
MIP6 WG S. Chakrabarti
Internet-Draft E. Nordmark
Expires: August 21, 2006 Sun Microsystems
 February 17, 2006

Extension to Sockets API for Mobile IPv6
draft-ietf-mip6-mipext-advapi-07.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 21, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document describes data structures and API support for Mobile
 IPv6 as an extension to the Advanced Socket API for IPv6.

 Just as the Advanced Sockets API for IPv6 gives access to various
 extension headers and the ICMPv6 protocol, this document specifies
 the same level of access for Mobile IPv6 components. It specifies a
 mechanism for applications to retrieve and set information for
 Mobility Header messages, Home Address destination options and

Chakrabarti & Nordmark Expires August 21, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Sockets API for Mobile IPv6 February 2006

 Routing Header Type 2 extension headers. It also specifies the
 common data structures and definitions that might be used by certain
 advanced Mobile IPv6 socket applications.

Table of Contents

1. Introduction . 3
2. Applicability . 5
3. Overview . 6
4. Common Structures and Definitions 7
4.1 The Mobility Header Data Structures 7
4.1.1 The ip6_mh Structure 7
4.1.2 Binding Refresh Request Mobility Message 8
4.1.3 Home Address Test Init (HoTI) Message 8
4.1.4 Care-of Address Test Init (CoTI) Message 8
4.1.5 Home Address Test (HOT) Message 9
4.1.6 Care Of Address Test (COT) Message 9
4.1.7 Binding Update Mobility Message 9
4.1.8 Binding Acknowledgment Mobility Message 10
4.1.9 Binding Error Mobility Message 10
4.1.10 Mobility Option TLV data structure 10
4.1.11 Mobility Option Data Structures 11

4.2 Mobility Header Constants 11
4.3 IPv6 Home Address Destination Option 13
4.4 Type 2 Routing Header 14
4.5 New ICMP Messages for Mobile IPv6 14
4.6 IPv6 Neighbor Discovery Changes 16

 5. Access to Home Address Destination Option and Routing
 Headers . 18

5.1 Routing Header access functions 20
5.2 Content of Type 2 Routing Header 21

 5.3 Order of extension headers for Home Address Destination
 Options . 22

5.4 Home Address Destination Option access functions 22
5.5 Content of Home Address Destination option 23

6. Mobility Protocol Headers 25
6.1 Receiving and Sending Mobility Header Messages 25

7. Protocols File . 27
8. IPv4-Mapped IPv6 Addresses 28
9. Security Considerations 29
10. IANA Considerations . 30
11. Changes from last revisions 31
12. Acknowledgement . 32
13. References . 33
13.1 Normative References 33
13.2 Informative References 33

 Authors' Addresses . 33
 Intellectual Property and Copyright Statements 35

Chakrabarti & Nordmark Expires August 21, 2006 [Page 2]

Internet-Draft Sockets API for Mobile IPv6 February 2006

1. Introduction

 Mobility Support in IPv6 [2] defines a new Mobility Protocol header,
 a Home Address destination option and a new Routing Header type. It
 is expected that Mobile IPv6 user-level implementations and some
 special applications will need to access and process these IPv6
 extension headers. This document is an extension to the existing
 Advanced Sockets API document [1]; it addresses the Advanced IPv6
 Sockets API for these new protocol elements defined by Mobile IPv6.

 The applicability of this API mainly targets user-level applications.
 However, it has also shown to be useful within some Mobile IPv6
 implementations; for instance, where part of the Mobile IPv6 protocol
 is implemented at user-level and part in the kernel. It is up to any
 such implementations to architect which part of the Mobile IPv6 and
 IPSec packet processing should be done at the user-level in order to
 meet the design needs of the particular platform and operating
 system.

 The target user-level applications for this socket API are believed
 to be debugging and diagnostic applications and some policy
 applications which would like to receive copies of protocol
 information at the application layer.

 The packet information along with access to the extension headers
 (Routing header and Destination options) are specified using the
 "ancillary data" fields that were added to the 4.3BSD Reno sockets
 API in 1990. The reason is that these ancillary data fields are part
 of the Posix.1g standard and should therefore be adopted by most
 vendors. This document is consistent with Advanced Sockets API for
 IPv6 [1] in structure definitions, header files and function
 definitions. Thus, the implementors of this API document are assumed
 to be familiar with the data structures, data sending and receiving
 procedures and the IPv6 extension header access funtions described in
 the Advanced Sockets API for IPv6 [1].

 Non-goals

 This document does not address application access to either the
 Authentication Header or the Encapsulating Security Payload header.
 This document also does not address any API that might be necessary
 for Mobile Network [4] specific needs. Furthermore, it should be
 noted that this API document excludes discussion on application level
 API. It assumes that address selection socket API [5] takes care of
 selection of Care-of-address or home-address as the source address by
 the application, when source address selection is required due to the
 nature of the application.

Chakrabarti & Nordmark Expires August 21, 2006 [Page 3]

Internet-Draft Sockets API for Mobile IPv6 February 2006

 Providing mobility "awareness" to applications, such as applications
 being able to tell whether the host is at home or not, is out of
 scope for this API.

Chakrabarti & Nordmark Expires August 21, 2006 [Page 4]

Internet-Draft Sockets API for Mobile IPv6 February 2006

2. Applicability

 This API document can be applied in the following cases:

 1. User-level debugging and monitoring tools: This socket API is
 useful for accessing Mobility Headers, Home Address destination
 options and Type 2 Routing Headers . For example, mh-ping might
 be a monitoring tool which can process mobility headers on the
 receiving side to check binding status.

 2. Partial user-level implementation of Mobile IPv6: We assume that
 some implementations may choose to do the Mobility header
 processing at user level. In that case, this document recommends
 implementing at least the handling of Home Address destination
 options and Type 2 Routing Header in the main IP processing paths
 in the kernel. The API can then be used to send and receive the
 Mobility Header packets used for Mobile IPv6 signalling.

 3. Complete header processing at the kernel-level: Many
 implementations of Mobile IPv6 [2] perform processing of Home
 Address destination options, Type 2 Routing Headers and Mobility
 headers at the kernel level. However, the kernel keeps a copy of
 the received extension headers and passes them up to the API
 which is used by the user-level applications purely for
 monitoring and debugging Mobile IPv6 packets.

