| MILE Working Group | R. Danyliw |
| :--- | ---: |
| Internet-Draft | CERT |
| Obsoletes: 5070 (if approved) | Stoecker |
| Intended status: Standards Track | RSA |
| Expires: April 23, 2014 | October 20, 2013 |

# The Incident Object Description Exchange Format v2 draft-ietf-mile-rfc5070-bis-02 

## Abstract

The Incident Object Description Exchange Format (IODEF) defines a data representation that provides a framework for sharing information commonly exchanged by Computer Security Incident Response Teams (CSIRTs) about computer security incidents. This document describes the information model for the IODEF and provides an associated data model specified with XML Schema.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current InternetDrafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 23, 2014.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.

## Table of Contents

1. Introduction ..... 4
1.1. Changes from 5070 ..... 5
1.2. Terminology ..... 6
1.3. Notations ..... 6
1.4. About the IODEF Data Model ..... 6
1.5. About the IODEF Implementation ..... 7
2. IODEF Data Types ..... 7
2.1. Integers ..... 8
2.2. Real Numbers ..... 8
2.3. Characters and Strings ..... 8
2.4. Multilingual Strings ..... 8
2.5. Bytes ..... 8
2.6. Hexadecimal Bytes ..... 9
2.7. Enumerated Types ..... 9
2.8. Date-Time Strings ..... 9
2.9. Timezone String ..... 9
2.10. Port Lists ..... 9
2.11. Postal Address ..... 10
2.12. Person or Organization ..... 10
2.13. Telephone and Fax Numbers ..... 10
2.14. Email String ..... 10
2.15. Uniform Resource Locator strings ..... 10
3. The IODEF Data Model ..... 11
3.1. IODEF-Document Class ..... 11
3.2. Incident Class ..... 11
3.3. IncidentID Class ..... 15
3.4. AlternativeID Class ..... 16
3.5. RelatedActivity Class ..... 16
3.6. ThreatActor Class ..... 18
3.7. Campaign Class ..... 18
3.8. AdditionalData Class ..... 19
3.9. Contact Class ..... $\underline{21}$
3.9.1. RegistryHandle Class ..... $\underline{24}$
3.9.2. PostalAddress Class ..... $\underline{25}$
3.9.3. Email Class ..... 25
3.9.4. Telephone and Fax Classes ..... $\underline{26}$
3.10. Time Classes ..... $\underline{26}$
3.10.1. StartTime ..... $\underline{27}$
3.10.2. EndTime ..... $\underline{27}$
3.10.3. DetectTime ..... $\underline{27}$
3.10.4. ReportTime ..... $\underline{27}$
3.10.5. DateTime ..... 27
3.11. Method Class ..... 27
3.11.1. Reference Class ..... 28
3.12. Assessment Class ..... $\underline{29}$
3.12.1. Impact Class ..... 30
3.12.2. TimeImpact Class ..... 32
3.12.3. MonetaryImpact Class ..... 34
3.12.4. Confidence Class ..... 35
3.13. History Class ..... $\underline{36}$
3.13.1. HistoryItem Class ..... 36
3.14. EventData Class ..... 38
3.14.1. Relating the Incident and EventData Classes ..... 40
3.14.2. Cardinality of EventData ..... 40
3.15. Expectation Class ..... 41
3.16. Flow Class ..... $\underline{43}$
3.17. System Class ..... 44
3.18. Node Class ..... 47
3.18.1. Counter Class ..... 48
3.18.2. Address Class ..... 49
3.18.3. NodeRole Class ..... 51
3.19. Service Class ..... 53
3.19.1. Application Class ..... 54
3.20. OperatingSystem Class ..... 56
3.21. Record Class ..... 56
3.21.1. RecordData Class ..... 56
3.21.2. RecordPattern Class ..... 58
3.21.3. RecordItem Class ..... $\underline{59}$
3.22. RegistryKeyModified Class ..... 59
3.22.1. Key Class ..... 60
3.23. HashInformation Class ..... 61
4. Processing Considerations ..... 62
4.1. Encoding ..... $\underline{63}$
4.2. IODEF Namespace ..... $\underline{63}$
4.3. Validation ..... $\underline{63}$
5. Extending the IODEF ..... 64
5.1. Extending the Enumerated Values of Attributes ..... 65
5.2. Extending Classes ..... 65
6. Internationalization Issues ..... 67
7. Examples ..... 68
7.1. Worm ..... 68
7.2. Reconnaissance ..... 70
7.3. Bot-Net Reporting ..... 72
7.4. Watch List ..... 74
8. The IODEF Schema ..... 75
9. Security Considerations ..... 109
10. IANA Considerations ..... 109
11. Acknowledgments ..... 110
12. References ..... 110
12.1. Normative References ..... 110
12.2. Informative References ..... 112

## 1. <br> Introduction

Organizations require help from other parties to mitigate malicious activity targeting their network and to gain insight into potential threats. This coordination might entail working with an ISP to filter attack traffic, contacting a remote site to take down a botnetwork, or sharing watch-lists of known malicious IP addresses in a consortium.

The Incident Object Description Exchange Format (IODEF) is a format for representing computer security information commonly exchanged between Computer Security Incident Response Teams (CSIRTs). It provides an XML representation for conveying:
o cyber intelligence to characterize threats;
o cyber incident reports to document particular cyber security events or relationships between events;
o cyber event mitigation to request proactive and reactive mitigation approaches to cyber intelligence or incidents; and
o cyber information sharing meta-data so that these various classes of information can be exchanged among parties.

The data model encodes information about hosts, networks, and the services running on these systems; attack methodology and associated forensic evidence; impact of the activity; and limited approaches for documenting workflow.

The overriding purpose of the IODEF is to enhance the operational capabilities of CSIRTs. Community adoption of the IODEF provides an improved ability to resolve incidents and convey situational awareness by simplifying collaboration and data sharing. This structured format provided by the IODEF allows for:
o increased automation in processing of incident data, since the resources of security analysts to parse free-form textual documents will be reduced;
o decreased effort in normalizing similar data (even when highly structured) from different sources; and
o a common format on which to build interoperable tools for incident handling and subsequent analysis, specifically when data comes from multiple constituencies.

Coordinating with other CSIRTs is not strictly a technical problem. There are numerous procedural, trust, and legal considerations that might prevent an organization from sharing information. The IODEF does not attempt to address them. However, operational implementations of the IODEF will need to consider this broader context.

Sections $\underline{3}$ and 8 specify the IODEF data model with text and an XML schema. The types used by the data model are covered in Section 2. Processing considerations, the handling of extensions, and internationalization issues related to the data model are covered in Sections 4, 5, and $\underline{6}$, respectively. Examples are listed in Section 7. Section 1 provides the background for the IODEF, and Section 9 documents the security considerations.

### 1.1. Changes from 5070

This document contains changes with respect to its predecessor RFC5070.
o All of the RFC5070 Errata was implemented.
o Imported the xmlns:ds namespace to include digital signature hash classes.
o The attributes @indicator-uid and @indicator-set-id were added to various classes to reference commonly shared indicators.
o The following classes and attributes were added to the Service class: Email, EmailSubject, X-Mailer, DomainData, AssetID, @virtual, and @ownership.
o The following classes were added to the Record class: FileName, ds:Reference, and WindowsRegistryKeysModified.
o The following classes were added to the RelatedActivity class: ThreatActor, Campaign, Confidence, Description, and AdditionalData.
o The following classes were added to the Contact class: ContactTitle.
o (for consideration) The following class was added to the Node class: URL.
o (for consideration) The following attributes was added to the SoftwareType complexType: user-agent.
o Additional enumerated values were added to the following attributes: @restriction, \{Expectation, HistoryItem\}@action, NodeRole@category, Incident@purpose.

### 1.2. Terminology

The key words "MUST," "MUST NOT," "REQUIRED," "SHALL," "SHALL NOT," "Should," "SHOULD NOT," "RECOMMENDED," "MAY," and "OPTIONAL" in this document are to be interpreted as described in RFC2119 [6].

Definitions for some of the common computer security-related terminology used in this document can be found in Section 2 of [16].

### 1.3. Notations

The normative IODEF data model is specified with the text in Section 3 and the XML schema in Section 8. To help in the understanding of the data elements, Section 3 also depicts the underlying information model using Unified Modeling Language (UML). This abstract presentation of the IODEF is not normative.

For clarity in this document, the term "XML document" will be used when referring generically to any instance of an XML document. The term "IODEF document" will be used to refer to specific elements and attributes of the IODEF schema. The terms "class" and "element" will be used interchangeably to reference either the corresponding data element in the information or data models, respectively.

### 1.4. About the IODEF Data Model

The IODEF data model is a data representation that provides a framework for sharing information commonly exchanged by CSIRTs about computer security incidents. A number of considerations were made in the design of the data model.
o The data model serves as a transport format. Therefore, its specific representation is not the optimal representation for ondisk storage, long-term archiving, or in-memory processing.
o As there is no precise widely agreed upon definition for an incident, the data model does not attempt to dictate one through its implementation. Rather, a broad understanding is assumed in the IODEF that is flexible enough to encompass most operators.
o Describing an incident for all definitions would require an extremely complex data model. Therefore, the IODEF only intends to be a framework to convey commonly exchanged incident information. It ensures that there are ample mechanisms for extensibility to support organization-specific information, and techniques to reference information kept outside of the explicit data model.
o The domain of security analysis is not fully standardized and must rely on free-form textual descriptions. The IODEF attempts to strike a balance between supporting this free-form content, while still allowing automated processing of incident information.
o The IODEF is only one of several security relevant data representations being standardized. Attempts were made to ensure they were complimentary. The data model of the Intrusion Detection Message Exchange Format [17] influenced the design of the IODEF.

Further discussion of the desirable properties for the IODEF can be found in the Requirements for the Format for Incident Information Exchange (FINE) [16].

### 1.5. About the IODEF Implementation

The IODEF implementation is specified as an Extensible Markup Language (XML) [1] Schema [2] in Section 8.

Implementing the IODEF in XML provides numerous advantages. Its extensibility makes it ideal for specifying a data encoding framework that supports various character encodings. Likewise, the abundance of related technologies (e.g., XSL, XPath, XML-Signature) makes for simplified manipulation. However, XML is fundamentally a text representation, which makes it inherently inefficient when binary data must be embedded or large volumes of data must be exchanged.

## 2. IODEF Data Types

The various data elements of the IODEF data model are typed. This section discusses these data types. When possible, native Schema data types were adopted, but for more complicated formats, regular expressions (see Appendix F of [3]) or external standards were used.

### 2.1. Integers

An integer is represented by the INTEGER data type. Integer data MUST be encoded in Base 10.

The INTEGER data type is implemented as an "xs:integer" [ㅢㅜ] in the schema.

### 2.2. Real Numbers

Real (floating-point) attributes are represented by the REAL data type. Real data MUST be encoded in Base 10.

The REAL data type is implemented as an "xs:float" [3] in the schema.

### 2.3. Characters and Strings

A single character is represented by the CHARACTER data type. A character string is represented by the STRING data type. Special characters must be encoded using entity references. See Section 4.1.

The CHARACTER and STRING data types are implement as an "xs:string" [3] in the schema.

### 2.4. Multilingual Strings

STRING data that represents multi-character attributes in a language different than the default encoding of the document is of the ML_STRING data type.

The ML_STRING data type is implemented as an "iodef:MLStringType" in the schema.

### 2.5. Bytes

A binary octet is represented by the BYTE data type. A sequence of binary octets is represented by the BYTE[] data type. These octets are encoded using base64.

The BYTE data type is implemented as an "xs:base64Binary" [3] in the schema.

### 2.6. Hexadecimal Bytes

A binary octet is represented by the HEXBIN (and HEXBIN[]) data type. This octet is encoded as a character tuple consisting of two hexadecimal digits.

The HEXBIN data type is implemented as an "xs:hexBinary" [3] in the schema.

### 2.7. Enumerated Types

Enumerated types are represented by the ENUM data type, and consist of an ordered list of acceptable values. Each value has a representative keyword. Within the IODEF schema, the enumerated type keywords are used as attribute values.

The ENUM data type is implemented as a series of "xs:NMTOKEN" in the schema.

### 2.8. Date-Time Strings

Date-time strings are represented by the DATETIME data type. Each date-time string identifies a particular instant in time; ranges are not supported.

Date-time strings are formatted according to a subset of ISO 8601:2000 [13] documented in RFC 3339 [12].

The DATETIME data type is implemented as an "xs:dateTime" [주] in the schema.

### 2.9. Timezone String

A timezone offset from UTC is represented by the TIMEZONE data type. It is formatted according to the following regular expression: "Z|[\+\-](0%5B0-9%5D%7C1%5B0-4%5D):[0-5][0-9]".

The TIMEZONE data type is implemented as an "xs:string" with a regular expression constraint in the schema. This regular expression is identical to the timezone representation implemented in an "xs:dateTime".
2.10. Port Lists

A list of network ports are represented by the PORTLIST data type. A PORTLIST consists of a comma-separated list of numbers and ranges (N-M means ports $N$ through $M$, inclusive). It is formatted according to the following regular expression: "\d+(\-\d+)?(, \d+(\-\d+)?)*". For example, "2,5-15,30,32,40-50,55-60".

The PORTLIST data type is implemented as an "xs:string" with a regular expression constraint in the schema.

### 2.11. Postal Address

A postal address is represented by the POSTAL data type. This data type is an ML_STRING whose format is documented in Section 2.23 of RFC 4519 [10]. It defines a postal address as a free-form multi-line string separated by the "\$" character.

The POSTAL data type is implemented as an "xs:string" in the schema.

### 2.12. Person or Organization

The name of an individual or organization is represented by the NAME data type. This data type is an ML_STRING whose format is documented in Section 2.3 of RFC 4519 [10].

The NAME data type is implemented as an "xs:string" in the schema.

### 2.13. Telephone and Fax Numbers

A telephone or fax number is represented by the PHONE data type. The format of the PHONE data type is documented in Section 2.35 of RFC 4519 [10].

The PHONE data type is implemented as an "xs:string" in the schema.

### 2.14. Email String

An email address is represented by the EMAIL data type. The format of the EMAIL data type is documented in Section 3.4.1 RFC 2822 [11]

The EMAIL data type is implemented as an "xs:string" in the schema.

### 2.15. Uniform Resource Locator strings

A uniform resource locator (URL) is represented by the URL data type. The format of the URL data type is documented in RFC 2396 [8].

The URL data type is implemented as an "xs:anyURI" in the schema.

## 3. The IODEF Data Model

In this section, the individual components of the IODEF data model will be discussed in detail. For each class, the semantics will be described and the relationship with other classes will be depicted with UML. When necessary, specific comments will be made about corresponding definition in the schema in Section 8

### 3.1. IODEF-Document Class

The IODEF-Document class is the top level class in the IODEF data model. All IODEF documents are an instance of this class.

```
+----------------+
| IODEF-Document |
+----------------+
| STRING version |<>--{1..*}--[ Incident ]
| ENUM lang |
| STRING formatid
+-----------------+
```

Figure 1: IODEF-Document Class

The aggregate class that constitute IODEF-Document is:

Incident
One or more. The information related to a single incident.
The IODEF-Document class has three attributes:
version
Required. STRING. The IODEF specification version number to which this IODEF document conforms. The value of this attribute MUST be "2.00"
lang
Required. ENUM. A valid language code per RFC 4646 [ $\underline{\text { ] }] ~}$ constrained by the definition of "xs:language". The interpretation of this code is described in Section 6.
formatid
Optional. STRING. A free-form string to convey processing instructions to the recipient of the document. Its semantics must be negotiated out-of-band.

### 3.2. Incident Class

Every incident is represented by an instance of the Incident class. This class provides a standardized representation for commonly exchanged incident data.


Figure 2: The Incident Class

The aggregate classes that constitute Incident are:

IncidentID
One. An incident tracking number assigned to this incident by the CSIRT that generated the IODEF document.

AlternativeID
Zero or one. The incident tracking numbers used by other CSIRTs to refer to the incident described in the document.

RelatedActivity
Zero or many. Related activity and attribution of this activity.

DetectTime
Zero or one. The time the incident was first detected.

StartTime
Zero or one. The time the incident started.

EndTime
Zero or one. The time the incident ended.

ReportTime

One. The time the incident was reported.

Description
Zero or more. ML_STRING. A free-form textual description of the incident.

Assessment
One or more. A characterization of the impact of the incident.

Method
Zero or more. The techniques used by the intruder in the incident.

Contact
One or more. Contact information for the parties involved in the incident.

EventData
Zero or more. Description of the events comprising the incident.

History
Zero or one. A log of significant events or actions that occurred during the course of handling the incident.

AdditionalData
Zero or more. Mechanism by which to extend the data model.

The Incident class has five attributes:
purpose
Required. ENUM. The purpose attribute represents the reason why the IODEF document was created. It is closely related to the Expectation class (Section 3.15). This attribute is defined as an enumerated list:

1. traceback. The document was sent for trace-back purposes.
2. mitigation. The document was sent to request aid in
mitigating the described activity.
3. reporting. The document was sent to comply with reporting requirements.
4. watch. The document was sent to convey indicators to watch for particular activity.
5. other. The document was sent for purposes specified in the Expectation class.
6. ext-value. An escape value used to extend this attribute. See Section 5.1.
ext-purpose
Optional. STRING. A means by which to extend the purpose attribute. See Section 5.1.
lang
Optional. ENUM. A valid language code per RFC 4646 [7]
constrained by the definition of "xs:language". The interpretation of this code is described in Section 6.
restriction
Optional. ENUM. This attribute indicates the disclosure guidelines to which the sender expects the recipient to adhere for the information represented in this class and its children. This guideline provides no security since there are no specified technical means to ensure that the recipient of the document handles the information as the sender requested.

The value of this attribute is logically inherited by the children of this class. That is to say, the disclosure rules applied to this class, also apply to its children.

It is possible to set a granular disclosure policy, since all of the high-level classes (i.e., children of the Incident class) have a restriction attribute. Therefore, a child can override the guidelines of a parent class, be it to restrict or relax the disclosure rules (e.g., a child has a weaker policy than an ancestor; or an ancestor has a weak policy, and the children selectively apply more rigid controls). The implicit value of the restriction attribute for a class that did not specify one can be found in the closest ancestor that did specify a value.

This attribute is defined as an enumerated value with a default value of "private". Note that the default value of the restriction attribute is only defined in the context of the Incident class. In other classes where this attribute is used, no default is specified.

1. public. The information can be freely distributed without restriction.
2. partner. The information may be shared within a closed community of peers, partners, or affected parties, but cannot be openly published.
3. need-to-know. The information may be shared only within the organization with individuals that have a need to know.
4. private. The information may not be shared.
5. default. The information can be shared according to an information disclosure policy pre-arranged by the communicating parties.
6. white. Same as 'public'.
7. green. Same as 'partner'.
8. amber. Same as 'need-to-know'.
9. red. Same as 'private'.
indicator-set-id
Optional. STRING. The indicator set ID is used to group related indicators.

