4. Package Negotiation 21

6.2. Constructing Responses 22
7. Response Code Descriptions 23
7.1. 200 Response Code . 23
7.2. 202 Response Code . 23
7.3. 400 Response Code . 23
7.4. 403 Response Code . 23
7.5. 405 Response Code . 23
7.6. 420 Response Code . 23
7.7. 421 Response Code . 24
7.8. 422 Response Code . 24
7.9. 423 Response Code . 24
7.10. 481 Response Code . 24
7.11. 500 Response Code . 24

8. Control Packages . 24
8.1. Control Package Name 24
8.2. Framework Message Usage 25
8.3. Common XML Support . 25
8.4. CONTROL Message Bodies 25
8.5. REPORT Message Bodies 25
8.6. Audit . 26
8.7. Examples . 26

9. Formal Syntax . 26
9.1. Control Framework Formal Syntax 26

10. Examples . 29

Boulton, et al. Expires August 25, 2008 [Page 2]

Internet-Draft Media Control Channel Framework February 2008

11. Security Considerations 34
11.1. Session Establishment 34
11.2. Transport Level Protection 34
11.3. Control Channel Policy Management 35

12. IANA Considerations . 36
12.1. Control Packages Registration Information 36
12.1.1. Control Package Registration Template 37

12.2. Control Framework Method Names 37
12.3. Control Framework Status Codes 37
12.4. Control Framework Header Fields 38
12.5. Control Framework Port 38
12.6. SDP Transport Protocol 38

13. Changes . 39
13.1. Changes from 00 Version 39

14. Contributors . 39
15. Acknowledgments . 39
16. Appendix A . 40
16.1. Common Dialog/Multiparty Reference Schema 40

17. Normative References . 41
 Authors' Addresses . 43
 Intellectual Property and Copyright Statements 44

Boulton, et al. Expires August 25, 2008 [Page 3]

Internet-Draft Media Control Channel Framework February 2008

1. Introduction

 Real-time media applications are often developed using an
 architecture where the application logic and processing activities
 are distributed. Commonly, the application logic runs on
 "application servers" whilst the processing runs on external servers,
 such as "media servers". This document focuses on the framework and
 protocol between the application server and external processing
 server. The motivation for this framework comes from a set of
 requirements for Media Server Control, which can be found in the
 'Media Server Control Protocol Requirements' document[8]. While the
 Framework is not media server control specific, it is the primary
 driver and use case for this work. It is intended that the framework
 contained in this document will be used for a plethora of appropriate
 device control scenarios.

 This document does not define a SIP based extension that can be used
 directly for the control of external components. The framework
 mechanism must be extended by other documents that are known as
 "Control Packages". A comprehensive set of guidelines for creating
 "Control Packages" is described in Section 8.

 Current IETF device control protocols, such as megaco [7], while
 excellent for controlling media gateways that bridge separate
 networks, are troublesome for supporting media-rich applications in
 SIP networks, because they duplicate many of the functions inherent
 in SIP. Rather than relying on single protocol session
 establishment, application developers need to translate between two
 separate mechanisms.

 Application servers traditionally use SIP third party call control
RFC 3725 [12] to establish media sessions from SIP user agents to a

 media server. SIP, as defined in RFC 3261 [2], also provides the
 ideal rendezvous mechanism for establishing and maintaining control
 connections to external server components. The control connections
 can then be used to exchange explicit command/response interactions
 that allow for media control and associated command response results.

2. Conventions and Terminology

 In this document, BCP 14/RFC 2119 [1] defines the key words "MUST",
 "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
 "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL". In
 addition, BCP 15 indicates requirement levels for compliant
 implementations.

 The following additional terms are defined for use in this document:

https://datatracker.ietf.org/doc/html/rfc3725
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp15

Boulton, et al. Expires August 25, 2008 [Page 4]

Internet-Draft Media Control Channel Framework February 2008

 B2BUA: A B2BUA is a Back-to-Back SIP User Agent.
 Control Server: A Control Server is an entity that performs a
 service, such as media processing, on behalf of a Control Client.
 For example, a media server offers mixing, announcement, tone
 detection and generation, and play and record services. The
 Control Server in this case, has a direct RTP [15] relationship
 with the source or sink of the media flow. In this document, we
 often refer to the Control Server simply as "the Server".
 Control Client: A Control Client is an entity that requests
 processing from a Control Server. Note that the Control Client
 may not have any processing capabilities whatsoever. For example,
 the Control Client may be an Application Server (B2BUA) or other
 endpoint requesting manipulation of a third-party's media stream,
 that terminates on a media server acting in the role of a Control
 Server. In this document, we often refer to the Control Client
 simply as "the Client".
 Control Channel: A Control Channel is a reliable connection between
 a Client and Server that is used to exchange Framework messages.
 The term "Connection" is used synonymously within this document.
 Framework Message: A Framework Message is a message on a Control
 Channel that has a type corresponding to one of the Methods
 defined in this document. A Framework message is often referred
 to by its method, such as a "CONTROL message".
 Method: A Method is the type of a framework message. Four Methods
 are defined in this document: SYNCH, CONTROL, REPORT, and K-ALIVE.
 Control Command: A Control Command is an application level request
 from a Client to a Server. Control Commands are carried in the
 body of CONTROL messages. Control Commands are defined in
 separate specifications known as "Control Packages".
 framework transaction: A framework transaction is defined as a
 sequence composed of a control framework message originated by
 either a Control Client or Control Server and responded to with a
 control Framework response code message. Note that the control
 framework has no "provisional" responses. A control framework
 transaction MUST complete within 'Transaction-Timeout' time.
 extended transaction lifetime: An extended transaction lifetime is
 used to extend the lifetime of a CONTROL method transaction when
 the Control Command it carries cannot be completed within
 Transaction-Timeout milliseconds. A Server extends the lifetime
 of a CONTROL method transaction by sending a 202 response code
 followed by one or more REPORT transactions as specified in

Section 6.1.2. Extended transaction lifetimes allow command
 failures to be discovered at the transaction layer.
 Transaction-Timeout: the maximum allowed time between a control
 Client or Server issuing a framework message and receiving a
 corresponding response. The value for the timeout should be based
 on a multiple of the network RTT plus 'Transaction-Timeout'
 milliseconds to allow for message parsing and processing.

Boulton, et al. Expires August 25, 2008 [Page 5]

Internet-Draft Media Control Channel Framework February 2008

 [Editors Note:DP0 - Need to pick a time for "Transaction-Time" - Work
 Group input requested.]

3. Overview

 This document details mechanisms for establishing, using, and
 terminating a reliable channel using SIP for the purpose of
 controlling an external server. The following text provides a non-
 normative overview of the mechanisms used. Detailed, normative
 guidelines are provided later in the document.

 Control channels are negotiated using standard SIP mechanisms that
 would be used in a similar manner to creating a SIP multimedia
 session. Figure 1 illustrates a simplified view of the proposed
 mechanism. It highlights a separation of the SIP signaling traffic
 and the associated control channel that is established as a result of
 the SIP interactions.

 The use of SIP for the specified mechanism provides many inherent
 capabilities which include:-
 o Service location - Use SIP Proxies or Back-to-Back User Agents for
 discovering Control Servers.
 o Security mechanisms - Leverage established security mechanisms
 such as Transport Layer Security (TLS) and Client Authentication.
 o Connection maintenance - The ability to re-negotiate a connection,
 ensure it is active, audit parameters, and so forth.
 o Application agnostic - Generic protocol allows for easy extension.

 As mentioned in the previous list, one of the main benefits of using
 SIP as the session control protocol is the "Service Location"
 facilities provided. This applies at both a routing level, where RFC

3263 [4] provides the physical location of devices, and at the
 Service level, using Caller Preferences[13] and Callee
 Capabilities[14]. The ability to select a Control Server based on
 Service level capabilities is extremely powerful when considering a
 distributed, clustered architecture containing varying services (for
 example Voice, Video, IM). More detail on locating Control Server
 resources using these techniques is outlined in Section 4 of this
 document.

https://datatracker.ietf.org/doc/html/rfc3263
https://datatracker.ietf.org/doc/html/rfc3263

Boulton, et al. Expires August 25, 2008 [Page 6]

Internet-Draft Media Control Channel Framework February 2008

 +--------------SIP Traffic--------------+
 | |
 v v
 +-----+ +--+--+
 | SIP | | SIP |
 |Stack| |Stack|
 +---+-----+---+ +---+-----+---+
 | Control | | Control |
 | Client |<----Control Channel---->| Server |
 +-------------+ +-------------+

 Figure 1: Basic Architecture

 The example from Figure 1 conveys a 1:1 connection between the
 Control Client and the Control Server. It is possible, if required,
 for multiple control channels using separate SIP dialogs to be
 established between the Control Client and the Control Server
 entities. Any of the connections created between the two entities
 can then be used for Server control interactions. The control
 connections are agnostic to any media sessions. Specific media
 session information can be incorporated in control interaction
 commands (which themselves are defined in external packages) using
 the XML schema defined in Section 16. The ability to have multiple
 control channels allows for stronger redundancy and the ability to
 manage high volumes of traffic in busy systems.

 Consider the following simple example for session establishment
 between a Client and a Server (Note: Some lines in the examples are
 removed for clarity and brevity). Note that the roles discussed are
 logical and can change during a session, if the Control Package
 allows.

 The Client constructs and sends a standard SIP INVITE request, as
 defined in RFC 3261 [2], to the external Server. The SDP payload
 includes the required information for control channel negotiation and
 is the primary mechanism for conveying support for this specification
 (through the media type). The COMEDIA [6] specification for setting
 up and maintaining reliable connections is used as part of the
 negotiation mechanism (more detail available in later sections).