 On an IPv6 host which does not implement Mobile IPv6, the IPv6
 specification [3] requires that packets with the Home Address option
 or Type 2 Routing Header (where segments left is non-zero) be dropped
 on receipt. This means that it is not possible to implement Mobile
 IPv6 as an application on such a system. Thus on such a system, the
 applicability of this API is limited to the first case above enabling
 debugging and monitoring applications (such as tcpdump) to parse and
 interpret Mobile IPv6 packets.

Chakrabarti & Nordmark Expires August 21, 2006 [Page 5]

Internet-Draft Sockets API for Mobile IPv6 February 2006

3. Overview

 This document can be divided into the following parts:

 1. Definitions of constants and structures for C programs that
 capture the Mobile IPv6 packet formats on the wire. A common
 definition of these is useful at least for packet snooping
 applications. This is captured in Section 4. In addition,

Section 4 also defines data structures for Home Address
 destination option, Type 2 Routing Header, and new ICMPv6
 messages related to Mobile IPv6.

 2. Notes on how to use the IPv6 Advanced API to access Home Address
 options and Type 2 Routing Headers. This is captured in

Section 5.

 3. Notes on how user-level applications can observe MH (Mobility
 Header) packets using raw sockets (in Section 6). The IPv6 RAW
 socket interface described in this document allows applications
 to receive MH packets whether or not the system's MH processing
 takes place in the "kernel" or at the "user space".

 4. Suggested a name for IPv6 Mobility Header protocol in /etc/
 protocols (in Section 7).

 All examples in this document omit error checking in favor of
 brevity, as it is following the same style as the Advanced Socket API
 [1].

 We note that many of the functions and socket options defined in this
 document may have error returns that are not defined in this
 document.

 Data types in this document follow the Posix.1g format: intN_t means
 a signed integer of exactly N bits (e.g., int16_t) and uintN_t means
 an unsigned integer of exactly N bits (e.g., uint32_t).

 Once the API specification becomes mature and is deployed, it may be
 formally standardized by a more appropriate body, such as has been
 done with the Basic API [6]. However, since this specification
 largely builds upon the Advanced Socket API [1], such standardization
 would make sense only if the Advanced Socket API [1] were also
 standardized.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

https://datatracker.ietf.org/doc/html/rfc2119

Chakrabarti & Nordmark Expires August 21, 2006 [Page 6]

Internet-Draft Sockets API for Mobile IPv6 February 2006

4. Common Structures and Definitions

 In this section, the structures are specified in a way so that they
 maximize the probability that the compiler-layout of data structures
 are identical to the packet formats on the wire. However, ANSI-C
 provides few guarantees about the size and alignment of data
 structures. Thus, depending on the implementation of a compiler,
 there is a slim chance that in certain systems, the compiled layout
 of the following data structures may not match the packet formats
 defined in RFC 3775 [2].

 The structure definitions below are examples of contents or the
 fields that match with the wired packet format in most Operating
 Systems. Depending on the compiler used as well as the host byte
 order, the layout of the structures might need to be different in
 some cases. But as long as they provide the same fields as below we
 can ensure application portability when using this API.

 The constants and structures shown below are in network byte order,
 so an application needs to perform the appropriate byte order
 conversion (ntohs(), etc) when necessary.

 The structures and constants below will be included when including
 the (new) header file : <netinet/ip6mh.h>

4.1 The Mobility Header Data Structures

4.1.1 The ip6_mh Structure

 The following structure is defined as a result of including <netinet/
 ip6mh.h>. This is the fixed part of the Mobility Header. Different
 Mobility message types are defined in Mobile IPv6 [2]. For
 portability and alignment reasons, each mobility message type
 includes the mobility header fields as opposed to including the
 ip6_mh structure followed by the message-specific fields.

 struct ip6_mh {
 uint8_t ip6mh_proto; /* NO_NXTHDR by default */
 uint8_t ip6mh_hdrlen; /* Header Len in unit of 8 Octets
 excluding the first 8 Octets */
 uint8_t ip6mh_type; /* Type of Mobility Header */
 uint8_t ip6mh_reserved; /* Reserved */
 uint16_t ip6mh_cksum; /* Mobility Header Checksum */
 /* Followed by type specific messages */
 };

https://datatracker.ietf.org/doc/html/rfc3775

Chakrabarti & Nordmark Expires August 21, 2006 [Page 7]

Internet-Draft Sockets API for Mobile IPv6 February 2006

4.1.2 Binding Refresh Request Mobility Message

 struct ip6_mh_binding_request {
 uint8_t ip6mhbr_proto;
 uint8_t ip6mhbr_hdrlen;
 uint8_t ip6mhbr_type;
 uint8_t ip6mhbr_reserved;
 uint16_t ip6mhbr_cksum;
 uint16_t ip6mhbr_reserved;
 /* Followed by optional Mobility Options */
 };

4.1.3 Home Address Test Init (HoTI) Message

 struct ip6_mh_home_test_init {
 uint8_t ip6mhhti_proto;
 uint8_t ip6mhhti_hdrlen;
 uint8_t ip6mhhti_type;
 uint8_t ip6mhhti_reserved;
 uint16_t ip6mhhti_cksum;
 uint16_t ip6mhhti_reserved;
 uint32_t ip6mhhti_cookie[2]; /* 64 bit Cookie by MN */
 /* Followed by optional Mobility Options */
 };

4.1.4 Care-of Address Test Init (CoTI) Message

 struct ip6_mh_careof_test_init {
 uint8_t ip6mhcti_proto;
 uint8_t ip6mhcti_hdrlen;
 uint8_t ip6mhcti_type;
 uint8_t ip6mhcti_reserved;
 uint16_t ip6mhcti_cksum;
 uint16_t ip6mhcti_reserved;
 uint32_t ip6mhcti_cookie[2]; /* 64 bit Cookie by MN */
 /* Followed by optional Mobility Options */
 };

Chakrabarti & Nordmark Expires August 21, 2006 [Page 8]

Internet-Draft Sockets API for Mobile IPv6 February 2006

4.1.5 Home Address Test (HOT) Message

 struct ip6_mh_home_test {
 uint8_t ip6mhht_proto;
 uint8_t ip6mhht_hdrlen;
 uint8_t ip6mhht_type;
 uint8_t ip6mhht_reserved;
 uint16_t ip6mhht_cksum;
 uint16_t ip6mhht_nonce_index;
 uint32_t ip6mhht_cookie[2]; /* Cookie from HOTI msg */
 uint32_t ip6mhht_keygen[2]; /* 64 Bit Key by CN */
 /* Followed by optional Mobility Options */
 };