### 3.3. IncidentID Class

The IncidentID class represents an incident tracking number that is unique in the context of the CSIRT and identifies the activity characterized in an IODEF Document. This identifier would serve as an index into the CSIRT incident handling system. The combination of the name attribute and the string in the element content MUST be a globally unique identifier describing the activity. Documents generated by a given CSIRT MUST NOT reuse the same value unless they are referencing the same incident.

```
+-----------------+
| IncidentID |
+-----------------+
| STRING 
```

Figure 3: The IncidentID Class

The IncidentID class has three attributes:
name

Required. STRING. An identifier describing the CSIRT that created the document. In order to have a globally unique CSIRT name, the fully qualified domain name associated with the CSIRT MUST be used.
instance
Optional. STRING. An identifier referencing a subset of the named incident.
restriction
Optional. ENUM. This attribute has been defined in Section 3.2. The default value is "public".

### 3.4. AlternativeID Class

The AlternativeID class lists the incident tracking numbers used by CSIRTs, other than the one generating the document, to refer to the identical activity described the IODEF document. A tracking number listed as an AlternativeID references the same incident detected by another CSIRT. The incident tracking numbers of the CSIRT that generated the IODEF document must never be considered an AlternativeID.


Figure 4: The AlternativeID Class

The aggregate class that constitutes AlternativeID is:

IncidentID
One or more. The incident tracking number of another CSIRT.

The AlternativeID class has one attribute:
restriction
Optional. ENUM. This attribute has been defined in Section 3.2.

### 3.5. RelatedActivity Class

The RelatedActivity class relates the information described in the rest of the IODEF document to previously observed incidents or activity; and allows attribution to a specific actor or campaign.

```
+------------------
+-----------------+
| ENUM restriction |<>--{0..*}--[ IncidentID ]
|<>--{0..*}--[ URL ]
|<>--{0..*}--[ ThreatActor ]
|<>--{0..*}--[ Campaign ]
|<>--{0..1}--[ Confidence ]
|<>--{0..*}--[ Description ]
|<>--{0..*}--[ AdditionalData ]
```

Figure 5: RelatedActivity Class

The aggregate classes that constitutes RelatedActivity are:

IncidentID
One or more. The incident tracking number of a related incident.

URL
One or more. URL. A URL to activity related to this incident.

ThreatActor
One or more. The threat actor to whom the described activity is attributed.

Campaign
One or more. The campaign of a given threat actor to whom the described activity is attributed.

Confidence
Zero or one. An estimate of the confidence in attributing this RelatedActivity to the event described in the document.

Description
Zero or many. ML_STRING. A description of how these relationships were derived.

AdditionalData
Zero or many. A mechanism by which to extend the data model.

RelatedActivity MUST at least have one instance of IncidentID, URL, ThreatActor, or Campaign.

The RelatedActivity class has one attribute:
restriction
Optional. ENUM. This attribute has been defined in Section 3.2.

### 3.6. ThreatActor Class

The ThreatActor class describes a given actor.


Figure 6: ThreatActor Class

The aggregate classes that constitutes ThreatActor are:

ThreatActorID
One or more. STRING. An identifier for the ThreatActor.

Description
One or more. ML_STRING. A description of the ThreatActor.

AdditionalData
Zero or many. A mechanism by which to extend the data model.

ThreatActor MUST have at least one instance of a ThreatActorID or Description.

The ThreatActor class has one attribute:
restriction
Optional. ENUM. This attribute has been defined in Section 3.2.

### 3.7. Campaign Class

The Campaign class describes a ...

```
    +------------------
    | Campaign |
    +-----------------+
    | ENUM restriction |<>--{0..1}--[ CampaignID ]
    | |<>--{0..*}--[ Description ]
    | |<>--{0..*}--[ AdditionalData ]
    +------------------
```

Figure 7: Campaign Class

The aggregate classes that constitutes Campaign are:

CampaignID
One or more. STRING. An identifier for the Campaign.

Description
One or more. ML_STRING. A description of the Campaign.
AdditionalData
Zero or many. A mechanism by which to extend the data model.

Campaign MUST have at least one instance of a Campaign or Description.

The Campaign class has one attribute:
restriction
Optional. ENUM. This attribute has been defined in Section 3.2.

### 3.8. AdditionalData Class

The AdditionalData class serves as an extension mechanism for information not otherwise represented in the data model. For relatively simple information, atomic data types (e.g., integers, strings) are provided with a mechanism to annotate their meaning. The class can also be used to extend the data model (and the associated Schema) to support proprietary extensions by encapsulating entire XML documents conforming to another Schema (e.g., IDMEF). A detailed discussion for extending the data model and the schema can be found in Section 5.

Unlike XML, which is self-describing, atomic data must be documented to convey its meaning. This information is described in the 'meaning' attribute. Since these description are outside the scope of the specification, some additional coordination may be required to ensure that a recipient of a document using the AdditionalData classes can make sense of the custom extensions.


Figure 8: The AdditionalData Class
The AdditionalData class has five attributes:
dtype
Required. ENUM. The data type of the element content. The permitted values for this attribute are shown below. The default value is "string".

1. boolean. The element content is of type BOOLEAN.
2. byte. The element content is of type BYTE.
3. character. The element content is of type CHARACTER.
4. date-time. The element content is of type DATETIME.
5. integer. The element content is of type INTEGER.
6. portlist. The element content is of type PORTLIST.
7. real. The element content is of type REAL.
8. string. The element content is of type STRING.
9. file. The element content is a base64 encoded binary file encoded as a BYTE[] type.
10. frame. The element content is a layer-2 frame encoded as a HEXBIN type.
11. packet. The element content is a layer-3 packet encoded as a HEXBIN type.
12. ipv4-packet. The element content is an IPv4 packet encoded as a HEXBIN type.
13. ipv6-packet. The element content is an IPv6 packet encoded as a HEXBIN type.
14. path. The element content is a file-system path encoded as a STRING type.
15. url. The element content is of type URL.
16. csv. The element content is a common separated value (CSV) list per Section 2 of [20] encoded as a STRING type.
17. winreg. The element content is a Windows registry key encoded as a STRING type.
18. xml. The element content is XML (see Section 5).
19. ext-value. An escape value used to extend this attribute. See Section 5.1.
ext-dtype
Optional. STRING. A means by which to extend the dtype attribute. See Section 5.1.
meaning
Optional. STRING. A free-form description of the element content.
formatid
Optional. STRING. An identifier referencing the format and semantics of the element content.
restriction
Optional. ENUM. This attribute has been defined in Section 3.2.

### 3.9. Contact Class

The Contact class describes contact information for organizations and personnel involved in the incident. This class allows for the naming of the involved party, specifying contact information for them, and identifying their role in the incident.

People and organizations are treated interchangeably as contacts; one can be associated with the other using the recursive definition of the class (the Contact class is aggregated into the Contact class). The 'type' attribute disambiguates the type of contact information being provided.

The inheriting definition of Contact provides a way to relate information without requiring the explicit use of identifiers in the classes or duplication of data. A complete point of contact is derived by a particular traversal from the root Contact class to the leaf Contact class. As such, multiple points of contact might be specified in a single instance of a Contact class. Each child Contact class logically inherits contact information from its ancestors.


Figure 9: The Contact Class
The aggregate classes that constitute the Contact class are:

## ContactName

Zero or one. ML_STRING. The name of the contact. The contact may either be an organization or a person. The type attribute disambiguates the semantics.

ContactTitle
Zero or one. ML_STRING. The title for the individual named in the ContactName.

Description
Zero or many. ML_STRING. A free-form description of this contact. In the case of a person, this is often the organizational title of the individual.

RegistryHandle
Zero or many. A handle name into the registry of the contact.

PostalAddress
Zero or one. The postal address of the contact.

Email
Zero or many. The email address of the contact.

Telephone
Zero or many. The telephone number of the contact.

Fax
Zero or one. The facsimile telephone number of the contact.
Timezone
Zero or one. TIMEZONE. The timezone in which the contact resides formatted according to Section 2.9.

## Contact

Zero or many. A Contact instance contained within another Contact instance inherits the values of the parent(s). This recursive definition can be used to group common data pertaining to multiple points of contact and is especially useful when listing multiple contacts at the same organization.

## AdditionalData

Zero or many. A mechanism by which to extend the data model.

At least one of the aggregate classes MUST be present in an instance of the Contact class. This is not enforced in the IODEF schema as there is no simple way to accomplish it.

The Contact class has five attributes:
role
Required. ENUM. Indicates the role the contact fulfills. This attribute is defined as an enumerated list:

1. creator. The entity that generate the document.
2. admin. An administrative contact for a host or network.
3. tech. A technical contact for a host or network.
4. irt. The CSIRT involved in handling the incident.
5. cc. An entity that is to be kept informed about the handling of the incident.
6. ext-value. An escape value used to extend this attribute. See Section 5.1.
ext-role

Optional. STRING. A means by which to extend the role attribute. See Section 5.1.
type
Required. ENUM. Indicates the type of contact being described. This attribute is defined as an enumerated list:

1. person. The information for this contact references an individual.
2. organization. The information for this contact references an organization.
3. ext-value. An escape value used to extend this attribute. See Section 5.1.
ext-type
Optional. STRING. A means by which to extend the type attribute. See Section 5.1.
restriction
Optional. ENUM. This attribute is defined in Section 3.2.

### 3.9.1. RegistryHandle Class

The RegistryHandle class represents a handle into an Internet registry or community-specific database. The handle is specified in the element content and the type attribute specifies the database.


Figure 10: The RegistryHandle Class

The RegistryHandle class has two attributes:
registry
Required. ENUM. The database to which the handle belongs. The possible values are:

1. internic. Internet Network Information Center
2. apnic. Asia Pacific Network Information Center
3. arin. American Registry for Internet Numbers
4. lacnic. Latin-American and Caribbean IP Address Registry
5. ripe. Reseaux IP Europeens
6. afrinic. African Internet Numbers Registry
7. local. A database local to the CSIRT
8. ext-value. An escape value used to extend this attribute. See Section 5.1.
ext-registry
Optional. STRING. A means by which to extend the registry attribute. See Section 5.1.

### 3.9.2. PostalAddress Class

The PostalAddress class specifies a postal address formatted according to the POSTAL data type (Section 2.11).

Figure 11: The PostalAddress Class

The PostalAddress class has two attributes:
meaning
Optional. ENUM. A free-form description of the element content.
lang
Optional. ENUM. A valid language code per RFC 4646 [7]
constrained by the definition of "xs:language". The
interpretation of this code is described in Section 6.

### 3.9.3. Email Class

The Email class specifies an email address formatted according to EMAIL data type (Section 2.14).


Figure 12: The Email Class
The Email class has one attribute:
meaning
Optional. ENUM. A free-form description of the element content.

### 3.9.4. Telephone and Fax Classes

The Telephone and Fax classes specify a voice or fax telephone number respectively, and are formatted according to PHONE data type (Section 2.13).

```
| {Telephone | Fax } |
+--------------------+
| PHONE
| |
| ENUM meaning |
+---------------------
```

Figure 13: The Telephone and Fax Classes

The Telephone class has one attribute:
meaning
Optional. ENUM. A free-form description of the element content (e.g., hours of coverage for a given number).

### 3.10. Time Classes

The data model uses five different classes to represent a timestamp. Their definition is identical, but each has a distinct name to convey a difference in semantics.

The element content of each class is a timestamp formatted according to the DATETIME data type (see Section 2.8).


Figure 14: The Time Classes

### 3.10.1. StartTime

The StartTime class represents the time the incident began.
3.10.2. EndTime

The EndTime class represents the time the incident ended.

### 3.10.3. DetectTime

The DetectTime class represents the time the first activity of the incident was detected.

### 3.10.4. ReportTime

The ReportTime class represents the time the incident was reported. This timestamp MUST be the time at which the IODEF document was generated.

### 3.10.5. DateTime

The DateTime class is a generic representation of a timestamp. Infer its semantics from the parent class in which it is aggregated.

### 3.11. Method Class

The Method class describes the methodology used by the intruder to perpetrate the events of the incident. This class consists of a list of references describing the attack method and a free form description of the technique.

```
+------------------
    | Method |
+-----------------+
    | ENUM restriction |<>--{0..*}--[ Reference ]
    | |<>--{0..*}--[ Description ]
    | |<>--{0..*}--[ AdditionalData ]
    +------------------+
```

Figure 15: The Method Class

The Method class is composed of three aggregate classes.

Reference
Zero or many. A reference to a vulnerability, malware sample, advisory, or analysis of an attack technique.

Description
Zero or many. ML_STRING. A free-form text description of the methodology used by the intruder.

AdditionalData
Zero or many. A mechanism by which to extend the data model.

Either an instance of the Reference or Description class MUST be present.

The Method class has one attribute:
restriction
Optional. ENUM. This attribute is defined in Section 3.2.

### 3.11.1. Reference Class

The Reference class is a reference to a vulnerability, IDS alert, malware sample, advisory, or attack technique. A reference consists of a name, a URL to this reference, and an optional description.

```
+-------------------
| Reference |
+-------------------
| |<>---------[ ReferenceName ]
| |<>--{0..*}--[ URL ]
| |<>--{0..*}--[ Description]
```

+-----------------

Figure 16: The Reference Class

The aggregate classes that constitute Reference:

ReferenceName
One. ML_STRING. Name of the reference.

URL
Zero or many. URL. A URL associated with the reference.

Description
Zero or many. ML_STRING. A free-form text description of this reference.

The Reference class has 4 attributes.
indicator-uid
Optional. STRING. A unique identifier for an Indicator.
indicator-set-id
Optional. STRING. The indicator set ID is used to group related indicators.
attacktype
Optional. ENUM. A unique identifier for an Indicator.
ext-attacktype
Optional. STRING. A mechanism by which to extend the Attack Type.

### 3.12. Assessment Class

The Assessment class describes the technical and non-technical repercussions of the incident on the CSIRT's constituency.

This class was derived from the IDMEF[17].

```
+-------------------
    | Assessment |
    | ENUM occurrence |<>--{0..*}--[ Impact ]
    | ENUM restriction |<>--{0..*}--[ TimeImpact ]
    | |<>--{0..*}--[ MonetaryImpact ]
    | |<>--{0..*}--[ Counter ]
    | |<>--{0..1}--[ Confidence ]
    | |<>--{0..*}--[ AdditionalData ]
+------------------
```

Figure 17: Assessment Class

The aggregate classes that constitute Assessment are:

Impact
Zero or many. Technical impact of the incident on a network.

TimeImpact
Zero or many. Impact of the activity measured with respect to time.

MonetaryImpact
Zero or many. Impact of the activity measured with respect to financial loss.

Counter
Zero or more. A counter with which to summarize the magnitude of the activity.

Confidence
Zero or one. An estimate of confidence in the assessment.

AdditionalData
Zero or many. A mechanism by which to extend the data model.

A least one instance of the possible three impact classes (i.e., Impact, TimeImpact, or MonetaryImpact) MUST be present.

The Assessment class has four attributes:
occurrence
Optional. ENUM. Specifies whether the assessment is describing actual or potential outcomes.

1. actual. This assessment describes activity that has occurred.
2. potential. This assessment describes potential activity that might occur.
restriction
Optional. ENUM. This attribute is defined in Section 3.2.
indicator-uid
Optional. STRING. A unique identifier for an Indicator.
indicator-set-id
Optional. STRING. The indicator set ID is used to group related indicators.

### 3.12.1. Impact Class

The Impact class allows for categorizing and describing the technical impact of the incident on the network of an organization.

This class is based on the IDMEF [17].

| Impact |
| :---: |
| ML_STRING |
| ENUM lang |

```
| ENUM severity |
| ENUM completion |
| ENUM type |
| STRING ext-type |
+------------------
```

Figure 18: Impact Class

The element content will be a free-form textual description of the impact.

The Impact class has five attributes:
lang
Optional. ENUM. A valid language code per RFC 4646 [7] constrained by the definition of "xs:language". The interpretation of this code is described in Section 6.
severity
Optional. ENUM. An estimate of the relative severity of the activity. The permitted values are shown below. There is no default value.

1. low. Low severity
2. medium. Medium severity
3. high. High severity
completion
Optional. ENUM. An indication whether the described activity was successful. The permitted values are shown below. There is no default value.
4. failed. The attempted activity was not successful.
5. succeeded. The attempted activity succeeded.
type
Required. ENUM. Classifies the malicious activity into incident categories. The permitted values are shown below. The default value is "other".
6. admin. Administrative privileges were attempted.
7. dos. A denial of service was attempted.
8. file. An action that impacts the integrity of a file or database was attempted.
9. info-leak. An attempt was made to exfiltrate information.
10. misconfiguration. An attempt was made to exploit a misconfiguration in a system.
11. policy. Activity violating site's policy was attempted.
12. recon. Reconnaissance activity was attempted.
13. social-engineering. A social engineering attack was attempted.
14. user. User privileges were attempted.
15. unknown. The classification of this activity is unknown.
16. ext-value. An escape value used to extend this attribute. See Section 5.1.
ext-type
Optional. STRING. A means by which to extend the type attribute. See Section 5.1.

### 3.12.2. TimeImpact Class

The TimeImpact class describes the impact of the incident on an organization as a function of time. It provides a way to convey down time and recovery time.


Figure 19: TimeImpact Class

The element content is a positive, floating point (REAL) number specifying a unit of time. The duration and metric attributes will imply the semantics of the element content.

The TimeImpact class has five attributes:
severity
Optional. ENUM. An estimate of the relative severity of the activity. The permitted values are shown below. There is no default value.

1. low. Low severity
2. medium. Medium severity
3. high. High severity
metric
Required. ENUM. Defines the metric in which the time is expressed. The permitted values are shown below. There is no default value.
4. labor. Total staff-time to recovery from the activity (e.g., 2 employees working 4 hours each would be 8 hours).
5. elapsed. Elapsed time from the beginning of the recovery to its completion (i.e., wall-clock time).
6. downtime. Duration of time for which some provided service(s) was not available.
7. ext-value. An escape value used to extend this attribute. See Section 5.1.
ext-metric
Optional. STRING. A means by which to extend the metric attribute. See Section 5.1.
duration
Optional. ENUM. Defines a unit of time, that when combined with the metric attribute, fully describes a metric of impact that will be conveyed in the element content. The permitted values are shown below. The default value is "hour".
8. second. The unit of the element content is seconds.
9. minute. The unit of the element content is minutes.
10. hour. The unit of the element content is hours.
11. day. The unit of the element content is days.
12. month. The unit of the element content is months.
13. quarter. The unit of the element content is quarters.
14. year. The unit of the element content is years.
15. ext-value. An escape value used to extend this attribute. See Section 5.1.
ext-duration
Optional. STRING. A means by which to extend the duration attribute. See Section 5.1.

