
MIF Working Group D. Anipko, Ed.
Internet-Draft Unaffiliated
Intended status: Informational January 23, 2015
Expires: July 25, 2015

Multiple Provisioning Domain Architecture
draft-ietf-mif-mpvd-arch-09

Abstract

 This document is a product of the work of the MIF Architecture Design
 team. It outlines a solution framework for some of the issues
 experienced by nodes that can be attached to multiple networks
 simultaneously. The framework defines the concept of a Provisioning
 Domain (PvD) which is a a consistent set of network configuration
 information. PvD aware nodes learn PvD specific information from the
 networks they are attached to and / or other sources. PvDs are used
 to enable separation and configuration consistency in presence of
 multiple concurrent connections.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 25, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (http://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
http://trustee.ietf.org/license-info

Anipko Expires July 25, 2015 [Page 1]

Internet-Draft MPVD architecture January 2015

 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Requirements Language 3

2. Definitions and Types of PvDs 4
2.1. Explicit PvDs . 4

 2.2. Implicit PvDs and Incremental Adoption of Explicit PvDs . 5
2.3. Relationship Between PvDs and Interfaces 6
2.4. PvD Identity / Naming 6
2.5. The Relationship to Dual-Stack Networks 7

 3. Conveying PvD information using DHCPv6 and Router Advertisement 8
3.1. Separate Messages or One Message? 8
3.2. Securing PvD Information 8
3.3. Backward Compatibility 8
3.4. Retracting / Updating PvD Information 8
3.5. Conveying Configuration Information using IKEv2 9

4. Example Network Configurations 9
4.1. A Mobile Node . 9
4.2. A Node with a VPN Connection 10

 4.3. A Home Network and a Network Operator with Multiple PvDs . 11
5. Reference Model for the PvD-aware Node 11
5.1. Constructions and Maintenance of Separate PvDs 12
5.2. Consistent use of PvDs for Network Connections 12
5.2.1. Name Resolution 12
5.2.2. Next-hop and Source Address Selection 13
5.2.3. Listening Applications 14
5.2.3.1. Processing of Incoming Traffic 14
5.2.3.1.1. Connection-oriented APIs 15
5.2.3.1.2. Connectionless APIs 15

5.2.4. Enforcement of Security Policies 15
5.3. Connectivity Tests . 15

 5.4. Relationship to Interface Management and Connection Manage 16
6. PvD support in APIs . 16
6.1. Basic . 17
6.2. Intermediate . 17
6.3. Advanced . 17

7. PvD Trust for PvD-Aware Node 17
7.1. Untrusted PvDs . 17
7.2. Trusted PvDs . 18
7.2.1. Authenticated PvDs 18
7.2.2. PvDs Trusted by Attachment 18

8. Contributors . 19
9. Acknowledgments . 19
10. IANA Considerations . 19
11. Security Considerations 19
12. References . 20

https://trustee.ietf.org/license-info

12.1. Normative References 20
12.2. Informative References 20

 Author's Address . 22

1. Introduction

Anipko Expires July 25, 2015 [Page 2]

Internet-Draft MPVD architecture January 2015

 Nodes attached to multiple networks may encounter problems from
 conflicting configuration between the networks, or attempts to
 simultaneously use more than one network. While various techniques
 are currently used to tackle these problems ([RFC6419]), in many
 cases issues may still appear. The MIF problem statement document
 [RFC6418] describes the general landscape and discusses many of the
 specific issues and scenario details.

 Problems, enumerated in [RFC6418], can be grouped into 3 categories:

 1. Lack of consistent and distinctive management of configuration
 elements associated with different networks.

 2. Inappropriate mixed use of configuration elements associated with
 different networks during a particular network activity or
 connection.

 3. Use of a particular network that is not consistent with the
 intended use of the network, or the intent of the communicating
 parties, leading to connectivity failure and / or other undesired
 consequences.

 An example of (1) is a single, node-scoped list of DNS server IP
 addresses learned from different networks leading to failures or
 delays in resolution of names from particular namespaces; an example
 of (2) is an attempt to resolve the name of an HTTP proxy server
 learned from network A using a DNS server learned from network B; an
 example of (3) is the use of an employer-provided VPN connection for
 peer-to-peer connectivity unrelated to employment activities.

 This architecture provides solutions to these categories of problems,
 respectively, by:

 1. Introducing the formal notion of PvDs, including identity for
 PvDs, and describing mechanisms for nodes to learn the intended
 associations between acquired network configuration information
 elements.

 2. Introducing a reference model for PvD-aware nodes that prevents
 the inadvertent mixed use of configuration information which may
 belong to different PvDs.

 3. Providing recommendations on PvD selection based on PvD identity
 and connectivity tests for common scenarios.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

https://datatracker.ietf.org/doc/html/rfc6419
https://datatracker.ietf.org/doc/html/rfc6418
https://datatracker.ietf.org/doc/html/rfc6418

Anipko Expires July 25, 2015 [Page 3]

Internet-Draft MPVD architecture January 2015

 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Definitions and Types of PvDs

 Provisioning Domain:
 A consistent set of network configuration information.
 Classically, all of the configuration information available on a
 single interface is provided by a single source (such as a network
 administrator) and can therefore be treated as a single
 provisioning domain. In modern IPv6 networks, multihoming can
 result in more than one provisioning domain being present on a
 single link. In some scenarios, it is also possible for elements
 of the same PvD to be present on multiple links.