 Client Sends to External Server:

https://datatracker.ietf.org/doc/html/rfc3261

Boulton, et al. Expires August 25, 2008 [Page 7]

Internet-Draft Media Control Channel Framework February 2008

 INVITE sip:External-Server@example.com SIP/2.0
 To: <sip:External-Server@example.com>
 From: <sip:Client@example.com>;tag=64823746
 Via: SIP/2.0/UDP client.example.com;branch=z9hG4bK72dhjsU
 Call-ID: 7823987HJHG6
 CSeq: 1 INVITE
 Contact: <sip:Client@clientmachine.example.com>
 Content-Type: application/sdp
 Content-Length: [..]

 v=0
 o=originator 2890844526 2890842808 IN IP4 controller.example,com
 s=-
 c=IN IP4 controller.example.com
 m=application 7575 TCP/SCFW
 a=setup:active
 a=connection:new

 On receiving the INVITE request, the external Server supporting this
 mechanism generates a 200 OK response containing appropriate SDP.

 External Server Sends to Client:

 SIP/2.0 200 OK
 To: <sip:External-Server@example.com>;tag=28943879
 From: <sip:Client@example.com>;tag=64823746
 Via: SIP/2.0/UDP client.example.com;branch=z9hG4bK72dhjsU
 Call-ID: 7823987HJHG6
 CSeq: 1 INVITE
 Contact: <sip:External-Server@servermachine.example.com>
 Content-Type: application/sdp
 Content-Length: [..]

 v=0
 o=originator 2890844526 2890842808 IN IP4 server.example.com
 s=-
 c=IN IP4 mserver.example.com
 m=application 7563 TCP/SCFW
 a=setup:passive
 a=connection:new

 The Control Client receives the SIP 200 OK response and extracts the
 relevant information (also sending a SIP ACK). It creates an
 outgoing (as specified by the SDP 'setup:' attribute of 'active') TCP
 connection to the Control Server. The connection address (taken from

Boulton, et al. Expires August 25, 2008 [Page 8]

Internet-Draft Media Control Channel Framework February 2008

 'c=') and port (taken from 'm=')are used to identify the remote part
 in the new connection.

 Once established, the newly created connection can be used to
 exchange control language request and response primitives. If
 required, after the control channel has been setup, media sessions
 can be established using standard SIP third party call control.

 Figure 4 provides a simplified example where the proposed framework
 is used to control a User Agent's RTP session. (1) in brackets
 represents the SIP dialog and dedicated control channel previously
 described in this overview section.

 +--------Control SIP Dialog(1)---------+
 | |
 v v
 +-----+ +--+--+
 +------(2)------>| SIP |---------------(2)------------->| SIP |
 | |Stack| |Stack|
 | +---+-----+---+ +---+-----+---+
 | | | | |
 | | Control |<--Control Channel(1)-->| |
 | | Client | | Control |
 | +-------------+ | Server |
 +--+--+ | |
 |User | | |
 |Agent|<=====================RTP(2)===================>| |
 +-----+ +-------------+

 Figure 4: Participant Architecture

 (2) from Figure 4 represents the User Agent SIP dialog interactions
 and associated media flow. A User Agent would create a SIP dialog
 with the Control Client entity. The Control Client entity will also
 create a related dialog to the Control Server (B2BUA type
 functionality). Using the interaction illustrated by (2), the User
 Agent is able to negotiate media capabilities with the Control Server
 using standard SIP mechanisms as defined in RFC 3261 [2] and RFC 3264
 [5].

4. Control Client SIP UAC Behavior - Control Channel Setup

 On creating a new SIP INVITE request for control channel setup, a UAC
 MUST construct the protocol message as defined in RFC 3261 [2].

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3261

Boulton, et al. Expires August 25, 2008 [Page 9]

Internet-Draft Media Control Channel Framework February 2008

 If a reliable response is received (as defined RFC 3261 [2] and RFC
3262 [3]), the mechanisms defined in this document are applicable to

 the newly created dialog.

 The UAC MAY include a valid session description (an 'offer' as
 defined in RFC 3264 [5]) in an INVITE request using the Session
 Description Protocol defined in [9]. The following information
 defines the composition of some specific elements of the SDP payload
 that MUST be adhered to for compliancy to this specification when
 used in an SIP SDP offer.

 The Connection Data line in the SDP payload is constructed as
 specified in [9]:

 c=<nettype> <addrtype> <connection-address>

 The first sub-field, <nettype>, MUST equal the value "IN". The
 second sub-field, <addrtype>, MUST equal either "IP4" or "IP6". The
 third sub-field for Connection Data is <connection-address>. This
 supplies a representation of the SDP originators address, for example
 dns/IP representation. The address will be the network address used
 for connections in this specification.

 Example:

 c=IN IP4 controller.example.com

 The SDP MUST contain a corresponding Media Description entry for
 compliance to this specification:

 m=<media> <port> <proto>

 The first "sub-field" <media> MUST equal the value "application".
 The second sub-field, <port>, MUST represent a port on which the
 constructing client can receive an incoming connection if required.
 The port is used in combination with the address specified in the
 'Connection Data line defined previously to supply connection
 details. If the constructing client can't receive incoming
 connections it MUST still enter a valid port range entry. The use of
 the port value '0' has the same meaning as defined in the SDP
 specification[9]. The third sub-field, <proto>, MUST equal a
 transport value defined in Section 12.6. All implementations
 compliant to this specification MUST support the value "TCP/SCFW",
 "TCP/TLS/SCFW", "SCTP/SCFW" and "SCTP/TLS/SCFW" as defined in

Section 12.6 of this document. Implementations MUST support TLS as a
 transport-level security mechanism, although use of TLS in specific
 deployments is optional. MEDIACTRL implementations MUST support TCP
 as a transport protocol. MEDIACTRL implementations MAY support SCTP

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3262
https://datatracker.ietf.org/doc/html/rfc3262
https://datatracker.ietf.org/doc/html/rfc3264

Boulton, et al. Expires August 25, 2008 [Page 10]

Internet-Draft Media Control Channel Framework February 2008

 as a transport protocol. When an entity identifies one of the
 transport values defined in Section 12.6 but is not willing to
 establish the session, it MUST respond using the appropriate SIP
 mechanism.

 The SDP MUST also contain a number of SDP media attributes(a=) that
 are specifically defined in the COMEDIA [6] specification. The
 attributes provide connection negotiation and maintenance parameters.
 A client conforming to this specification SHOULD support all the
 possible values defined for media attributes from the COMEDIA [6]
 specification but MAY choose not to support values if it can
 definitely determine they will never be used (for example will only
 ever initiate outgoing connections). It is RECOMMENDED that a
 Controlling UAC initiate a connection to an external Server but that
 an external Server MAY negotiate and initiate a connection using
 COMEDIA, if network topology prohibits initiating connections in a
 certain direction. An example of the attributes is:

 a=setup:active
 a=connection:new

 This example demonstrates a new connection that will be initiated
 from the owner of the SDP payload. The connection details are
 contained in the SDP answer received from the UAS. A full example of
 an SDP payload compliant to this specification can be viewed in

Section 3. Once the SDP has been constructed along with the
 remainder of the SIP INVITE request (as defined in RFC 3261 [2]), it
 can be sent to the appropriate location. The SIP dialog and
 appropriate control connection is then established.

 As mentioned previously, the SIP Control Framework can be used in
 conjunction with other media dialogs (for example, use the control
 channel to play a prompt to media dialog X). For SIP based media
 dialogs, if not present in the SDP received by the Control Client
 (when acting as a B2BUA) from the User Agent, a media label SDP
 attribute, which is defined in RFC 4574 [10], should be inserted for
 every media description (identified as m= line as defined in [9])
 before forwarding. This provides flexibility for the Control Client
 as it can generate control messages using the Control Channel that
 specify a particular Media stream (between User Agent and Control
 Server) within a SIP media dialog. If a Media label is not included
 in the control message, commands apply to all media associated with
 the dialog.

 A non-2xx class error (4xx, 5xx and 6xx) SIP response received for
 the INVITE request indicates that no SIP dialog has been created and

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc4574

Boulton, et al. Expires August 25, 2008 [Page 11]

Internet-Draft Media Control Channel Framework February 2008

 is treated as specified RFC 3261 [2]. Specifically, support of this
 specification is negotiated through the presence of the media type
 defined in this specification. The receipt of a SIP error response
 like "488" indicates that the offer contained in a request is not
 acceptable. The inclusion of the media line associated with this
 specification in such a rejected offer should indicate to the client
 generating the offer that this could be due to the receiving client
 not supporting this specification. The client generating the offer
 should act as it would normally on receiving this response, as per

RFC 3261 [2]. Media streams can also be rejected by setting the port
 to "0" in the "m=" line of the session description. A client using
 this specification should be prepared to receive an answer where the
 "m=" line it inserted for using the Control Framework has been set to
 "0".

4.1. Control Client SIP UAC Behavior - Media Dialogs

 It is intended that the Control framework will be used within a
 variety of architectures for a wide range of functions. One of the
 primary functions will be the use of the control channel to apply
 specific Control package commands to co-existing SIP dialogs that
 have been established with the same remote server, for example the
 manipulation of audio dialogs connected to a media server.

 Such co-existing dialogs will pass through the Control Client (see
 Figure 4) entity and may contain more than one Media Description (as
 defined by "m=" in the SDP). The Control Client SHOULD include a
 media label attribute (B2BUA functionality), as defined in [10], for
 each "m=" definition. A Control Client constructing the SDP MAY
 choose not to include the media label SDP attribute if it does not
 require direct control on a per media stream basis.

 This framework identifies the common re-use of referencing media
 dialogs and has specified a connection reference attribute that can
 optionally be imported into any Control Package. It is intended that
 this will reduce repetitive specifying of dialog reference language.
 The schema can be found in Section 16.1 in Appendix A.