4.1.6 Care Of Address Test (COT) Message

 struct ip6_mh_careof_test {
 uint8_t ip6mhct_proto;
 uint8_t ip6mhct_hdrlen;
 uint8_t ip6mhct_type;
 uint8_t ip6mhct_reserved;
 uint16_t ip6mhct_cksum;
 uint16_t ip6mhct_nonce_index;
 uint32_t ip6mhct_cookie[2]; /* Cookie from COTI message */
 uint32_t ip6mhct_keygen[2]; /* 64bit key by CN */
 /* Followed by optional Mobility Options */
 };

4.1.7 Binding Update Mobility Message

 struct ip6_mh_binding_update {
 uint8_t ip6mhbu_proto;
 uint8_t ip6mhbu_hdrlen;
 uint8_t ip6mhbu_type;
 uint8_t ip6mhbu_reserved;
 uint16_t ip6mhbu_cksum;
 uint16_t ip6mhbu_seqno; /* Sequence Number */
 uint16_t ip6mhbu_flags;
 uint16_t ip6mhbu_lifetime; /* Time in unit of 4 sec */
 /* Followed by optional Mobility Options */
 };

 /* Binding Update Flags, in network byte-order */
 #define IP6_MH_BU_ACK 0x8000 /* Request a binding ack */
 #define IP6_MH_BU_HOME 0x4000 /* Home Registration */
 #define IP6_MH_BU_LLOCAL 0x2000 /* Link-local compatibility */

Chakrabarti & Nordmark Expires August 21, 2006 [Page 9]

Internet-Draft Sockets API for Mobile IPv6 February 2006

 #define IP6_MH_BU_KEYM 0x1000 /* Key management mobility */

4.1.8 Binding Acknowledgment Mobility Message

 struct ip6_mh_binding_ack {
 uint8_t ip6mhba_proto;
 uint8_t ip6mhba_hdrlen;
 uint8_t ip6mhba_type;
 uint8_t ip6mhba_reserved;
 uint16_t ip6mhba_cksum;
 uint8_t ip6mhba_status; /* Status code */
 uint8_t ip6mhba_flags;
 uint16_t ip6mhba_seqno;
 uint16_t ip6mhba_lifetime;
 /* Followed by optional Mobility Options */
 };

 /* Binding Acknowledgement Flags */
 #define IP6_MH_BA_KEYM 0x80 /* Key management mobility */

4.1.9 Binding Error Mobility Message

 struct ip6_mh_binding_error {
 uint8_t ip6mhbe_proto;
 uint8_t ip6mhbe_hdrlen;
 uint8_t ip6mhbe_type;
 uint8_t ip6mhbe_reserved;
 uint16_t ip6mhbe_cksum;
 uint8_t ip6mhbe_status; /* Error Status */
 uint8_t ip6mhbe_reserved;
 struct in6_addr ip6mhbe_homeaddr;
 /* Followed by optional Mobility Options */
 };

4.1.10 Mobility Option TLV data structure

 struct ip6_mh_opt {
 uint8_t ip6mhopt_type; /* Option Type */
 uint8_t ip6mhopt_len; /* Option Length */
 /* Followed by variable length Option Data in bytes */
 };

Chakrabarti & Nordmark Expires August 21, 2006 [Page 10]

Internet-Draft Sockets API for Mobile IPv6 February 2006

4.1.11 Mobility Option Data Structures

4.1.11.1 Binding Refresh Advice

 struct ip6_mh_opt_refresh_advice {
 uint8_t ip6mora_type;
 uint8_t ip6mora_len;
 uint16_t ip6mora_interval; /* Refresh interval in 4 sec */
 };

4.1.11.2 Alternate Care-of Address

 struct ip6_mh_opt_altcoa {
 uint8_t ip6moa_type;
 uint8_t ip6moa_len;
 struct in6_addr ip6moa_addr; /* Alternate CoA */
 };

4.1.11.3 Nonce Indices

 struct ip6_mh_opt_nonce_index {
 uint8_t ip6moni_type;
 uint8_t ip6moni_len;
 uint16_t ip6moni_home_nonce;
 uint16_t ip6moni_coa_nonce;
 };

4.1.11.4 Binding Authorization Data

 struct ip6_mh_opt_auth_data {
 uint8_t ip6moad_type;
 uint8_t ip6moad_len;
 uint8_t ip6moad_data[12];
 };

4.2 Mobility Header Constants

 IPv6 Next Header Value for Mobility:

 <netinet/in.h>

 #define IPPROTO_MH 135 /* IPv6 Mobility Header: IANA */

Chakrabarti & Nordmark Expires August 21, 2006 [Page 11]

Internet-Draft Sockets API for Mobile IPv6 February 2006

 Mobility Header Message Types:

 <netinet/ip6mh.h>

 #define IP6_MH_TYPE_BRR 0 /* Binding Refresh Request */
 #define IP6_MH_TYPE_HOTI 1 /* HOTI Message */
 #define IP6_MH_TYPE_COTI 2 /* COTI Message */
 #define IP6_MH_TYPE_HOT 3 /* HOT Message */
 #define IP6_MH_TYPE_COT 4 /* COT Message */
 #define IP6_MH_TYPE_BU 5 /* Binding Update */
 #define IP6_MH_TYPE_BACK 6 /* Binding ACK */
 #define IP6_MH_TYPE_BERROR 7 /* Binding Error */

 Mobility Header Message Option Types:

 <netinet/ip6mh.h>

 #define IP6_MHOPT_PAD1 0x00 /* PAD1 */
 #define IP6_MHOPT_PADN 0x01 /* PADN */
 #define IP6_MHOPT_BREFRESH 0x02 /* Binding Refresh */
 #define IP6_MHOPT_ALTCOA 0x03 /* Alternate COA */
 #define IP6_MHOPT_NONCEID 0x04 /* Nonce Index */
 #define IP6_MHOPT_BAUTH 0x05 /* Binding Auth Data */

 Status values accompanied with Mobility Binding Acknowledgement:

 <netinet/ip6mh.h>

Chakrabarti & Nordmark Expires August 21, 2006 [Page 12]

Internet-Draft Sockets API for Mobile IPv6 February 2006

 #define IP6_MH_BAS_ACCEPTED 0 /* BU accepted */
 #define IP6_MH_BAS_PRFX_DISCOV 1 /* Accepted, but prefix
 discovery Required */
 #define IP6_MH_BAS_UNSPECIFIED 128 /* Reason unspecified */
 #define IP6_MH_BAS_PROHIBIT 129 /* Administratively
 prohibited */
 #define IP6_MH_BAS_INSUFFICIENT 130 /* Insufficient
 resources */
 #define IP6_MH_BAS_HA_NOT_SUPPORTED 131 /* HA registration not
 supported */
 #define IP6_MH_BAS_NOT_HOME_SUBNET 132 /* Not Home subnet */
 #define IP6_MH_BAS_NOT_HA 133 /* Not HA for this
 mobile node */
 #define IP6_MH_BAS_DAD_FAILED 134 /* DAD failed */
 #define IP6_MH_BAS_SEQNO_BAD 135 /* Sequence number out
 of range */

 #define IP6_MH_BAS_HOME_NI_EXPIRED 136 /* Expired Home nonce
 index */
 #define IP6_MH_BAS_COA_NI_EXPIRED 137 /* Expired Care-of
 nonce index */
 #define IP6_MH_BAS_NI_EXPIRED 138 /* Expired Nonce
 Indices */
 #define IP6_MH_BAS_REG_NOT_ALLOWED 139 /* Registration type
 change disallowed */

 Status values for the Binding Error mobility messages:

 <netinet/ip6mh.h>

 #define IP6_MH_BES_UNKNOWN_HAO 1 /* Unknown binding for HOA */
 #define IP6_MH_BES_UNKNOWN_MH 2 /* Unknown MH Type */

4.3 IPv6 Home Address Destination Option

 Due to alignment issues in the compiler, and the alignment
 requirements for this option, the included IPv6 address must be
 specified as an array of 16 octets.

 <netinet/ip6.h>

Chakrabarti & Nordmark Expires August 21, 2006 [Page 13]

Internet-Draft Sockets API for Mobile IPv6 February 2006

 /* Home Address Destination Option */
 struct ip6_opt_home_address {
 uint8_t ip6oha_type;
 uint8_t ip6oha_len;
 uint8_t ip6oha_addr[16]; /* Home Address */
 };

 Option Type Definition:

 #define IP6OPT_HOME_ADDRESS 0xc9 /* 11 0 01001 */

4.4 Type 2 Routing Header

 <netinet/ip6.h>

 /* Type 2 Routing header for Mobile IPv6 */
 struct ip6_rthdr2 {
 uint8_t ip6r2_nxt; /* next header */
 uint8_t ip6r2_len; /* length : always 2 */
 uint8_t ip6r2_type; /* always 2 */
 uint8_t ip6r2_segleft; /* segments left: always 1 */
 uint32_t ip6r2_reserved; /* reserved field */
 struct in6_addr ip6r2_homeaddr; /* Home Address */
 };

4.5 New ICMP Messages for Mobile IPv6

 ICMP message types and definitions for Mobile IPv6 are defined in

 <netinet/icmp6.h>

 #define MIP6_HA_DISCOVERY_REQUEST 144
 #define MIP6_HA_DISCOVERY_REPLY 145
 #define MIP6_PREFIX_SOLICIT 146
 #define MIP6_PREFIX_ADVERT 147

 The following data structures can be used for the ICMP message types
 discussed in Section 6.5 through 6.8 in the base Mobile IPv6 [2]
 specification.

Chakrabarti & Nordmark Expires August 21, 2006 [Page 14]

Internet-Draft Sockets API for Mobile IPv6 February 2006

 struct mip6_dhaad_req { /* Dynamic HA Address Discovery */
 struct icmp6_hdr mip6_dhreq_hdr;
 };

 #define mip6_dhreq_type mip6_dhreq_hdr.icmp6_type
 #define mip6_dhreq_code mip6_dhreq_hdr.icmp6_code
 #define mip6_dhreq_cksum mip6_dhreq_hdr.icmp6_cksum
 #define mip6_dhreq_id mip6_dhreq_hdr.icmp6_data16[0]
 #define mip6_dhreq_reserved mip6_dhreq_hdr.icmp6_data16[1]

 struct mip6_dhaad_rep { /* HA Address Discovery Reply */
 struct icmp6_hdr mip6_dhrep_hdr;
 /* Followed by Home Agent IPv6 addresses */
 };

 #define mip6_dhrep_type mip6_dhrep_hdr.icmp6_type
 #define mip6_dhrep_code mip6_dhrep_hdr.icmp6_code
 #define mip6_dhrep_cksum mip6_dhrep_hdr.icmp6_cksum
 #define mip6_dhrep_id mip6_dhrep_hdr.icmp6_data16[0]
 #define mip6_dhrep_reserved mip6_dhrep_hdr.icmp6_data16[1]

 struct mip6_prefix_solicit { /* Mobile Prefix Solicitation */
 struct icmp6_hdr mip6_ps_hdr;
 };

 #define mip6_ps_type mip6_ps_hdr.icmp6_type
 #define mip6_ps_code mip6_ps_hdr.icmp6_code
 #define mip6_ps_cksum mip6_ps_hdr.icmp6_cksum
 #define mip6_ps_id mip6_ps_hdr.icmp6_data16[0]
 #define mip6_ps_reserved mip6_ps_hdr.icmp6_data16[1]

 struct mip6_prefix_advert { /* Mobile Prefix Advertisements */
 struct icmp6_hdr mip6_pa_hdr;
 /* Followed by one or more PI options */
 };

 #define mip6_pa_type mip6_pa_hdr.icmp6_type
 #define mip6_pa_code mip6_pa_hdr.icmp6_code
 #define mip6_pa_cksum mip6_pa_hdr.icmp6_cksum
 #define mip6_pa_id mip6_pa_hdr.icmp6_data16[0]
 #define mip6_pa_flags_reserved mip6_pa_hdr.icmp6_data16[1]

 /* Mobile Prefix Advertisement Flags in network-byte order */
 #define MIP6_PA_FLAG_MANAGED 0x8000
 #define MIP6_PA_FLAG_OTHER 0x4000

Chakrabarti & Nordmark Expires August 21, 2006 [Page 15]

Internet-Draft Sockets API for Mobile IPv6 February 2006

 Prefix options are defined in IPv6 Advanced Socket API [1]. Mobile
 IPv6 Base specification [2] describes the modified behavior in
 'Modifications to IPv6 Neighbor Discovery' Section. Prefix Options
 for Mobile IP are defined in the following Section.