 Typical examples of information in a provisioning domain learned
 from the network are:

 * Source address prefixes for use by connections within the
 provisioning domain

 * IP address(es) of DNS server(s)

 * Name of HTTP proxy server (if available)

 * DNS suffixes associated with the network

 * Default gateway address

 PvD-aware node:
 A node that supports the association of network configuration
 information into PvDs and the use of these PvDs to serve requests
 for network connections in ways consistent with the
 recommendations of this architecture.

2.1. Explicit PvDs

 A node may receive explicit information from the network and / or
 other sources conveying the presence of PvDs and the association of
 particular network information with a particular PvD. PvDs that are
 constructed based on such information are referred to as "explicit"
 in this document.

 Protocol changes or extensions will likely be required to support
 explicit PvDs through IETF-defined mechanisms. As an example, one
 could think of one or more DHCP options carrying PvD identity and /

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Anipko Expires July 25, 2015 [Page 4]

Internet-Draft MPVD architecture January 2015

 or its elements.

 A different approach could be the introduction of a DHCP option which
 only carries the identity of a PvD. Here, the associations between
 network information elements with the identity is implemented by the
 respective protocols, for example with a Router Discovery [RFC4861]
 option associating an address range with a PvD.

 Another example of a delivery mechanism for PvDs are key exchange or
 tunneling protocols, such as IKEv2 [RFC5996] that allow the
 transport of host configuration information.

 Specific, existing or new features of networking protocols that
 enable the delivery of PvD identity and association with various
 network information elements will be defined in companion design
 documents.

 Link-specific and / or vendor-proprietary mechanisms for the
 discovery of PvD information (differing from IETF-defined mechanisms)
 can be used by nodes either separate from, or in conjunction with,
 IETF-defined mechanisms; providing they allow the discovery of the
 necessary elements of the PvD(s).

 In all cases, nodes must by default ensure that the lifetime of all
 dynamically discovered PvD configuration is appropriately limited by
 relevant events. For example, if an interface media state change is
 indicated, previously discovered information relevant to that
 interface may no longer be valid and so need to be confirmed or re-
 discovered.

 It is expected that the way a node makes use of PvD information is
 generally independent of the specific mechanism / protocol that the
 information was received by.

 In some network topologies, network infrastructure elements may need
 to advertise multiple PvDs. Generally, the details of how this is
 performed will be defined in companion design documents.

2.2. Implicit PvDs and Incremental Adoption of Explicit PvDs

 For the foreseeable future, there will be networks which do not
 advertise explicit PvD information, because deployment of new
 features in networking protocols is a relatively slow process.

 When connected to networks which don't advertise explicit PvD
 information, a PvD-aware node shall automatically create separate

https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc5996

Anipko Expires July 25, 2015 [Page 5]

Internet-Draft MPVD architecture January 2015

 PvDs for received configuration. Such PvDs are referred to in this
 document as "implicit".

 Through the use of implicit PvDs, PvD-aware nodes may still provide
 benefits to their users (when compared to non-PvD aware nodes) by
 following the best practices described in Section 5.

 PvD-aware nodes shall treat network information from different
 interfaces, which is not identified as belonging explicitly to some
 PvD, as belonging to separate PvDs, one per interface.

 Implicit PvDs can also occur in a mixed mode, i.e., where of multiple
 networks that are available on an attached link, only some advertise
 PvD information. In this case, the PvD-aware node shall create
 explicit PvDs from information explicitly labeled as beloinging to
 PvDs. It shall associate configuration information not labeled with
 an explicit PvD with implicit PvD(s) created for that interface.

2.3. Relationship Between PvDs and Interfaces

 By default, implicit PvDs are limited to the network configuration
 information received on a single interface and by default one such
 PvD is formed for each interface. If additional information is
 available to the host (through mechanisms out of scope of this
 document), the host may form implicit PvDs with different
 granularity. For example, PvDs spanning multiple interfaces such a
 home network with a router that has multiple internal interfaces, or
 multiple PvDs on a single interface such as a network that has
 multiple uplink connections.

 In the simplest case, explicit PvDs will be scoped for configuration
 related only to a specific interface. However, there is no
 requirement in this architecture for such a limitation. Explicit
 PvDs may include information related to more than one interface if
 the node learns the presence of the same PvD on those interfaces and
 the authentication of the PvD ID meets the level required by the node
 policy (authentication of a PvD ID may be also required in scenarios
 involving only one connected interface and / or PvD).

 This architecture supports such scenarios. Hence, no hierarchical
 relationship exists between interfaces and PvDs: it is possible for
 multiple PvDs to be simultaneously accessible over one interface, as
 well as a single PvD to be simultaneously accessible over multiple
 interfaces.

2.4. PvD Identity / Naming

 For explicit PvDs, the PvD ID is a value that is, or has a high
 probability of being globally unique, and is received as part of PvD
 information. It shall be possible to generate a human-readable form

 of the PvD ID to present to the end-user, either based on the PvD ID
 itself, or using meta-data associated with the ID. For implicit PvDs,
 the node assigns a locally generated ID with a high probability of
 being globally unique to each implicit PvD.

Anipko Expires July 25, 2015 [Page 6]

Internet-Draft MPVD architecture January 2015

 A PvD-aware node may use these IDs to select a PvD with a matching ID
 for special-purpose connection requests in accordance with node
 policy, as chosen by advanced applications, or to present a human-
 readable representation of the IDs to the end-user for selection of
 PvDs.

 A single network provider may operate multiple networks, including
 networks at different locations. In such cases, the provider may
 chose whether to advertise single or multiple PvD identities at all
 or some of those networks as it suits their business needs. This
 architecture does not impose any specific requirements in this
 regard.