 Similarly, the ability to identify and apply commands to a group of
 associated media dialogs (multiparty) is also identified as a common
 structure that could be defined and re-used (for example playing a
 prompt to all participants in a Conference). The schema for such
 operations can also be found in Section 16.1 in Appendix A.

 Support for both the common attributes described here is specified as
 part of each Control Package definition, as detailed in Section 8.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Boulton, et al. Expires August 25, 2008 [Page 12]

Internet-Draft Media Control Channel Framework February 2008

5. Control Server SIP UAS Behavior - Control Channel Setup

 On receiving a SIP INVITE request, an external Server(UAS) inspects
 the message for indications of support for the mechanisms defined in
 this specification. This is achieved through inspection of the
 Sessions Description of the SIP INVITE message and identifying
 support for the appropriate media type. If the external Server
 wishes to construct a reliable response that conveys support for the
 extension, it should follow the mechanisms defined in RFC 3261 [2].
 If support is conveyed in a reliable SIP provisional response, the
 mechanisms in RFC 3262 [3] MUST also be used. It should be noted
 that the SDP offer is not restricted to the initial INVITE request
 and may appear in any series of messages that are compliant to RFC

3261 [2], RFC 3262 [3], and RFC 3264 [5]

 When constructing an answer, the SDP payload MUST be constructed
 using the semantics(Connection, Media and attribute) defined in

Section 4 using valid local settings and also with full compliance to
 the COMEDIA[6] specification. For example, the SDP attributes
 included in the answer constructed for the example offer provided in

Section 4 would look as illustrated below:

 a=setup:passive
 a=connection:new

 Once the SIP success response has been constructed, it is sent using
 standard SIP mechanisms. Depending on the contents of the SDP
 payloads that were negotiated using the Offer/Answer exchange, a
 reliable connection will be established between the Controlling UAC
 and external Server UAS entities. The newly established connection
 is now available to exchange control command primitives. The state
 of the SIP Dialog and the associated Control channel are now
 implicitly linked. If either party wishes to terminate a Control
 channel it simply issues a SIP termination request (SIP BYE request).
 The Control Channel therefore lives for the duration of the SIP
 dialog.

 If the UAS does not support the extension defined in this document,
 as identified by the media contained in the Session Description, it
 SHOULD respond as detailed in RFC 3261 [2] with a "SIP 488" response
 code. If multiple media descriptions exist it MAY choose to continue
 processing the request and mark the port field equal to "0".

 A SIP entity receiving a SIP OPTIONS request MUST respond
 appropriately as defined in RFC 3261 [2]. This involves providing
 information relating to supported SIP extensions and media types in a

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3262
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3262
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Boulton, et al. Expires August 25, 2008 [Page 13]

Internet-Draft Media Control Channel Framework February 2008

 200 OK response. For this extension the media types supported MUST
 be included in the SIP 200 OK response in a SIP "Accept" header to
 indicate a valid media type.

6. Control Framework Interactions

 The use of the COMEDIA specification in this document allows for a
 Control Channel to be set up in either direction as a result of the
 SIP INVITE transaction. While providing a flexible negotiation
 mechanism, it does provide certain correlation problems between the
 channel and the overlying SIP dialog. Remember that the two are
 implicitly linked and so need a robust correlation mechanism. A
 Control Client receiving an incoming connection (whether it be acting
 in the role of UAC or UAS) has no way of identifying the associated
 SIP dialog as it could be simply listening for all incoming
 connections on a specific port. As a consequence, some rules are
 applied to allow a connecting (defined as 'active' role in COMEDIA)
 active UA to identify the associated SIP dialog that triggered the
 connection. The following steps provide an identification mechanism
 that MUST be carried out before any other signaling is carried out on
 the newly created Control channel.
 o Once the connection has been established, the active UA initiating
 the connection (as determined by COMEDIA) MUST immediately send a
 Control Framework SYNCH request. The SYNCH request will be
 constructed as defined in Section 9.1 and MUST contain the message
 header, 'Dialog-ID', which contains the SIP dialog information.
 o The 'Dialog-ID' message header is constructed by concatenating the
 Local-tag, Call-ID and Remote-tag (as defined in Section 9.1) from
 the SIP dialog and separating with a '~'. See syntax defined in
 Section 16.1 in Appendix A and examples in Section 8.7. For
 example, if the SIP dialog had values of 'Local-tag=HKJDH',
 'Remote-tag=JJSUSHJ' and 'Call-ID=8shKUHSUKHW@example.com' - the
 'Dialog-ID' header would look like this:
 'Dialog-ID=HKJDH~8shKUHSUKHW@example.com~JJSUSHJ'.
 o On creating the SYNCH request the controlling active UA MUST
 follow the procedures outlined in Section 6.1.3 . This provides
 details of connection keep-alive messages.
 o On creating the SYNCH request the controlling active UA MUST also
 follow the procedures outlined in Section 6.1.4. This provides
 details of the negotiation mechanism used to determine the
 Protocol Data Units (PDUs) that can be exchanged on the
 established control channel connection.
 o The active UA who initiated the connection MUST then send the
 SYNCH request. It MUST then wait for a period of at least 5
 seconds to receive a response. It MAY choose a longer time to
 wait but it should not be shorter than 5 seconds.

Boulton, et al. Expires August 25, 2008 [Page 14]

Internet-Draft Media Control Channel Framework February 2008

 o If no response is received for the SYNCH control message, a
 timeout occurs and the control channel is terminated along with
 the associated SIP dialog (issue a BYE request).
 o If the active UA who initiated a connection receives a 481
 response, this implies that the SYNCH request was received but no
 associated SIP dialog exists. This also results in the control
 channel being terminated along with the associated SIP dialog
 (issue a BYE request).
 o All other error responses received for the SYNCH request are
 treated as detailed in this specification and also result in the
 termination of the control channel and the associated SIP dialog
 (issue a BYE request).
 o The receipt of a 200 response to a SYNCH message implies that the
 SIP dialog and control connection have been successfully
 correlated. The control channel can now be used for further
 interactions.

 It should be noted that SYNCH messages can be sent at any point while
 the Control Channel is open from either side, once the initial
 exchange is complete. It should also be noted that if present, the
 contents of the "Keep-Alive" and "Dialog-ID" headers should not
 change and new values have no relevance as they are both negotiated
 for the lifetime of the session.

 Once a successful control channel has been established, as defined in
Section 4 and Section 5 (and the connection has been correlated, as

 described in previous paragraph), the two entities are now in a
 position to exchange relevant control framework messages. The
 remainder of this section provides details of the core set of methods
 and responses that MUST be supported for the core control framework.
 Future extensions to this document MAY define new methods and
 responses.

6.1. Constructing Requests

 An entity acting as a Control Client is now able to construct and
 send new requests on a control channel and MUST adhere to the syntax
 defined in Section 9 (Note: either client can act as a control client
 depending on individual package requirements). Control Commands MUST
 also adhere to the syntax defined by the Control Packages negotiated
 in Section 4 and Section 5 of this document. A Control Client MUST
 create a unique control message transaction and associated identifier
 for insertion in the request. The transaction identifier is then
 included in the first line of a control framework message along with
 the method type (as defined in the ABNF in Section 9). The first
 line starts with the "SCFW" token for the purpose of easily
 extracting the transaction identifier. The transaction identifier
 MUST be globally unique over space and time. All required mandatory

Boulton, et al. Expires August 25, 2008 [Page 15]

Internet-Draft Media Control Channel Framework February 2008

 and optional control framework headers are then inserted into the
 control message with appropriate values (see relevant individual
 header information for explicit detail). A "Control-Package" header
 MUST also be inserted with the value indicating the Control Package
 to which this specific request applies (Multiple packages can be
 negotiated per control channel using the SYNCH control message that
 is discussed in this section along with the mechanism from

Section 6.1.4).

 Any framework message that contains an associated payload MUST also
 include a 'Content-Length' and 'Content-Type' message header which
 represents the size of the message body in decimal number of octets.
 If no associated payload is to be added to the message, a 'Content-
 Length' header with a value of '0' is considered the same as one not
 being present.

 When all of the headers have been included in the framework message,
 it is sent down the control channel established in Section 4.

 It is a requirement that a Server receiving such a request respond
 quickly with an appropriate response (as defined in Section 6.2). A
 Control Client entity needs to wait for "Transaction-Time" time for a
 response before considering the transaction a failure.

 [Editors Note:DP1 - Need to pick a time for "Transaction-Time" - Work
 Group input requested.]

6.1.1. Sending CONTROL

 A 'CONTROL' message is used by Control Client to invoke control
 commands on a Control Server. The message is constructed in the same
 way as any standard Control Framework message, as discussed
 previously in Section 6.1 and defined in Section 9. A CONTROL
 message MAY contain a message body. The explicit control command(s)
 of the message payload contained in a CONTROL message are specified
 in separate Control Package specifications. These specifications
 MUST conform to the format defined in Section 8.4. A CONTROL message
 containing a payload MUST include a 'Content-Type' header indicating
 the payload type defined by the control package.

6.1.2. Sending REPORT

 A 'REPORT' message is used by a Control Server when processing of a
 CONTROL Command extends beyond a 'Transaction-Timeout'. In this case
 a 202 response is returned. Status updates and the final results of
 the command are then returned in subsequent REPORT messages. The
 extended reporting mechanism defined in Section 6.1.2.1 can be used
 for a wide variety of functions including long lived event reporting

Boulton, et al. Expires August 25, 2008 [Page 16]

Internet-Draft Media Control Channel Framework February 2008

 associated with a transaction.

 [Editors Note:DP2 - Need to pick a time for "Transaction-Time" - Work
 Group input requested.]