4.6 IPv6 Neighbor Discovery Changes

 IPv6 Neighbor Discovery changes are also defined in <netinet/icmp6.h>

 New 'Home Agent' flag in router advertisement:
 #define ND_RA_FLAG_HOMEAGENT 0x20 /* Home Agent flag in RA */

 New Router flag with prefix information of the home agent:
 #define ND_OPT_PI_FLAG_ROUTER 0x20 /* Router flag in PI */

 As per Mobile IPv6 specification [2] Section 7.2, a Home Agent MUST
 include at least one prefix option with the Router Address (R) bit
 set. Advanced Socket API [1] defines data structure for prefix
 option as follows:

 struct nd_opt_prefix_info { /* prefix information */
 uint8_t nd_opt_pi_type;
 uint8_t nd_opt_pi_len;
 uint8_t nd_opt_pi_prefix_len;
 uint8_t nd_opt_pi_flags_reserved;
 uint32_t nd_opt_pi_valid_time;
 uint32_t nd_opt_pi_preferred_time;
 uint32_t nd_opt_pi_reserved2;
 struct in6_addr nd_opt_pi_prefix;
 };

 New advertisement interval option and home agent information options
 are defined in Mobile IPv6 [2] base specification.

 struct nd_opt_adv_interval { /* Advertisement interval option */
 uint8_t nd_opt_ai_type;
 uint8_t nd_opt_ai_len;
 uint16_t nd_opt_ai_reserved;
 uint32_t nd_opt_ai_interval;
 };

 The option types for the new Mobile IPv6 specific options:

Chakrabarti & Nordmark Expires August 21, 2006 [Page 16]

Internet-Draft Sockets API for Mobile IPv6 February 2006

 #define ND_OPT_ADV_INTERVAL 7 /* Adv Interval Option */
 #define ND_OPT_HA_INFORMATION 8 /* HA Information option */

 struct nd_opt_homeagent_info { /* Home Agent information */
 uint8_t nd_opt_hai_type;
 uint8_t nd_opt_hai_len;
 uint16_t nd_opt_hai_reserved;
 uint16_t nd_opt_hai_preference;
 uint16_t nd_opt_hai_lifetime;
 };

Chakrabarti & Nordmark Expires August 21, 2006 [Page 17]

Internet-Draft Sockets API for Mobile IPv6 February 2006

5. Access to Home Address Destination Option and Routing Headers

 Applications that need to be able to access Home Address destination
 option and Type 2 Routing Header information can do so by setting the
 appropriate setsockopt option and using ancillary data objects. The
 order of extension headers is defined in Mobile IPv6 [2] when sending
 an IPv6 packet with a Home Address Destination Option with other
 possible extension headers. Section 5.3 elaborates the extension
 header order when all the possible cases are present.

 This document does not recommend the user-level program to set Home
 Address destination option or Type 2 Routing Header option; however,
 for clarity it defines the order of extension headers. See

Section 2 of this document for appropriate usage of sending and
 receiving of Home Address destination options and Type 2 Routing
 Header extension headers.

 This document defines a new socket option, IPV6_MIPDSTOPTS for
 sending Home Address destination options. In order to receive a Home
 Address destination option or Type 2 Route Header, applications must
 call setsockopt() to turn on the corresponding flag as described in
 IPv6 Advanced Socket API [1] (for brevity, error checking is not
 performed in the examples):

 int on = 1;

 setsockopt(fd, IPPROTO_IPV6, IPV6_RECVRTHDR, &on, sizeof(on));
 setsockopt(fd, IPPROTO_IPV6, IPV6_RECVDSTOPTS,
 &on, sizeof(on));

 When any of these options are enabled, the corresponding data is
 returned as control information by recvmsg(), as one or more
 ancillary data objects. Receiving the above information for TCP
 applications is not defined in this document (see Section 4.1 of
 Advanced Sockets API for IPv6 [1]).

 Note that if the IP implementation on the host does not implement the
 handling of Type 2 Routing Headers or Home Address options, then per

RFC 2460 [3], the IP stack is required to drop the packet. Hence
 receiving Home Address desitnation option and Type 2 Routing Header
 at the application layer requires implementation of respective
 extension headers at the IP layer in the kernel as defined in RFC3775
 [2].

 For receiving the Home Address destination option header, the Mobile
 IPv6 implementation SHOULD follow the initial processing rules of the
 Home Address destination option (Section 9.3.1 of Mobile IPv6 [2])
 before passing the information to the API level. This includes

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc3775

Chakrabarti & Nordmark Expires August 21, 2006 [Page 18]

Internet-Draft Sockets API for Mobile IPv6 February 2006

 initial processing of IPSec authentication data in a packet when it
 exists. Each Destination options header is returned as one ancillary
 data object described by a cmsghdr structure with cmsg_level set to
 IPPROTO_IPV6 and cmsg_type set to IPV6_DSTOPTS.

 For sending Home Address destination option, ancillary data can be
 used to specify the option content for a single datagram. This only
 applies to datagram and raw sockets; not to TCP sockets. The
 Advanced API [1] document restricts one IPV6_xxx ancillary data
 object for a particular extension header in the control buffer.
 Thus, there would be a single ancillary data object for the Home
 address destination option in a ancillary data buffer. If multiple
 destination options are present then the header order should be in
 compliance with Section 6.3 and 9.3.2 of the Mobile IPv6 [2] base
 specification.

 For TCP data packets with Home Address destination option, the
 "sticky" option may be used for all transmitted packets. The
 application can remove the sticky Home Destination option header by
 calling setsockopt() for IPV6_MIPDSTOPTS with a zero option length.

 Note that Section 2 of this document does not encourage setting the
 Home Address destination option at the user-level. A Mobile IPv6
 implementation should set and process the Home Address destination
 option and Routing Header Type 2, at the kernel level. The setting
 of Routing Header Type 2 and Home Address destination option are
 described in this document for completeness and flexibility to use
 them in future if there is a need.