 When multiple nodes are connected to the same link with one or more
 explicit PvDs available, this architecture assumes that the
 information about all available PvDs is made available by the
 networks to all the connected nodes. At the same time, connected
 nodes may have different heuristics, policies and / or other
 settings, including their configured sets of trusted PvDs. This may
 lead to different PvDs actually being used by different nodes for
 their connections.

 Possible extensions, whereby networks advertize different sets of
 PvDs to different connected nodes are out of scope of this document.

2.5. The Relationship to Dual-Stack Networks

 When applied to dual-stack networks, the PvD definition allows for
 multiple PvDs to be created whereby each PvD contains information
 relevant to only one address family, or for a single PvD containing
 information for multiple address families. This architecture
 requires that accompanying design documents describing PvD-related
 protocol changes must support PvDs containing information from
 multiple address families. PvD-aware nodes must be capable of
 creating and using both single-family and multi-family PvDs.

 For explicit PvDs, the choice of either of these approaches is a
 policy decision for the network administrator and / or the node user/
 administrator. Since some of the IP configuration information that
 can be learned from the network can be applicable to multiple address
 families (for instance DHCP Address Selection Policy Opt [RFC7078]),
 it is likely that dual-stack networks will deploy single PvDs for
 both address families.

 By default for implicit PvDs, PvD-aware nodes shall include multiple
 IP families into a single implicit PvD created for an interface. At
 the time of writing, in dual-stack networks it appears to be common
 practice for the configuration of both address families to be

https://datatracker.ietf.org/doc/html/rfc7078

 provided by a single source.

 A PvD-aware node that provides an API to use, enumerate and inspect
 PvDs and / or their properties shall provide the ability to filter

Anipko Expires July 25, 2015 [Page 7]

Internet-Draft MPVD architecture January 2015

 PvDs and / or their properties by address family.

3. Conveying PvD information using DHCPv6 and Router Advertisements

 DHCPv6 and Router Advertisements are the two most common methods of
 configuring hosts. To support the architecture described in this
 document, these protocols would need to be extended to convey
 explicit PvD information. The following sections describe topic
 which must be considered before finalizing a mechanism to augment
 DHCPv6 and RAs with PvD information.

3.1. Separate Messages or One Message?

 When information related to several PvDs is available from the same
 configuration source, there are two possible ways of distributing
 this information: One way is to send information from each different
 provisioning domain in separate messages. The second method is
 combining the information from multiple PvDs into a single message.
 The latter method has the advantage of being more efficient but could
 have problems with to authentication and authorization, as well as
 potential issues with accommodating information not tagged with any
 PvD information.

3.2. Securing PvD Information

 DHCPv6 and RAs both provide some form of authentication to ensure the
 identity of the source as well as the integrity of the secured
 message content. While this is useful, determining authenticity does
 not tell a node whether the configuration source is actually allowed
 to provide information from a given PvD. To resolve this, there must
 be a mechanism for the PvD owner to attach some form of authorization
 token or signature to the configuration information that is
 delivered.

3.3. Backward Compatibility

 The extensions to RAs and DHCPv6 should be defined in such a manner
 than unmodified hosts (i.e. hosts not aware of PvDs) will continue
 to function as well as they did prior to PvD information being added.
 This could imply that some information may need to be duplicated in
 order to be conveyed to legacy hosts. Similarly, PvD aware hosts
 need to be able to correctly utiilize legacy configuration sources
 which do not provide PvD information. There are also several
 initiatives that are aimed at adding some form of additional
 information to prefixes [I-D.bhandari-dhc-class-based-prefix] and
 [I-D.korhonen-dmm-prefix-properties] and any new mechanism should try
 to consider co-existence with such deployed mechanisms.

3.4. Retracting / Updating PvD Information

Anipko Expires July 25, 2015 [Page 8]

Internet-Draft MPVD architecture January 2015

 After PvD information is provisioned to a host, it may become
 outdated or superseded by updated information before the hosts would
 normally request updates. To resolve this requires that the
 mechanism be able to update and / or withdraw all (or some subset) of
 the information related to a given PvD. For efficiency reasons, there
 should be a way to specify that all information from the PvD needs to
 be reconfigured instead of individually updating each item associated
 with the PvD.

3.5. Conveying Configuration Information using IKEv2

 Internet Key Exchange protocol version 2 (IKEv2) [RFC5996] [RFC5739]
 is another widely used method of configuring host IP information.
 For IKEv2, the provisioning domain could be implicitly learned from
 the Identification - Responder (IDr) payloads that the IKEv2
 initiator and responder inject during their IKEv2 exchange. The IP
 configuration may depend on the named IDr. Another possibility could
 be adding a specific provisioning domain identifying payload
 extensions to IKEv2. All of the considerations for DHCPv6 and RAs
 listed above potentially apply to IKEv2 as well.

4. Example Network Configurations

4.1. A Mobile Node

 Consider a mobile node with two network interfaces: one to the mobile
 network, the other to the Wi-Fi network. When the mobile node is
 only connected to the mobile network, it will typically have one PvD,
 implicit or explicit. When the mobile node discovers and connects to
 a Wi-Fi network, it will have zero or more (typically one) additional
 PvD(s).

 Some existing OS implementations only allow one active network
 connection. In this case, only the PvD(s) associated with the active
 interface can be used at any given time.

 As an example, the mobile network can explicitly deliver PvD
 information through the PDP context activation process. Then, the
 PvD aware mobile node will treat the mobile network as an explicit
 PvD. Conversely, the legacy Wi-Fi network may not explicitly
 communicate PvD information to the mobile node. The PvD aware mobile
 node will associate network configuration for the Wi-Fi network with
 an implicit PvD in this case.