### 3.12.3. MonetaryImpact Class

The MonetaryImpact class describes the financial impact of the activity on an organization. For example, this impact may consider losses due to the cost of the investigation or recovery, diminished productivity of the staff, or a tarnished reputation that will affect future opportunities.


Figure 20: MonetaryImpact Class

The element content is a positive, floating point number (REAL) specifying a unit of currency described in the currency attribute.

The MonetaryImpact class has two attributes:
severity
Optional. ENUM. An estimate of the relative severity of the activity. The permitted values are shown below. There is no default value.

1. low. Low severity
2. medium. Medium severity
3. high. High severity
currency
Optional. STRING. Defines the currency in which the monetary impact is expressed. The permitted values are defined in ISO 4217:2001, Codes for the representation of currencies and funds [14]. There is no default value.

### 3.12.4. Confidence Class

The Confidence class represents a best estimate of the validity and accuracy of the described impact (see Section 3.12) of the incident activity. This estimate can be expressed as a category or a numeric calculation.

This class if based upon the IDMEF [17]).


Figure 21: Confidence Class

The element content expresses a numerical assessment in the confidence of the data when the value of the rating attribute is "numeric". Otherwise, this element MUST be empty.

The Confidence class has one attribute.
rating
Required. ENUM. A rating of the analytical validity of the specified Assessment. The permitted values are shown below.
There is no default value.

1. low. Low confidence in the validity.
2. medium. Medium confidence in the validity.
3. high. High confidence in the validity.
4. numeric. The element content contains a number that conveys the confidence of the data. The semantics of this number outside the scope of this specification.
5. unknown. The confidence rating value is not known.

### 3.13. History Class

The History class is a log of the significant events or actions performed by the involved parties during the course of handling the incident.

The level of detail maintained in this log is left up to the discretion of those handling the incident.


Figure 22: The History Class

The class that constitutes History is:

HistoryItem
One or many. Entry in the history log of significant events or actions performed by the involved parties.

The History class has one attribute:
restriction
Optional. ENUM. This attribute is defined in Section 3.2. The default value is "default".

### 3.13.1. HistoryItem Class

The HistoryItem class is an entry in the History (Section 3.13) log that documents a particular action or event that occurred in the course of handling the incident. The details of the entry are a free-form description, but each can be categorized with the type attribute.

```
+-----------------+
| HistoryItem |
+-----------------+
| ENUM restriction |<>----------[ DateTime
\begin{tabular}{|c|c|}
\hline ENUM action & |<>--\{0..1\}--[ IncidentId \\
\hline STRING ext-action & |<>--\{0..1\}--[ Contact \\
\hline & |<>--\{0..*\}--[ Description \\
\hline & |<>--\{0..*\}--[ AdditionalData \\
\hline
\end{tabular}

Figure 23: HistoryItem Class

The aggregate classes that constitute HistoryItem are:

\section*{DateTime}

One. Timestamp of this entry in the history log (e.g., when the action described in the Description was taken).

IncidentID
Zero or One. In a history log created by multiple parties, the IncidentID provides a mechanism to specify which CSIRT created a particular entry and references this organization's incident tracking number. When a single organization is maintaining the log, this class can be ignored.

\section*{Contact}

Zero or One. Provides contact information for the person that performed the action documented in this class.

Description
Zero or many. ML_STRING. A free-form textual description of the action or event.

AdditionalData
Zero or many. A mechanism by which to extend the data model.

The HistoryItem class has five attributes:
restriction
Optional. ENUM. This attribute has been defined in Section 3.2.
action
Required. ENUM. Classifies a performed action or occurrence documented in this history log entry. As activity will likely have been instigated either through a previously conveyed expectation or internal investigation, this attribute is identical to the category attribute of the Expectation class. The difference is only one of tense. When an action is in this class, it has been completed. See Section 3.15.
```

ext-action

```

Optional. STRING. A means by which to extend the action attribute. See Section 5.1.
indicator-uid
Optional. STRING. A unique identifier for an Indicator.
indicator-set-id
Optional. STRING. The indicator set ID is used to group related indicators.

\subsection*{3.14. EventData Class}

The EventData class describes a particular event of the incident for a given set of hosts or networks. This description includes the systems from which the activity originated and those targeted, an assessment of the techniques used by the intruder, the impact of the activity on the organization, and any forensic evidence discovered.
```

+------------------+
| EventData |
+------------------
| ENUM restriction |<>--{0..*}--[ Description ]
| |<>--{0..1}--[ DetectTime ]
| |<>--{0..1}--[ StartTime ]
| |<>--{0..1}--[ EndTime ]
| |<>--{0..*}--[ Contact ]
| |<>--{0..1}--[ Assessment ]
| |<>--{0..*}--[ Method ]
| |<>--{0..*}--[ Flow ]
| |<>--{0..*}--[ Expectation ]
| |<>--{0..1}--[ Record ]
| |<>--{0..*}--[ EventData ]
| |<>--{0..*}--[ AdditionalData ]

```

Figure 24: The EventData Class

The aggregate classes that constitute EventData are:

Description
Zero or more. ML_STRING. A free-form textual description of the event.

DetectTime
Zero or one. The time the event was detected.

\section*{StartTime}

Zero or one. The time the event started.

EndTime
Zero or one. The time the event ended.

Contact
Zero or more. Contact information for the parties involved in the event.

Assessment
Zero or one. The impact of the event on the target and the actions taken.

Method
Zero or more. The technique used by the intruder in the event.

Flow
Zero or more. A description of the systems or networks involved.

Expectation
Zero or more. The expected action to be performed by the recipient for the described event.

Record
Zero or one. Supportive data (e.g., log files) that provides additional information about the event.

EventData
Zero or more. EventData instances contained within another EventData instance inherit the values of the parent(s); this recursive definition can be used to group common data pertaining to multiple events. When EventData elements are defined recursively, only the leaf instances (those EventData instances not containing other EventData instances) represent actual events.

AdditionalData
Zero or more. An extension mechanism for data not explicitly represented in the data model.

At least one of the aggregate classes MUST be present in an instance of the EventData class. This is not enforced in the IODEF schema as there is no simple way to accomplish it.

The EventData class has two attributes:
restriction
Optional. ENUM. This attribute is defined in Section 3.2. The default value is "default".
indicator-set-id

Optional. STRING. The indicator set ID is used to group related indicators.

\subsection*{3.14.1. Relating the Incident and EventData Classes}

There is substantial overlap in the Incident and EventData classes. Nevertheless, the semantics of these classes are quite different. The Incident class provides summary information about the entire incident, while the EventData class provides information about the individual events comprising the incident. In the most common case, the EventData class will provide more specific information for the general description provided in the Incident class. However, it may also be possible that the overall summarized information about the incident conflicts with some individual information in an EventData class when there is a substantial composition of various events in the incident. In such a case, the interpretation of the more specific EventData MUST supersede the more generic information provided in IncidentData.

\subsection*{3.14.2. Cardinality of EventData}

The EventData class can be thought of as a container for the properties of an event in an incident. These properties include: the hosts involved, impact of the incident activity on the hosts, forensic logs, etc. With an instance of the EventData class, hosts (i.e., System class) are grouped around these common properties.

The recursive definition (or instance property inheritance) of the EventData class (the EventData class is aggregated into the EventData class) provides a way to related information without requiring the explicit use of unique attribute identifiers in the classes or duplicating information. Instead, the relative depth (nesting) of a class is used to group (relate) information.

For example, an EventData class might be used to describe two machines involved in an incident. This description can be achieved using multiple instances of the Flow class. It happens that there is a common technical contact (i.e., Contact class) for these two machines, but the impact (i.e., Assessment class) on them is different. A depiction of the representation for this situation can be found in Figure 25.
```

+-----------------+

```


Figure 25: Recursion in the EventData Class

\subsection*{3.15. Expectation Class}

The Expectation class conveys to the recipient of the IODEF document the actions the sender is requesting. The scope of the requested action is limited to purview of the EventData class in which this class is aggregated.


Figure 26: The Expectation Class
The aggregate classes that constitute Expectation are:

Description
Zero or many. ML_STRING. A free-form description of the desired action(s).

\section*{StartTime}

Zero or one. The time at which the sender would like the action performed. A timestamp that is earlier than the ReportTime specified in the Incident class denotes that the sender would like the action performed as soon as possible. The absence of this element indicates no expections of when the recipient would like the action performed.

EndTime
Zero or one. The time by which the sensor expects the recipient to complete the action. If the recipient cannot complete the action before EndTime, the recipient MUST NOT carry out the action. Because of transit delays, clock drift, and so on, the sender MUST be prepared for the recipient to have carried out the action, even if it completes past EndTime.

Contact
Zero or one. The expected actor for the action.

The Expectations class has six attributes:
restriction
Optional. ENUM. This attribute is defined in Section 3.2. The default value is "default".
severity
Optional. ENUM. Indicates the desired priority of the action. This attribute is an enumerated list with no default value, and the semantics of these relative measures are context dependant.
1. low. Low priority
2. medium. Medium priority
3. high. High priority
action
Optional. ENUM. Classifies the type of action requested. This attribute is an enumerated list with a default value of "other".
1. nothing. No action is requested. Do nothing with the information.
2. contact-source-site. Contact the site(s) identified as the source of the activity.
3. contact-target-site. Contact the site(s) identified as the target of the activity.
4. contact-sender. Contact the originator of the document.
5. investigate. Investigate the systems(s) listed in the event.
6. block-host. Block traffic from the machine(s) listed as sources the event.
7. block-network. Block traffic from the network(s) lists as sources in the event.
8. block-port. Block the port listed as sources in the event.
9. rate-limit-host. Rate-limit the traffic from the machine(s) listed as sources in the event.
10. rate-limit-network. Rate-limit the traffic from the network(s) lists as sources in the event.
11. rate-limit-port. Rate-limit the port(s) listed as sources in the event.
12. remediate-other. Remediate the activity in a way other than by rate limiting or blocking.
13. status-triage. Conveys receipts and the triaging of an incident.
14. status-new-info. Conveys that new information was received for this incident.
15. watch-and-report. Watch for the described activity and share if seen.
16. other. Perform some custom action described in the Description class.
17. ext-value. An escape value used to extend this attribute. See Section 5.1.

\section*{ext-action}

Optional. STRING. A means by which to extend the action attribute. See Section 5.1.
indicator-uid
Optional. STRING. A unique identifier for an Indicator.
indicator-set-id
Optional. STRING. The indicator set ID is used to group related indicators.

\subsection*{3.16. Flow Class}

The Flow class groups related the source and target hosts.


Figure 27: The Flow Class

The aggregate class that constitutes Flow is:

System
One or More. A host or network involved in an event.

The Flow System class has no attributes.

\subsection*{3.17. System Class}

The System class describes a system or network involved in an event. The systems or networks represented by this class are categorized according to the role they played in the incident through the category attribute. The value of this category attribute dictates the semantics of the aggregated classes in the System class. If the category attribute has a value of "source", then the aggregated classes denote the machine and service from which the activity is originating. With a category attribute value of "target" or "intermediary", then the machine or service is the one targeted in the activity. A value of "sensor" dictates that this System was part of an instrumentation to monitor the network.
```

+---------------------
| System |
| ENUM restriction |<>---------[ Node ]
| ENUM category |<>--{0..*}--[ Service ]
| STRING ext-category |<>--{0..*}--[ OperatingSystem ]
| STRING interface |<>--{0..*}--[ Counter ]
| ENUM spoofed |<>--{0..*}--[ AssetID ]
| ENUM virtual |<>--{0..*}--[ Description ]
| ENUM ownership |<>--{0..*}--[ AdditionalData ]
| ENUM ext-ownership |
+----------------------

```

Figure 28: The System Class
The aggregate classes that constitute System are:
Node
One. A host or network involved in the incident.

Service
Zero or more. A network service running on the system.
OperatingSystem
Zero or more. The operating system running on the system.

Counter
Zero or more. A counter with which to summarize properties of this host or network.
```

AssetID
Zero or more. An asset identifier for the System.
Description
Zero or more. ML_STRING. A free-form text description of the
System.
AdditionalData
Zero or more. A mechanism by which to extend the data model.
The System class has eight attributes:
restriction
Optional. ENUM. This attribute is defined in Section 3.2.
category
Optional. ENUM. Classifies the role the host or network played
in the incident. The possible values are:
1. source. The System was the source of the event.
2. target. The System was the target of the event.
3. watchlist-source. The source of the event was on a watchlist.
4. watchlist-target. The target of the event was on a watchlist.
5. intermediate. The System was an intermediary in the event.
6. sensor. The System was a sensor monitoring the event.
7. infrastructure. The System was an infrastructure node of
IODEF document exchange.
8. ext-value. An escape value used to extend this attribute.
See Section 5.1.
ext-category
Optional. STRING. A means by which to extend the category
attribute. See Section 5.1.
indicator-set-id
Optional. STRING. The indicator set ID is used to group related
indicators.
interface

```

Danyliw \& Stoecker Expires April 23, 2014 [Page 45]

Optional. STRING. Specifies the interface on which the event(s) on this System originated. If the Node class specifies a network rather than a host, this attribute has no meaning.
spoofed
Optional. ENUM. An indication of confidence in whether this System was the true target or attacking host. The permitted values for this attribute are shown below. The default value is "unknown".
1. unknown. The accuracy of the category attribute value is unknown.
2. yes. The category attribute value is probably incorrect. In the case of a source, the System is likely a decoy; with a target, the System was likely not the intended victim.
3. no. The category attribute value is believed to be correct.
virtual
Optional. ENUM. Indicates whether this System is a virtual or physical device. The default value is "no". The possible values are:
1. yes. The System is a virtual device.
2. no. The System is a physical device.
ownership
Optional. ENUM. Describes the ownership of this System relative to the sender of the IODEF document. The possible values are:
1. organization. The System is owned by the organization.
2. personal. The System is owned by employee or affiliate of the organization.
3. partner. The System is owned by a partner of the organization.
4. customer. The System is owned by a customer of the organization.
5. no-relationship. The System is owned by an entity that has no known relationship with the organization.
6. unknown. The ownership of the System is unknown.
7. ext-value. An escape value used to extend this attribute. See Section 5.1.
ext-ownership
Optional. STRING. A means by which to extend the ownership attribute. See Section 5.1.

\subsection*{3.18. Node Class}

The Node class names an asset or network.

This class was derived from the IDMEF [17].
```

+---------------+
| Node |
+---------------+
| |<>--{0..*}--[ NodeName ]
| |<>--{0..*}--[ DomainData ]
| |<>--{0..*}--[ Address ]
| |<>--{0..1}--[ Location ]
| |<>--{0..1}--[ DateTime ]
| |<>--{0..*}--[ NodeRole ]
| |<>--{0..*}--[ Counter ]
+---------------+

```

Figure 29: The Node Class

The aggregate classes that constitute Node are:

NodeName
Zero or more. ML_STRING. The name of the Node (e.g., fully qualified domain name). This information MUST be provided if no Address information is given.

\section*{DomainData}

Zero or more. The DomainData Class and Subclasses from RFC 5901.

Address
Zero or more. The hardware, network, or application address of the Node. If a NodeName is not provided, at least one Address MUST be specified.

Location
Zero or one. ML_STRING. A free-from description of the physical location of the equipment.

DateTime

Zero or one. A timestamp of when the resolution between the name and address was performed. This information MAY be provided if both an Address and NodeName are specified.

NodeRole
Zero or more. The intended purpose of the Node.

Counter
Zero or more. A counter with which to summarizes properties of this host or network.

\subsection*{3.18.1. Counter Class}

The Counter class summarize multiple occurrences of some event, or conveys counts or rates on various features (e.g., packets, sessions, events).

The value of the counter is the element content with its units represented in the type attribute. A rate for a given feature can be expressed by setting the duration attribute. The complete semantics are entirely context dependant based on the class in which the Counter is aggregated.


Figure 30: The Counter Class

The Counter class has three attribute:
type
Required. ENUM. Specifies the units of the element content.
1. byte. Count of bytes.
2. packet. Count of packets.
3. flow. Count of flow (e.g., NetFlow records).
4. session. Count of sessions.
5. alert. Count of notifications generated by another system (e.g., IDS or SIM).
6. message. Count of messages (e.g., mail messages).
7. event. Count of events.
8. host. Count of hosts.
9. site. Count of site.
10. organization. Count of organizations.
11. ext-value. An escape value used to extend this attribute. See Section 5.1.
ext-type
Optional. STRING. A means by which to extend the type attribute. See Section 5.1.
duration
Optional. ENUM. If present, the Counter class represents a rate rather than a count over the entire event. In that case, this attribute specifies the denominator of the rate (where the type attribute specified the nominator). The possible values of this attribute are defined in Section 3.12.2
ext-duration
Optional. STRING. A means by which to extend the duration attribute. See Section 5.1.

\subsection*{3.18.2. Address Class}

The Address class represents a hardware (layer-2), network (layer-3), or application (layer-7) address.

This class was derived from the IDMEF [17].


Figure 31: The Address Class

The Address class has five attributes:
category
Optional. ENUM. The type of address represented. The permitted values for this attribute are shown below. The default value is "ipv4-addr".
1. asn. Autonomous System Number
2. atm. Asynchronous Transfer Mode (ATM) address
3. e-mail. Electronic mail address (RFC 822)
4. ipv4-addr. IPv4 host address in dotted-decimal notation (a.b.c.d)
5. ipv4-net. IPv4 network address in dotted-decimal notation, slash, significant bits (a.b.c.d/nn)
6. ipv4-net-mask. IPv4 network address in dotted-decimal notation, slash, network mask in dotted-decimal notation (a.b.c.d/w.x.y.z)
7. ipv6-addr. IPv6 host address
8. ipv6-net. IPv6 network address, slash, significant bits
9. ipv6-net-mask. IPv6 network address, slash, network mask
10. mac. Media Access Control (MAC) address
11. site-uri. A URL or URI for a site.
12. ext-value. An escape value used to extend this attribute. See Section 5.1.
ext-category
Optional. STRING. A means by which to extend the category attribute. See Section 5.1.
vlan-name
Optional. STRING. The name of the Virtual LAN to which the address belongs.
vlan-num

Optional. STRING. The number of the Virtual LAN to which the address belongs.
indicator-uid
Optional. STRING. A unique identifier for an Indicator.

\subsection*{3.18.3. NodeRole Class}

The NodeRole class describes the intended function performed by a particular host.


Figure 32: The NodeRole Class

The NodeRole class has three attributes:
category
Required. ENUM. Functionality provided by a node.
1. client. Client computer
2. client-enterprise. Client computer on the enterprise network
3. client-partner. Client computer on network of a partner
4. client-remote. Client computer remotely connected to the enterprise network
5. client-kiosk. Client computer is serves as a kiosk
6. client-mobile. Client is a mobile device
7. server-internal. Server with internal services
8. server-public. Server with public services
9. WWW. WWW server
10. mail. Mail server
11. messaging. Messaging server (e.g., NNTP, IRC, IM)
```