 All REPORT messages MUST contain the same transaction ID in the
 request start line that was present in the original CONTROL
 transaction. This allows both extended transactions and event
 notifications to be correlated with the original CONTROL transaction.
 A REPORT message containing a payload MUST include a 'Content-Length
 and 'Content-Type' header indicating the payload type defined by the
 control package and its length.

6.1.2.1. Reporting the Status of Extended Transactions

 On receiving a CONTROL message, a Control Server MUST respond within
 'Transaction-Timeout' with a status code for the request, as
 specified in Section 6.2. If the command completed within that time,
 a 200 response code would have been sent. If the command did not
 complete within that time, the response code 202 would have been sent
 indicating that the requested command is still being processed and
 the CONTROL transaction is being extended. The REPORT method is then
 used to update and terminate the status of the extended transaction.

 [Editors Note:DP3 - Need to pick a time for "Transaction-Time" - Work
 Group input requested.]

 A Control Server issuing a 202 response MUST contain a 'Timeout'
 message header. This header will contain a value in delta seconds
 that represents the amount of time the recipient of the 202 message
 must wait before assuming that there has been a problem and
 terminating the extended transaction and associated state (no
 corresponding REPORT message arrived).

 The initial REPORT message MUST contain a 'Seq' (Sequence) message
 header with a value equal to '1' (It should be noted that the 'Seq'
 numbers at both Control Client and Control Server for framework
 messages are independent).

 All REPORT messages for an extended CONTROL transaction MUST contain
 a 'Timeout' message header. This header will contain a value in
 delta seconds that represents the amount of time the recipient of the
 REPORT message must wait before assuming that there has been a
 problem and terminating the extended transaction and associated
 state. On receiving a REPORT message with a 'Status' header of
 'pending' or 'update', the Control Client MUST reset the timer for
 the associated extended CONTROL transaction to the indicated timeout
 period. If the timeout period approaches with no intended REPORT

Boulton, et al. Expires August 25, 2008 [Page 17]

Internet-Draft Media Control Channel Framework February 2008

 messages being generated, the entity acting as a Control Framework
 UAS for the interaction MUST generate a REPORT message containing, as
 defined in this paragraph, a 'Status' header of 'pending'. Such a
 message acts as a timeout refresh and in no way impacts the extended
 transaction, because no message body or semantics are permitted. It
 is RECOMMENDED that a minimum value of 10 and a maximum of "Upper-
 limit" is used for the value of the 'Timeout' message header. It is
 also RECOMMENDED that a Control Server refresh the timeout period of
 the CONTROL transaction at an interval that is not too close to the
 expiry time. A value of 80% of the timeout period could be used, for
 example a timeout period of 10 seconds would be refreshed after 8
 seconds.

 [Editors Note:DP4 - Need to pick a time for "Upper-Limit" - Work
 Group input requested.]

 Subsequent REPORT messages that provide additional information
 relating to the extended CONTROL transaction MUST also include and
 increment by 1 the 'Seq' header value. They MUST also include a
 'Status' header with a value of 'update'. These REPORT messages sent
 to update the extended CONTROL transaction status MAY contain a
 message body, as defined by individual Control Packages and specified
 in Section 9.5. A REPORT message sent updating the extended
 transaction also acts as a timeout refresh, as described earlier in
 this section. This will result in a transaction timeout period at
 the initiator of the original CONTROL request being reset to the
 interval contained in the 'Timeout' message header.

 When all processing for an extended CONTROL transaction has taken
 place, the entity acting as a Control Server MUST send a terminating
 REPORT message. The terminating REPORT message MUST increment the
 value in the 'Seq' message header by the value of '1' from the
 previous REPORT message. It MUST also include a 'Status' header with
 a value of 'terminate' and MAY contain a message body. A Control
 Framework UAC can then clean up any pending state associated with the
 original control transaction.

6.1.3. Control Channel Keep-Alive

 It is reasonable to expect this document to be used in various
 network architectures. This will include a wide range of deployments
 where the clients could be co-located in a secured, private domain or
 spread across disparate domains that require traversal of devices
 such as Network Address Translators (NAT) and Firewalls. It is
 important, therefore, that this document provides a 'keep-alive'
 mechanism that enables the control channel being created to firstly
 be kept active during times of inactivity (most Firewalls have a
 timeout period after which connections are closed) and also provide

Boulton, et al. Expires August 25, 2008 [Page 18]

Internet-Draft Media Control Channel Framework February 2008

 the ability for application level failure detection. It should be
 noted at this point that the following procedures apply explicitly to
 the control channel being created and for details relating to a SIP
 keep-alive mechanism implementers should seek guidance from SIP
 Outbound [11]. The following 'keep-alive' procedures SHOULD be
 implemented by all entities unless it can be guaranteed that
 deployments will only occur with entities in a co-located domain. It
 should be noted that choosing to not implement the 'keep-alive'
 mechanism in this section, even when in a co-located architecture,
 will reduce the ability to detect application level errors -
 especially during long periods of in-activity.

6.1.3.1. Timeout Negotiation

 During the creation of the initial SYNCH primitive, the clients will
 also negotiate a timeout period for the control channel 'keep-alive'
 mechanism. The following rules SHOULD be obeyed:
 o If the Client initiating the SDP "Offer" has a COMEDIA 'setup'
 attribute equal to 'active', the 'k-alive' header MUST be included
 in the SYNCH message generated by the offerer. The value of the
 'K-Alive' header SHOULD be in the range of 95 and 120 seconds
 (this is consistent with SIP Outbound[11]). The client that
 generated the SDP "Answer" ('passive' client) MUST copy the
 'K-alive' header into the 200 response to the SYNCH message with
 the same value.
 o If the Client initiating the SDP "Offer" has a COMEDIA 'setup'
 attribute equal to 'passive', the 'K-alive' header parameter MUST
 be included in the SYNCH message generated by the answerer. The
 value of the 'K-alive' header SHOULD be in the range of 95 and 120
 seconds. The client that generated the SDP "Offer" ('passive'
 client) MUST copy the 'K-alive' header into the 200 response to
 the SYNCH message with the same value.
 o If the Client initiating the SDP "Offer" has a COMEDIA 'setup'
 attribute equal to 'actpass', the 'K-Alive' header parameter MUST
 be included in the SYNCH message of the entity who is the 'Active'
 participant in the SDP session. If the client generating the
 subsequent SDP 'Answer' places a value of 'active' in the COMEDIA
 SDP 'setup' attribute, it will generate the SYNCH request and
 include the 'Keep-Alive' header. The value SHOULD be in the range
 95 to 120 seconds. If the client generating the subsequent SDP
 'Answer' places a value of 'passive' in the COMDEDIA 'setup'
 attribute, the original 'Offerer' will generate the SYNCH request
 and include the 'Keep-Alive' header. The value SHOULD be in the
 range 95 to 120 seconds.
 o Once negotiated, the keep-alive applies for the remainder of the
 Control Framework session. Any subsequent SYNCH messages
 generated in the control channel do not impact the negotiated
 keep-alive property of the session. The "Keep-Alive" header MUST

Boulton, et al. Expires August 25, 2008 [Page 19]

Internet-Draft Media Control Channel Framework February 2008

 NOT be included in subsequent SYNCH messages as it has no meaning.
 If it is present it MUST be ignored.
 o The 'K-alive' header MUST NOT be included when the COMEDIA 'setup'
 attribute is equal to 'holdconn'.
 o [Editors Note:DP5 - holdconn needs more thought.]
 o Following the previous steps ensures that the entity initiating
 the control channel connection is always the one specifying the
 keep-alive timeout period. It will always be the initiator of the
 connection who generates the 'K-ALIVE' Control Framework level
 messages. The following section describes in more detail how to
 generate the Control Framework 'K-ALIVE' message.

6.1.3.2. Generating Keep-Alive Messages

 Once the SIP dialog has been established using the SDP 'Offer/Answer'
 mechanism and the underlying control channel has been established
 (including the initial identity handshake using SYNCH as discussed in

Section 6), both the 'active' and 'passive' (as defined in
 COMEDIA[6]) clients MUST start a keep-alive timer equal to the value
 negotiated during the control channel SYNCH request/response exchange
 (the value from the 'k-alive' header in delta seconds).

 When acting as an 'active' entity, a 'K-ALIVE' Control Framework
 message MUST be generated before the local 'keep-alive' timer fires.
 An active entity is free to send the K-ALIVE Control Framework
 message when ever it chooses. A guideline of 80% of the local 'keep-
 alive' timer is suggested. The 'passive' entity MUST generate a 200
 OK Control Framework response to the K-ALIVE message and reset the
 local 'keep-alive' timer. No other Control Framework response is
 valid. On receiving the 200 OK Control Framework message, the
 'active' entity MUST reset the local 'keep-alive' timer. If no 200
 OK response is received to the K-ALIVE Control Framework message,
 before the local 'keep-alive' timer fires, the 'active' entity SHOULD
 tear down the SIP dialog and recover the associated control channel
 resources. The 'active' entity MAY choose to try and recover the
 connection by renegotiation using COMEDIA. It should be noted that
 the local 'active' keep-alive timer MUST be reset on receipt of any
 Control Framework message (request or response) from the passive
 entity.

 When acting as a 'passive' entity, a 'K-ALIVE' Control Framework
 message MUST be received before the local 'keep-alive' timer fires.
 The 'passive' entity MUST generate a 200 OK control framework
 response to the K-ALIVE Control Framework message. On sending the
 200 OK response, the 'passive' entity MUST reset the local 'keep-
 alive' timer. If no K-ALIVE message is received before the local
 'keep-alive' timer fires, the 'passive' entity SHOULD tear down the
 SIP dialog and recover the associated control channel resources. The

Boulton, et al. Expires August 25, 2008 [Page 20]

Internet-Draft Media Control Channel Framework February 2008

 'active' entity MAY try to and recover the connection by
 renegotiating using COMEDIA. It should be noted that the local
 'passive' keep-alive timer MUST be reset on receipt of any Control
 Framework message (request or response) from the active entity.