 The following diagram illustrates the use of different PvDs in this
 scenario:

https://datatracker.ietf.org/doc/html/rfc5996
https://datatracker.ietf.org/doc/html/rfc5739

Anipko Expires July 25, 2015 [Page 9]

Internet-Draft MPVD architecture January 2015

 <----------- Wi-Fi 'Internet' PvD ------->
 +--------+
 | +----+ | +----+ _ __ _ _
 | |WiFi| | | | (`) (`)_
 | |-IF +-|----+ |--------------------------(`)
 | | | | |WiFi| () (_ Internet _)
 | +----+ | | AP | () `- __ _) -
 | | | | (Service)
 | | +----+ (Provider's)
 | | (Networks -
 | +----+ | `_) _ _
 | |CELL| | () (`)_
 | |-IF +-|-------------------------------------(`)
 | | | | (_ __) (_ Internet _)
 | +----+ | `- -- `- __ _) -
 +--------+
 <------- Mobile 'Internet' PvD ----------->

 An example of PvD use with Wi-Fi and mobile interfaces.

4.2. A Node with a VPN Connection

 If the node has established a VPN connection, zero or more (typically
 one) additional PvD(s) will be created. These may be implicit or
 explicit. The routing to IP addresses reachable within this PvD will
 be set up via the VPN connection, and the routing of packets to
 addresses outside the scope of this PvD will remain unaffected. If a
 node already has N connected PvDs, after the VPN session has been
 established typically there will be N+1 connected PvDs.

 The following diagram illustrates the use of different PvDs in this
 scenario:

 <----------- 'Internet' PvD ------>
 +--------+
 | +----+ | +----+ _ __ _ _
 | |Phy | | | | (`) (`)_
 | |-IF +-|----+ |--------------------(`)
 | | | | | | () (_ Internet _)
 | +----+ | | | () `- __ _) -
 | | |Home| (Service) ||
 | | |gate| (Provider's) ||
 | | |-way| (Network - ||
 | +----+ | | | `_) +---------+ +------------+
 | |VPN | | | | () | VPN | | |
 | |-IF +-|----+ |---------------------+ Gateway |--+ Private |
 | | | | | | (_ __) | | | Services |

 | +----+ | +----+ `- -- +---------+ +------------+
 +--------+
 <-------------- Explicit 'VPN' PvD ----->

 An example of PvD use with VPN.

Anipko Expires July 25, 2015 [Page 10]

Internet-Draft MPVD architecture January 2015

4.3. A Home Network and a Network Operator with Multiple PvDs

 An operator may use separate PvDs for individual services which they
 offer to their customers. These may be used so that services can be
 designed and provisioned to be completely independent of each other,
 allowing for complete flexibility in combinations of services which
 are offered to customers.

 From the perspective of the home network and the node, this model is
 functionally very similar to being multihomed to multiple upstream
 operators: Each of the different services offered by the service
 provider is its own PvD with associated PvD information. In this
 case, the operator may provide a generic / default PvD (explicit or
 implicit), which provides Internet access to the customer.
 Additional services would then be provisioned as explicit PvDs for
 subscribing customers.

 The following diagram illustrates this, using video-on-demand as a
 service-specific PvD:

 <------ Implicit 'Internet' PvD ------>
 +----+ +----+ _ __ _ _
 | | | | (`) (`)_
 | PC +-----+ |--------------------------(`)
 | | | | () (_ Internet _)
 +----+ | | () `- __ _) -
 |Home| (Service)
 |gate| (Provider's)
 |-way| (Network -
 +-----+ | | `_) +---------+
 | Set | | | () |ISP Video|
 | Top +----+ |---------------------------+on Demand|
 | Box | | | (_ __) | Service |
 +-----+ +----+ `- -- +---------+
 <-- Explicit 'Video-on-Demand' PvD -->

 An example of PvD use within a home network.

 In this case, the number of PvDs that a single operator could
 provision is based on the number of independently provisioned
 services which they offer. Some examples may include:

 o Real-time packet voice

 o Streaming video

 o Interactive video (n-way video conferencing)

 o Interactive gaming

 o Best effort / Internet access

5. Reference Model for the PvD-aware Node

Anipko Expires July 25, 2015 [Page 11]

Internet-Draft MPVD architecture January 2015

5.1. Constructions and Maintenance of Separate PvDs

 It is assumed that normally, the configuration information contained
 in a single PvD shall be sufficient for a node to fulfill a network
 connection request by an application, and hence there should be no
 need to attempt to merge information across different PvDs.

 Nevertheless, even when a PvD lacks some necessary configuration
 information, merging of information associated with different PvD(s)
 shall not be done automatically as this will typically lead to the
 issues described in [RFC6418].

 A node may use other sources, for example: node local policy, user
 input or other mechanisms not defined by the IETF for any of the
 following:

 o Construction of a PvD in its entirety (analogous to statically
 configuring IP on an interface)

 o Supplementing some, or all learned PvDs with particular
 configuration elements

 o Merging of information from different PvDs (if this is explicitly
 allowed by policy)

 As an example, a node administrator could inject a DNS server which
 is not ISP-specific into PvDs for use on any of the networks that the
 node could attach to. Such creation / augmentation of PvD(s) could
 be static or dynamic. The specific mechanism(s) for implementing
 this are outside of scope of this document.

5.2. Consistent use of PvDs for Network Connections

 PvDs enable PvD-aware nodes to consistently use the correct set of
 configuration elements to serve specific network requests from
 beginning to end. This section provides examples of such use.

5.2.1. Name Resolution

 When a PvD-aware node needs to resolve the name of the destination
 for use by a connection request, the node could use one, or multiple
 PvDs for a given name lookup.