12. streaming. Streaming-media server
13. voice. Voice server (e.g., SIP, H.323)
14. file. File server (e.g., SMB, CVS, AFS)
15. ftp. FTP server
16. p2p. Peer-to-peer node
17. name. Name server (e.g., DNS, WINS)
18. directory. Directory server (e.g., LDAP, finger, whois)
19. credential. Credential server (e.g., domain controller,
Kerberos)
20. print. Print server
21. application. Application server
22. database. Database server
23. backup. Backup server
24. dhcp. DHCP server
25. infra. Infrastructure server (e.g., router, firewall, DHCP)
26. infra-firewall. Firewall
27. infra-router. Router
28. infra-switch. Switch
29. camera. Camera server
30. proxy. Proxy server
31. remote-access. Remote access server
32. log. Log server (e.g., syslog)
33. virtualization. Server running virtual machines
34. pos. Point-of-sale device
35. scada. Supervisory control and data acquisition system
```
36. scada-supervisory. Supervisory system for a SCADA
37. ext-value. An escape value used to extend this attribute. See Section 5.1.
ext-category
Optional. STRING. A means by which to extend the category attribute. See Section 5.1.
lang
Optional. ENUM. A valid language code per RFC 4646 [7]
constrained by the definition of "xs:language". The interpretation of this code is described in Section 6.

\subsection*{3.19. Service Class}

The Service class describes a network service of a host or network. The service is identified by specific port or list of ports, along with the application listening on that port.

When Service occurs as an aggregate class of a System that is a source, then this service is the one from which activity of interest is originating. Conversely, when Service occurs as an aggregate class of a System that is a target, then that service is the one to which activity of interest is directed.

This class was derived from the IDMEF [17].
```

+---------------------+
| Service |
+-------------------+
INTEGER ip_protocol |<>--{0..1}--[ Port ]
| |<>--{0..1}--[ Portlist ]
| |<>--{0..1}--[ ProtoCode ]
| |<>--{0..1}--[ ProtoType ]
| |<>--{0..1}--[ ProtoField ]
| |<>--{0..1}--[ Application ]
+---------------------

```

Figure 33: The Service Class

The aggregate classes that constitute Service are:
Port
Zero or one. INTEGER. A port number.
Portlist

Zero or one. PORTLIST. A list of port numbers formatted according to Section 2.10.

ProtoCode
Zero or one. INTEGER. A layer-4 protocol-specific code field (e.g., ICMP code field).

ProtoType
Zero or one. INTEGER. A layer-4 protocol specific type field (e.g., ICMP type field).

ProtoField
Zero or one. INTEGER. A layer-4 protocol specific flag field (e.g., TCP flag field).

Application
Zero or one. The application bound to the specified Port or Portlist.

Either a Port or Portlist class MUST be specified for a given instance of a Service class.

When a given System classes with category="source" and another with category="target" are aggregated into a single Flow class, and each of these System classes has a Service and Portlist class, an implicit relationship between these Porlists exists. If \(N\) ports are listed for a System@category="source", and M ports are listed for System@category="target", the number of ports in \(N\) must be equal to M. Likewise, the ports MUST be listed in an identical sequence such that the n-th port in the source corresponds to the \(n\)-th port of the target. If \(N\) is greater than 1, a given instance of a a Flow class MUST only have a single instance of a System@category="source" and System@category="target".

The Service class has three attributes:
```

ip_protocol

```

Required. INTEGER. The IANA protocol number.
indicator-uid
Optional. STRING. A unique identifier for an Indicator.
indicator-set-id
Optional. STRING. The indicator set ID is used to group related indicators.

\subsection*{3.19.1. Application Class}

The Application class describes an application running on a System providing a Service.


Figure 34: The Application Class

The aggregate class that constitute Application is:

URL
Zero or one. URL. A URL describing the application.

The Application class has seven attributes:
swid
Optional. STRING. An identifier that can be used to reference this software, where the default value is "0".
configid
Optional. STRING. An identifier that can be used to reference a particular configuration of this software, where the default value is "0".
vendor
Optional. STRING. Vendor name of the software.
family
Optional. STRING. Family of the software.
name
Optional. STRING. Name of the software.
version
Optional. STRING. Version of the software.
patch
Optional. STRING. Patch or service pack level of the software.

\subsection*{3.20. OperatingSystem Class}

The OperatingSystem class describes the operating system running on a System. The definition is identical to the Application class (Section 3.19.1).
3.21

Record Class

The Record class is a container class for log and audit data that provides supportive information about the incident. The source of this data will often be the output of monitoring tools. These logs substantiate the activity described in the document.
```

+------------------
| Record |
+------------------
| ENUM restriction |<>--{1..*}--[ RecordData ]
+------------------

```

Figure 35: Record Class

The aggregate class that constitutes Record is:

RecordData
One or more. Log or audit data generated by a particular type of sensor. Separate instances of the RecordData class SHOULD be used for each sensor type.

The Record class has one attribute:
restriction
Optional. ENUM. This attribute has been defined in Section 3.2.

\subsection*{3.21.1. RecordData Class}

The RecordData class groups log or audit data from a given sensor (e.g., IDS, firewall log) and provides a way to annotate the output.
```

+------------------
| RecordData |
+-----------------+
| ENUM restriction |<>--{0..1}--[ DateTime ]
| |<>--{0..*}--[ Description ]
| |<>--{0..1}--[ Application ]
| |<>--{0..*}--[ RecordPattern ]
| |<>--{0..*}--[ RecordItem ]
| |<>--{0..1}--[ HashInformation ]
| |<>--{0..*}--[ WindowsRegistryKeysModified ]

```
```

| |<>--{0..*}--[ AdditionalData
]
+------------------

```

Figure 36: The RecordData Class

The aggregate classes that constitutes RecordData is:

DateTime
Zero or one. Timestamp of the RecordItem data.

Description
Zero or more. ML_STRING. Free-form textual description of the provided RecordItem data. At minimum, this description should convey the significance of the provided RecordItem data.

Application
Zero or one. Information about the sensor used to generate the RecordItem data.

RecordPattern
Zero or more. A search string to precisely find the relevant data in a RecordItem.

RecordItem
Zero or more. Log, audit, or forensic data.

HashInformation
Zero or one. The file name and hash of a file indicator.

WindowsRegistryKeysModified
Zero or more. The registry keys that were modified that are indicator(s).

AdditionalData
Zero or more. An extension mechanism for data not explicitly represented in the data model.

The RecordData class has three attribute:
restriction
Optional. ENUM. This attribute has been defined in Section 3.2.
indicator-uid
Optional. STRING. A unique identifier for an Indicator.
indicator-set-id
Optional. STRING. The indicator set ID is used to group related indicators.

\subsection*{3.21.2. RecordPattern Class}

The RecordPattern class describes where in the content of the RecordItem relevant information can be found. It provides a way to reference subsets of information, identified by a pattern, in a large log file, audit trail, or forensic data.


Figure 37: The RecordPattern Class

The specific pattern to search with in the RecordItem is defined in the body of the element. It is further annotated by four attributes:
type
Required. ENUM. Describes the type of pattern being specified in the element content. The default is "regex".
1. regex. regular expression, per Appendix \(F\) of [3].
2. binary. Binhex encoded binary pattern, per the HEXBIN data type.
3. xpath. XML Path (XPath) [5]
4. ext-value. An escape value used to extend this attribute. See Section 5.1.
ext-type
Optional. STRING. A means by which to extend the type attribute.
See Section 5.1.
offset
Optional. INTEGER. Amount of units (determined by the offsetunit attribute) to seek into the RecordItem data before matching the pattern.
offsetunit
Optional. ENUM. Describes the units of the offset attribute. The default is "line".
1. line. Offset is a count of lines.
2. byte. Offset is a count of bytes.
3. ext-value. An escape value used to extend this attribute. See Section 5.1.
ext-offsetunit
Optional. STRING. A means by which to extend the offsetunit attribute. See Section 5.1.
instance
Optional. INTEGER. Number of types to apply the specified pattern.

\subsection*{3.21.3. RecordItem Class}

The RecordItem class provides a way to incorporate relevant logs, audit trails, or forensic data to support the conclusions made during the course of analyzing the incident. The class supports both the direct encapsulation of the data, as well as, provides primitives to reference data stored elsewhere.

This class is identical to AdditionalData class (Section 3.8).

\subsection*{3.22. RegistryKeyModified Class}

The Registry Key Modified class represents operating system registry keys that have been modified as part and may constitue an indicator of compromise.
```

+-----------------------
| RegistryKeyModified |
+----------------------
| |<>---------[ Key ]
+-----------------------

```

Figure 38: The RegistryKeyModified Class

The aggregate class that constitutes the Registry Key Modified class is:

Key
One. The Window Registry Key.

\subsection*{3.22.1. Key Class}

The Key class shows name and value pairs representing an operating system registry key and its value. The key and value are encoded as in Microsoft .reg files.
```

+----------------------------
| Key |
+--------------------------
| ENUM regsitryaction |<>--{0..*}--[ KeyName ]
| STRING ext-category |<>--{0..*}--[ Value ]
| ENUM type
| STRING ext-type
| STRING indicator-uid |
| STRING inidicator-set-id |
+---------------------------

```

Figure 39: The Registry Key Modified Class
The aggregate classes that constitutes Key are:

KeyName
Zero or more. The name of the registry key.

Value
Zero or more. The value of the registry key.
The Key class has six attributes:
registryaction
Optional. ENUM. The type of action.
1. add-key. Registry key added.
2. add-value. Value added to registry key.
3. delete-key. Registry key deleted.
4. delete-value. Value deleted from registry key.
5. modify-key. Registry key modified.
6. modify-value. Value modified for registry key.
7. ext-value. External value.
ext-category
Optional. Extension category.
type
Optional. Type
1. watchlist. Registry key information that is provided in a watchlist.
2. ext-value. Registry key information from an external source.
indicator-uid
Optional. STRING. A unique identifier for an Indicator.
indicator-set-id
Optional. STRING. The indicator set ID is used to group related indicators.

\subsection*{3.23. HashInformation Class}

This class are the hash and signature details that are needed for providing context for indicators.
```

+--------------------------
| HashInformation |
+---------------------------
| ENUM type |<>--{0..*}--[ FileName ]
| STRING ext-category |<>--{0..*}--[ FileSize ]
| BOOL valid |<>--{0..*}--[ ds:Signature ]
| STRING indicator-uid |<>--{0..*}--[ ds:KeyInfo ]
| STRING inidicator-set-id |<>--{0..*}--[ ds:Reference ]
+--------------------------

```

Figure 40: The Hash Sig Details Class
The aggregate classes that constitutes HashInformation are:
FileName
Zero or more. ML_STRING. The name of the file.

FileSize
Zero or more. INTEGER. The size of the file in bytes.
ds:Signature
Zero or more.
ds:KeyInfo
Zero or more.
ds:Reference

Zero or more. The algorithm identification and value of a hash computed over the malware executable. This entire element is imported from [RFC3275]. Refer to RFC 5901.

The HashInformation class has five attributes:
type
Optional. ENUM. The Hash Type.
1. PKI-email-ds. PKI email digital signature.
2. PKI-file-ds. PKI file digital signature.
3. PKI-email-ds_watchlist. Watchlist of PKI email digital signatures.
4. PKI-file-ds_watchlist. Watchlist of PKI file digital signatures.
5. PGP-email-ds. PGP email digital signature.
6. PGP-file-ds. PGP file digital signature.
7. PGP-email-ds-watchlist. Watchlist of PGP email digital signatures.
8. PGP-file-ds-watchlist. Watchlist of PGP file digital signatures
9. file-hash. A file hash.
10. email-hash. An email hash.
11. file-hash-watchlist. Watchlist of file hashes
12. email-hash-watchlist. Watchlist of email hashes
13. ext-value. Extension value.
indicator-uid
Optional. STRING. A unique identifier for an Indicator.
indicator-set-id
Optional. STRING. The indicator set ID is used to group related indicators.

\section*{4. Processing Considerations}

This section defines additional requirements on creating and parsing IODEF documents.

\subsection*{4.1. Encoding}

Every IODEF document MUST begin with an XML declaration, and MUST specify the XML version used. If UTF-8 encoding is not used, the character encoding MUST also be explicitly specified. The IODEF conforms to all XML data encoding conventions and constraints.

The XML declaration with no character encoding will read as follows:
<?xml version="1.0" ?>

When a character encoding is specified, the XML declaration will read like the following:
<?xml version="1.0" encoding="charset" ?>

Where "charset" is the name of the character encoding as registered with the Internet Assigned Numbers Authority (IANA), see [브.

The following characters have special meaning in XML and MUST be escaped with their entity reference equivalent: "\&", "<", ">", "\"" (double quotation mark), and "'" (apostrophe). These entity references are "\&amp;", "\&lt;", "\&gt;", "\&quot;", and "\&apos;" respectively.

\subsection*{4.2. IODEF Namespace}

The IODEF schema declares a namespace of "urn:ietf:params:xml:ns:iodef-1.0" and registers it per [4]. Each IODEF document MUST include a valid reference to the IODEF schema using the "xsi:schemaLocation" attribute. An example of such a declaration would look as follows:
<IODEF-Document
version="1.00" lang="en-US"
xmlns:iodef="urn:ietf:params:xml:ns:iodef-1.0"
xsi:schemaLocation="urn:ietf:params:xmls:schema:iodef-1.0"

\subsection*{4.3. Validation}

The IODEF documents MUST be well-formed XML. It is RECOMMENDED that recipients validate the document against the schema described in Section 8. However, mere conformance to the schema is not sufficient for a semantically valid IODEF document. There is additional
specification in the text of Section 3 that cannot be readily encoded in the schema and it must also be considered by an IODEF parser. The following is a list of discrepancies in what is more strictly specified in the normative text (Section 3), but not enforced in the IODEF schema:
o The elements or attributes that are defined as POSTAL, NAME, PHONE, and EMAIL data-types are implemented as "xs:string", but more rigid formatting requirements are specified in the text.
o The IODEF-Document@lang and MLStringType@lang attributes are declared as an "xs:language" that constrains values with a regular expression. However, the value of this attribute still needs to be validated against the list of possible enumerated values is defined in [].
o The MonetaryImpact@currency attribute is declared as an "xs:string", but the list of valid values as defined in [14].
o All of the aggregated classes Contact and EventData are optional in the schema, but at least one of these aggregated classes MUST be present.
o There are multiple conventions that can be used to categorize a system using the NodeRole class or to specify software with the Application and OperatingSystem classes. IODEF parsers MUST accept incident reports that do not use these fields in accordance with local conventions.
o The Confidence@rating attribute determines whether the element content of Confidence should be empty.
o The Address@type attribute determines the format of the element content.
o The attributes AdditionalData@dtype and RecordItem@dtype derived from iodef:ExtensionType determine the semantics and formatting of the element content.
o Symmetry in the enumerated ports of a Portlist class is required between sources and targets. See Section 3.19.

\section*{5. Extending the IODEF}

In order to support the changing activity of CSIRTS, the IODEF data model will need to evolve along with them. This section discusses how new data elements that have no current representation in the data model can be incorporated into the IODEF. These techniques are
designed so that adding new data will not require a change to the IODEF schema. With proven value, well documented extensions can be incorporated into future versions of the specification. However, this approach also supports private extensions relevant only to a closed consortium.

\subsection*{5.1. Extending the Enumerated Values of Attributes}

The data model supports a means by which to add new enumerated values to an attribute. For each attribute that supports this extension technique, there is a corresponding attribute in the same element whose name is identical, less a prefix of "ext-". This special attribute is referred to as the extension attribute, and the attribute being extended is referred to as an extensible attribute. For example, an extensible attribute named "foo" will have a corresponding extension attribute named "ext-foo". An element may have many extensible, and therefore many extension, attributes.

In addition to a corresponding extension attribute, each extensible attribute has "ext-value" as one its possible values. This particular value serves as an escape sequence and has no valid meaning.

In order to add a new enumerated value to an extensible attribute, the value of this attribute MUST be set to "ext-value", and the new desired value MUST be set in the corresponding extension attribute. For example, an extended instance of the type attribute of the Impact class would look as follows:
```

<Impact type="ext-value" ext-type="new-attack-type">

```

A given extension attribute MUST NOT be set unless the corresponding extensible attribute has been set to "ext-value".

\subsection*{5.2. Extending Classes}

The classes of the data model can be extended only through the use of the AdditionalData and RecordItem classes. These container classes, collectively referred to as the extensible classes, are implemented with the iodef:ExtensionType data type in the schema. They provide the ability to have new atomic or XML-encoded data elements in all of the top-level classes of the Incident class and a few of the more complicated subordinate classes. As there are multiple instances of the extensible classes in the data model, there is discretion on where to add a new data element. It is RECOMMENDED that the extension be placed in the most closely related class to the new information.

Extensions using the atomic data types (i.e., all values of the dtype attributes other than "xml") MUST:
1. Set the element content of extensible class to the desired value, and
2. Set the dtype attribute to correspond to the data type of the element content.

The following guidelines exist for extensions using XML:
1. The element content of the extensible class MUST be set to the desired value and the dtype attribute MUST be set to "xml".
2. The extension schema MUST declare a separate namespace. It is RECOMMENDED that these extensions have the prefix "iodef-". This recommendation makes readability of the document easier by allowing the reader to infer which namespaces relate to IODEF by inspection.
3. It is RECOMMENDED that extension schemas follow the naming convention of the IODEF data model. This makes reading an extended IODEF document look like any other IODEF document. The names of all elements are capitalized. For elements with composed names, a capital letter is used for each word. Attribute names are lower case. Attributes with composed names are separated by a hyphen.
4. Parsers that encounter an unrecognized element in a namespace that they do support MUST reject the document as a syntax error.
5. There are security and performance implications in requiring implementations to dynamically download schemas at run time. Thus, implementations SHOULD NOT download schemas at runtime, unless implementations take appropriate precautions and are prepared for potentially significant network, processing, and time-out demands.
6. Some users of the IODEF may have private schema definitions that might not be available on the Internet. In this situation, if a IODEF document leaks out of the private use space, references to some of those document schemas may not be resolvable. This has two implications. First, references to private schemas may never resolve. As such, in addition to the suggestion that implementations do not download schemas at runtime mentioned above, recipients MUST be prepared for a schema definition in an IODEF document never to resolve.

The following schema and XML document excerpt provide a template for an extension schema and its use in the IODEF document.

This example schema defines a namespace of "iodef-extension1" and a single element named "newdata".
```