6.1.4. Package Negotiation

 As part of the SYNCH message exchange a client generating the request
 MUST include a "Packages" header, as defined in Section 9. The
 "Packages " header will contain a list of all Control Framework
 packages that can be supported within this control session (from the
 perspective of the entity creating the SYNCH message). All tokens
 MUST be SIP Control Framework packages that adhere to the rules set
 out in Section 8. The initial SYNCH message MUST at least contain a
 single value.

 An entity receiving the initial SYNCH request should carefully
 examine the contents of the "Packages" header. The entity responding
 with a 200 response to the SYNCH header will also populate the
 "Packages" header with supported Control Framework packages. This
 entry only contain packages that are listed in the received SYNCH
 request (either all or a subset). This forms a common set of Control
 Packages that are supported by both parties. Any Control Packages
 supported by the receiving entity that are not listed in the SYNCH
 message MAY be placed in the "Supported" header of the response.
 This is to provide a hint to the client generating the SYNCH message
 that the receiving entity also supports the listed Control Packages.

 If no packages are supported by the entity receiving the SYNCH
 message, it MUST respond with a 422 error response code. The error
 response MUST contain a "Supported" header indicating the packages
 that are supported. The initiating client can then choose to either
 re-submit a new SYNCH message based on the 422 response or consider
 the interaction as a failure. This would lead to termination of the
 associated SIP dialog by sending a SIP BYE request, as per RFC 3261
 [2].

 Once the initial SYNCH transaction is completed, either client MAY
 choose to send a subsequent new SYNCH Control Framework message to
 re-negotiate the packages that are supported with the control
 channel. A new SYNCH message whose Packages header has different
 values from the previous SYNCH message can effectively add and delete
 the packages used in the control channel. Subsequent SYNCH message
 MUST NOT change the value of the "Dialog-ID" and "Keep-Alive" Control
 Framework headers that appeared in the original SYNCH negotiation.
 If a client receiving a subsequent SYNCH message does not wish to re-
 negotiate it MUST respond with a 421 Control Framework response code.

https://datatracker.ietf.org/doc/html/rfc3261

Boulton, et al. Expires August 25, 2008 [Page 21]

Internet-Draft Media Control Channel Framework February 2008

 Any Control Framework commands relating to a Control Package that is
 no longer supported by the session are received after re-negotiation,
 the receiving entity SHOULD respond with a 420 response. An entity
 MAY choose to honor such commands for a limited period of time but
 this is implementation specific.

6.2. Constructing Responses

 A Control Client or Server, on receiving a request, MUST generate a
 response within 'Transaction-Time'. The response MUST conform to the
 ABNF defined in Section 9. The first line of the response MUST
 contain the transaction identifier used in first line of the request,
 as defined in Section 6.1. Responses MUST NOT include the 'Status'
 or 'Timeout' message headers - if they are included they have no
 meaning or semantics.

 [Editors Note:DP6 - Need to pick a time for "Transaction-Time" - Work
 Group input requested.]

 A Control Client or Server MUST then include a status code in the
 first line of the constructed response. A Control Framework request
 (like CONTROL) that has been understood, and either the relevant
 actions for the control command have completed or a control command
 error is detected, uses the 200 Control Framework status code as
 defined in Section 7.1. A 200 response MAY include message bodies.
 If a 200 response does contain a payload it MUST include Content-
 Length and Content-Type headers. A 200 is the only response defined
 in this specification that allows a message body to be included. A
 client receiving a 200 class response then considers the control
 command transaction completed. A Control Framework request (like
 CONTROL) that is received and understood but requires processing that
 extends beyond 'Transaction-Time' time will return a 202 status code
 in the response. This will be followed by an REPORT message(s) as
 defined in Section 6.1.2. A Control Package SHOULD explicitly define
 the circumstances under which either 200 or 202 with subsequent
 processing takes place.

 [Editors Note:DP7 - Need to pick a time for "Transaction-Time" - Work
 Group input requested.]

 If a Control Client or Server encounters problems with either a
 Control Framework request (like REPORT or CONTROL), an appropriate
 error code should be used in the response, as listed in Section 7.
 The generation of a non 2xx class response code to either a Control
 Framework request (like CONTROL or REPORT) will indicate failure of
 the transaction, and all associated state and resources should be
 terminated. The response code may provide an explicit indication of
 why the transaction failed, which might result in a re-submission of

Boulton, et al. Expires August 25, 2008 [Page 22]

Internet-Draft Media Control Channel Framework February 2008

 the request.

7. Response Code Descriptions

 The following response codes are defined for transaction responses to
 methods defined in Section 6.1. All response codes in this section
 MUST be supported and can be used in response to both CONTROL and
 REPORT messages except that a 202 MUST NOT be generated in response
 to a REPORT message.

 Note that these response codes apply to framework transactions only.
 Success or error indications for control commands MUST be treated as
 the result of a control command and returned in either a 200 response
 or REPORT message.

7.1. 200 Response Code

 The 200 code indicates the completion of a successful transaction.

7.2. 202 Response Code

 The 202 response code indicates the completion of a successful
 transaction with additional information to be provided at a later
 time through the REPORT mechanism defined in Section 6.1.2.

7.3. 400 Response Code

 The 400 response indicates that the request was syntactically
 incorrect.

7.4. 403 Response Code

 The server understood the request, but is refusing to fulfill it.
 The request SHOULD NOT be repeated.

7.5. 405 Response Code

 Method not allowed. The primitive is not supported.

7.6. 420 Response Code

 Intended target of the request is for a Control Package that is not
 valid for the current session.

Boulton, et al. Expires August 25, 2008 [Page 23]

Internet-Draft Media Control Channel Framework February 2008

7.7. 421 Response Code

 Recipient does not wish to re-negotiate Control Packages at this
 moment in time.

7.8. 422 Response Code

 Recipient does not support any Control Packages listed in the SYNCH
 message.

7.9. 423 Response Code

 Recipient already has a transaction with the same transaction ID.

7.10. 481 Response Code

 The 481 response indicates that the transaction of the request does
 not exist.

7.11. 500 Response Code

 The 500 response indicates that the recipient does not understand the
 request

8. Control Packages

 "Control Packages" are intended to specify behavior that extends the
 the capability defined in this document. "Control Packages" are not
 allowed to weaken "MUST" and "SHOULD" strength statements that are
 detailed in this document. A "Control Package" may strengthen
 "SHOULD" to "MUST" if justified by the specific usage of the
 framework.

 In addition to normal sections expected in a standards-track RFC and
 SIP extension documents, authors of "Control Packages" need to
 address each of the issues detailed in the following subsections.
 The following sections MUST be used as a template and included
 appropriately in all Control-Packages.

8.1. Control Package Name

 This section MUST be present in all extensions to this document and
 provides a token name for the Control Package. The section MUST
 include information that appears in the IANA registration of the
 token. Information on registering control package tokens is
 contained in Section 12. The package name MUST also register a
 version number for the package which is separated with a '/' symbol

Boulton, et al. Expires August 25, 2008 [Page 24]

Internet-Draft Media Control Channel Framework February 2008

 e.g. package_name/1.0. This enables updates to the package to be
 registered where appropriate. An initial version of a package MUST
 start with the value '1.0'. Subsequent versions MUST increment this
 number if the same package name is to be used. The exact increment
 is left to the discretion of the package author.

8.2. Framework Message Usage

 The Control Framework defines a number of message primitives that can
 be used to exchange commands and information. There are no
 limitations restricting the directionality of messages passed down a
 control channel. This section of a Control package document should
 explicitly detail the control messages that can be used as well as
 provide an indication of directionality between entities. This will
 include which role type is allowed to initiate a request type.

8.3. Common XML Support

 This optional section is only included in a Control Package if the
 attributes for media dialog or Conference reference are required.
 The Control Package will make strong statements (MUST strength) if
 the XML schema defined in Section 16.1 in Appendix A is to be
 supported. If only part of the schema is required (for example just
 'connection-id' or just conf-id), the Control Package will make
 equally strong (MUST strength) statements.

8.4. CONTROL Message Bodies

 This mandatory section of a Control Package defines the control body
 that can be contained within a CONTROL command request, as defined in

Section 6 (or that no control package body is required). This
 section should indicate the location of detailed syntax definitions
 and semantics for the appropriate body types.

8.5. REPORT Message Bodies

 This mandatory section of a Control Package defines the REPORT body
 that can be contained within a REPORT command request, as defined in

Section 6 (or that no report package body is required). This section
 should indicate the location of detailed syntax definitions and
 semantics for the appropriate body types. It should be noted that
 the Control Framework specification does allow for payloads to exist
 in 200 responses to CONTROL messages (as defined in this document).
 An entity that is prepared to receive a payload type in a REPORT
 message MUST also be prepared to receive the same payload in a 200
 response to a CONTROL message.

Boulton, et al. Expires August 25, 2008 [Page 25]

Internet-Draft Media Control Channel Framework February 2008

8.6. Audit

 [EDITORS NOTE: DP12 - Need to include audit template mechanism.]

8.7. Examples

 It is strongly recommended that Control Packages provide a range of
 message flows that represent common flows using the package and this
 framework document.