 The node shall chose a single PvD if, for example, the node policy
 required the use of a particular PvD for a specific purpose (e.g. to
 download an MMS message using a specific APN over a cellular
 connection). To make this selection, the node could use a match
 between the PvD DNS suffix and an FQDN which is being resolved or
 match of PvD ID, as determined by the node policy.

https://datatracker.ietf.org/doc/html/rfc6418

Anipko Expires July 25, 2015 [Page 12]

Internet-Draft MPVD architecture January 2015

 The node may pick multiple PvDs, if for example, the PvDs are for
 general purpose Internet connectivity, and the node is attempting to
 maximize the probability of connectivity similar to the Happy
 Eyeballs [RFC6555] approach. In this case, the node could perform
 DNS lookups in parallel, or in sequence. Alternatively, the node may
 use only one PvD for the lookup, based on the PvD connectivity
 properties, user configuration of preferred Internet PvD, etc.

 If an application implements an API that provides a way of explicitly
 specifying the desired interface or PvD, that interface or PvD should
 be used for name resolution (and the subsequent connection attempt),
 provided that the host's configuration permits this.

 In either case, by default a node uses information obtained via a
 name service lookup to establish connections only within the same PvD
 as the lookup results were obtained.

 For clarification, when it is written that the name service lookup
 results were obtained "from a PvD", it should be understood to mean
 that the name service query was issued against a name service which
 is configured for use in a particular PvD. In that sense, the
 results are "from" that particular PvD.

 Some nodes may support transports and / or APIs which provide an
 abstraction of a single connection, aggregating multiple underlying
 connections. MPTCP [RFC6182] is an example of such a transport
 protocol. For connections provided by such transports/APIs, a PvD-
 aware node may use different PvDs for servicing that logical
 connection, provided that all operations on the underlying
 connections are performed consistently within their corresponding
 PvD(s).

5.2.2. Next-hop and Source Address Selection

 For the purpose of this example, let us assume that the preceding
 name lookup succeeded in a particular PvD. For each obtained
 destination address, the node shall perform a next-hop lookup among
 routers associated with that PvD. As an example, the node could
 determine such associations via matching the source address prefixes/
 specific routes advertized by the router against known PvDs, or
 receiving an explicit PvD affiliation advertized through a new Router
 Discovery [RFC4861] option.

 For each destination, once the best next-hop is found, the node
 selects the best source address according to rules defined in
 [RFC6724], but with the constraint that the source address must

https://datatracker.ietf.org/doc/html/rfc6555
https://datatracker.ietf.org/doc/html/rfc6182
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc6724

Anipko Expires July 25, 2015 [Page 13]

Internet-Draft MPVD architecture January 2015

 belong to a range associated with the used PvD. If needed, the node
 would use prefix policy from the same PvD for selecting the best
 source address from multiple candidates.

 When destination / source pairs are identified, they are sorted using
 the [RFC6724] destination sorting rules and prefix policy table from
 the used PvD.

5.2.3. Listening Applications

 Consider a host connected to several PvDs, running an application
 that opens a listening socket / transport API object. The
 application is authorized by the host policy to use a subset of
 connected PvDs that may or may not be equal to the complete set of
 the connected PvDs. As an example, in the case where there are
 different PvDs on the Wi-Fi and cellular interfaces, for general
 Internet traffic the host could use only one, preferred PvD at a time
 (and accordingly, advertise to remote peers the host name and
 addresses associated with that PvD), or it could use one PvD as the
 default for outgoing connections, while still allowing use of the
 other PvDs simultaneously.

 Another example is a host with an established VPN connection. Here,
 security policy could be used to permit or deny application's access
 to the VPN (and other) PvD(s).

 For non-PvD aware applications, the operating system has policies
 that determine the authorized set of PvDs and the preferred outgoing
 PvD. For PvD-aware applications, both the authorized set of PvDs and
 the default outgoing PvD can be determined as the common subset
 produced between the OS policies and the set of PvD IDs or
 characteristics provided by the application.

 Application input could be provided on per-application, per-
 transport-API-object or per-transport-API-call basis. The API for
 application input may have an option for specifying whether the input
 should be treated as a preference instead of a requirement.

5.2.3.1. Processing of Incoming Traffic

 Unicast IP packets are received on a specific IP address associated
 with a PvD. For multicast packets, the host can derive the PvD
 association from other configuration information, such as an explicit
 PvD property or local policy.

 The node OS or middleware may apply more advanced techniques for
 determining the resultant PvD and / or authorization of the incoming
 traffic. Those techniques are outside of scope of this document.

https://datatracker.ietf.org/doc/html/rfc6724

Anipko Expires July 25, 2015 [Page 14]

Internet-Draft MPVD architecture January 2015

 If the determined receiving PvD of a packet is not in the allowed
 subset of PvDs for the particular application / transport API object,
 the packet should be handled in the same way as if there were no
 listener.

5.2.3.1.1. Connection-oriented APIs

 For connection-oriented APIs, when the initial incoming packet is
 received, the packet PvD is remembered for the established connection
 and used for handling of outgoing traffic for that connection. While
 typically, connection-oriented APIs use a connection-oriented
 transport protocol, such as TCP, it is possible to have a connection-
 oriented API that uses a generally connectionless transport protocol,
 such as UDP.

 For APIs/protocols that support multiple IP traffic flows associated
 with a single transport API connection object (for example, multi
 path TCP), the processing rules may be adjusted accordingly.

5.2.3.1.2. Connectionless APIs

 For connectionless APIs, the host should provide an API that PvD-
 aware applications can use to query the PvD associated with the
 packet. For outgoing traffic on this transport API object, the OS
 should use the selected outgoing PvDs, determined as described above.