<xs:schema
targetNamespace="iodef-extension1.xsd"
xmlns:iodef-extension1="iodef-extension1.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
attributeFormDefault="unqualified"
elementFormDefault="qualified">
<xs:import
namespace="urn:ietf:params:xml:ns:iodef-1.0"
schemaLocation=" urn:ietf:params:xml:schema:iodef-1.0"/>
<xs:element name="newdata" type="xs:string" />
</xs:schema>

```

The following XML excerpt demonstrates the use of the above schema as an extension to the IODEF.
```

<IODEF-Document
        version="1.00" lang="en-US"
        xmlns="urn:ietf:params:xml:ns:iodef-1.0"
        xmlns:iodef=" urn:ietf:params:xml:ns:iodef-1.0"
        xmlns:iodef-extension1="iodef-extension1.xsd"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="iodef-extension1.xsd">
<Incident purpose="reporting">
<AdditionalData dtype="xml" meaning="xml">
[iodef-extension1:newdata](iodef-extension1:newdata)
Field that could not be represented elsewhere
</iodef-extension1:newdata>
</AdditionalData>
</IODEF-Document

```

\section*{6. Internationalization Issues}

Internationalization and localization is of specific concern to the IODEF, since it is only through collaboration, often across language barriers, that certain incidents be resolved. The IODEF supports this goal by depending on XML constructs, and through explicit design choices in the data model.

Since IODEF is implemented as an XML Schema, it implicitly supports all the different character encodings, such as UTF-8 and UTF-16, possible with XML. Additionally, each IODEF document MUST specify the language in which their contents are encoded. The language can be specified with the attribute "xml:lang" (per Section 2.12 of [1]) in the top-level element (i.e., IODEF-Document@lang) and letting all other elements inherit that definition. All IODEF classes with a free-form text definition (i.e., all those defined of type iodef:MLStringType) can also specify a language different from the rest of the document. The valid language codes for the "xml:lang" attribute are described in RFC 4646 [7].

The data model supports multiple translations of free-form text. In the places where free-text is used for descriptive purposes, the given class always has a one-to-many cardinality to its parent (e.g., Description class). The intent is to allow the identical text to be encoded in different instances of the same class, but each being in a different language. This approach allows an IODEF document author to send recipients speaking different languages an identical document. The IODEF parser SHOULD extract the appropriate language relevant to the recipient.

While the intent of the data model is to provide internationalization and localization, the intent is not to do so at the detriment of interoperability. While the IODEF does support different languages, the data model also relies heavily on standardized enumerated attributes that can crudely approximate the contents of the document. With this approach, a CSIRT should be able to make some sense of an IODEF document it receives even if the text based data elements are written in a language unfamiliar to the analyst.

\section*{7. Examples}

This section provides examples of an incident encoded in the IODEF. These examples do not necessarily represent the only way to encode a particular incident.

\subsection*{7.1. Worm}

An example of a CSIRT reporting an instance of the Code Red worm.
```

<?xml version="1.0" encoding="UTF-8"?>

<!-- This example demonstrates a report for a very
    old worm (Code Red) -->
<IODEF-Document version="1.00" lang="en"
xmlns="urn:ietf:params:xml:ns:iodef-1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

```
```

xsi:schemaLocation="urn:ietf:params:xml:schema:iodef-1.0">
<Incident purpose="reporting">
<IncidentID name="csirt.example.com">189493</IncidentID>
<ReportTime>2001-09-13T23:19:24+00:00</ReportTime>
<Description>Host sending out Code Red probes</Description>
<!-- An administrative privilege was attempted, but failed -->
<Assessment>
<Impact completion="failed" type="admin"/>
</Assessment>
<Contact role="creator" type="organization">
<ContactName>Example.com CSIRT</ContactName>
<RegistryHandle registry="arin">example-com</RegistryHandle>
<Email>contact@csirt.example.com</Email>
</Contact>
<EventData>
<Flow>
<System category="source">
<Node>
<Address category="ipv4-addr">192.0.2.200</Address>
<Counter type="event">57</Counter>
</Node>
</System>
<System category="target">
<Node>
<Address category="ipv4-net">192.0.2.16/28</Address>
</Node>
<Service ip_protocol="6">
<Port>80</Port>
</Service>
</System>
</Flow>
<Expectation action="block-host" />
<!-- <RecordItem> has an excerpt from a log -->
<Record>
<RecordData>
<DateTime>2001-09-13T18:11:21+02:00</DateTime>
<Description>Web-server logs</Description>
<RecordItem dtype="string">
192.0.2.1 - - [13/Sep/2001:18:11:21 +0200] "GET /default.ida?
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
\XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
\XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
</RecordItem>
<!-- Additional logs -->
<RecordItem dtype="url">
http://mylogs.example.com/logs/httpd_access</RecordItem>
</RecordData>

```
```

            </Record>
        </EventData>
        <History>
            <!-- Contact was previously made with the source network
                    owner -->
            <HistoryItem action="contact-source-site">
                <DateTime>2001-09-14T08:19:01+00:00</DateTime>
                <Description>Notification sent to
                            constituency-contact@192.0.2.200</Description>
            </HistoryItem>
        </History>
    </Incident>
    </IODEF-Document>

```

\subsection*{7.2. Reconnaissance}
```

An example of a CSIRT reporting a scanning activity.

```
<?xml version="1.0" encoding="UTF-8" ?>
<!-- This example describes reconnaissance activity: one-to-one
        and one-to-many scanning -->
<IODEF-Document version="1.00" lang="en"
    xmlns="urn:ietf:params:xml:ns:iodef-1.0"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="urn:ietf:params:xml:schema:iodef-1.0">
    <Incident purpose="reporting">
        <IncidentID name="csirt.example.com">59334</IncidentID>
        <ReportTime>2006-08-02T05:54:02-05:00</ReportTime>
        <Assessment>
            <Impact type="recon" completion="succeeded" />
        </Assessment>
        <Method>
            <!-- Reference to the scanning tool "nmap" -->
            <Reference>
                <ReferenceName>nmap</ReferenceName>
            <URL>http://nmap.toolsite.example.com</URL>
            </Reference>
</Method>
<!-- Organizational contact and that for staff in that
                    organization -->
<Contact role="creator" type="organization">
            <ContactName>CSIRT for example.com</ContactName>
            <Email>contact@csirt.example.com</Email>
            <Telephone>+1 412555 12345</Telephone>
            <!-- Since this <Contact> is nested, Joe Smith is part of
```

            the CSIRT for example.com -->
    <Contact role="tech" type="person" restriction="need-to-know">
        <ContactName>Joe Smith</ContactName>
        <Email>smith@csirt.example.com</Email>
    </Contact>
    </Contact>
<EventData>
<!-- Scanning activity as follows:
        192.0.2.1:60524 >> 192.0.2.3:137
                    192.0.2.1:60526 >> 192.0.2.3:138
                    192.0.2.1:60527 >> 192.0.2.3:139
                192.0.2.1:60531 >> 192.0.2.3:445
    -->
<Flow>
<System category="source">
<Node>
<Address category="ipv4-addr">192.0.2.200</Address>
</Node>
<Service ip_protocol="6">
<Portlist>60524,60526,60527,60531</Portlist>
</Service>
</System>
<System category="target">
<Node>
<Address category="ipv4-addr">192.0.2.201</Address>
</Node>
<Service ip_protocol="6">
<Portlist>137-139,445</Portlist>
</Service>
</System>
</Flow>
<!-- Scanning activity as follows:
                192.0.2.2 >> 192.0.2.3/28:445 -->
<Flow>
<System category="source">
<Node>
<Address category="ipv4-addr">192.0.2.240</Address>
</Node>
</System>
<System category="target">
<Node>
<Address category="ipv4-net">192.0.2.64/28</Address>
</Node>
<Service ip_protocol="6">
<Port>445</Port>
</Service>
</System>
</Flow>

```
```

        </EventData>
    </Incident>
    </IODEF-Document>

```

\subsection*{7.3. Bot-Net Reporting}

An example of a CSIRT reporting a bot-network.
<?xml version="1.0" encoding="UTF-8" ?>
<!-- This example describes a compromise and subsequent installation of bots -->
<IODEF-Document version="1.00" lang="en"
xmlns="urn:ietf:params:xml:ns:iodef-1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:ietf:params:xml:schema:iodef-1.0">
<Incident purpose="mitigation">
<IncidentID name="csirt.example.com">908711</IncidentID>
<ReportTime>2006-06-08T05:44:53-05:00</ReportTime>
<Description>Large bot-net</Description>
<Assessment>
<Impact type="dos" severity="high" completion="succeeded" /> </Assessment>
<Method>
<!-- References a given piece of malware, "GT Bot" -->
<Reference>
<ReferenceName>GT Bot</ReferenceName>
</Reference>
<!-- References the vulnerability used to compromise the machines -->
<Reference>
<ReferenceName>CA-2003-22</ReferenceName>
<URL>http://www.cert.org/advisories/CA-2003-22.html</URL>
<Description>Root compromise via this IE vulnerability to install the GT Bot</Description>
</Reference>
</Method>
<!-- A member of the CSIRT that is coordinating this
incident -->
<Contact type="person" role="irt">
<ContactName>Joe Smith</ContactName>
<Email>jsmith@csirt.example.com</Email>
</Contact>
<EventData>
<Description>These hosts are compromised and acting as bots communicating with irc.example.com.</Description>
```

            <Flow>
                    <!-- bot running on 192.0.2.1 and sending DoS traffic at
                    10,000 bytes/second -->
                    <System category="source">
                        <Node>
                    <Address category="ipv4-addr">192.0.2.1</Address>
                </Node>
                <Counter type="byte" duration="second">10000</Counter>
                <Description>bot</Description>
            </System>
            <!-- a second bot on 192.0.2.3 -->
            <System category="source">
                <Node>
                    <Address category="ipv4-addr">192.0.2.3</Address>
                </Node>
                <Counter type="byte" duration="second">250000</Counter>
                <Description>bot</Description>
                    </System>
                    <!-- Command-and-control IRC server for these bots-->
                    <System category="intermediate">
                        <Node>
                    <NodeName>irc.example.com</NodeName>
                    <Address category="ipv4-addr">192.0.2.20</Address>
                    <DateTime>2006-06-08T01:01:03-05:00</DateTime>
                </Node>
                <Description>
                    IRC server on #give-me-cmd channel
                </Description>
            </System>
                </Flow>
                <!-- Request to take these machines offline -->
                <Expectation action="investigate">
                    <Description>
                    Confirm the source and take machines off-line and
                    remediate
            </Description>
                </Expectation>
            </EventData>
    </Incident>
    </IODEF-Document>

```

\subsection*{7.4. Watch List}

An example of a CSIRT conveying a watch-list.
```

<?xml version="1.0" encoding="UTF-8" ?>
<!-- This example demonstrates a trivial IP watch-list -->

<!-- @formatid is set to "watch-list-043" to demonstrate how
        additional semantics about this document could be conveyed
        assuming both parties understood it-->
<IODEF-Document version="1.00" lang="en" formatid="watch-list-043"
    xmlns="urn:ietf:params:xml:ns:iodef-1.0"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="urn:ietf:params:xml:schema:iodef-1.0">
<Incident purpose="reporting" restriction="private">
<IncidentID name="csirt.example.com">908711</IncidentID>
<ReportTime>2006-08-01T00:00:00-05:00</ReportTime>
<Description>
Watch-list of known bad IPs or networks
</Description>
<Assessment>
<Impact type="admin" completion="succeeded" />
<Impact type="recon" completion="succeeded" />
</Assessment>
<Contact type="organization" role="creator">
<ContactName>CSIRT for example.com</ContactName>
<Email>contact@csirt.example.com</Email>
</Contact>
<!-- Separate <EventData> is used to convey
            different <Expectation> -->
<EventData>
<Flow>
<System category="source">
<Node>
<Address category="ipv4-addr">192.0.2.53</Address>
</Node>
<Description>Source of numerous attacks</Description>
</System>
</Flow>
<!-- Expectation class indicating that sender of list would
                    like to be notified if activity from the host is seen -->
<Expectation action="contact-sender" />
</EventData>
<EventData>
<Flow>
<System category="source">
<Node>
<Address category="ipv4-net">192.0.2.16/28</Address>

```
```

                </Node>
                <Description>
                    Source of heavy scanning over past 1-month
                    </Description>
                </System>
                </Flow>
                <Flow>
                    <System category="source">
                    <Node>
                            <Address category="ipv4-addr">192.0.2.241</Address>
                    </Node>
                    <Description>C2 IRC server</Description>
                    </System>
            </Flow>
            <!-- Expectation class recommends that these networks
                    be filtered -->
            <Expectation action="block-host" />
        </EventData>
    </Incident>
    </IODEF-Document>

```

\section*{8．The IODEF Schema}
```

    <xs:schema targetNamespace="urn:ietf:params:xml:ns:iodef-2.0"
            xmlns="urn:ietf:params:xml:ns:iodef-2.0"
            xmlns:iodef="urn:ietf:params:xml:ns:iodef-2.0"
            xmlns:xs="http://www.w3.org/2001/XMLSchema"
            xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
            elementFormDefault="qualified"
            attributeFormDefault="unqualified">
    <xs:import namespace="http://www.w3.org/2000/09/xmldsig\#"
schemaLocation="http://www.w3.org/TR/2002/
REC-xmldsig-core-20020212/xmldsig-core-schema.xsd"/>
[xs:annotation](xs:annotation)
[xs:documentation](xs:documentation)
Incident Object Description Exchange Format v2.0, RFC5070-bis
</xs:documentation>
</xs:annotation>
<!--
=====================================================================
== List of changes ==
ニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ

```

CHANGE－new indicator values in the schema

The purpose of the proposed changes is to include commonly shared indicators in the base IODEF schema．This class will contain indicators from the list below that are not represented elsewhere in the schema．IODEF extensions or embedded schemas via the SCI classes will be required to include additional data types．
A table could be maintained through IANA to extend or change this class in between IODEF revisions．

RFC5901 provides a method to include an entire email，the following included indicators are ones commonly used when you do not need the entire email
The following are in the Service Class：
Email address
Email subject
X－Mailer
The following are in the Record class：
File Name
File Hash－5．9．5．2－using ds：reference
WindowsRegistryKey－using method from RFC5901
The following are now in the Node class as a proposed location．
URL
HTTPUserAgent is included as a SoftwareType
HTTP User Agent String
－－＞
＜！－－

＝＝IODEF－Document class＝＝
```

ニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ=

```
-->
    <xs:element name="IODEF-Document">
        <xs:complexType>
            <xs:sequence>
                        <xs:element ref="iodef:Incident"
                            maxOccurs="unbounded"/>
                </xs:sequence>
                <xs:attribute name="version"
                            type="xs:string" fixed="2.00"/>
            <xs:attribute name="lang"
                                    type="xs:language" use="required"/>
            <xs:attribute name="formatid"
                            type="xs:string"/>
        </xs:complexType>
    </xs:element>
<!--

    === Incident class ===

-->
```

<xs:element name="Incident">
[xs:complexType](xs:complexType)
[xs:sequence](xs:sequence)
[xs:choice](xs:choice)
<xs:element ref="iodef:IncidentID"/>
<!-- CHANGE - the incidentID can still be used,
                    but when you have a set of indicators or include
                    a watch list, a ReportID may be preferred. If
                    this is agreed upon, do we make them both unique
                    so the same key can be used in databases? This
                    should not be used as your index value unless you
                    are the issuing entity. -->
<xs:element name="ReportID" type="IncidentIDType"/>
</xs:choice>
<xs:element ref="iodef:AlternativeID"
minOccurs="0"/>
<xs:element ref="iodef:RelatedActivity"
minOccurs="0" max0ccurs="unbounded"/>
<xs:element ref="iodef:DetectTime"
minOccurs="0"/>
<xs:element ref="iodef:StartTime"
minOccurs="0"/>
<xs:element ref="iodef:EndTime"
minOccurs="0"/>
<xs:element ref="iodef:ReportTime"/>
<xs:element ref="iodef:Description"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="iodef:Assessment"
max0ccurs="unbounded"/>
<xs:element ref="iodef:Method"
minOccurs="0" max0ccurs="unbounded"/>
<xs:element ref="iodef:Contact"
maxOccurs="unbounded"/>
<xs:element ref="iodef:EventData"
minOccurs="0" max0ccurs="unbounded"/>
<xs:element ref="iodef:History"
minOccurs="0"/>
<xs:element ref="iodef:AdditionalData"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="purpose" use="required">
[xs:simpleType](xs:simpleType)
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="traceback"/>
<xs:enumeration value="mitigation"/>
<xs:enumeration value="reporting"/>
<xs:enumeration value="watch" />
<xs:enumeration value="other"/>

```
```

                    <xs:enumeration value="ext-value"/>
                    </xs:restriction>
                    </xs:simpleType>
            </xs:attribute>
            <xs:attribute name="ext-purpose"
                                    type="xs:string" use="optional"/>
            <xs:attribute name="lang"
                    type="xs:language"/>
            <xs:attribute name="restriction"
            type="iodef:restriction-type" default="private"/>
            <!-- CHANGE - added attribute to mark sets of indicators -->
            <xs:attribute name="indicator-set-id"
                type="xs:string" use="optional"/>
        </xs:complexType>
    </xs:element>
    <!--
    ニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ==
    == IncidentID class ==
=====================================================================
-->
    <xs:element name="IncidentID" type="iodef:IncidentIDType"/>
    <xs:complexType name="IncidentIDType">
        <xs:simpleContent>
            <xs:extension base="xs:string">
                        <xs:attribute name="name"
                        type="xs:string" use="required"/>
                <xs:attribute name="instance"
                            type="xs:string" use="optional"/>
                <xs:attribute name="restriction"
                                    type="iodef:restriction-type"
                                    default="public"/>
            </xs:extension>
        </xs:simpleContent>
    </xs:complexType>
    <!--
    ======================================================================
    == ReportID class ==
    =======================================================================
-->
    <xs:element name="ReportID">
        <xs:complexType>
                <xs:sequence>
                    <xs:element ref="iodef:IncidentID"
                max0ccurs="unbounded"/>
                </xs:sequence>
                <xs:attribute name="restriction"
                    type="iodef:restriction-type"/>
    ```
```

        </xs:complexType>
    </xs:element>
    <!--
    =====================================================================
    == AlternativeID class ==
    =====================================================================
-->
    <xs:element name="AlternativeID">
        <xs:complexType>
            <xs:sequence>
                        <xs:element ref="iodef:IncidentID"
                            max0ccurs="unbounded"/>
                </xs:sequence>
                <xs:attribute name="restriction"
                            type="iodef:restriction-type"/>
        </xs:complexType>
    </xs:element>
    <!--
    =====================================================================
    == RelatedActivity class ==
=====================================================================
-->
    <xs:element name="RelatedActivity">
        <xs:complexType>
            <xs:sequence>
                <xs:choice maxOccurs="unbounded">
                        <xs:element ref="iodef:IncidentID"
                                max0ccurs="unbounded"/>
            <xs:element ref="iodef:URL"
                                    max0ccurs="unbounded"/>
                    <xs:element ref="iodef:ThreatActor"
                                    max0ccurs="unbounded"/>
                    <xs:element ref="iodef:Campaign"
                                    max0ccurs="unbounded"/>
                </xs:choice>
                <xs:element ref="iodef:Confidence"
                            minOccurs="0"/>
                <xs:element ref="iodef:Description"
                        minOccurs="0" max0ccurs="unbounded"/>
                <xs:element ref="iodef:AdditionalData"
                    min0ccurs="0" max0ccurs="unbounded"/>
                </xs:sequence>
            <xs:attribute name="restriction"
                        type="iodef:restriction-type"/>
        </xs:complexType>
    </xs:element>
    ```
```