 The following socket option parameters and cmsghdr fields may be used
 for sending (although not a recommended usage):

 opt level/ optname/ optval/
 cmsg_level cmsg_type cmsg_data[]
 ------------ ------------ ------------------------
 IPPROTO_IPV6 IPV6_MIPDSTOPTS ip6_dest structure
 IPPROTO_IPV6 IPV6_RTHDR ip6_rthdr structure

 Some IPv6 implementations may support "sticky" options [1] for IPv6
 destination option for datagram and RAW sockets.

 Behavior of legacy IPv6 socket applications:

 Legacy IPv6 applications/implementations using the Advanced Socket
 API [1] mechanisms, upon receiving Home Address destination options
 or Routing headers(Type 2), will discard the packet as per Section

4.2 and 4.4 of IPV6 Protocol [3] specification respectively;
 otherwise, they should properly handle the Home Address destination

Chakrabarti & Nordmark Expires August 21, 2006 [Page 19]

Internet-Draft Sockets API for Mobile IPv6 February 2006

 option and the Routing Header Type 2 specified in this document.

5.1 Routing Header access functions

 IPV6 Protocol [3] defines a Routing header extension header for Type
 0. Thus, in order to access the IPv6 Routing header Type 2 extension
 header, one MUST use type = 2 and segment = 1. The following
 existing functions defined in Advanced API for IPv6 Sockets [1] are
 supported for Mobile IPv6 applications for sending and receiving
 Routing Header Type 2 headers:

 For sending:

 size_t inet6_rth_space(int type, int segments);
 void *inet6_rth_init(void *bp, int bp_len, int type, int segments);
 int inet6_rth_add(void *bp, const struct in6_addr *addr);

 For receiving:

 int inet6_rth_segments(const void *bp);
 struct in6_addr *inet6_rth_getaddr(const void *bp, int index);

 NOTE: Reversing operation is not possible using the Route Header Type
 2 extension header. Thus inet6_rth_reverse() is not used.

 Detailed descriptions and examples of accessing an IPv6 Routing
 Header are discussed in the Advanced Sockets API for IPv6 [1].
 However, Section 7 of Advanced API for IPv6 Sockets [1] indicates
 that multiple types of routing headers can be received as multiple
 ancillary data objects to the application (with cmsg_type set to
 IPV6_RTHDR). Currently there are no API functions defined to return
 the routing header type. However, this document does not define a
 helper function, since it is easy to access the Routing Header Type
 field just as easily as the ip6r_segleft field. An excerpt of a code
 sample is provided for extracting the type of the received routing
 header:

Chakrabarti & Nordmark Expires August 21, 2006 [Page 20]

Internet-Draft Sockets API for Mobile IPv6 February 2006

 if (msg.msg_controllen != 0 &&
 cmsgptr->cmsg_level == IPPROTO_IPV6 &&
 cmsgptr->cmsg_type == IPV6_RTHDR) {
 struct in6_addr *in6;
 char asciiname[INET6_ADDRSTRLEN];
 struct ip6_rthdr *rthdr;
 int segments, route_type;

 rthdr = (struct ip6_rthdr *)extptr;
 segments = inet6_rth_segments(extptr);
 printf("route (%d segments, %d left): ",
 segments, rthdr->ip6r_segleft);
 route_type = rthdr->ip6r_type;
 if (route_type == 2) {
 printf ("Routing header Type 2 present\n");
 }
 }

5.2 Content of Type 2 Routing Header

 It is recommended that no portable applications will send Type 2
 Routing Header ancillary data from the application layer, since many
 implementations take care of that at the kernel layer and may not
 support the API for sending Type 2 Routing Header.

 Mobile IPv6 [2] defines the Type 2 Routing Header, to allow the
 packet to be routed directly from a correspondent to the mobile
 node's care-of address. The mobile node's care-of address is
 inserted into the IPv6 Destination Address field. Once the packet
 arrives at the care-of address, the mobile node retrieves its home
 address from the routing header, and this is used as the final
 destination address for the received IPv6 packet.

 For user-level applications that receive Type 2 Routing Header,
 inet6_rth_getaddr() returns the care-of Address or on-the-wire
 destination address of the received packet. This complies with the
 existing Routing header Type=0 processing for IPv6 [1].

 Thus on the receive side, the socket application will always receive
 data packets at its original home-address. The implementations are
 responsible for processing the Type 2 Routing Header packet as per
 Mobile IPv6 RFC [2], before passing the Type 2 Routing Header
 information to the Socket API.

 If a pure IPv6 [3] system receives the Routing Header Type 2 packets,
 it will follow the process described in Section 4.4 of the IPv6 [3]
 base specification.

Chakrabarti & Nordmark Expires August 21, 2006 [Page 21]

Internet-Draft Sockets API for Mobile IPv6 February 2006

5.3 Order of extension headers for Home Address Destination Options

Section 6.3 of Mobile IPV6 [2] defines the extension header order for
 Home address destination option.

 Routing Header
 Home Address Destination Option
 Fragment Header
 AH/ESP Header

 IPv6 [3] specifies that the destination header can be either before
 the Routing header or after the AH/ESP header if they are all
 present.

 Thus, when the Home Address destination option is present along with
 other extension headers, the order will be:

 Hop-by-Hop Options header
 Destination Options header
 Routing header
 Destination Options [Home Address Option]
 Fragment header
 Authentication header
 Encapsulating Security Payload header
 Destination Options header
 upper-layer header

 Any user-level implementation or application that sends Home address
 destination option through ancillary data objects should follow the
 order extension header defined in this document when using
 IPV6_MIPDSTOPTS socket options.

5.4 Home Address Destination Option access functions

 The application must enable the IPV6_RECVDSTOPTS socket option in
 order to receive the Home Address destination option (error checking
 is not performed in the example for brevity):

 int on = 1;

 setsockopt(fd, IPPROTO_IPV6, IPV6_RECVDSTOPTS, &on, sizeof(on));

 Each Destination option header is returned as one ancillary data
 object described by a cmsghdr structure with cmsg_level set to

Chakrabarti & Nordmark Expires August 21, 2006 [Page 22]

Internet-Draft Sockets API for Mobile IPv6 February 2006

 IPPROTO_IPV6 and cmsg_type set to IPV6_DSTOPTS.

