
Network Working Group D. Liu
Internet-Draft China Mobile
Intended status: Informational Ted. Lemon
Expires: Sep. 1, 2012 Nominum
 Yuri. Ismailov
 Ericsson
 Z. Cao
 China Mobile
 March 1, 2012

MIF API consideration
draft-ietf-mif-api-extension-00

Abstract

 This document describes an abstract API that provides the minimal
 functionality required for a program to communicate effectively with
 peers and services on the network while running on a host that has
 more than one active network interface. This API is abstract: we
 describe the functionality that must be provided, not the bindings
 that should be used to provide that functionality. The functionality
 described here provides the building blocks from which higher-level
 APIs might be built, and is not intended to be used directly by
 typical applications.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 3, 2012.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Liu, et al. Expires Sep. 1, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft MIF API Extension October 2011

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Conventions used in this document 4
3. MIF API Concept . 5
3.1. Provisioning Domains 5
3.2. Provisioning Domain Agnosticism 5
3.3. MIF API Elements . 6
3.3.1. Application Element 6
3.3.2. High Level API . 7
3.3.3. MIF API . 7
3.3.4. Communications API 7
3.3.5. Network Link API 7

3.4. MIF API communication model 8
3.4.1. POST MESSAGE call 8
3.4.2. CHECK MESSAGE call 8
3.4.3. GET MESSAGE call 8

3.5. MIF Messages . 8
3.5.1. Announce Interfaces 9
3.5.2. Stop Announcing Interfaces 9
3.5.3. Interface Announcement 9
3.5.4. No Interface Announcement 9
3.5.5. Announce Provisioning Domain 9
3.5.6. Stop Announcing Provisioning Domains 10
3.5.7. Provisioning Domain Announcement 10
3.5.8. No Provisioning Domain Announcement 10
3.5.9. Announce Configuration Element 10
3.5.10. Configuration Element Announcement 11
3.5.11. No Configuration Element Announcement 11
3.5.12. Announce Address 11
3.5.13. Address Announcement 12
3.5.14. No Address Announcement 12
3.5.15. Get Configuration Data 12
3.5.16. Translate Name . 12
3.5.17. Stop Translating Name 13
3.5.18. Name Translation 13
3.5.19. Connect to Address 13

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Liu, et al. Expires Sep. 1, 2012 [Page 2]

Internet-Draft MIF API Extension October 2011

3.5.20. Connect to Address From Address 13
3.5.21. Connected . 14
3.5.22. Not Connected . 14

4. Example Usage . 14
5. Security Considerations 16
6. IANA Considerations . 16
7. Acknowledgments . 16
8. References . 16
8.1. Normative References 16
8.2. Informative References 16

 Authors' Addresses . 17

Liu, et al. Expires Sep. 1, 2012 [Page 3]

Internet-Draft MIF API Extension October 2011

1. Introduction

 Traditionally, hosts that communicate on the network have done so
 over a single network link, which is provided by a single service
 provider. This simple environment is relatively easy to program to,
 and relatively predictable.

 However, this relatively simple case is no longer the norm. A
 typical modern host may have one or two wireless interfaces: a
 wireless interface connected to a broadband network, and possibly
 another connected to some kind of cellular network. The same host
 may also have a wired interface which is sometimes connected to
 another broadband link. It is also quite common for hosts to have
 VPN links that are configured, for example, for access to corporate
 networks, or for access to network privacy services.

 As a result, it is now quite typical that a program attempting to
 communicate in such an environment will be presented with conflicting
 configuration information from more than one provider. In addition,
 the cost of bandwidth on different links and the power required ny
 those links may require consideration.

 The API specified in this document is intended to describe the
 minimal complete set of API calls required to implement higher level
 APIs that solve these problems. It is not expected that applications
 will be implemented to this API, although it should be possible to do
 so. Rather, we expect this API to be used as a basis for building
 higher-level APIs that provide domain-specific solutions to these
 problems. The reason for specifying a lower-level API is to enable
 any arbitrary domain- specific API to be implemented, since no single
 higher-level API is likely to satisfy the needs of every application.