5.2.4. Enforcement of Security Policies

 By themselves, PvDs do not define, and cannot be used for
 communication of, security policies. When implemented in a network,
 this architecture provides the host with information about connected
 networks. The actual behavior of the host then depends on the host's
 policies (provisioned through mechanisms out of scope of this
 document), applied taking received PvD information into account. In
 some scenarios, e.g. a VPN, such policies could require the host to
 use only a particular VPN PvD for some / all of the application's
 traffic (VPN 'disable split tunneling' also known as 'force
 tunneling' behavior), or apply such restrictions only to selected
 applications and allow the simultaneous use of the VPN PvD together
 with the other connected PvDs by the other or all applications (VPN
 'split tunneling' behavior).

5.3. Connectivity Tests

 Although some PvDs may appear as valid candidates for PvD selection
 (e.g. good link quality, consistent connection parameters, etc.),
 they may provide limited or no connectivity to the desired network or
 the Internet. For example, some PvDs provide limited IP connectivity
 (e.g., scoped to the link or to the access network), but require the
 node to authenticate through a web portal to get full access to the

 Internet. This may be more likely to happen for PvDs which are not

Anipko Expires July 25, 2015 [Page 15]

Internet-Draft MPVD architecture January 2015

 trusted by a given PvD-aware node.

 An attempt to use such a PvD may lead to limited network connectivity
 or application connection failures. To prevent the latter, a PvD-
 aware node may perform a connectivity test for the PvD before using
 it to serve application network connection requests. In current
 implementations, some nodes already implement this e.g., by trying to
 reach a dedicated web server (see [RFC6419]).

Section 5.2 describes how a PvD-aware node shall maintain and use
 multiple PvDs separately. The PvD-aware node shall perform a
 connectivity test and, only after validation of the PvD, consider
 using it to serve application connections requests. Ongoing
 connectivity tests are also required, since during the IP session,
 the end-to-end connectivity could be disrupted for various reasons
 (e.g. L2 problems, IP QoS issues); hence, a connectivity monitoring
 function is needed to check the connectivity status and remove the
 PvD from the set of usable PvDs if necessary.

 There may be cases where a connectivity test for PvD selection may
 not be appropriate and should be complemented, or replaced, by PvD
 selection based on other factors. For example, this could be
 realized by leveraging some 3GPP and IEEE mechanisms, which would
 allow the exposure of some PvD characteristics to the node (e.g.
 3GPP Access Network Discovery and Selection Function (ANDSF)
 [TS23402], IEEE 802.11u [IEEE802.11u]/ANQP).

5.4. Relationship to Interface Management and Connection Managers

 Current devices, such as mobile handsets make use of proprietary
 mechanisms and custom applications to manage connectivity in
 environments with multiple interfaces and multiple sets of network
 configuration. These mechanisms or applications are commonly known
 as connection managers [RFC6419].

 Connection managers sometimes rely on policy servers to allow a node
 that is connected to multiple networks to perform network selection.
 They can also make use of routing guidance from the network (e.g.
 3GPP ANDSF [TS23402]). Although connection managers solve some
 connectivity problems, they rarely address network selection problems
 in a comprehensive manner. With proprietary solutions, it is
 challenging to present coherent behavior to the end user of the
 device, as different platforms present different behaviors even when
 connected to the same network, with the same type of interface, and
 for the same purpose. The architecture described in this document
 should improve the hosts behavior by providing the hosts with tools
 and guidance to make informed network selection decisions.

6. PvD support in APIs

https://datatracker.ietf.org/doc/html/rfc6419
https://datatracker.ietf.org/doc/html/rfc6419

 For all levels of PvD support in APIs described in this chapter, it
 is expected that the notifications about changes in the set of
 available PvDs are exposed as part of the API surface.

Anipko Expires July 25, 2015 [Page 16]

Internet-Draft MPVD architecture January 2015

6.1. Basic

 Applications are not PvD-aware in any manner and only submit
 connection requests. The node performs PvD selection implicitly,
 without any application participation, based purely on node-specific
 administrative policies and / or choices made by the user from a user
 interface provided by the operating environment, not by the
 application.

 As an example, PvD selection can be done at the name service lookup
 step by using the relevant configuration elements, such as those
 described in [RFC6731]. As another example, PvD selection could be
 made based on application identity or type (i.e., a node could always
 use a particular PvD for a VOIP application).

6.2. Intermediate

 Applications indirectly participate in PvD selection by specifying
 hard requirements and soft preferences. As an example, a real time
 communication application intending to use the connection for the
 exchange of real time audio / video data may indicate a preference or
 a requirement for connection quality, which could affect PvD
 selection (different PvDs could correspond to Internet connections
 with different loss rates and latencies).

 Another example is the connection of an infrequently executed
 background activity, which checks for application updates and
 performs large downloads when updates are available. For such
 connections, a cheaper or zero cost PvD may be preferable, even if
 such a connection has a higher relative loss rate or lower bandwidth.
 The node performs PvD selection based on applications' inputs and
 policies and / or user preferences. Some / all properties of the
 resultant PvD may be exposed to applications.

6.3. Advanced

 PvDs are directly exposed to applications for enumeration and
 selection. Node polices and / or user choices may still override the
 applications' preferences and limit which PvD(s) can be enumerated
 and / or used by the application, irrespective of any preferences
 which the application may have specified. Depending on the
 implementation, such restrictions (imposed by node policy and / or
 user choice) may or may not be visible to the application.