 The received side Home Address destination option is further
 processed by calling the inet6_opt_next(), inet6_opt_find(), and
 inet6_opt_get_value() functions as defined in Advanced API for IPv6
 sockets [1].

 This document assumes that portable Mobile IPv6 applications will not
 send a Home Address Destination Option from the application level, as
 the Mobile IPv6 implementation underneath takes care of sending the
 Home Address option and the routing header type 2 at the kernel.
 However, some embedded software implementations may implement the
 IPv6 packet processing/sending at the user-level; those
 implementations may choose to provide the API support for sending a
 home-address option at the application layer. In this case, the Home
 Address destination options are normally constructed by using the
 inet6_opt_init(), inet6_opt_append(), inet6_opt_finish(), and
 inet6_opt_set_val() functions, described in Section 10 of the
 Advanced sockets API for IPv6 [1].

5.5 Content of Home Address Destination option

 The received ancillary data object for the Home Address destination
 option SHOULD contain the Care-Of-Address of the mobile node. It is
 assumed that the initial processing of the Home Address destination
 option will verify the validity of home-address as described in 6.3
 and 9.5 of the Mobile IPv6 Specification [2] and swap the source
 address of the packet (COA) with the contents of Home Address
 destination option.

 Note that whether or not these new APIs are used, the sender's home
 address is contained in the source address (which is passed to the
 application using the socket-level functions recvfrom(), recvmsg(),
 accept() and getpeername()). This is necessary for:

 maintaining consistency between simple user-level applications
 running between mobile nodes and the diagnostic applications on
 home-agent or on correspondent node, which use this API.

 obtaining the COA address of the mobile node when the Home Address
 destination option is used.

 maintaining consistency of existing IPv6 Socket APIs and
 processing of the Home Address destination option.

 If an implementation supports send-side Home Address destination API,
 then it must follow the same rule for data content as specified in
 Mobile IPv6 RFC [2] for sending a home-address option. Thus the

Chakrabarti & Nordmark Expires August 21, 2006 [Page 23]

Internet-Draft Sockets API for Mobile IPv6 February 2006

 home-address option will contain the home-address and the
 implementation will use the care-of-address as the source address of
 the outgoing packet. If the implementation uses IPSec, then it
 should use the content of Home Address destination option as source
 address of the packet for security association. Note that regular
 user applications must not set the Home-address destination option.

Chakrabarti & Nordmark Expires August 21, 2006 [Page 24]

Internet-Draft Sockets API for Mobile IPv6 February 2006

6. Mobility Protocol Headers

 Mobile IPv6 [2] defines a new IPv6 protocol header to carry mobility
 messages between Mobile Nodes, Home Agents and Correspondent Nodes.
 These protocol headers carry Mobile IPv6 Binding messages as well as
 Return Routability [2] messages. Currently the specification [2]
 does not allow transport packets (piggybacking) along with the
 mobility messages. Thus the mobility protocol header can be accessed
 through an IPv6 RAW socket. An IPv6 RAW socket that is opened for
 protocol IPPROTO_MH should always be able to see all the MH (Mobility
 Header) packets. It is possible that future applications may
 implement part of Mobile IPv6 signal processing at the application
 level. Having a RAW socket interface may also enable an application
 to execute the Return Routability protocol or other future
 authentication protocol involving the mobility header at the user-
 level.

6.1 Receiving and Sending Mobility Header Messages

 This specification recommends the IPv6 RAW sockets mechanism to send
 and receive Mobility Header (MH) packets. The behavior is similar to
 ICMPV6 processing, where the kernel passes a copy of the mobility
 header packet to the receiving socket. Depending on the
 implementation, the kernel may process the mobility header in
 addition to passing the mobility header to the application. In order
 to comply with the restriction in the Advanced Sockets API for IPv6
 [1], applications should set the IPV6_CHECKSUM socket option with
 IPPROTO_MH protocol RAW Sockets. A Mobile IPv6 implementation that
 supports the Mobile IPv6 API, must implement Mobility Header API
 checksum calculations by default at the kernel for both incoming and
 outbound path. A Mobile IPv6 implementation must not return error on
 the IPV6_CHECKSUM socket option setting, even if the socket option is
 a NO-OP function for that implementation because it verifies the
 checksum at the kernel level. Mobility Header checksum procedure is
 described in the Mobile IPv6 Protocol [2] specification. Again, for
 application portability it is recommended that the applications set
 the IPV6_CHECKSUM socket option along with the RAW sockets for
 IPPROTO_MH protocol.

 As an example, a program that wants to send or receive a mobility
 header protocol(MH), could open a socket as following (for brevity,
 the error checking is not performed in the example below):

 fd = socket(AF_INET6, SOCK_RAW, IPPROTO_MH);

 int offset = 4;
 setsockopt(fd, IPPROTO_IPV6, IPV6_CHECKSUM, &offset,
 sizeof(offset));

Chakrabarti & Nordmark Expires August 21, 2006 [Page 25]

Internet-Draft Sockets API for Mobile IPv6 February 2006

 For example, if an implementation likes to handle HOTI/HOT and COTI/
 COT message processing, it can do so by using IPv6 RAW Sockets for
 IPPROTO_MH at the application layer. The same application may also
 set the IPV6_RECVDSTOPTS socket option for receiving Home Address
 destination option in a binding update [2] from the mobile node.

 IPv6 RAW sockets are described in Section 3 of the IPv6 Advanced
 Socket API [1] specification. All data sent and received via raw
 sockets must be in network byte order. The data structures that are
 defined in this document are in network byte order and they are
 believed to be supported by most compilers to directly hold packet-
 formats for transmission on the wire.

 The usual send/recv functions for datagram should be used for the
 Mobile IPv6 RAW sockets in order to send and receive data,
 respectively.

Chakrabarti & Nordmark Expires August 21, 2006 [Page 26]

Internet-Draft Sockets API for Mobile IPv6 February 2006

7. Protocols File

 Many hosts provide the file /etc/protocols that contains the names of
 the various IP protocols and their protocol numbers. The protocol
 numbers are obtained through function getprotoXXX() functions.

 The following addition should be made to the /etc/protocols file, in
 addition to what is defined in Section 2.4 of the Advanced Sockets
 API for IPv6 [1].