 The API specified here is an abstract API. This means that we
 specify the functionality that is required to implement the API, but
 we do not provide specific bindings for any programming language:
 these are left up to the implementation. The API is described in
 terms of messages sent and messages received, rather than in terms of
 procedure calls, because it is necessary to be able to interleave
 these messages; a procedure call API necessarily precludes
 interleaving.

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL","SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Liu, et al. Expires Sep. 1, 2012 [Page 4]

Internet-Draft MIF API Extension October 2011

3. MIF API Concept

 The MIF API is intended to deal with situations where more than one
 interface may be active at a time. It must also deal with situations
 where a single interface is connected to a link that provides more
 than one type of network service. The most common example of this
 that we expect is a dual-stack network configuration.

3.1. Provisioning Domains

 To properly handle these multiple-service interfaces, we specify the
 API not in terms of interfaces, but in terms of provisioning domains.
 So in the case of a dual-stack network attached to a single network
 interface, there would be two provisioning domains. If the host has
 a second interface that is connected to a link that only supports
 IPv6 service, then that host would be connected to a total of two
 network links, but three provisioning domains.

 From the perspective of the MIF API, a provisioning domain consists
 of a link, plus all the configuration information received on that
 link for that provisioning domain. So for an IPv4 provisioning
 domain, that would be whatever information is received from the DHCP
 server. For an IPv6 provisioning domain, the information received
 through router advertisements would be combined with the information
 recieved via DHCPv6.

 **point of discussion: it's actually possible to have two separate
 provisioning domains for IPv6 on the same wire. Is this a case that
 could happen in practice, and that we ought to support? I know that
 some asian countries have arrangements where the operator of the
 physical network is distinct from one or more operators who provide
 transit; I think this is all handled transparently to the host, but I
 don't really know the details.

 **point of discussion: is IPv4 stateless/Bonjour a separate
 provisioning domain? What about IPv6 ULA?

3.2. Provisioning Domain Agnosticism

 Although it is possible that a high-level API built on top of this
 API may be able to distinguish between provisioning domains, at the
 level of this API, no such distinction can be made. Each
 provisioning domain is treated separately, and it is the
 responsibility of the higher-level API or of the application to
 decide which provisioning domain or domains to actually use.

Liu, et al. Expires Sep. 1, 2012 [Page 5]

Internet-Draft MIF API Extension October 2011

3.3. MIF API Elements

 There are a number of different, essentially independent, pieces of
 software that need to be connected together in order to fully support
 a successful MIF communication strategy. These elements are shown in
 figure 3.1.

 +---+
 | Application |
 +---+
 /\ || /\ || /\ ||
 || \/ || || || ||
 +--------------------+ || || || ||
 | High Level API | || || || ||
 +--------------------+ || || || ||
 /\ || || || || ||
 || \/ || \/ || ||
 +------------------------------+ || ||
 | MIF API | || ||
 +------------------------------+ || ||
 /\ || || \/
 || || +-------------------------------+
 || || + Communications API +
 || || +-------------------------------+
 || || /\ ||
 || \/ || \/
 +---+
 | Network Link API |
 +---+
 /\ || /\ ||
 || \/ || \/
 +-------------------+ +--------------------+
 | Network Interface | | Network Interface |
 | 1 | | 2 |
 +-------------------+ +--------------------+

 Figure 1

3.3.1. Application Element

 This is an actual application. Applications fall into a variety of
 broad categories, including network servers, web browsers, peer-to-
 peer programs, and so on. Although we are focusing here on the
 mechanisms required to allow these applications to originate
 connections to remote nodes, it is worth noting that applications
 must also be able to receive connections from remote nodes.

Liu, et al. Expires Sep. 1, 2012 [Page 6]

Internet-Draft MIF API Extension October 2011

3.3.2. High Level API

 Applications are generally expected to originate connections using
 some general-purpose high-level API suited to their particular
 function. It is likely that different applications may use different
 high-level APIs to communicate, depending on their particular needs.
 We do not describe the functioning of such high-level APIs; however,
 one such API under current consideration is the Happy Eyeballs for
 MIF [reference]. These APIs are expected to be able to be
 implemented using functionality like that described in the MIF API.