<!--
    =====================================================================
    == ThreatActor class ==
    =====================================================================
-->
    <xs:element name="ThreatActor">
        <xs:complexType>
            <xs:sequence>
                    <xs:choice>
                        <xs:sequence>
                        <xs:element ref="iodef:ThreatActorID" />
                        <xs:element ref="iodef:Description"
                            minOccurs="0" maxOccurs="unbounded"/>
                            </xs:sequence>
                        <xs:element ref="iodef:Description"
                            minOccurs="1" max0ccurs="unbounded"/>
                    </xs:choice>
                    <xs:element ref="iodef:AdditionalData"
                        min0ccurs="0" max0ccurs="unbounded"/>
                </xs:sequence>
                <xs:attribute name="restriction"
                            type="iodef:restriction-type"/>
            </xs:complexType>
    </xs:element>
    <xs:element name="ThreatActorID" type="xs:string"/>
    <!--
    =====================================================================
    == Campaign class ==
    ======================================================================
-->
    <xs:element name="Campaign">
        <xs:complexType>
            <xs:sequence>
                <xs:choice>
                    <xs:sequence>
                            <xs:element ref="iodef:CampaignID"/>
                            <xs:element ref="iodef:Description"
                            minOccurs="0" max0ccurs="unbounded"/>
                        </xs:sequence>
                        <xs:element ref="iodef:Description"
                            min0ccurs="1" max0ccurs="unbounded"/>
                </xs:choice>
                <xs:element ref="iodef:AdditionalData"
                            minOccurs="0" maxOccurs="unbounded"/>
            </xs:sequence>
            <xs:attribute name="restriction"
                            type="iodef:restriction-type"/>
    ```
```

        </xs:complexType>
    </xs:element>
    <xs:element name="CampaignID" type="xs:string"/>
    <!--
    =======================================================================
    == AdditionalData class ==
    =====================================================================
-->
    <xs:element name="AdditionalData" type="iodef:ExtensionType"/>
    <!--
    ======================================================================
    == Contact class ==
=====================================================================
-->
    <xs:element name="Contact">
        <xs:complexType>
            <xs:sequence>
                <xs:element ref="iodef:ContactName"
                            minOccurs="0"/>
                <xs:element ref="iodef:ContactTitle"
                            minOccurs="0"/>
                <xs:element ref="iodef:Description"
                            minOccurs="0" maxOccurs="unbounded"/>
                <xs:element ref="iodef:RegistryHandle"
                    minOccurs="0" maxOccurs="unbounded"/>
                <xs:element ref="iodef:PostalAddress"
                            minOccurs="0"/>
                <xs:element ref="iodef:Email"
                            min0ccurs="0" max0ccurs="unbounded"/>
                <xs:element ref="iodef:Telephone"
                    minOccurs="0" maxOccurs="unbounded"/>
                <xs:element ref="iodef:Fax"
                            min0ccurs="0"/>
                <xs:element ref="iodef:Timezone"
                    minOccurs="0"/>
                <xs:element ref="iodef:Contact"
                    minOccurs="0" max0ccurs="unbounded"/>
                <xs:element ref="iodef:AdditionalData"
                    minOccurs="0" maxOccurs="unbounded"/>
            </xs:sequence>
            <xs:attribute name="role" use="required">
                <xs:simpleType>
                    <xs:restriction base="xs:NMTOKEN">
                    <xs:enumeration value="creator"/>
                    <xs:enumeration value="admin"/>
                    <xs:enumeration value="tech"/>
    ```
```

                    <xs:enumeration value="irt"/>
                    <xs:enumeration value="cc"/>
                    <xs:enumeration value="ext-value"/>
                    </xs:restriction>
        </xs:simpleType>
        </xs:attribute>
        <xs:attribute name="ext-role"
                            type="xs:string" use="optional"/>
        <xs:attribute name="type" use="required">
        <xs:simpleType>
            <xs:restriction base="xs:NMTOKEN">
                    <xs:enumeration value="person"/>
                    <xs:enumeration value="organization"/>
                    <xs:enumeration value="ext-value"/>
            </xs:restriction>
        </xs:simpleType>
    </xs:attribute>
    <xs:attribute name="ext-type"
                            type="xs:string" use="optional"/>
    <xs:attribute name="restriction"
                            type="iodef:restriction-type"/>
    </xs:complexType>
    </Xs:element>
<xs:element name="ContactName"
type="iodef:MLStringType"/>
<xs:element name="ContactTitle"
type="iodef:MLStringType"/>
<xs:element name="RegistryHandle">
[xs:complexType](xs:complexType)
[xs:simpleContent](xs:simpleContent)
<xs:extension base="xs:string">
<xs:attribute name="registry">
[xs:simpleType](xs:simpleType)
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="internic"/>
<xs:enumeration value="apnic"/>
<xs:enumeration value="arin"/>
<xs:enumeration value="lacnic"/>
<xs:enumeration value="ripe"/>
<xs:enumeration value="afrinic"/>
<xs:enumeration value="local"/>
<xs:enumeration value="ext-value"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="ext-registry"
type="xs:string" use="optional"/>
</xs:extension>

```
```

            </xs:simpleContent>
        </xs:complexType>
    </xs:element>
    <xs:element name="PostalAddress">
        <xs:complexType>
            <xs:simpleContent>
                        <xs:extension base="iodef:MLStringType">
                        <xs:attribute name="meaning"
                                    type="xs:string" use="optional"/>
                    </xs:extension>
            </xs:simpleContent>
        </xs:complexType>
    </xs:element>
    <xs:element name="Email" type="iodef:ContactMeansType"/>
    <xs:element name="Telephone" type="iodef:ContactMeansType"/>
    <xs:element name="Fax" type="iodef:ContactMeansType"/>
    <xs:complexType name="ContactMeansType">
        <xs:simpleContent>
            <xs:extension base="xs:string">
                <xs:attribute name="meaning"
                type="xs:string" use="optional"/>
            </xs:extension>
        </xs:simpleContent>
    </xs:complexType>
    <!--
    =======================================================================
    == Time-based classes ==
    =====================================================================
-->
    <xs:element name="DateTime"
    type="xs:dateTime"/>
    <xs:element name="ReportTime"
                            type="xs:dateTime"/>
    <xs:element name="DetectTime"
                            type="xs:dateTime"/>
    <xs:element name="StartTime"
                            type="xs:dateTime"/>
    <xs:element name="EndTime"
                            type="xs:dateTime"/>
    <xs:element name="Timezone"
                            type="iodef:TimezoneType"/>
    <xs:simpleType name="TimezoneType">
        <xs:restriction base="xs:string">
            <xs:pattern value="Z|[\+\-](0[0-9]|1[0-4]):[0-5][0-9]"/>
        </xs:restriction>
    ```
```

    </xs:simpleType>
    <!--
    ======================================================================
    == History class ==
    ======================================================================
-->
    <xs:element name="History">
        <xs:complexType>
            <xs:sequence>
            <xs:element ref="iodef:HistoryItem"
                            maxOccurs="unbounded"/>
            </xs:sequence>
            <xs:attribute name="restriction"
                                    type="iodef:restriction-type"
                                    default="default"/>
        </xs:complexType>
    </xs:element>
    <xs:element name="HistoryItem">
        <xs:complexType>
            <xs:sequence>
                <xs:element ref="iodef:DateTime"/>
            <xs:element ref="iodef:IncidentID"
                            minOccurs="0"/>
            <xs:element ref="iodef:Contact"
                    minOccurs="0"/>
            <xs:element ref="iodef:Description"
                        minOccurs="0" max0ccurs="unbounded"/>
            <xs:element ref="iodef:AdditionalData"
                    minOccurs="0" max0ccurs="unbounded"/>
        </xs:sequence>
        <xs:attribute name="restriction"
                            type="iodef:restriction-type"/>
        <xs:attribute name="action"
                            type="iodef:action-type" use="required"/>
        <xs:attribute name="ext-action"
        type="xs:string" use="optional"/>
        <!-- CHANGE: Including a unique ID for indicators, may be
            used to connect indicators in different representations
            -->
            <xs:attribute name="indicator-uid"
            type="xs:string" use="optional"/>
            <!-- CHANGE: Including an indicator set ID that may be used
                to detail changes int he history class as it relates to
                indicators or sets.
            -->
            <xs:attribute name="indicator-set-id"
                type="xs:string" use="optional"/>
        </xs:complexType>
    ```
```

    </xs:element>
    <!--
    =====================================================================
    == Expectation class ==
    =====================================================================
-->
    <xs:element name="Expectation">
        <xs:complexType>
            <xs:sequence>
                    <xs:element ref="iodef:Description"
                            minOccurs="0" max0ccurs="unbounded"/>
            <xs:element ref="iodef:StartTime"
                        minOccurs="0"/>
            <xs:element ref="iodef:EndTime"
                    minOccurs="0"/>
            <xs:element ref="iodef:Contact"
                    minOccurs="0"/>
            </xs:sequence>
            <xs:attribute name="restriction"
                        type="iodef:restriction-type"
                        default="default"/>
            <xs:attribute name="severity"
                    type="iodef:severity-type"/>
            <xs:attribute name="action"
                    type="iodef:action-type" default="other"/>
            <xs:attribute name="ext-action"
            type="xs:string" use="optional"/>
            <!-- CHANGE - adding indicator set id to connect the
                reference to the appropriate set of indicators -->
            <xs:attribute name="indicator-set-id"
            type="xs:string" use="optional"/>
            <!-- CHANGE: Including a unique ID for indicators, may be
                    used to connect indicators in different representations
            -->
            <xs:attribute name="indicator-uid"
                    type="xs:string" use="optional"/>
        </xs:complexType>
    </xs:element>
    <!--
    ======================================================================
    == Method class ==
=====================================================================
-->
    <xs:element name="Method">
        <xs:complexType>
            <xs:sequence>
                <xs:choice maxOccurs="unbounded">
                    <xs:element ref="iodef:Reference"/>
    ```
```

            <xs:element ref="iodef:Description"/>
            </xs:choice>
            <xs:element ref="iodef:AdditionalData"
                        minOccurs="0" max0ccurs="unbounded"/>
                </xs:sequence>
                <xs:attribute name="restriction"
                            type="iodef:restriction-type"/>
        </xs:complexType>
    </xs:element>
    <!--
    =====================================================================
    == Reference class ==
=====================================================================
-->
    <xs:element name="Reference">
        <xs:complexType>
            <xs:sequence>
                <xs:element name="ReferenceName"
                            type="iodef:MLStringType"/>
                <xs:element ref="iodef:URL"
                            minOccurs="0" max0ccurs="unbounded"/>
                <xs:element ref="iodef:Description"
                    minOccurs="0" maxOccurs="unbounded"/>
            </xs:sequence>
            <!-- CHANGE: Do we want an indicator_set_id here to connect
                    data in the reference class to specific indicators?
                    is there a better way to do this?
                    Should the indicator_uid be used to mark data so that
                        you have a way to limit who you share that data with
                        in products?
            -->
            <xs:attribute name="indicator-set-id"
            type="xs:string" use="optional"/>
            <!-- CHANGE: Including a unique ID for indicators, may be
                used to connect indicators in different representations
            -->
            <xs:attribute name="indicator-uid"
            type="xs:string" use="optional"/>
            <!-- Adding in Attack Type -->
            <xs:attribute name="attacktype" type="att-type"
                        use="required">
            </xs:attribute>
            <xs:attribute name="ext-attacktype"
                type="xs:string" use="optional"/>
        </xs:complexType>
    </xs:element>
    <!--
```
```
======================================================================
== Assessment class ==
========================================================================
-->
    <xs:element name="Assessment">
        <xs:complexType>
            <xs:sequence>
            <xs:choice maxOccurs="unbounded">
                    <xs:element ref="iodef:Impact"/>
                    <xs:element ref="iodef:TimeImpact"/>
                    <xs:element ref="iodef:MonetaryImpact"/>
            </xs:choice>
            <xs:element ref="iodef:Counter"
                        minOccurs="0" maxOccurs="unbounded"/>
            <xs:element ref="iodef:Confidence" minOccurs="0"/>
            <xs:element ref="iodef:AdditionalData"
                    minOccurs="0" maxOccurs="unbounded"/>
        </xs:sequence>
        <xs:attribute name="occurrence">
            <xs:simpleType>
                    <xs:restriction base="xs:NMTOKEN">
                        <xs:enumeration value="actual"/>
                        <xs:enumeration value="potential"/>
                    </xs:restriction>
            </xs:simpleType>
        </xs:attribute>
        <xs:attribute name="restriction"
        type="iodef:restriction-type"/>
            <!-- CHANGE: Including an indicator set ID for indicators,
                may be used to connect indicators in different
                representations
            -->
            <xs:attribute name="indicator-set-id"
            type="xs:string" use="optional"/>
            <!-- CHANGE: Including a unique ID for indicators, may be
                    used to connect indicators in different representations.
                May need separate confidence ratings for different
                indicators.
            -->
            <xs:attribute name="indicator-uid"
                type="xs:string" use="optional"/>
        </xs:complexType>
    </xs:element>
    <xs:element name="Impact">
        <xs:complexType>
            <xs:simpleContent>
                <xs:extension base="iodef:MLStringType">
                    <xs:attribute name="severity"
    ```
```

                                    type="iodef:severity-type"/>
            <xs:attribute name="completion">
                        <xs:simpleType>
                        <xs:restriction base="xs:NMTOKEN">
                        <xs:enumeration value="failed"/>
                        <xs:enumeration value="succeeded"/>
                        </xs:restriction>
                        </xs:simpleType>
                </xs:attribute>
                <xs:attribute name="type"
                            use="optional" default="unknown">
                        <xs:simpleType>
                        <xs:restriction base="xs:NMTOKEN">
                            <!-- CHANGE question: do we want to allow multiple
                            values to be selected in case it is a combination?
                -->
                        <xs:enumeration value="admin"/>
                        <xs:enumeration value="dos"/>
                        <xs:enumeration value="extortion"/>
                        <xs:enumeration value="file"/>
                        <xs:enumeration value="info-leak"/>
                        <xs:enumeration value="misconfiguration"/>
                        <xs:enumeration value="recon"/>
                        <xs:enumeration value="policy"/>
                            <xs:enumeration value="social-engineering"/>
                        <xs:enumeration value="user"/>
                            <xs:enumeration value="unknown"/>
                        <xs:enumeration value="ext-value"/>
                </xs:restriction>
                        </xs:simpleType>
                </xs:attribute>
                <xs:attribute name="ext-type"
                        type="xs:string" use="optional"/>
            </xs:extension>
        </xs:simpleContent>
    </xs:complexType>
    </xs:element>
<xs:element name="TimeImpact">
[xs:complexType](xs:complexType)
[xs:simpleContent](xs:simpleContent)
<xs:extension base="iodef:PositiveFloatType">
<xs:attribute name="severity"
type="iodef:severity-type"/>
<xs:attribute name="metric"
use="required">
[xs:simpleType](xs:simpleType)
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="labor"/>

```
```

                    <xs:enumeration value="elapsed"/>
                    <xs:enumeration value="downtime"/>
                    <xs:enumeration value="ext-value"/>
                        </xs:restriction>
                        </xs:simpleType>
                </xs:attribute>
                <xs:attribute name="ext-metric"
                            type="xs:string" use="optional"/>
            <xs:attribute name="duration"
                        type="iodef:duration-type"/>
                    <xs:attribute name="ext-duration"
                            type="xs:string" use="optional"/>
                </xs:extension>
            </xs:simpleContent>
        </xs:complexType>
    </xs:element>
    <xs:element name="MonetaryImpact">
        <xs:complexType>
            <xs:simpleContent>
                    <xs:extension base="iodef:PositiveFloatType">
                        <xs:attribute name="severity"
                            type="iodef:severity-type"/>
                            <xs:attribute name="currency"
                            type="xs:string"/>
            </xs:extension>
            </xs:simpleContent>
        </xs:complexType>
    </xs:element>
    <xs:element name="Confidence">
        <xs:complexType mixed="true">
            <xs:attribute name="rating" use="required">
                <xs:simpleType>
                    <xs:restriction base="xs:NMTOKEN">
                        <xs:enumeration value="low"/>
                        <xs:enumeration value="medium"/>
                        <xs:enumeration value="high"/>
                            <xs:enumeration value="numeric"/>
                            <xs:enumeration value="unknown"/>
                    </xs:restriction>
            </xs:simpleType>
            </xs:attribute>
        </xs:complexType>
    </xs:element>
    <!--
```

```
    == EventData class
                                    ==
=====================================================================
-->
```
```

    <xs:element name="EventData">
        <xs:complexType>
            <xs:sequence>
            <xs:element ref="iodef:Description"
                            minOccurs="0" max0ccurs="unbounded"/>
            <xs:element ref="iodef:DetectTime"
                            minOccurs="0"/>
            <xs:element ref="iodef:StartTime"
                    minOccurs="0"/>
            <xs:element ref="iodef:EndTime"
                    minOccurs="0"/>
            <xs:element ref="iodef:Contact"
                    minOccurs="0" maxOccurs="unbounded"/>
            <xs:element ref="iodef:Assessment"
                    minOccurs="0"/>
                <xs:element ref="iodef:Method"
                    minOccurs="0" max0ccurs="unbounded"/>
                <xs:element ref="iodef:Flow"
                    minOccurs="0" max0ccurs="unbounded"/>
            <xs:element ref="iodef:Expectation"
                    minOccurs="0" max0ccurs="unbounded"/>
            <xs:element ref="iodef:Record"
                    minOccurs="0"/>
                <xs:element ref="iodef:EventData"
                    minOccurs="0" maxOccurs="unbounded"/>
                <xs:element ref="iodef:AdditionalData"
                    minOccurs="0" maxOccurs="unbounded"/>
            </xs:sequence>
            <xs:attribute name="restriction"
            type="iodef:restriction-type" default="default"/>
            <!-- CHANGE - added attribute to mark sets of indicators -->
            <xs:attribute name="indicator-set-id"
                type="xs:string" use="optional"/>
    </xs:complexType>
    </xs:element>
    <!--
```