9. Formal Syntax

9.1. Control Framework Formal Syntax

 The Control Framework interactions use the UTF-8 transformation
 format as defined in RFC3629 [16]. The syntax in this section uses
 the Augmented Backus-Naur Form (ABNF) as defined in RFC2234 [17].

control-req-or-resp = control-request / control-response
control-request = control-req-start *(headers) CRLF [control-content]
control-response = control-resp-start *(headers) CRLF [control-content]
control-req-start = pSCFW SP transact-id SP method CRLF
control-resp-start = pSCFW SP transact-id SP status-code [SP comment] CRLF
comment = utf8text

pSCFW = %x53.43.46.57; SCFW in caps
transact-id = alpha-num-token
method = mCONTROL / mREPORT / mSYNCH / mK-ALIVE / other-method
mCONTROL = %x43.4F.4E.54.52.4F.4C; CONTROL in caps
mREPORT = %x52.45.50.4F.52.54; REPORT in caps
mSYNCH = %x53.59.4E.43.48; SYNCH in caps
mK-ALIVE = %x4B.2D.41.4C.49.56.45;K-ALIVE in caps

other-method = 1*UPALPHA
status-code = 3DIGIT ; any code defined in this and other documents

headers = header-name CRLF

header-name = (Content-Length
 /Control-Package
 /Status
 /Seq
 /Timeout
 /Dialog-id
 /Packages
 /Supported

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc2234

Boulton, et al. Expires August 25, 2008 [Page 26]

Internet-Draft Media Control Channel Framework February 2008

 /Keep-alive
 /ext-header) CRLF

Content-Length = "Content-Length:" SP 1*DIGIT
Control-Package = "Control-Package:" SP 1*alpha-num-token
Status = "Status:" SP ("pending" / "update" / "terminate")
Timeout = "Timeout:" SP 1*DIGIT
Seq = "Seq:" SP 1*DIGIT
Dialog-id = "Dialog-ID:" SP dialog-id-string
Packages = "Packages:" SP package-name *(COMMA package-name)
Supported = "Supported:" SP supported *(COMMA supported)
Keep-alive = "Keep-Alive:" SP delta-seconds

dialog-id-string = alpha-num-token "~" alpha-num-token ["~" alpha-num-token]
package-name = alpha-num-token
supported = alpha-num-token
delta-seconds = 1*DIGIT

alpha-num-token = alphanum 3*31alpha-num-tokent-char
alpha-num-tokent-char = alphanum / "." / "-" / "+" / "%" / "="

control-content = Content-Type 2CRLF data CRLF

Content-Type = "Content-Type:" SP media-type
media-type = type "/" subtype *(";" gen-param)
type = token
subtype = token

gen-param = pname ["=" pval]
pname = token
pval = token / quoted-string

token = 1*(%x21 / %x23-27 / %x2A-2B / %x2D-2E
 / %x30-39 / %x41-5A / %x5E-7E)
 ; token is compared case-insensitive

quoted-string = DQUOTE *(qdtext / qd-esc) DQUOTE
qdtext = SP / HTAB / %x21 / %x23-5B / %x5D-7E
 / UTF8-NONASCII
qd-esc = (BACKSLASH BACKSLASH) / (BACKSLASH DQUOTE)
BACKSLASH = "\"
UPALPHA = %x41-5A
ALPHANUM = ALPHA / DIGIT

data = *OCTET
ext-header = hname ":" SP hval CRLF

hname = ALPHA *token

Boulton, et al. Expires August 25, 2008 [Page 27]

Internet-Draft Media Control Channel Framework February 2008

hval = utf8text

utf8text = *(HTAB / %x20-7E / UTF8-NONASCII)

UTF8-NONASCII = %xC0-DF 1UTF8-CONT
 / %xE0-EF 2UTF8-CONT
 / %xF0-F7 3UTF8-CONT
 / %xF8-Fb 4UTF8-CONT
 / %xFC-FD 5UTF8-CONT
UTF8-CONT = %x80-BF

 The following table details a summary of the headers that can be
 contained in Control Framework interactions. The "where" columns
 details where headers can be used:

 R: header field may only appear in requests;

 r: header field may only appear in responses;

 Blank indicates the header field may appear in either requests or
responses.

 2xx, 4xx, etc.: A numerical value or range indicates response
 codes with which the header field can be used;

 An empty entry in the "where" column indicates that the header
 field may be present in all requests and responses.

 The remaining columns list the specified methods and the presence of
 a specific header:

 m: The header field is mandatory.
 o: The header field is optional.
 -: The header field is not applicable (ignored if present).

Boulton, et al. Expires August 25, 2008 [Page 28]

Internet-Draft Media Control Channel Framework February 2008

 Header field Where CONTROL REPORT SYNCH K-ALIVE

 Content-Length o o - -
 Control-Package R m - - -
 Seq - m - -
 Status R - m - -
 Timeout R - m - -
 Dialog-ID R - - m -
 Packages - - m -
 Supported r - - o -
 Keep-Alive R - - o -

 Figure 10: Table 1

10. Examples

 The following examples provide an abstracted flow of Control Channel
 establishment and Control Framework message exchange. The SIP
 signaling is prefixed with the token 'SIP'. All other messages are
 Control Framework interactions defined in this document.

 In this example, the Control Client establishes a control channel,
 SYNCHs with the Control Server, and issues a CONTROL request that
 can't be completed within "transaction-timeout" seconds, so the
 Control Server returns a 202 response code to extend the
 trqansaction. The Control Server then follows with REPORTs until the
 requested action has been completed. The SIP dialog is then
 terminated.

 [Editors Note:DP8 - Need to pick a time for "Transaction-Time" - Work
 Group input requested.]

 Control Client Control Server
 | |
 | (1) SIP INVITE |
 | --> |
 | |
 | (2) SIP 200 |
 | <--------------------------------------- |
 | |
 | (3) SIP ACK |
 | --> |
 | |
 |==>=======================================>==|
 | Control Channel Established |

Boulton, et al. Expires August 25, 2008 [Page 29]

Internet-Draft Media Control Channel Framework February 2008

 |==>=======================================>==|
 | |
 | (4) SYNCH |
 | --> |
 | |
 | (5) 200 |
 | <--------------------------------------- |
 | |
 | (6) CONTROL |
 | --> |
 | |
 | (7) 202 |
 | <--------------------------------------- |
 | |
 | (8) REPORT (pending) |
 | <-- |
 | |
 | (9) 200 |
 | --> |
 | |
 | (10) REPORT (update) |
 | <-- |
 | |
 | (11) 200 |
 | --> |
 | |
 | (12) REPORT (terminate) |
 | <-- |
 | |
 | (13) 200 |
 | --> |
 | |
 | (14) SIP BYE |
 | --> |
 | |
 | (15) SIP 200 |
 | <--------------------------------------- |
 |===|
 | Control Channel Terminated |
 |===|
 | |

 1. Control Client->Control Server (SIP): INVITE
 sip:control-server@example.com

Boulton, et al. Expires August 25, 2008 [Page 30]

Internet-Draft Media Control Channel Framework February 2008

 INVITE sip:control-server@example.com SIP/2.0
 To: <sip:control-server@examplae.com>
 From: <sip:control-client@example.com>;tag=8937498
 Via: SIP/2.0/UDP control-client.example.com;branch=z9hG412345678
 CSeq: 1 INVITE
 Call-ID: 893jhoeihjr8392@example.com
 Contact: <sip:control-client@pc1.example.com>
 Content-Type: application/sdp
 Cotent-Length: [..]

 v=0
 o=originator 2890844526 2890842808 IN IP4 controller.example,com
 s=-
 c=IN IP4 control-client.example.com
 m=application 7575 TCP/SCFW
 a=setup:active
 a=connection:new

 2. Control Server->Control Client (SIP): 200 OK

 SIP/2.0 200 OK
 To: <sip:control-server@example.com>;tag=023983774
 From: <sip:control-client@example.com>;tag=8937498
 Via: SIP/2.0/UDP control-client.example.com;branch=z9hG412345678
 CSeq: 1 INVITE
 Call-ID: 893jhoeihjr8392@example.com
 Contact: <sip:control-client@pc2.example.com>
 Content-Type: application/sdp
 Content-Length: [..]

 v=0
 o=originator 2890844526 2890842808 IN IP4 controller.example,com
 s=-
 c=IN IP4 control-server.example.com
 m=application 7575 TCP/SCFW
 a=setup:passive
 a=connection:new

 3. Control Client->Control Server (SIP): ACK
 4. Control Client opens a TCP connection to the Control Server.
 The connection can now be used to exchange control framework
 messages. Control Client-->Control Server (Control Framework
 Message): SYNCH.

 SCFW 8djae7khauj SYNCH
 Dialog-ID: 8937498~893jhoeihjr8392@example.com~023983774
 K-alive: 100

Boulton, et al. Expires August 25, 2008 [Page 31]

Internet-Draft Media Control Channel Framework February 2008

 Packages: msc-ivr-basic/1.0

 5. Control Server-->Control Client (Control Framework Message):
 200.

 SCFW 8djae7khauj 200
 Keep-Alive: 100
 Packages: msc-ivr-basic/1.0
 Supported: msc-ivr-vxml/1.0,msc-conf-audio/1.0

 6. Control Client opens a TCP connection to the Control Server.
 The connection can now be used to exchange control framework
 messages. Control Client-->Control Server (Control Framework
 Message): CONTROL.