7. PvD Trust for PvD-Aware Node

7.1. Untrusted PvDs

 Implicit and explicit PvDs for which no trust relationship exists are

https://datatracker.ietf.org/doc/html/rfc6731

 considered untrusted. Only PvDs which meet the requirements in
Section 7.2 are trusted; any other PvD is untrusted.

Anipko Expires July 25, 2015 [Page 17]

Internet-Draft MPVD architecture January 2015

 In order to avoid the various forms of misinformation that could
 occur when PvDs are untrusted, nodes that implement PvD separation
 cannot assume that two explicit PvDs with the same identifier are
 actually the same PvD. A node that makes this assumption will be
 vulnerable to attacks where, for example, an open Wifi hotspot might
 assert that it was part of another PvD and thereby attempt to draw
 traffic intended for that PvD onto its own network.

 Since implicit PvD identifiers are synthesized by the node, this
 issue cannot arise with implicit PvDs.

 Mechanisms exist (for example, [RFC6731]) whereby a PvD can provide
 configuration information that asserts special knowledge about the
 reachability of resources through that PvD. Such assertions cannot be
 validated unless the node has a trust relationship with the PvD;
 therefore, assertions of this type must be ignored by nodes that
 receive them from untrusted PvDs. Failure to ignore such assertions
 could result in traffic being diverted from legitimate destinations
 to spoofed destinations.

7.2. Trusted PvDs

 Trusted PvDs are PvDs for which two conditions apply: First, a trust
 relationship must exist between the node that is using the PvD
 configuration and the source that provided that configuration; this
 is the authorization portion of the trust relationship. Second,
 there must be some way to validate the trust relationship. This is
 the authentication portion of the trust relationship. Two mechanisms
 for validating the trust relationship are defined.

 It shall be possible to validate the trust relationship for all
 advertised elements of a trusted PvD, irrespective of whether the PvD
 elements are communicated as a whole, e.g., in a single DHCP option,
 or separately, e.g., in supplementary RA options. The feasibility of
 mechanisms to implement a trust relationship for all PvD elements
 will be determined in the respective companion design documents.

7.2.1. Authenticated PvDs

 One way to validate the trust relationship between a node and the
 source of a PvD is through the combination of cryptographic
 authentication and an identifier configured on the node.

 If authentication is done using a public key mechanism such as a TLS
 certificate or DANE, authentication by itself is not enough since
 theoretically any PvD could be authenticated in this way. In
 addition to authentication, the node would need configuration to
 trust the identifier being authenticated. Validating the
 authenticated PvD name against a list of PvD names configured as

https://datatracker.ietf.org/doc/html/rfc6731

 trusted on the node would constitute the authorization step in this
 case.

7.2.2. PvDs Trusted by Attachment

Anipko Expires July 25, 2015 [Page 18]

Internet-Draft MPVD architecture January 2015

 In some cases, a trust relationship may be validated by some means
 other than those described in Section 7.2.1 simply by virtue of the
 connection through which the PvD was obtained. For instance, a
 handset connected to a mobile network may know through the mobile
 network infrastructure that it is connected to a trusted PvD.
 Whatever mechanism was used to validate that connection constitutes
 the authentication portion of the PvD trust relationship.
 Presumably, such a handset would be configured from the factory (or
 else through mobile operator or user preference settings) to trust
 the PvD, and this would constitute the authorization portion of this
 type of trust relationship.

8. Contributors

 The following individuals contributed to this document (listed in no
 specific order): Alper Yegin (alper.yegin@yegin.org), Aaron Yi Ding
 (yding@cs.helsinki.fi), Zhen Cao (caozhenpku@gmail.com), Dapeng Liu
 (liudapeng@chinamobile.com), Dave Thaler (dthaler@microsoft.com),
 Dmitry Anipko (dmitry.anipko@microsoft.com), Hui Deng
 (denghui@chinamobile.com), Jouni Korhonen (jouni.nospam@gmail.com),
 Juan Carlos Zuniga (JuanCarlos.Zuniga@InterDigital.com), Konstantinos
 Pentikousis (k.pentikousis@huawei.com), Marc Blanchet
 (marc.blanchet@viagenie.ca), Margaret Wasserman
 (margaretw42@gmail.com), Pierrick Seite (pierrick.seite@orange.com),
 Suresh Krishnan (suresh.krishnan@ericsson.com), Teemu Savolainen
 (teemu.savolainen@nokia.com), Ted Lemon (ted.lemon@nominum.com) and
 Tim Chown (tjc@ecs.soton.ac.uk).

9. Acknowledgments

 The authors would like to thank (in no specific order) Ian Farrer,
 Marcus Stenberg and Mikael Abrahamsson for their review and comments.

10. IANA Considerations

 This memo does not include any IANA requests.

11. Security Considerations

 There are at least three different forms of attacks that can be
 performed using configuration sources that support multiple
 provisioning domains.

Anipko Expires July 25, 2015 [Page 19]

Internet-Draft MPVD architecture January 2015

 Tampering with provided configuration information: An attacker may
 attempt to modify information provided inside the PvD container
 option. These attacks can easily be prevented by using message
 integrity features provided by the underlying protocol used to
 carry the configuration information. E.g. SEND [RFC3971] would
 detect any form of tampering with the RA contents and the DHCPv6
 [RFC3315] AUTH option that would detect any form of tampering with
 the DHCPv6 message contents. This attack can also be performed by
 a compromised configuration source by modifying information inside
 a specific PvD, in which case the mitigations proposed in the next
 subsection may be helpful.

 Rogue configuration source: A compromised configuration source, such
 as a router or a DHCPv6 server, may advertise information about
 PvDs that it is not authorized to advertise. E.g., a coffee shop
 WLAN may advertise configuration information purporting to be from
 an enterprise and may try to attract enterprise related traffic.
 This may also occur accidentally if two sites choose the same
 identifier (e.g., "linsky").