 The protocol number for Mobility Header:
 (http://www.iana.org/assignments/protocol-numbers)

 ipv6-mh 135 # Mobility Protocol Header

http://www.iana.org/assignments/protocol-numbers

Chakrabarti & Nordmark Expires August 21, 2006 [Page 27]

Internet-Draft Sockets API for Mobile IPv6 February 2006

8. IPv4-Mapped IPv6 Addresses

 The various socket options and ancillary data specifications defined
 in this document apply only to true IPv6 sockets. It is possible to
 create an IPv6 socket that actually sends and receives IPv4 packets,
 using IPv4-mapped IPv6 addresses, but the mapping of the options
 defined in this document to an IPv4 datagram is beyond the scope of
 this document. The above statement is in compliance with Section 13
 of the IPv6 Socket API [1].

Chakrabarti & Nordmark Expires August 21, 2006 [Page 28]

Internet-Draft Sockets API for Mobile IPv6 February 2006

9. Security Considerations

 The setting of the Home Address Destination option and Route Header
 Type 2 IPV6_RTHDR socket option may not be allowed at the application
 level in order to prevent denial-of-service attacks or man-in-the-
 middle attacks by hackers. Sending and receiving of mobility header
 messages are possible by IPv6 RAW sockets. Thus it is assumed that
 this operation is only possible by privileged users. However, this
 API does not prevent the existing security threat from a hacker
 sending a bogus mobility header or other IPv6 packets using the Home
 Address option and Type 2 Routing Header extensions.

Chakrabarti & Nordmark Expires August 21, 2006 [Page 29]

Internet-Draft Sockets API for Mobile IPv6 February 2006

10. IANA Considerations

 This document does not define a new protocol. However, it uses the
 Mobility Header Protocol for IPv6 to define an API for /etc/protocols
 file. (ref: http://www.iana.org/assignments/protocol-numbers)

Chakrabarti & Nordmark Expires August 21, 2006 [Page 30]

http://www.iana.org/assignments/protocol-numbers

Internet-Draft Sockets API for Mobile IPv6 February 2006

11. Changes from last revisions

 [TO BE DELETED BY THE RFC EDITOR BEFORE PUBLISHING AS A RFC]

 Version 05 changes:
 * Addressed IESG review comments.

 Version 04 changes:
 * Addressed Last call comment remaining issues and Area Director
 review comments

 Version 03 changes:
 * Modified new ICMPv6 type definition values to match RFC3775.

 Version 02 changes:
 * Added section 3.1.1 and 3.2.1 to clarify content of routing
 header type 2 and destination options.

 * Clarified existing socket application behavior in section 3.

 * Updated introduction to clarify scope of the applications wrt
 this API

 * Added IANA section and Full Copyright statement and internet
 draft boiler plate

 * Updated acknowledgement section and fixed typo etc.

 The following changes were made in 01 version per feedback from
 the implementors at Connectathon 2004.

 * Section 2.1.11.2 now defines alternate COA address data
 structure as struct in6_addr for consistency. It was defined as
 16 unit of bytes.

 * Added Binding Update Authdata of 12 bytes in the
 struct ip6_mh_opt_auth_data

 * Updated the Acknowledgement and Authors' address section

https://datatracker.ietf.org/doc/html/rfc3775

Chakrabarti & Nordmark Expires August 21, 2006 [Page 31]

Internet-Draft Sockets API for Mobile IPv6 February 2006

12. Acknowledgement

 Thanks to Brian Haley for the thorough review of this draft and many
 helpful comments. Keiichi Shima, Alexandru Petrescu, Ryuji Wakikawa,
 Vijay Devarapalli, Jim Bound, Suvidh Mathur, Karen Nielsen, Mark
 Borst, Vladislav Yasevich and other mobile-ip working group members
 provided valuable input. Antti Tuominen suggested the routing header
 type function for this API document. During IESG review, Bill Fenner
 suggested accessing routing header type directly for being consistent
 with RFC3542. A new socket option for Home Address Destination
 Option is added as per Bill Fenner's suggestion for clarity of
 extension header orders. Thanks to Thomas Narten and Jari Arkko for
 the review of this document.

https://datatracker.ietf.org/doc/html/rfc3542

Chakrabarti & Nordmark Expires August 21, 2006 [Page 32]

Internet-Draft Sockets API for Mobile IPv6 February 2006

13. References

13.1 Normative References

 [1] Stevens, W., Thomas, M., Nordmark, E., and T. Jinmei, "Advanced
 Sockets Application Program Interface (API) for IPv6", RFC 3542,
 May 2003.

 [2] Johnson, D., Perkins, C., and J. Arkko, "Mobility Support in
 IPv6", RFC 3775, June 2004.

13.2 Informative References

 [3] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
 Specification", RFC 2460, December 1998.

 [4] Devarapalli, V., Wakikawa, R., Petrescu, A., and P. Thubert,
 "Network Mobility (NEMO) Basic Support Protocol", RFC 3963,
 January 2005.

 [5] Nordmark, E., "IPv6 Socket API for source address selection",
draft-chakrabarti-ipv6-addrselect-api-03 (work in progress),

 July 2005.

 [6] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6", RFC 3493,
 February 2003.

Authors' Addresses

 Samita Chakrabarti
 Sun Microsystems
 16 Network Circle
 Menlo Park, CA 94025
 USA

 Phone: +1 650 786 5068
 Email: samita.chakrabarti@sun.com

https://datatracker.ietf.org/doc/html/rfc3542
https://datatracker.ietf.org/doc/html/rfc3775
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc3963
https://datatracker.ietf.org/doc/html/draft-chakrabarti-ipv6-addrselect-api-03
https://datatracker.ietf.org/doc/html/rfc3493

Chakrabarti & Nordmark Expires August 21, 2006 [Page 33]

Internet-Draft Sockets API for Mobile IPv6 February 2006

 Erik Nordmark
 Sun Microsystems
 17 Network Circle
 Menlo Park, CA 94025
 USA

 Phone: +1 650 786 2921
 Email: erik.nordmark@sun.com

Chakrabarti & Nordmark Expires August 21, 2006 [Page 34]

Internet-Draft Sockets API for Mobile IPv6 February 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Chakrabarti & Nordmark Expires August 21, 2006 [Page 35]