 SCFW i387yeiqyiq CONTROL
 Control-Package: <package-name>
 Content-Type: example_content/example_content
 Content-Length: 11

 <XML BLOB/>

 7. Control Server-->Control Client (Control Framework Message):
 202.

 SCFW i387yeiqyiq 202
 Timeout: 10

 8. Control Server-->Control Client (Control Framework Message):
 REPORT.

 SCFW i387yeiqyiq REPORT
 Seq: 1
 Status: pending
 Timeout: 10

 9. Control Client-->Control Server (Control Framework Message):
 200.

 SCFW i387yeiqyiq 200
 Seq: 1

 10. Control Server-->Control Client (Control Framework Message):
 REPORT.

Boulton, et al. Expires August 25, 2008 [Page 32]

Internet-Draft Media Control Channel Framework February 2008

 SCFW i387yeiqyiq REPORT
 Seq: 2
 Status: update
 Timeout: 10
 Content-Type: example_content/example_content
 Content-Length: 11

 <XML BLOB/>

 11. Control Client-->Control Server (Control Framework Message):
 200.

 SCFW i387yeiqyiq 200
 Seq: 2

 12. Control Server-->Control Client (Control Framework Message):
 REPORT.

 SCFW i387yeiqyiq REPORT
 Seq: 3
 Status: terminate
 Timeout: 10
 Content-Type: example_content/example_content
 Content-Length: 11

 <XML BLOB/>

 13. Control Client-->Control Server (Control Framework Message):
 200.

 SCFW i387yeiqyiq 200
 Seq: 3

 14. Control Client->Control Server (SIP): BYE

 BYE sip:control-client@pc2.example.com SIP/2.0
 To: <sip:control-server@example.com>
 From: <sip:control-client@example.com>;tag=8937498
 Via: SIP/2.0/UDP control-client.example.com;branch=z9hG423456789
 CSeq: 2 BYE
 Call-ID: 893jhoeihjr8392@example.com

 15. Control Server->Control Client (SIP): 200 OK

Boulton, et al. Expires August 25, 2008 [Page 33]

Internet-Draft Media Control Channel Framework February 2008

 SIP/2.0 200 OK
 To: <sip:control-server@example.com>;tag=023983774
 From: <sip:control-client@example.com>;tag=8937498
 Via: SIP/2.0/UDP control-client.example.com;branch=z9hG423456789
 CSeq: 2 BYE
 Call-ID: 893jhoeihjr8392@example.com

11. Security Considerations

 SIP Control Framework needs to provide confidentiality and integrity
 for the messages it transfers. It also needs to provide assurances
 that the connected host is the host that it meant to connect to and
 that the connection has not been hijacked.

 SIP Control Framework is designed to comply with the security-related
 requirements documented in the control prtoocol requirements
 document[8]. Specific security measures employed by the SIP Control
 Framework are summarized in the following subsections.

11.1. Session Establishment

 SIP Control Framework sessions are established as media sessions
 described by SDP within the context of a SIP dialog. In order to
 ensure secure rendezvous between Control Framework clients and
 servers, the following are required:

 o The SIP implementation in Control Framework clients and servers
 MUST support digest authentication as specified in RFC3261 [2] and
 'Enhancements for Authenticated Identity Management in the Session
 Initiation Protocol (SIP)[18].
 o The SIP implementation in Control Framework clients and servers
 SHOULD employ SIPS: URIs as specified in RFC3261 [2].

 [EDITORS NOTE:DP9 - Sip identity - is this too strong?]

 [EDITORS NOTE:DP10 - WHAT DO WE SAY ABOUT S/MIME????]

11.2. Transport Level Protection

 When using only TCP connections, the SIP Control Framework security
 is weak. Although the SIP Control Framework requires the ability to
 protect this exchange, there is no guarantee that the protection will
 be used all the time. If such protection is not used, anyone can see
 data exchanges.

 Sensitive data is carried over the Control Framework channel.
 Clients and servers must be properly authenticated and the control

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Boulton, et al. Expires August 25, 2008 [Page 34]

Internet-Draft Media Control Channel Framework February 2008

 channel must permit the use of both confidentiality and integrity for
 the data. To ensure control channel protection, Control Framework
 clients and servers MUST support TLS and SHOULD utilize it by default
 unless alternative control channel protection is used or a protected
 environment is guaranteed. Alternative control channel protection
 MAY be used if desired (e.g.IPSEC).

 TLS is used to authenticate devices and to provide integrity and
 confidentiality for the header fields being transported on the
 control chanel. SIP Control Framowork elements MUST implement TLS
 and MUST also implement the TLS ClientExtendedHello extended hello
 information for server name indication as described in [19]. A TLS
 cipher-suite of TLS_RSA_WITH_AES_128_CBC_SHA[2] MUST be supported
 (other cipher-suites MAY also be supported).

11.3. Control Channel Policy Management

 This specification permits the establishment of a dedicated control
 channel using SIP. It is also permitted for entities to create
 multiple channels for the purpose of failover and redundancy. As a
 general solution, the ability for multiple entities to create
 connections and have access to resources could be the cause of
 potential conflict in shared environments. It should be noted that
 this document does not specifically carry any specific mechanism to
 overcome such conflicts but will provide a summary of how it can be
 achieved.

 It can be determined that access to resources and use of control
 channels relates to policy. It is implementation detail as to the
 level of policy that is adopted for use with specification. The
 authorization and associated policy of a control channel can be
 linked to the authentication mechanisms described in this section.
 For example, strictly authenticating a control channel either using
 SIP digest or TLS authentication allows entities to protect resources
 and ensure the required level of granularity. Such policy can be
 applied at the package level or even as low as a structure like a
 conference instance (control channel X is not permitted to issue
 commands for control package y OR control channel A is not permitted
 to issue commands for conference instance B). Systems should ensure
 that if required, an appropriate policy framework is adopted to
 satisfy the requirements for implemented packages. The most robust
 form of policy can be achieved using a strong authentication
 mechanism such as mutual TLS authentication on the control channel.
 This specification provide a control channel response code(403) to
 indicate to the issuer of a command that it is not permitted. It
 should be noted that additional policy requirements might be defined
 and applied in individual packages that specify a finer granularity
 for access to resources etc.

Boulton, et al. Expires August 25, 2008 [Page 35]

Internet-Draft Media Control Channel Framework February 2008

12. IANA Considerations

 This specification instructs IANA to create a new registry for SIP
 Control Framework parameters. The SIP Control Framework Parameter
 registry is a container for sub-registries. This section further
 introduces sub-registries for SIP Control Framework packages, method
 names, status codes, header field names, port and transport protocol.

 Additionally, Section 12.6 registers new parameters in existing IANA
 registries.

12.1. Control Packages Registration Information

 This specification establishes the Control Packages sub-registry
 under Control Framework Packages. New parameters in this sub-
 registry must be published in an RFC (either as an IETF submission or
 RFC Editor submission).

 As this document specifies no package or template-package names, the
 initial IANA registration for control packages will be empty. The
 remainder of the text in this section gives an example of the type of
 information to be maintained by the IANA; it also demonstrates all
 three possible permutations of package type, contact, and reference.

 The table below lists the control packages defined in the "Media
 Control Channel Framework".

 Package Name Contact Reference
 ------------ ------- ---------
 example1 [Boulton]
 example2 [Boulton] [RFCXXX]
 example3 [RFCXXX]

Boulton, et al. Expires August 25, 2008 [Page 36]

Internet-Draft Media Control Channel Framework February 2008

12.1.1. Control Package Registration Template

 To: ietf-sip-control@iana.org
 Subject: Registration of new SIP Control Framework package

 Package Name:

 (Package names must conform to the syntax described in
section 8.1.)

 Published Specification(s):

 (Control packages require a published RFC.).

 Person & email address to contact for further information:

12.2. Control Framework Method Names

 This specification establishes the Methods sub-registry under Control
 Framework Parameters and initiates its population as follows. New
 parameters in this sub-registry must be published in an RFC (either
 as an IETF submission or RFC Editor submission).

 CONTROL - [RFCXXX]
 REPORT - [RFCXXX]
 SYNCH - [RFCXXX]

 The following information MUST be provided in an RFC publication in

 o The method name.
 o The RFC number in which the method is registered.

12.3. Control Framework Status Codes

 This specification establishes the Status-Code sub-registry under SIP
 Control Framework Parameters. New parameters in this sub-registry
 must be published in an RFC (either as an IETF submission or RFC
 Editor submission). Its initial population is defined in Section 9.
 It takes the following format:

 Code [RFC Number]

 The following information MUST be provided in an RFC publication in
 order to register a new Control Framework status code:

Boulton, et al. Expires August 25, 2008 [Page 37]

Internet-Draft Media Control Channel Framework February 2008

 o The status code number.
 o The RFC number in which the method is registered.

12.4. Control Framework Header Fields

 This specification establishes the header field-Field sub-registry
 under SIP Control Framework Parameters. New parameters in this sub-
 registry must be published in an RFC (either as an IETF submission or
 RFC Editor submission). Its initial population is defined as
 follows:

 Control-Package - [RFCXXXX]
 Status - [RFCXXXX]
 Seq - [RFCXXXX]
 Timeout - [RFCXXXX]
 Dialog-id - [RFCXXXX]
 Packages - [RFCXXXX]
 Supported - [RFCXXXX]
 Keep-alive - [RFCXXXX]

 The following information MUST be provided in an RFC publication in
 order to register a new SIP Control Framework header field:

 o The header field name.
 o The RFC number in which the method is registered.

12.5. Control Framework Port

 [Editors Note:DP11 - To be discussed].

12.6. SDP Transport Protocol

 the SIP Control Framework defines the new SDP protocol field values
 'TCP/SCFW', 'TCP/TLS/SCFW', 'SCTP/SCFW' and 'SCTP/ TLS/SCFW", which
 should be registered in the sdp-parameters registry under "proto".
 The values have the following meaning:

 o TCP/SCFW: Indicates the SIP Control Framework when TCP is used as
 an underlying transport for the control channel.
 o TCP/TLS/SCFW: Indicates the SIP Control Framework when TLS over
 TCP is used as an underlying transport for the control channel.
 o SCTP/SCFW: Indicates the SIP Control Framework when SCTP is used
 as an underlying transport for the control channel.
 o SCTP/TLS/SCFW: Indicates the SIP Control Framework when TLS over
 SCTP is used as an underlying transport for the control channel.