```
== Flow class ==
=======================================================================
-->
<!-- Added System unbounded for use only when the source or target watchlist is in use, otherwise only one system entry is expected.
        -->
    <xs:element name="Flow">
        <xs:complexType>
            <xs:sequence>
    ```
```

            <xs:element ref="iodef:System"
                        maxOccurs="unbounded"/>
            </xs:sequence>
        </xs:complexType>
    </xs:element>
    <!--
    ======================================================================
    == System class ==
    =====================================================================
-->
    <xs:element name="System">
        <xs:complexType>
                <xs:sequence>
                    <xs:element ref="iodef:Node" maxOccurs="unbounded"/>
                    <xs:element ref="iodef:Service"
                            minOccurs="0" maxOccurs="unbounded"/>
                    <xs:element ref="iodef:OperatingSystem"
                            minOccurs="0" maxOccurs="unbounded"/>
                    <xs:element ref="iodef:Counter"
                            minOccurs="0" max0ccurs="unbounded"/>
                    <xs:element name="AssetID" type="xs:string"
                            minOccurs="0" maxOccurs="unbounded"/>
                    <xs:element ref="iodef:Description"
                    minOccurs="0" max0ccurs="unbounded"/>
                    <xs:element ref="iodef:AdditionalData"
                    min0ccurs="0" max0ccurs="unbounded"/>
                </xs:sequence>
                <xs:attribute name="restriction"
                    type="iodef:restriction-type"/>
                <xs:attribute name="interface"
                    type="xs:string"/>
                <xs:attribute name="category">
                <xs:simpleType>
                    <xs:restriction base="xs:NMTOKEN">
                        <xs:enumeration value="source"/>
                        <xs:enumeration value="target"/>
                        <!-- CHANGE - adding two new values to cover
                        watchlist groups -->
                    <xs:enumeration value="watchlist-source"/>
                    <xs:enumeration value="watchlist-target"/>
                    <xs:enumeration value="intermediate"/>
                        <xs:enumeration value="sensor"/>
                        <xs:enumeration value="infrastructure"/>
                        <xs:enumeration value="ext-value"/>
                        </xs:restriction>
            </xs:simpleType>
        </xs:attribute>
        <xs:attribute name="ext-category"
    ```
```

                type="xs:string" use="optional"/>
                <!-- CHANGE - adding an attribute to mark sets of
                    indicators -->
                <xs:attribute name="indicator-set-id"
                            type="xs:string" use="optional"/>
                <xs:attribute name="spoofed"
                    default="unknown">
                <xs:simpleType>
                        <xs:restriction base="xs:NMTOKEN">
                        <xs:enumeration value="unknown"/>
                        <xs:enumeration value="yes"/>
                        <xs:enumeration value="no"/>
                    </xs:restriction>
                    </xs:simpleType>
                </xs:attribute>
                <xs:attribute name="virtual" type="yes-no-type"
                    use="optional" default="no"/>
                <xs:attribute name="ownership">
                    <xs:simpleType>
                    <xs:restriction base="xs:NMTOKEN">
                        <xs:enumeration value="organization"/>
                        <xs:enumeration value="personal"/>
                        <xs:enumeration value="partner"/>
                        <xs:enumeration value="customer"/>
                        <xs:enumeration value="no-relationship"/>
                        <xs:enumeration value="unknown"/>
                        <xs:enumeration value="ext-value"/>
                </xs:restriction>
            </xs:simpleType>
                </xs:attribute>
                <xs:attribute name="ext-ownership"
                    type="xs:string" use="optional"/>
        </xs:complexType>
    </xs:element>
    <!--
    =====================================================================
    == Node class ==
    =======================================================================
-->
    <xs:element name="Node">
        <xs:complexType>
            <xs:sequence>
            <xs:choice maxOccurs="unbounded">
            <xs:element name="NodeName"
                        type="iodef:MLStringType" minOccurs="0"/>
            <!-- CHANGE - added DomainData class and subclasses from
                    RFC5901 -->
            <xs:element ref="iodef:DomainData" minOccurs="0"
    ```
```

                    max0ccurs="unbounded"/>
            <xs:element ref="iodef:Address"
                    minOccurs="0" max0ccurs="unbounded"/>
                    <!-- Proposed CHANGE: include a URI indicator.
                        Common complaint that URIs were only in the
                        IODEF schema as references and not part of the
                        incident or included indicators.
                        Included right now as an address type, below is a
                        second option for how to add it.
                <xs:element ref="iodef:URL"
                    min0ccurs="0" max0ccurs="unbounded"/>
                    -->
            </xs:choice>
            <xs:element ref="iodef:Location"
                                    minOccurs="0"/>
            <xs:element ref="iodef:DateTime"
                    minOccurs="0"/>
            <xs:element ref="iodef:NodeRole"
                    min0ccurs="0" max0ccurs="unbounded"/>
                    <xs:element ref="iodef:Counter"
                    minOccurs="0" max0ccurs="unbounded"/>
        </xs:sequence>
    </xs:complexType>
    </xs:element>
<xs:element name="Address">
[xs:complexType](xs:complexType)
[xs:simpleContent](xs:simpleContent)
<xs:extension base="xs:string">
<xs:attribute name="category" default="ipv4-addr">
[xs:simpleType](xs:simpleType)
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="asn"/>
<xs:enumeration value="atm"/>
<xs:enumeration value="e-mail"/>
<xs:enumeration value="mac"/>
<xs:enumeration value="ipv4-addr"/>
<xs:enumeration value="ipv4-net"/>
<xs:enumeration value="ipv4-net-mask"/>
<xs:enumeration value="ipv6-addr"/>
<xs:enumeration value="ipv6-net"/>
<xs:enumeration value="ipv6-net-mask"/>
<!-- CHANGE - added uri type for site url/uris -->
<xs:enumeration value="site-uri"/>
<xs:enumeration value="ext-value"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>

```
```

            <xs:attribute name="ext-category"
                    type="xs:string" use="optional"/>
                    <xs:attribute name="vlan-name"
                            type="xs:string"/>
                    <xs:attribute name="vlan-num"
                            type="xs:integer"/>
        <!-- CHANGE: Including a unique ID for indicators, may be
            used to connect indicators in different representations
        -->
            <xs:attribute name="indicator-uid"
                            type="xs:string" use="optional"/>
            </xs:extension>
        </xs:simpleContent>
    </xs:complexType>
    </xs:element>
<xs:element name="Location" type="iodef:MLStringType"/>
<xs:element name="NodeRole">
[xs:complexType](xs:complexType)
[xs:simpleContent](xs:simpleContent)
<xs:extension base="iodef:MLStringType">
<xs:attribute name="category" use="required">
[xs:simpleType](xs:simpleType)
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="client"/>
<xs:enumeration value="client-enterprise"/>
<xs:enumeration value="client-partner"/>
<xs:enumeration value="client-remote"/>
<xs:enumeration value="client-kiosk"/>
<xs:enumeration value="client-mobile"/>
<xs:enumeration value="server-internal"/>
<xs:enumeration value="server-public"/>
<xs:enumeration value="www"/>
<xs:enumeration value="mail"/>
<xs:enumeration value="messaging"/>
<xs:enumeration value="streaming"/>
<xs:enumeration value="voice"/>
<xs:enumeration value="file"/>
<xs:enumeration value="ftp"/>
<xs:enumeration value="p2p"/>
<xs:enumeration value="name"/>
<xs:enumeration value="directory"/>
<xs:enumeration value="credential"/>
<xs:enumeration value="print"/>
<xs:enumeration value="application"/>
<xs:enumeration value="database"/>
<xs:enumeration value="backup"/>
<xs:enumeration value="dhcp"/>

```
```

                    <xs:enumeration value="infra"/>
                        <xs:enumeration value="infra-firewall"/>
                                    <xs:enumeration value="infra-router"/>
                                    <xs:enumeration value="infra-switch"/>
                                    <xs:enumeration value="camera"/>
                                    <xs:enumeration value="proxy"/>
                                    <xs:enumeration value="remote-access"/>
                                    <xs:enumeration value="log"/>
                                    <xs:enumeration value="virtualization"/>
                                    <xs:enumeration value="pos"/>
                                    <xs:enumeration value="scada"/>
                                    <xs:enumeration value="scada-supervisory"/>
                                    <xs:enumeration value="ext-value"/>
                                    </xs:restriction>
                                    </xs:simpleType>
                    </xs:attribute>
                    <xs:attribute name="ext-category"
                    type="xs:string" use="optional"/>
                    <xs:attribute name="attacktype" type="att-type"
                        use="optional"/>
                </xs:extension>
                </xs:simpleContent>
            </xs:complexType>
        </xs:element>
    <!--
    == Service Class ==
    =====================================================================
    -->
<xs:element name="Service">
[xs:complexType](xs:complexType)
[xs:sequence](xs:sequence)
<xs:choice minOccurs="0">
<xs:element name="Port"
type="xs:integer"/>
<xs:element name="Portlist"
type="iodef:PortlistType"/>
</xs:choice>
<xs:element name="ProtoType"
type="xs:integer" min0ccurs="0"/>
<xs:element name="ProtoCode"
type="xs:integer" min0ccurs="0"/>
<xs:element name="ProtoField"
type="xs:integer" min0ccurs="0"/>
<xs:element ref="iodef:Application"
minOccurs="0"/>

<!-- CHANGE - email from address indicator, may be better as a sub
```
```
                    class? Would only make sense with the service set to
                    email ports or none at all here or a new class. -->
            <xs:element ref="Email" minOccurs="0"/>
            <xs:element name="EmailSubject"
                        type="iodef:MLStringType" minOccurs="0"/>
            <xs:element name="X-Mailer"
                            type="iodef:MLStringType" minOccurs="0"/>
            <xs:element name="EmailInfo"
                    type="EmailDetails" minOccurs="0"/>
            <!-- CHANGE - added DomainData class and subclasses from
                    RFC5901 -->
            <xs:element ref="iodef:DomainData" min0ccurs="0"
                    max0ccurs="unbounded"/>
            </xs:sequence>
            <xs:attribute name="ip_protocol"
            type="xs:integer" use="required"/>
            <!-- CHANGE: Including a unique ID for indicators, may be
                    used to connect indicators in different representations
            -->
            <xs:attribute name="indicator-uid"
            type="xs:string" use="optional"/>
            <!-- CHANGE: Including an indicator set ID that may be used
                to detail changes int he history class as it relates to
                    indicators or sets.
            -->
            <xs:attribute name="indicator-set-id"
                type="xs:string" use="optional"/>
        </xs:complexType>
    </xs:element>
    <xs:simpleType name="PortlistType">
            <xs:restriction base="xs:string">
                <xs:pattern value="\d+(\-\d+)?(,\d+(\-\d+)?)*"/>
        </xs:restriction>
    </xs:simpleType>
    <!--
    =====================================================================
    == Counter class ==
```

```
-->
    <xs:element name="Counter">
        <xs:complexType>
            <xs:simpleContent>
            <xs:extension base="xs:double">
                    <xs:attribute name="type" use="required">
                    <xs:simpleType>
                        <xs:restriction base="xs:NMTOKEN">
                        <xs:enumeration value="byte"/>
                        <xs:enumeration value="packet"/>
    ```
```

                    <xs:enumeration value="flow"/>
                                    <xs:enumeration value="session"/>
                                    <xs:enumeration value="event"/>
                                    <xs:enumeration value="alert"/>
                                    <xs:enumeration value="message"/>
                                    <xs:enumeration value="host"/>
                                    <xs:enumeration value="site"/>
                                    <xs:enumeration value="organization"/>
                                    <xs:enumeration value="ext-value"/>
                                    </xs:restriction>
                                    </xs:simpleType>
                </xs:attribute>
                    <xs:attribute name="ext-type"
                            type="xs:string" use="optional"/>
                            <xs:attribute name="meaning"
                    type="xs:string" use="optional"/>
                    <xs:attribute name="duration"
                    type="iodef:duration-type"/>
                    <xs:attribute name="ext-duration"
                    type="xs:string" use="optional"/>
                </xs:extension>
                </xs:simpleContent>
        </xs:complexType>
    </xs:element>
    <!--
    ======================================================================
    == EMailDetails class ==
    =====================================================================
-->
    <!-- CHANGE: added the email details in a subclass for use when
        you do not need all of the email details provided in the
        RFC5901 or ARF extensions. No extension mechanism here, is it
        needed? Possible to create an IANA table to extend this class
        if needed in the future outside of schema edit cycles -->
        <xs:complexType name="EmailDetails">
            <xs:sequence>
    <!-- Email is the From email -->
    <xs:element ref="Email" minOccurs="0"/>
    <xs:element name="EmailSubject"
            type="iodef:MLStringType" minOccurs="0"/>
    <xs:element name="X-Mailer"
    type="iodef:MLStringType" minOccurs="0"/>
        </xs:sequence>
        <xs:attribute name="indicator-uid"
            type="xs:string" use="optional"/>
    </xs:complexType>
    ```
```

<!--
    =====================================================================
    == DomainData class - from RFC5901 ==
    =======================================================================
-->
<xs:element name="DomainData">
<xs:complexType id="DomainData.type">
[xs:sequence](xs:sequence)
<xs:element maxOccurs="1"
name="Name" type="iodef:MLStringType"/>
<xs:element maxOccurs="1" minOccurs="0"
name="DateDomainWasChecked" type="xs:dateTime"/>
<xs:element name="RegistrationDate"
type="xs:dateTime" maxOccurs="1" minOccurs="0"/>
<xs:element maxOccurs="1" minOccurs="0" name="ExpirationDate"
type="xs:dateTime"/>
<xs:element name="RelatedDNS"
type="iodef:RelatedDNSEntryType"
max0ccurs="unbounded" min0ccurs="0" />
<xs:element name="Nameservers"
maxOccurs="unbounded" minOccurs="0">
<xs:complexType id="Nameservers.type">
[xs:sequence](xs:sequence)
<xs:element name="Server" type="iodef:MLStringType"/>
<xs:element ref="iodef:Address" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:choice id="DomainContacts" maxOccurs="1" minOccurs="0">
<xs:element name="SameDomainContact"
type="iodef:MLStringType"/>
[xs:sequence](xs:sequence)
<xs:element maxOccurs="unbounded" minOccurs="1"
ref="iodef:Contact"/>
</xs:sequence>
</xs:choice>
</xs:sequence>
<xs:attribute name="SystemStatus">
<xs:simpleType id="SystemStatus.type">
<xs:restriction base="xs:string">
<xs:enumeration value="spoofed"/>
<xs:enumeration value="fraudulent"/>
<xs:enumeration value="innocent-hacked"/>
<xs:enumeration value="innocent-hijacked"/>
<xs:enumeration value="unknown"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>

```
```

        <xs:attribute name="DomainStatus">
            <xs:simpleType id="DomainStatus.type">
                <xs:restriction base="xs:string">
                        <xs:enumeration value="reservedDelegation"/>
                <xs:enumeration value="assignedAndActive"/>
                <xs:enumeration value="assignedAndInactive"/>
                <xs:enumeration value="assignedAndOnHold"/>
                <xs:enumeration value="revoked"/>
                <xs:enumeration value="transferPending"/>
                <xs:enumeration value="registryLock"/>
                <xs:enumeration value="registrarLock"/>
                <xs:enumeration value="other"/>
                <xs:enumeration value="unknown"/>
                </xs:restriction>
            </xs:simpleType>
        </xs:attribute>
    </xs:complexType>
    </xs:element>
<xs:element name="RelatedDNS"
type="iodef:RelatedDNSEntryType"/>
<xs:complexType name="RelatedDNSEntryType">
[xs:simpleContent](xs:simpleContent)
<xs:extension base="xs:string">
<xs:attribute name="RecordType" use="optional">
[xs:simpleType](xs:simpleType)
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="A"/>
<xs:enumeration value="AAAA"/>
<xs:enumeration value="AFSDB"/>
<xs:enumeration value="APL"/>
<xs:enumeration value="AXFR"/>
<xs:enumeration value="CAA"/>
<xs:enumeration value="CERT"/>
<xs:enumeration value="CNAME"/>
<xs:enumeration value="DHCID"/>
<xs:enumeration value="DLV"/>
<xs:enumeration value="DNAME"/>
<xs:enumeration value="DNSKEY"/>
<xs:enumeration value="DS"/>
<xs:enumeration value="HIP"/>
<xs:enumeration value="IXFR"/>
<xs:enumeration value="IPSECKEY"/>
<xs:enumeration value="LOC"/>
<xs:enumeration value="MX"/>
<xs:enumeration value="NAPTR"/>
<xs:enumeration value="NS"/>
<xs:enumeration value="NSEC"/>

```
```

                    <xs:enumeration value="NSEC3"/>
                    <xs:enumeration value="NSEC3PARAM"/>
                    <xs:enumeration value="OPT"/>
                    <xs:enumeration value="PTR"/>
                    <xs:enumeration value="RRSIG"/>
                    <xs:enumeration value="RP"/>
                    <xs:enumeration value="SIG"/>
                    <xs:enumeration value="SOA"/>
                    <xs:enumeration value="SPF"/>
                    <xs:enumeration value="SRV"/>
                    <xs:enumeration value="SSHFP"/>
                    <xs:enumeration value="TA"/>
                    <xs:enumeration value="TKEY"/>
                    <xs:enumeration value="TLSA"/>
                    <xs:enumeration value="TSIG"/>
                    <xs:enumeration value="TXT"/>
                    <xs:enumeration value="ext-value"/>
                </xs:restriction>
            </xs:simpleType>
        </xs:attribute>
        <xs:attribute name="ext-category"
        type="xs:string" use="optional"/>
        </xs:extension>
    </xs:simpleContent>
    </xs:complexType>

<!--
    =====================================================================
    == Record class ==
ニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ=
-->
    <xs:element name="Record">
        <xs:complexType>
            <xs:sequence>
                <xs:element ref="iodef:RecordData"
                    maxOccurs="unbounded"/>
            </xs:sequence>
            <xs:attribute name="restriction"
                            type="iodef:restriction-type"/>
        </xs:complexType>
    </xs:element>
    <xs:element name="RecordData">
        <xs:complexType>
            <xs:sequence>
            <xs:element ref="iodef:DateTime"
                            minOccurs="0"/>
            <xs:element ref="iodef:Description"
                    minOccurs="0" max0ccurs="unbounded"/>
    ```
```