3.3.3. MIF API

 This is the API being described in this document. Generally
 speaking, this API is used by higher-level APIs. However, it is
 permissible for applications to use the MIF API when it is deemed
 necessary. Currently, several modern web browsers take this approach
 to establishing network connections, rather than relying on vendor-
 provided connection mechanisms.

3.3.4. Communications API

 Once an application has originated a connection with a remote node
 using either a high-level API or the MIF API, it must communicate.
 Similarly, when an application receives a connection from a remote
 node, it must communicate with that remote node. The communications
 API is used for this communication. Popular examples of such APIs
 include the POSIX socket API and a variety of other related APIs.

 It is likely that in some instances, implementations of the MIF API
 will be done as extensions to the Communications API provided by a
 particular operating system; the functional separation we show here
 is intended to allow us to illustrate only those features required in
 a MIF environment, while relying on existing communications APIs to
 provide the rest.

3.3.5. Network Link API

 This is the software that is responsible for actually managing
 whatever network links are present on a node, whether these are
 physical links or tunnels. What precisely this functional box
 contains may vary greatly from device to device. On a typical modern
 computer workstation, this functionality would almost certainly
 reside entirely in the system kernel; however, on an embedded device
 everything from the Application down to the Network Link API could
 easily be running together on the bare metal as a single program.

 The Network Link API can completely concealed from the Application,

Liu, et al. Expires Sep. 1, 2012 [Page 7]

Internet-Draft MIF API Extension October 2011

 so we don't show a connection between them on the functional diagram,
 and indeed we do not talk about the functionality provided by this
 API. The reason for showing it on the functional diagram is simply
 to show that there likely is an API in common between MIF and the
 Communications API.

3.4. MIF API communication model

 MIF API requests are made in the form of messages posted to the MIF
 API, and messages received from it. To accomplish this, several API
 calls are available. These calls mediate communication between the
 MIF API and the High Level API, or between the MIF API and the
 Application. In addition, the CHECK MESSAGE call allows the
 application to probe for or wait for messages from any of the APIs.

3.4.1. POST MESSAGE call

 This call causes a message to be posted to the MIF API. The call
 posts the message, and then returns.

3.4.2. CHECK MESSAGE call

 This call checks to see if there is a message waiting either from the
 High Level API, the MIF API, or the Communications API. Ideally it
 should be able to report the availability of any message or event
 that the application might anticipate receiving, so that the
 application can simply block waiting for such an event using this
 call. The application should be able to do a non-blocking probe,
 wait for some limited period of time, or wait indefinitely.

 An example of a function of this type in existing practice is the
 POSIX poll() system call.

3.4.3. GET MESSAGE call

 This call checks to see if there is a message waiting. If there is
 no message, it returns a status code indicating that there is no
 message waiting. If there is a message, it returns the message.

3.5. MIF Messages

 MIF messages always go in one direction or the other: from the
 subscriber to the MIF API, or to the subscriber from the MIF API. We
 use the term "subscriber" here to mean either the Application or the
 High Level API, since either is permitted to communicate with the MIF
 API.

 Messages described here are grouped according to function.

Liu, et al. Expires Sep. 1, 2012 [Page 8]

Internet-Draft MIF API Extension October 2011

3.5.1. Announce Interfaces

 This message is sent to the MIF API to ask it to send a message
 announcing the existence of any interface. When the MIF API receives
 this message from a subscriber, it iterates across the list of all
 known interfaces; for each known interface, it sends an Interface
 Announcement message to the subscriber.

 In addition, the MIF API sets a flag indicating that the subscriber
 is interested in learning about new interfaces. When the MIF API
 detects the presence of a new interface, it sends an Interface
 Announcement message for that interface to the subscriber. This
 would happen, for instance, when a new tunnel is configured, or when
 a USB device that is a network interface is discovered by the Network
 API.

 Also, if a network interface goes away, either because the physical
 network device is disconnected, or because a tunnel is disabled, the
 MIF API will send a No Interface Announcement message to the
 subscriber.