 Specifications defining new protocol values must define the rules for

Boulton, et al. Expires August 25, 2008 [Page 38]

Internet-Draft Media Control Channel Framework February 2008

 the associated media format namespace. The 'TCP/SCFW', 'TCP/TLS/
 SCFW', 'SCTP/SCFW' and 'SCTP/TLS/SCFW' protocol values allow only one
 value in the format field (fmt), which is a single occurrence of "*".
 Actual format determination is made using the control package
 extension specific payloads.

13. Changes

 Note to RFC Editor: Please remove this whole section.

13.1. Changes from 00 Version

 o Aligned tokens to be 'SCFW' (removed ESCS).
 o Content-Length not mandatory for messages with no payload.
 o Corrected changes to call flows from legacy versions.
 o Use of term 'Active UA' in section 7 + others.
 o Added 'notify' to status header of ABNF.
 o Changed 481 to be transaction specific.
 o Added '423' duplicate transaction ID response.
 o Added '405' method not allowed.
 o Added IANA section.
 o Added Security Considerations section (used MSRP and MRCPv2 as a
 template).
 o Removed noisy initial REPORT message - *Lorenzo please check
 text*.
 o Fixed ABNF - PLEASE CHECK.
 o Removed separate event mechanism and now all tied to CONTROL
 transaction (extended).
 o General scrub of text.
 o Organised 'Editors Notes' for discussion on the mailing list.

14. Contributors

 Asher Shiratzky from Radvision provided valuable support and
 contributions to the early versions of this document.

15. Acknowledgments

 The authors would like to thank Ian Evans and Michael Bardzinski of
 Ubiquity Software, Adnan Saleem of Convedia, and Dave Morgan for
 useful review and input to this work. Eric Burger contributed to the
 early phases of this work.

 Expert review was also provided by Spencer Dawkins, Krishna Prasad
 Kalluri, Lorenzo Miniero, and Roni Even.

Boulton, et al. Expires August 25, 2008 [Page 39]

Internet-Draft Media Control Channel Framework February 2008

16. Appendix A

 During the creation of the Control Framework it has become clear that
 there are number of components that are common across multiple
 packages. It has become apparent that it would be useful to collect
 such re-usable components in a central location. In the short term
 this appendix provides the place holder for the utilities and it is
 the intention that this section will eventually form the basis of an
 initial 'Utilities Document' that can be used by Control Packages.

16.1. Common Dialog/Multiparty Reference Schema

 The following schema provides some common attributes for allowing
 Control Packages to apply specific commands to a particular SIP media
 dialog (also referred to as Connection) or conference. If used
 within a Control Package the Connection and multiparty attributes
 will be imported and used appropriately to specifically identify
 either a SIP dialog or a conference instance. If used within a
 package, the value contained in the 'connection-id' attribute MUST be
 constructed by concatenating the 'Local' and 'Remote' SIP dialog
 identifier tags as defined in RFC3261 [2]. They MUST then be
 separated using the '~' character. So the format would be:

 'Local Dialog tag' + '~' + 'Remote Dialog tag'

 As an example, for an entity that has a SIP Local dialog identifier
 of '7HDY839' and a Remote dialog identifier of 'HJKSkyHS', the
 'connection-id' attribute for a Control Framework command would be:

 7HDY839~HJKSkyHS

 If a session description has more than one media description (as
 identified by 'm=' in [9]) it is possible to explicitly reference
 them individually. When constructing the 'connection-id' attribute
 for a command that applies to a specific media ('m=') in an SDP
 description, an optional third component can be concatenated to the
 Connection reference key. It is again separated using the '~'
 character and uses the 'label' attribute as specified in [10]. So
 the format would be:

'Local Dialog tag' + '~' + 'Remote Dialog tag' + '~' + 'Label Attribute'

 As an example, for an entity that has a SIP Local dialog identifier
 of '7HDY839', a Remote dialog identifier of 'HJKSkyHS' and an SDP
 label attribute of 'HUwkuh7ns', the 'connection-id' attribute for a
 Control Framework command would be:

 7HDY839~HJKSkyHS~HUwkuh7ns

https://datatracker.ietf.org/doc/html/rfc3261

Boulton, et al. Expires August 25, 2008 [Page 40]

Internet-Draft Media Control Channel Framework February 2008

 It should be noted that Control Framework requests initiated in
 conjunction with a SIP dialog will produce a different
 'connection-id' value depending on the directionality of the request,
 for example Local and Remote tags are locally identifiable.

 As with the Connection attribute previously defined, it is also
 useful to have the ability to apply specific control framework
 commands to a number of related dialogs, such as a multiparty call.
 This typically consists of a number of media dialogs that are
 logically bound by a single identifier. The following schema allows
 for control framework commands to explicitly reference such a
 grouping through a 'conf' XML container. If used by a Control
 Package, any control XML referenced by the attribute applies to all
 related media dialogs. Unlike the dialog attribute, the 'conf-id'
 attribute does not need to be constructed based on the overlying SIP
 dialog. The 'conf-id' attribute value is system specific and should
 be selected with relevant context and uniqueness.

 The full schema follows:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="urn:ietf:params:xml:ns:control:framework-
attributes"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:ietf:params:xml:ns::control:framework-attributes"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <!--xsd:include schemaLocation="common-schema.xsd"/-->

 <xsd:attributeGroup name="framework-attributes">
 <xsd:annotation>
 <xsd:documentation>SIP Connection and Conf Identifiers</
xsd:documentation>
 </xsd:annotation>

 <xsd:attribute name="connectionid" type="xsd:string"/>

 <xsd:attribute name="conferenceid" type="xsd:string"/>

 </xsd:attributeGroup>
</xsd:schema>

17. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement

 Levels", BCP 14, RFC 2119, March 1997.

Boulton, et al. Expires August 25, 2008 [Page 41]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft Media Control Channel Framework February 2008

 [2] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [3] Rosenberg, J. and H. Schulzrinne, "Reliability of Provisional
 Responses in Session Initiation Protocol (SIP)", RFC 3262,
 June 2002.

 [4] Rosenberg, J. and H. Schulzrinne, "Session Initiation Protocol
 (SIP): Locating SIP Servers", RFC 3263, June 2002.

 [5] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
 Session Description Protocol (SDP)", RFC 3264, June 2002.

 [6] Yon, D. and G. Camarillo, "TCP-Based Media Transport in the
 Session Description Protocol (SDP)", RFC 4145, September 2005.

 [7] Groves, C., Pantaleo, M., Anderson, T., and T. Taylor, "Gateway
 Control Protocol Version 1", RFC 3525, June 2003.

 [8] Dolly, M. and R. Even, "Media Server Control Protocol
 Requirements", draft-dolly-mediactrl-requirements-00 (work in
 progress), June 2007.

 [9] Handley, M., "SDP: Session Description Protocol",
draft-ietf-mmusic-sdp-new-26 (work in progress), January 2006.

 [10] Levin, O. and G. Camarillo, "The Session Description Protocol
 (SDP) Label Attribute", RFC 4574, August 2006.

 [11] Jennings, C. and R. Mahy, "Managing Client Initiated
 Connections in the Session Initiation Protocol (SIP)",

draft-ietf-sip-outbound-11 (work in progress), November 2007.

 [12] Rosenberg, J., Peterson, J., Schulzrinne, H., and G. Camarillo,
 "Best Current Practices for Third Party Call Control (3pcc) in
 the Session Initiation Protocol (SIP)", BCP 85, RFC 3725,
 April 2004.

 [13] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Indicating
 User Agent Capabilities in the Session Initiation Protocol
 (SIP)", RFC 3840, August 2004.

 [14] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Caller
 Preferences for the Session Initiation Protocol (SIP)",

RFC 3841, August 2004.

 [15] Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson,

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3262
https://datatracker.ietf.org/doc/html/rfc3263
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc4145
https://datatracker.ietf.org/doc/html/rfc3525
https://datatracker.ietf.org/doc/html/draft-dolly-mediactrl-requirements-00
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdp-new-26
https://datatracker.ietf.org/doc/html/rfc4574
https://datatracker.ietf.org/doc/html/draft-ietf-sip-outbound-11
https://datatracker.ietf.org/doc/html/bcp85
https://datatracker.ietf.org/doc/html/rfc3725
https://datatracker.ietf.org/doc/html/rfc3840
https://datatracker.ietf.org/doc/html/rfc3841

Boulton, et al. Expires August 25, 2008 [Page 42]

Internet-Draft Media Control Channel Framework February 2008

 "RTP: A Transport Protocol for Real-Time Applications", STD 64,
RFC 3550, July 2003.

 [16] Yergeau, F., "UTF-8, a transformation format of ISO 10646",
 STD 63, RFC 3629, November 2003.

 [17] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [18] Peterson, J. and C. Jennings, "Enhancements for Authenticated
 Identity Management in the Session Initiation Protocol (SIP)",

RFC 4474, August 2006.

 [19] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J., and
 T. Wright, "Transport Layer Security (TLS) Extensions",

RFC 4366, April 2006.

 [20] Chown, P., "Advanced Encryption Standard (AES) Ciphersuites for
 Transport Layer Security (TLS)", RFC 3268, June 2002.

Authors' Addresses

 Chris Boulton
 Avaya
 Building 3
 Wern Fawr Lane
 St Mellons
 Cardiff, South Wales CF3 5EA

 Email: cboulton@avaya.com

 Tim Melanchuk
 Rain Willow Communications

 Email: tim.melanchuk@gmail.com

 Scott McGlashan
 Hewlett-Packard
 Gustav III:s boulevard 36
 SE-16985 Stockholm, Sweden

 Email: scott.mcglashan@hp.com

https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc4474
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc3268

Boulton, et al. Expires August 25, 2008 [Page 43]

Internet-Draft Media Control Channel Framework February 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Boulton, et al. Expires August 25, 2008 [Page 44]