            <xs:element ref="iodef:Application"
                    minOccurs="0"/>
    <xs:element ref="iodef:RecordPattern"
minOccurs="0" max0ccurs="unbounded"/>
<xs:element ref="iodef:RecordItem"
maxOccurs="unbounded"/>
<!-- CHANGE: File name and hash of file indicator
                        information -->
<xs:element name="FileName"
type="iodef:MLStringType" minOccurs="0"/>
<!-- Represent file hash information via digsig schema
                        Reference class -->
<xs:element ref="ds:Reference" minOccurs="0"/>
<!-- CHANGE: Windows Registry Key Modifications:
                        Here, we include the classes from iodef-phish, to
                        prevent the need to pull in the full schema.
                        Ensure reference to RFC5901 Section 5.9.7 remains
                        included in UML description.
            -->
<xs:element name="WindowsRegistryKeysModified"
type="RegistryKeyModified"
min0ccurs="0" max0ccurs="unbounded"/>
<xs:element ref="iodef:AdditionalData"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="restriction"
type="iodef:restriction-type"/>
<!-- CHANGE: Including a unique ID for an indicator.
        -->
<xs:attribute name="indicator-uid"
type="xs:string" use="optional"/>
<!-- CHANGE: Including a unique ID for sets of indicators,
                may be used to connect indicators in different
                representations
        -->
<xs:attribute name="indicator-set-id"
type="xs:string" use="optional"/>
</xs:complexType>
</xs:element>
<xs:element name="RecordPattern">
[xs:complexType](xs:complexType)
[xs:simpleContent](xs:simpleContent)
<xs:extension base="xs:string">
<xs:attribute name="type" use="required">
[xs:simpleType](xs:simpleType)
<xs:restriction base="xs:NMTOKEN">

```
```

                    <xs:enumeration value="regex"/>
                    <xs:enumeration value="binary"/>
                    <xs:enumeration value="xpath"/>
                        <xs:enumeration value="ext-value"/>
                        </xs:restriction>
                    </xs:simpleType>
                </xs:attribute>
                <xs:attribute name="ext-type"
                    type="xs:string" use="optional"/>
                    <xs:attribute name="offset"
                        type="xs:integer" use="optional"/>
                    <xs:attribute name="offsetunit"
                    use="optional" default="line">
                    <xs:simpleType>
                        <xs:restriction base="xs:NMTOKEN">
                        <xs:enumeration value="line"/>
                    <xs:enumeration value="byte"/>
                        <xs:enumeration value="ext-value"/>
                        </xs:restriction>
                    </xs:simpleType>
                </xs:attribute>
                <xs:attribute name="ext-offsetunit"
                                    type="xs:string" use="optional"/>
                    <xs:attribute name="instance"
                                    type="xs:integer" use="optional"/>
                </xs:extension>
            </xs:simpleContent>
        </xs:complexType>
    </xs:element>
    <xs:element name="RecordItem"
            type="iodef:ExtensionType"/>
    <!--
    ======================================================================
    == Class to describe Windows Registry Keys ==
=====================================================================
-->
    <xs:complexType name="RegistryKeyModified">
        <xs:sequence>
            <xs:element name="Key" maxOccurs="unbounded">
                <xs:complexType>
                    <xs:sequence>
                    <!-- Allows for the value to be optional for cases
                        such as, the registry key was deleted -->
                        <xs:element name="KeyName" type="xs:string"/>
                        <xs:element name="Value"
                        type="xs:string" minOccurs="0"/>
            </xs:sequence>
            <xs:attribute name="registryaction">
    ```
```

                    <xs:simpleType>
                        <xs:restriction base="xs:NMTOKEN">
                        <xs:enumeration value="add-key"/>
                        <xs:enumeration value="add-value"/>
                        <xs:enumeration value="delete-key"/>
                        <xs:enumeration value="delete-value"/>
                        <xs:enumeration value="modify-key"/>
                        <xs:enumeration value="modify-value"/>
                        <xs:enumeration value="ext-value"/>
                        </xs:restriction>
                        </xs:simpleType>
                </xs:attribute>
                    <xs:attribute name="ext-category"
                    type="xs:string" use="optional"/>
                    </xs:complexType>
                        </xs:element>
                </xs:sequence>
                    <!-- CHANGE: Including a unique ID for indicators, may be
                    used to connect indicators in different representations
    -->
    <xs:attribute name="indicator-uid"
                                    type="xs:string" use="optional"/>
    <xs:attribute name="indicator-set-id"
                                    type="xs:string" use="optional"/>
        </xs:complexType>
    <!-- CHANGE: Should this be broken out as another class
        for WindowsRegistryKeyModified and add attributes
        for indicator_ID and action - add_value, removes_value, etc.
        as is demonstrated?
-->
<!--
    =======================================================================
    == Classes that describe hash types, file information ==
    == with certificate properties and digital signature info ==
    == provided through the W3C digital signature schema ==
    == so it does not need to be maintained here. ==
    ======================================================================
    -->
    <xs:complexType name="HashSigDetails">
    <xs:sequence>
            <xs:element name="FileName" type="iodef:MLStringType"
                    minOccurs="0" maxOccurs="unbounded"/>
            <xs:element name="FileSize" type="xs:integer"
                    minOccurs="0" maxOccurs="unbounded"/>
    <!-- CHANGE: Represent file hash information via digsig schema
            and the Reference class. You may need any of the other classes
            and in particular the KeyInfo (see RFC3275 sect 4.4.4/4.4.5),
    ```
which has been added. KeyName, KeyValue, SignatureProperties classes may be useful, so Signature was added, but you can use KeyInfo and Reference directly to avoid some bloat. -->
            <xs:element ref="ds:Signature"
                    minOccurs="0" max0ccurs="unbounded"/>
    <xs:element ref="ds:KeyInfo"
                            minOccurs="0" max0ccurs="unbounded"/>
                            <xs:element ref="ds:Reference"
                    minOccurs="0" max0ccurs="unbounded"/>
    <!-- QUESTION: Do we want an AdditionalData here? -->
</xs: sequence>
<xs:attribute name="type" use="optional">
    <xs:simpleType>
            <xs:restriction base="xs:NMTOKEN">
                    <xs:enumeration value="PKI-email-ds"/>
                    <xs:enumeration value="PKI-file-ds"/>
                    <xs:enumeration value="PKI-email-ds-watchlist"/>
                    <xs:enumeration value="PKI-file-ds-watchlist"/>
                    <xs:enumeration value="PGP-email-ds"/>
                    <xs:enumeration value="PGP-file-ds"/>
                    <xs:enumeration value="PGP-email-ds-watchlist"/>
                    <xs:enumeration value="PGP-file-ds-watchlist"/>
                    <xs:enumeration value="file-hash"/>
                    <xs:enumeration value="email-hash"/>
                    <xs:enumeration value="file-hash-watchlist"/>
                    <xs:enumeration value="email-hash-watchlist"/>
                    <!-- QUESTION: Are values needed to differentiate the
                        key information shared when the ds:KeyInfo class
                        is referenced? -->
            <xs:enumeration value="ext-value"/>
        </xs:restriction>
    </xs:simpleType>
    </xs:attribute>
    <xs:attribute name="ext-category"
                            type="xs:string" use="optional"/>
    <!-- Adding a boolean yes/no, 0/1option to indicate if the
    signature or hash is valid -->
    <xs:attribute name="valid" type="xs:boolean" use="optional" />
    <!-- Indicator-uid and indicator-set-id to connect to the
        related file or email indicators outside of this class -->
    <xs:attribute name="indicator-uid"
                            type="xs:string" use="optional"/>
<xs:attribute name="indicator-set-id"
                    type="xs:string" use="optional"/>
<xs:attribute name="restriction"
                    type="iodef:restriction-type"/>
</xs: complexType>
```

<!--
    ======================================================================
    == Classes that describe software ==
    ======================================================================
-->
    <xs:complexType name="SoftwareType">
        <xs:sequence>
            <xs:element ref="iodef:URL"
                            minOccurs="0"/>
        </xs:sequence>
        <xs:attribute name="swid"
                            type="xs:string" default="0"/>
        <xs:attribute name="configid"
                            type="xs:string" default="0"/>
        <xs:attribute name="vendor"
                    type="xs:string"/>
        <xs:attribute name="family"
                            type="xs:string"/>
        <xs:attribute name="name"
                    type="xs:string"/>
        <!-- CHANGE: Should UserAgent or HTTPUserAgent fit in
            SoftwareTypes? This is typically intended to mean
            servers, but the category seems more appropriate
            than others.
        -->
        <xs:attribute name="user-agent"
                            type="xs:string"/>
        <xs:attribute name="version"
                            type="xs:string"/>
        <xs:attribute name="patch"
                            type="xs:string"/>
    </xs:complexType>
    <xs:element name="Application"
                        type="iodef:SoftwareType"/>
    <xs:element name="OperatingSystem"
                        type="iodef:SoftwareType"/>
    <!--
    ニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ
    == Miscellaneous simple classes ==
=====================================================================
-->
    <xs:element name="Description"
                        type="iodef:MLStringType"/>
    <xs:element name="URL"
    type="xs:anyURI"/>
    <!--
    =====================================================================
```
```
    == Data Types ==
    =====================================================================
-->
    <xs:simpleType name="PositiveFloatType">
        <xs:restriction base="xs:float">
            <xs:minExclusive value="0"/>
        </xs:restriction>
    </xs:simpleType>
    <xs:complexType name="MLStringType">
        <xs:simpleContent>
            <xs:extension base="xs:string">
                <xs:attribute name="lang"
                                    type="xs:language" use="optional"/>
                </xs:extension>
        </xs:simpleContent>
    </xs:complexType>
    <xs:complexType name="ExtensionType" mixed="true">
        <xs:sequence>
            <xs:any namespace="##any" processContents="lax"
                    minOccurs="0" maxOccurs="unbounded"/>
            </xs:sequence>
            <xs:attribute name="dtype"
                    type="iodef:dtype-type" use="required"/>
            <xs:attribute name="ext-dtype"
                    type="xs:string" use="optional"/>
            <xs:attribute name="meaning"
                    type="xs:string"/>
            <xs:attribute name="formatid"
                    type="xs:string"/>
        <xs:attribute name="restriction"
                    type="iodef:restriction-type"/>
    </xs:complexType>
    <!--
    ======================================================================
    == Global attribute type declarations ==
    =====================================================================
-->
    <xs:simpleType name="yes-no-type">
        <xs:restriction base="xs:NMTOKEN">
            <xs:enumeration value="yes"/>
            <xs:enumeration value="no"/>
        </xs:restriction>
    </xs:simpleType>
    <xs:simpleType name="restriction-type">
        <xs:restriction base="xs:NMTOKEN">
            <xs:enumeration value="default"/>
            <xs:enumeration value="public"/>
    ```
```

        <xs:enumeration value="partner"/>
        <xs:enumeration value="need-to-know"/>
        <xs:enumeration value="private"/>
        <xs:enumeration value="white"/>
        <xs:enumeration value="green"/>
        <xs:enumeration value="amber"/>
        <xs:enumeration value="red"/>
    </xs:restriction>
    </xs:simpleType>
<xs:simpleType name="severity-type">
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="low"/>
<xs:enumeration value="medium"/>
<xs:enumeration value="high"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="duration-type">
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="second"/>
<xs:enumeration value="minute"/>
<xs:enumeration value="hour"/>
<xs:enumeration value="day"/>
<xs:enumeration value="month"/>
<xs:enumeration value="quarter"/>
<xs:enumeration value="year"/>
<xs:enumeration value="ext-value"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="action-type">
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="nothing"/>
<xs:enumeration value="contact-source-site"/>
<xs:enumeration value="contact-target-site"/>
<xs:enumeration value="contact-sender"/>
<xs:enumeration value="investigate"/>
<xs:enumeration value="block-host"/>
<xs:enumeration value="block-network"/>
<xs:enumeration value="block-port"/>
<xs:enumeration value="rate-limit-host"/>
<xs:enumeration value="rate-limit-network"/>
<xs:enumeration value="rate-limit-port"/>
<xs:enumeration value="remediate-other"/>
<xs:enumeration value="status-triage"/>
<xs:enumeration value="status-new-info"/>
<xs:enumeration value="watch-and-report"/>
<xs:enumeration value="other"/>

```
```

        <xs:enumeration value="ext-value"/>
    </xs:restriction>
    </xs:simpleType>
    <xs:simpleType name="dtype-type">
        <xs:restriction base="xs:NMTOKEN">
            <xs:enumeration value="boolean"/>
            <xs:enumeration value="byte"/>
            <xs:enumeration value="character"/>
            <xs:enumeration value="date-time"/>
            <xs:enumeration value="integer"/>
            <xs:enumeration value="ntpstamp"/>
            <xs:enumeration value="portlist"/>
            <xs:enumeration value="real"/>
            <xs:enumeration value="string"/>
            <xs:enumeration value="file"/>
            <xs:enumeration value="path"/>
            <xs:enumeration value="frame"/>
            <xs:enumeration value="packet"/>
            <xs:enumeration value="ipv4-packet"/>
            <xs:enumeration value="ipv6-packet"/>
            <xs:enumeration value="url"/>
            <xs:enumeration value="csv"/>
            <xs:enumeration value="winreg"/>
            <xs:enumeration value="xml"/>
            <xs:enumeration value="ext-value"/>
        </xs:restriction>
    </xs:simpleType>
    <xs:simpleType name="att-type">
            <xs:restriction base="xs:NMTOKEN">
                <xs:enumeration value="c2-server"/>
                <xs:enumeration value="sink-hole"/>
                <xs:enumeration value="malware-distribution"/>
                <xs:enumeration value="phishing"/>
                <xs:enumeration value="spear-phishing"/>
                <xs:enumeration value="recruiting"/>
                <xs:enumeration value="fraudulent-site"/>
                <xs:enumeration value="dns-spoof"/>
                <xs:enumeration value="other"/>
                <xs:enumeration value="unknown"/>
                <xs:enumeration value="ext-value"/>
        </xs:restriction>
    </xs:simpleType>
    </xs:schema>

```

\section*{9. Security Considerations}

The IODEF data model itself does not directly introduce security issues. Rather, it simply defines a representation for incident information. As the data encoded by the IODEF might be considered privacy sensitive by the parties exchanging the information or by those described by it, care needs to be taken in ensuring the appropriate disclosure during both document exchange and subsequent processing. The former must be handled by a messaging format, but the latter risk must be addressed by the systems that process, store, and archive IODEF documents and information derived from them.

The contents of an IODEF document may include a request for action or an IODEF parser may independently have logic to take certain actions based on information that it finds. For this reason, care must be taken by the parser to properly authenticate the recipient of the document and ascribe an appropriate confidence to the data prior to action.

The underlying messaging format and protocol used to exchange instances of the IODEF MUST provide appropriate guarantees of confidentiality, integrity, and authenticity. The use of a standardized security protocol is encouraged. The Real-time Internetwork Defense (RID) protocol [18] and its associated transport binding IODEF/RID over SOAP [19] provide such security.

In order to suggest data processing and handling guidelines of the encoded information, the IODEF allows a document sender to convey a privacy policy using the restriction attribute. The various instances of this attribute allow different data elements of the document to be covered by dissimilar policies. While flexible, it must be stressed that this approach only serves as a guideline from the sender, as the recipient is free to ignore it. The issue of enforcement is not a technical problem.

\section*{10. IANA Considerations}

This document uses URNs to describe an XML namespace and schema conforming to a registry mechanism described in [15]

Registration for the IODEF namespace:
o URI: urn:ietf:params:xml:ns:iodef-2.0
o Registrant Contact: See the first author of the "Author's Address" section of this document.
o XML: None. Namespace URIs do not represent an XML specification.

Registration for the IODEF XML schema:
o URI: urn:ietf:params:xml:schema:iodef-2.0
o Registrant Contact: See the first author of the "Author's Address" section of this document.
o XML: See the "IODEF Schema" in Section 8 of this document.

\section*{11. Acknowledgments}

The following groups and individuals, listed alphabetically, contributed substantially to this document and should be recognized for their efforts.
o Patrick Cain, Cooper-Cain Group, Inc.
o The eCSIRT.net Project
o The Incident Object Description and Exchange Format Working-Group of the TERENA task-force (TF-CSIRT)
o Glenn Mansfield Keeni, Cyber Solutions, Inc.
o Hiroyuki Kido, NARA Institute of Science and Technology
o Kathleen Moriarty, EMC Corporation
o Brian Trammell, ETH Zurich
o Jan Meijer, SURFnet bv
o Yuri Demchenko, University of Amsterdam

\section*{12. References}

\subsection*{12.1. Normative References}
[1] World Wide Web Consortium, "Extensible Markup Language (XML) 1.0 (Second Edition)", W3C Recommendation , October 2000, <http://www.w3.org/TR/2000/REC-xml-20001006>.
[2] World Wide Web Consortium, "XML XML Schema Part 1: Structures Second Edition", W3C Recommendation , October 2004, <http://www.w3.org/TR/xmlschema-1/>.
[3] World Wide Web Consortium, "XML Schema Part 2: Datatypes Second Edition", W3C Recommendation , October 2004, <http://www.w3.org/TR/xmlschema-2/>.
[4] World Wide Web Consortium, "Namespaces in XML", W3C Recommendation , January 1999, <http://www.w3.org/TR/REC-xml-names/>.

World Wide Web Consortium, "XML Path Language (XPath) 2.0", W3C Candidate Recommendation , June 2006, <http://www.w3.org/TR/xpath20/>.

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", RFC 2119, March 1997.

Philips, A. and M. Davis, "Tags for Identifying of Languages", RFC 4646, September 2006.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifiers (URI): Generic Syntax", RFC 3986, January 2005`.

Freed, N. and J. Postel, "IANA Charset Registration Procedures", BCP 2978, October 2000.
[10] Sciberras, A., "Schema for User Applications", RFC 4519, June 2006.
[11] Resnick, P., "Internet Message Format", RFC 2822, April 2001.
[12] Klyne, G. and C. Newman, "Date and Time on the Internet: Timestamps", RFC 3339, July 2002.
[13] International Organization for Standardization, "International Standard: Data elements and interchange formats - Information interchange - Representation of dates and times", ISO 8601, Second Edition, December 2000.

International Organization for Standardization, "International Standard: Codes for the representation of currencies and funds, ISO 4217:2001", ISO 4217:2001, August 2001.

Mealling, M., "The IETF XML Registry", RFC 3688, January 2004.

\subsection*{12.2. Informative References}
[16] Keeni, G., Demchenko, Y., and R. Danyliw, "Requirements for the Format for Incident Information Exchange (FINE)", Work in Progress, June 2006.
[17] Debar, H., Curry, D., Debar, H., and B. Feinstein, "Intrusion Detection Message Exchange Format", RFC 4765, March 2007.
[18] Moriarty, K., "Real-time Inter-network Defense", Work in Progress, April 2007.
[19] Moriarty, K. and B. Trammell, "IODEF/RID over SOAP", Work in Progress, April 2007.
[20] Shafranovich, Y., "Common Format and MIME Type for CommaSeparated Values (CSV) File ", RFC 4180, October 2005.

Authors' Addresses

Roman Danyliw
CERT - Software Engineering Institute
Pittsburgh, PA
USA

EMail: rdd@cert.org

Paul Stoecker
RSA
Reston, VA
USA

EMail: paul.stoecker@rsa.com```