3.5.2. Stop Announcing Interfaces

 This message is sent to the MIF API when a subscriber is no longer
 interested in receiving announcements about new interfaces.
 Subsequently, the MIF API will no longer send Interface Announcement
 or No Interface Announcement messages to the subscriber.

3.5.3. Interface Announcement

 This message announces the existence of an interface. The
 announcement includes an interface display name and interface
 identifier.

3.5.4. No Interface Announcement

 This message announces that an interface that had been previously
 announced is no longer present. The announcement includes the
 interface identifier.

3.5.5. Announce Provisioning Domain

 This message requests the MIF API to announce the availability of any
 provisioning domains configured on a particular interface. The
 interface identifier must be specified.

 Upon receipt, the MIF API will iterate across the list of
 Provisioning Domains present for a particular interface, and will

Liu, et al. Expires Sep. 1, 2012 [Page 9]

Internet-Draft MIF API Extension October 2011

 send a Provisioning Domain Announcement for each such Provisioning
 Domain.

 In addition, the MIF API will set a flag indicating that the
 subscriber wishes to know about new provisioning domains as they
 appear. Subsequently, when a new Provisioning Domain appears, the
 MIF API will send a Provisioning Domain Announcement message to the
 subscriber.

 Finally, if a Provisioning Domain expires or is invalidated, the MIF
 API will send the subscriber a No Provisioning Domain Announcement
 message for that Provisioning Domain.

 In the event that an interface on which provisioning domains has been
 announced goes away, a No Provisioning Domain Announcement message
 will be sent for each provisioning domain that had previously been
 announced on that interface before the No Interface Announcement
 message is sent.

 Once a No Interface Announcement message has been sent, any
 subscriber that had subscribed to Provisioning Domain announcements
 for that interface will be automatically unsubscribed.

3.5.6. Stop Announcing Provisioning Domains

 This message requests that the MIF API stop sending the subscriber
 Provisioning Domain Announcement and No Provisioning Domain
 Announcement messages. The subscriber must indicate the interface
 for which it no longer wishes to receive Provisioning Domain
 announcements.

3.5.7. Provisioning Domain Announcement

 This message is sent by the MIF API to the subscriber to indicate
 that a new Provisioning Domain has successfully been configured on an
 interface. The announcement includes the interface identifier and
 the provisioning domain identifier.

3.5.8. No Provisioning Domain Announcement

 This message is sent by the MIF API to the subscriber to indicate
 that an existing, previously announced provisioning domain has
 expired or otherwise become invalid, and can no longer be used.

3.5.9. Announce Configuration Element

 This message is sent by the subscriber to request a specific
 configuration element from a specific provisioning domain. A

Liu, et al. Expires Sep. 1, 2012 [Page 10]

Internet-Draft MIF API Extension October 2011

 provisioning domain identifier must be specified.

 The MIF API will respond by iterating across the complete list of
 configuration elements for a provisioning domain, sending a
 Configuration Element Announcement message to the subscriber for each
 one.

 Additionally, if any Configuration Elements subsequently complete for
 a particular provisioning domain, the MIF API will send a
 Configuration Element Announcement message to the subscriber for each
 such element. If a Configuration Element becomes invalidated after
 it has been announced, the MIF API will send a No Configuration
 Element message.

 If a provisioning domain expires or becomes invalid, the MIF API will
 iterate across the list of remaining configuration elements for that
 provisioning domain amd send a No Configuration Element Announcement
 message for each such configuration element.

3.5.10. Configuration Element Announcement

 The Configuration Element Announcement message includes a
 Provisioning Domain ID and a Configuration Element Type, which can be
 one of the following:
 Config Element RA
 Config Element DHCPv6
 Config Element DHCPv4
 ...TBD...

3.5.11. No Configuration Element Announcement

 The No Configuration Element Announcement message indicates that a
 previously valid configuration element for a provisioning domain is
 no longer valid. The message includes a provisioning domain
 identifier and a configuration element type.

3.5.12. Announce Address

 This message is sent by the subscriber to request announcements of
 valid IP addresses for a specific provisioning domain. A
 provisioning domain identifier must be specified.

 The MIF API will respond by iterating across the complete list of
 configuration elements for a provisioning domain, sending a Address
 Announcement message to the subscriber.

