
Workgroup: Network Working Group

Internet-Draft: draft-ietf-mls-architecture-05

Published: 26 July 2020

Intended Status: Informational

Expires: 27 January 2021

Authors: E. Omara

Google

B. Beurdouche

INRIA

E. Rescorla

Mozilla

S. Inguva

Twitter

A. Kwon

MIT

A. Duric

Wire

The Messaging Layer Security (MLS) Architecture

Abstract

This document describes the reference architecture, functional and

security requirements for the Messaging Layer Security (MLS)

protocol. MLS provides a security layer for group messaging

applications, where the number of clients ranges from two to many.

It is meant to protect against eavesdropping, tampering, and message

forgery.

Discussion Venues

This note is to be removed before publishing as an RFC.

Source for this draft and an issue tracker can be found at https://

github.com/mlswg/mls-architecture.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 January 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/mlswg/mls-architecture
https://github.com/mlswg/mls-architecture
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. General Setting

2.1. Group, Members and Clients

2.2. Authentication Service

2.3. Delivery Service

2.3.1. Key Storage

2.3.2. Key Retrieval

2.3.3. Delivery of messages and attachments

2.3.4. Membership knowledge

2.3.5. Membership and offline members

3. System Requirements

3.1. Functional Requirements

3.1.1. Asynchronous Usage

3.1.2. Recovery After State Loss

3.1.3. Support for Multiple Devices

3.1.4. Extensibility / Pluggability

3.1.5. Privacy

3.1.6. Federation

3.1.7. Compatibility with future versions of MLS

3.2. Security Requirements

3.2.1. Connections between Clients and Servers (one-to-one)

3.2.2. Message Secrecy and Authentication

4. Security Considerations

4.1. Transport Security Links

4.2. Delivery Service Compromise

4.3. Authentication Service Compromise

4.4. Client Compromise

5. IANA Considerations

6. Contributors

7. Informative References

Authors' Addresses

1. Introduction

RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

The source for this draft is maintained in GitHub. Suggested changes

should be submitted as pull requests at https://github.com/mlswg/

mls-architecture. Instructions are on that page as well. Editorial

changes can be managed in GitHub, but any substantive change should

be discussed on the MLS mailing list.

End-to-end security is a requirement for instant messaging systems

and is commonly deployed in many such systems. In this context,

"end-to-end" captures the notion that users of the system enjoy some

level of security - with the precise level depending on the system

design - even when the service provider they are using performs

unsatisfactorily.

Messaging Layer Security (MLS) specifies an architecture (this

document) and an abstract protocol [MLSPROTO] for providing end-to-

end security in this setting. MLS is not intended as a full instant

messaging protocol but rather is intended to be embedded in a

concrete protocol such as XMPP [RFC6120]. In addition, it does not

specify a complete wire encoding, but rather a set of abstract data

structures which can then be mapped onto a variety of concrete

encodings, such as TLS [RFC8446], CBOR [RFC7049], and JSON

[RFC7159]. Implementations which adopt compatible encodings will

have some degree of interoperability at the message level, though

they may have incompatible identity/authentication infrastructures.

The MLS protocol has been designed to provide the same security

guarantees to all users, for all group sizes, even when it reduces

to only two users.

This document is intended to describe the overall messaging system

architecture which the MLS protocol fits into, including the

operational requirements needed to achieve a functional system, and

to describe the security goals it is intended to fulfill.

2. General Setting

Informally, a group is a set of users who possibly use multiple

endpoint devices to interact with the Service Provider (SP). A group

may be as small as two members (the simple case of person to person

messaging) or as large as thousands.

In order to communicate securely, users initially interact with

services at their disposal to establish the necessary values and

credentials required for encryption and authentication.

The Service Provider presents two abstract services that allow

clients to prepare for sending and receiving messages securely:

An Authentication Service (AS) which is responsible for

maintaining user long term identities, issuing credentials which

¶

¶

¶

¶

¶

¶

¶

*

allow them to authenticate each other, and potentially allowing

users to discover each other's long-term identity keys.

A Delivery Service (DS) which is responsible for receiving and

redistributing messages between group members. In the case of

group messaging, the delivery service may also be responsible for

acting as a "broadcaster" where the sender sends a single message

to a group which is then forwarded to each recipient in the group

by the DS. The DS is also responsible for storing and delivering

initial public key material required by clients in order to

proceed with the group secret key establishment process.

In many systems, the AS and the DS are actually operated by the same

entity and may even be the same server. However, they are logically

distinct and, in other systems, may be operated by different

entities, hence we show them as being separate here. Other

partitions are also possible, such as having a separate directory

server.

A typical group messaging scenario might look like this:

Alice, Bob and Charlie create accounts with a service provider

and obtain credentials from the AS.

Alice, Bob and Charlie authenticate to the DS and store some

initial keying material which can be used to send encrypted

messages to them for the first time. This keying material is

authenticated with their long term credentials.

When Alice wants to send a message to Bob and Charlie, she

contacts the DS and looks up their initial keying material. She

uses these keys to establish a new set of keys which she can

use to send encrypted messages to Bob and Charlie. She then

¶

*

¶

 ---------------- --------------

 | Authentication | | Delivery |

 | Service (AS) | | Service (DS) |

 ---------------- --------------

 / | \ Group

 / ************************************

 / * | \ *

 ---------- * ---------- ---------- *

 | Client 0 | * | Member 1 | | Member N | *

 ---------- * ---------- ---------- *

 * *

 User 0 * User 0 User 1 *

 * *

¶

¶

¶

1.