 In order to detect and prevent this, the client must be able to
 authenticate the identifier provided by the network. This means
 that the client must have configuration information that maps the
 PvD identifier to an authenticatable identity, and must be able to
 authenticate that identity.

 In addition, the network must provide information the client can
 use to authenticate the identity. This could take the form of a
 PKI-based or DNSSEC-based trust anchor, or a key remembered from a
 previous leap-of-faith authentication of the identifier.

 Because the PvD-specific information may come to the network
 infrastructure with which the client is actually communicating
 from some upstream provider, it is necessary in this case that the
 PvD container and its contents be relayed to the client unchanged,
 leaving the upstream provider's signature intact.

 Replay attacks: A compromised configuration source or an on-link
 attacker may try to capture advertised configuration information
 and replay it on a different link, or at a future point in time.
 This can be avoided by including a replay protection mechanism
 such as a timestamp or a nonce inside the PvD container to ensure
 the validity of the provided information.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

https://datatracker.ietf.org/doc/html/rfc3971
https://datatracker.ietf.org/doc/html/rfc3315

 Requirement Levels", BCP 14, RFC 2119, March 1997.

12.2. Informative References

Anipko Expires July 25, 2015 [Page 20]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft MPVD architecture January 2015

 [I-D.bhandari-dhc-class-based-prefix]
 Systems, C., Halwasia, G., Gundavelli, S., Deng, H.,
 Thiebaut, L., Korhonen, J. and I. Farrer, "DHCPv6 class
 based prefix", Internet-Draft draft-bhandari-dhc-class-

based-prefix-05, July 2013.

 [I-D.korhonen-dmm-prefix-properties]
 Korhonen, J., Patil, B., Gundavelli, S., Seite, P. and D.
 Liu, "IPv6 Prefix Mobility Management Properties",
 Internet-Draft draft-korhonen-dmm-prefix-properties-03,
 October 2012.

 [IEEE802.11u]
 IEEE, "IEEE Standard 802.11u-2011 (Amendment 9:
 Interworking with External Networks)", 2011.

 [RFC3315] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C. and
 M. Carney, "Dynamic Host Configuration Protocol for IPv6
 (DHCPv6)", RFC 3315, July 2003.

 [RFC3971] Arkko, J., Kempf, J., Zill, B. and P. Nikander, "SEcure
 Neighbor Discovery (SEND)", RFC 3971, March 2005.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W. and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 September 2007.

 [RFC5739] Eronen, P., Laganier, J. and C. Madson, "IPv6
 Configuration in Internet Key Exchange Protocol Version 2
 (IKEv2)", RFC 5739, February 2010.

 [RFC5996] Kaufman, C., Hoffman, P., Nir, Y. and P. Eronen, "Internet
 Key Exchange Protocol Version 2 (IKEv2)", RFC 5996,
 September 2010.

 [RFC6182] Ford, A., Raiciu, C., Handley, M., Barre, S. and J.
 Iyengar, "Architectural Guidelines for Multipath TCP
 Development", RFC 6182, March 2011.

 [RFC6418] Blanchet, M. and P. Seite, "Multiple Interfaces and
 Provisioning Domains Problem Statement", RFC 6418,
 November 2011.

 [RFC6419] Wasserman, M. and P. Seite, "Current Practices for
 Multiple-Interface Hosts", RFC 6419, November 2011.

 [RFC6555] Wing, D. and A. Yourtchenko, "Happy Eyeballs: Success with
 Dual-Stack Hosts", RFC 6555, April 2012.

https://datatracker.ietf.org/doc/html/draft-bhandari-dhc-class-based-prefix-05
https://datatracker.ietf.org/doc/html/draft-bhandari-dhc-class-based-prefix-05
https://datatracker.ietf.org/doc/html/draft-korhonen-dmm-prefix-properties-03
https://datatracker.ietf.org/doc/html/rfc3315
https://datatracker.ietf.org/doc/html/rfc3971
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc5739
https://datatracker.ietf.org/doc/html/rfc5996
https://datatracker.ietf.org/doc/html/rfc6182
https://datatracker.ietf.org/doc/html/rfc6418
https://datatracker.ietf.org/doc/html/rfc6419
https://datatracker.ietf.org/doc/html/rfc6555

 [RFC6724] Thaler, D., Draves, R., Matsumoto, A. and T. Chown,
 "Default Address Selection for Internet Protocol Version 6
 (IPv6)", RFC 6724, September 2012.

Anipko Expires July 25, 2015 [Page 21]

https://datatracker.ietf.org/doc/html/rfc6724

Internet-Draft MPVD architecture January 2015

 [RFC6731] Savolainen, T., Kato, J. and T. Lemon, "Improved Recursive
 DNS Server Selection for Multi-Interfaced Nodes", RFC

6731, December 2012.

 [RFC7078] Matsumoto, A., Fujisaki, T. and T. Chown, "Distributing
 Address Selection Policy Using DHCPv6", RFC 7078, January
 2014.

 [TS23402] 3GPP, "3GPP TS 23.402; Architecture enhancements for non-
 3GPP accesses; release 12", 2014.

Author's Address

 Dmitry Anipko, editor
 Unaffiliated

 Phone: +1 425 442 6356
 Email: dmitry.anipko@gmail.com

https://datatracker.ietf.org/doc/html/rfc6731
https://datatracker.ietf.org/doc/html/rfc6731
https://datatracker.ietf.org/doc/html/rfc7078

Anipko Expires July 25, 2015 [Page 22]