 Additionally, if any new Address is subsequently configured on a
 particular provisioning domain, the MIF API will send an Address

Liu, et al. Expires Sep. 1, 2012 [Page 11]

Internet-Draft MIF API Extension October 2011

 Announcement message to the subscriber for each such element. If an
 address becomes invalidated after it has been announced, the MIF API
 will send a No Address Announcement message.

 If a provisioning domain expires or becomes invalid, the MIF API will
 iterate across the list of remaining configuration elements for that
 provisioning domain amd send a No Address Announcement message for
 each such address.

3.5.13. Address Announcement

 The Address Announcement message includes single IPv4 or IPV6 address
 and a Provisioning Domain identifier, as well as the valid and
 preferred lifetimes for that IP address (IPv6 only).

3.5.14. No Address Announcement

 The No Address Announcement message indicates that a previously valid
 address for a provisioning domain is no longer valid. The message
 includes a provisioning domain identifier and an IPv4 or IPv6
 address.

3.5.15. Get Configuration Data

 The Get Configuration Data message is sent to the MIF API, and
 includes a Provisioning Domain ID, a Configuration Element Type, and
 a Configuration Information Identifier.

 Configuration Information Identifiers:
 DNS Server List
 ...TBD...

 The MIF API searches the configuration database for the specific type
 of Configuration Element on the specified Provisioning Domain to see
 if there is any configuration data of the specified type. If so, the
 MIF API sends a Configuration Data message to the subscriber;
 otherwise it sends a No Configuration Data message to the subscriber.

3.5.16. Translate Name

 The Translate Name message is sent to the MIF API. It includes a
 provisioning domain and a name, which is a UTF8 string naming a
 network node. The message also includes a Translation Identifier,
 which the subscriber must ensure is unique across all outstanding
 name service requests.

 The MIF API begins a name resolution process. As results come in
 from the name resolution process, the MIF API sends Name Translation

Liu, et al. Expires Sep. 1, 2012 [Page 12]

Internet-Draft MIF API Extension October 2011

 messages to the subscriber for each such result.

 Name resolution can be handled by one or more translations systems
 such as local host table lookup, Domain Name System, NIS, LLMNR, and
 is implementation-dependent. **need to think about this

3.5.17. Stop Translating Name

 This message is sent to the MIF API to indicate that the subscriber
 is no longer interested in additional results from a particular name
 translation process. The message includes the Translation
 Identifier.

3.5.18. Name Translation

 The MIF API sends a Name Translation message to subscribers whenever
 results come in from a name translation process being performed on
 behalf of the subscriber. The Name Translation message includes the
 Translation ID generated by the subscriber, and an IP address
 returned by the translation process. If a single translation result
 contains more than one IP address, or IP addresses of different
 types, the MIF API sends a single Name Translation message for each
 such IP address.

3.5.19. Connect to Address

 The Connect to Address message contains an IP address, a provisioning
 domain identifier, and a connection identifier which the subscriber
 must ensure is unique. The MIF API attempts to initiate a TCP
 connection to the specified IP address using one or more source
 addresses that are valid for the specified provisioning domain,
 according to the source address selection policy for that
 provisioning domain.

 If the connection subsequently succeeds, the MIF API will send a
 Connected message to the subscriber. If it subsequently fails, the
 MIF API will send a Not Connected message to the subscriber.

3.5.20. Connect to Address From Address

 The Connect to Address From Address message contains a source IP
 address, a destination IP address, a provisioning domain identifier,
 and a connection identifier which the subscriber must ensure is
 unique. The MIF API attempts to initiate a TCP connection to the
 specified IP address using the specified source address.

 If the connection subsequently succeeds, the MIF API will send a
 Connected message to the subscriber. If it subsequently fails, the

Liu, et al. Expires Sep. 1, 2012 [Page 13]

Internet-Draft MIF API Extension October 2011

 MIF API will send a Connection Failed message to the subscriber.

3.5.21. Connected

 The Connected message contains the connection identifier that was
 provided in a previous Connect to Address or Connect to Address From
 Address message sent by the subscriber. It also contains an token,
 suitable for use with the connection API, for communicating with the
 end node to which the connection was established.

3.5.22. Not Connected

 The Not Connected message contains the connection identifier that was
 provided in a previous Connect to Address or Connect to Address From
 Address message sent by the subscriber. It also contains an
 indication as to what went wrong with the connection.

4. Example Usage

 below is an example that shows how MIF API in use:

Liu, et al. Expires Sep. 1, 2012 [Page 14]

Internet-Draft MIF API Extension October 2011

 +-------+ +-------+
 | APP | | API |
 +-------+ +-------+
 | Announce Interfaces |
 |-->|
 | Interface 1, eth0 |
 |<--|
 | Announce PDs on Interface 1 |
 |-->|
 | PD 1 |
 |<--|
 | Interface 2, wa0 |
 |<--|
 | PD 2 |
 |<--|
 | Announce PDs on Interface 2 |
 |-->|
 | PD 3 |
 |DNS query 2001::1, host.example.com A,AAAA |
 |DNS query 192.168.1.1,host.example.com A,AAAA|
 |DNS query 2001::1, host.example.com A,AAAA |
 |-->|
 |14. 2001::1 DNS response: |
 | host.example.com |
 | IN A 14.15.16.17 |
 | IN AAAA 2001:192:321::1 |
 | |
 | 2002::1 DNS response:... |
 | 192.168.1.1 DNS response: |
 | IN A 192.168.1.1 |
 |<--|
 | 15. SYN: 14.15.16.17 @ IF1 |
 | SYN: 2001:192:321::1 @ IF1 |
 | SYN: 2001:192:321::1 @ IF2 |
 | SYN: 192.168.1.1 @ IF1 |
 |-->|
 | 16. SYN+ACK @ 192.168.1.1 IF1 |
 | SYN+ACK @ 2001:192:321::1 IF2 |
 | SYN+ACK @ 2001:192:321::1 IF1 |
 |<--|
 | |

 Figure 2

 As described in the above communication model, the application first
 invoke the MIF API to query how many interfaces in the host. then,
 the application invokes MIF API to query how many networks attaches
 in each interface. application then invoke MIF API to query each DNS

Liu, et al. Expires Sep. 1, 2012 [Page 15]

Internet-Draft MIF API Extension October 2011

 configuration on each interface's attached network. application then
 send DNS query to each DNS server on each network. The DNS servers
 may return multiple IP address of the queried host name. The
 application then try to connect to each IP addresses of the host by
 sending tcp SYN packet to each destination IP addresses through
 multiple interfaces. Some of the destination IP address may return
 ACK packet some may not. The application then chose a best
 connection based on certain criteria. for example, the criteria may
 based on the qulity of the link.

5. Security Considerations

 TBD

6. IANA Considerations

 None

7. Acknowledgments

 The authors want to thank Teemu Savolainen from Nokia, Dayi Zhao from
 Bitway, Dave Thaler from Microsoft and others for their useful
 suggestions and discussions.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

8.2. Informative References

 [I-D.scharf-mptcp-api]
 Scharf, M. and A. Ford, "MPTCP Application Interface
 Considerations", draft-scharf-mptcp-api-02 (work in
 progress), July 2010.

 [RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6",

RFC 3493, February 2003.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-scharf-mptcp-api-02
https://datatracker.ietf.org/doc/html/rfc3493

Liu, et al. Expires Sep. 1, 2012 [Page 16]

Internet-Draft MIF API Extension October 2011

Authors' Addresses

 Dapeng Liu
 China Mobile
 Unit2, 28 Xuanwumenxi Ave,Xuanwu District
 Beijing 100053
 China

 Email: liudapeng@chinamobile.com

 Ted Lemon
 Nominum
 Redwood City
 CA 94063
 USA

 Email: Ted.Lemon@nominum.com

 Yuri Ismailov
 Ericsson
 Stockholm
 Sweden

 Email: yuri@ismailov.eu

 Zhen Cao
 China Mobile
 Unit2, 28 Xuanwumenxi Ave,Xuanwu District
 Beijing 100053
 China

 Email: caozhen@chinamobile.com

Liu, et al. Expires Sep. 1, 2012 [Page 17]