¶

2.

¶

3.

sends the encrypted message(s) to the DS, which forwards them

to the recipients.

Bob and/or Charlie respond to Alice's message. In addtion, they

might choose to update their key material which provides post-

compromise security Section 3.2.2.1. As a consequence of that

change, the group secrets are updated

Clients may wish to do the following:

create a group by inviting a set of other clients;

add one or more clients to an existing group;

remove one or more members from an existing group;

update their own key material

join an existing group;

leave a group;

send a message to everyone in the group;

receive a message from someone in the group.

At the cryptographic level, clients (and by extension members in

groups) have equal permissions. For instance, any member can add or

remove another client in a group. This is in contrast to some

designs in which there is a single group controller who can modify

the group. MLS is compatible with having group administration

restricted to certain users, but we assume that those restrictions

are enforced by authentication and access control at the application

layer.

Thus, for instance, while the MLS protocol allows for any existing

member of a group to add a new client, applications which use MLS

might enforce additional restrictions for which only a subset of

members can qualify, and thus will handle enforcing group policies

(such as determining if a user is allowed to add new users to the

group) at the application level.

2.1. Group, Members and Clients

While informally, a group can be considered to be a set of users

possibly using multiple endpoint devices to interact with the

Service Provider, this definition is too simplistic.

Formally, a Client is a set of cryptographic objects composed by

public values such as a name (an identity), a public encryption key

¶

4.

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

and a public signature key. Ownership of a Client by a user is

determined by the fact that the user has knowledge of the associated

secret values. When a Client is part of a Group, it is called a

Member and its signature key pair uniquely defines its identity to

other clients or members a the Group. In some messaging systems,

clients belonging to the same user must all share the same identity

key pair, but MLS does not assume this.

Users will typically own multiple Clients, potentially one or more

per end-user devices (phones, web clients or other devices...) and

may choose to authenticate using the same signature key across

devices, using one signature key per device or even one signature

key per group.

The formal definition of a Group in MLS is the set of clients that

have knowledge of the shared group secret established in the group

key establishment phase of the protocol and have contributed to it.

Until a Member has contributed to the group secret, other members

cannot assume she is a member of the group.

2.2. Authentication Service

The basic function of the Authentication Service (AS) is to provide

a trusted mapping from user identities (usernames, phone numbers,

etc.), to long-term identity keys, which may either be one per

Client or may be shared amongst the clients attached to a user.

The Authentication Service (AS) is expected to play multiple roles

in the architecture:

A certification authority or similar service which signs some

sort of portable credential binding an identity to a signature

key.

A directory server which provides the key for a given identity

(presumably this connection is secured via some form of transport

security such as TLS).

The MLS protocol assumes a signature keypair for authentication of

messages. It is important to note that this signature keypair might

be the identity keypair directly, or a different signature keypair

for which the public key has been for example signed by the identity

private key. This flexibility allows for multiple infrastructure

considerations and has the benefit of providing ways to use

different signature keys across different groups by using

hierarchical authentication keys. This flexibility also comes at the

price of a security tradeoff, described in the security

considerations, between potential unlinkability of the signature

keys across groups and the amount of time required to reinstate

¶

¶

¶

¶

¶

*

¶

*

¶

authentication and secrecy of messages after the compromise of a

device.

Ultimately, the only requirement is for the applications to be able

to check the credential containing the protocol signing key and the

identity against the Authentication Service at any time.

By definition, the Authentication Service is invested with a large

amount of trust. A malicious AS can impersonate - or allow an

attacker to impersonate - any user of the system. As a corollary, by

impersonating identities authorized to be members of a group, an AS

can break confidentiality.

This risk can be mitigated by publishing the binding between

identities and keys in a public log such as Key Transparency (KT)

[KeyTransparency]. It is possible to build a functional MLS system

without any kind of public key logging, but such a system will

necessarily be somewhat vulnerable to attack by a malicious or

untrusted AS.

2.3. Delivery Service

The Delivery Service (DS) is expected to play multiple roles in the

Service Provider architecture:

To act as a directory service providing the initial keying

material for clients to use. This allows a client to establish a

shared key and send encrypted messages to other clients even if

the other client is offline.

To route messages between clients and to act as a message

broadcaster, taking in one message and forwarding it to multiple

clients (also known as "server side fanout").

Because the MLS protocol provides a way for Clients to send and

receive application messages asynchronously, it only provides causal

ordering of application messages from senders while it has to

enforce global ordering of group operations to provide Group

Agreement.

Depending on the level of trust given by the group to the Delivery

Service, the functional and privacy guarantees provided by MLS may

differ but the Authentication and Confidentiality guarantees remain

the same.

Unlike the Authentication Service which is trusted for

authentication and secrecy, the Delivery Service is completely

untrusted regarding this property. While privacy of group membership

might be a problem in the case of a DS server fanout, the Delivery

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

Service can be considered as an active adaptative network attacker

from the point of view of the security analysis.

2.3.1. Key Storage

Upon joining the system, each client stores its initial

cryptographic key material with the Delivery Service. This key

material, called KeyPackage, advertises the functional abilities of

the Client such as supported protocol versions and extensions and

the following cryptographic information:

A credential from the Authentication Service attesting to the

binding between the identity and the client's signature key.

The client's asymmetric encryption key material signed with the

signature key associated with the credential.

As noted above, users may own multiple clients, each with their own

keying material, and thus there may be multiple entries stored by

each user.

The Delivery Service is also responsible for allowing users to add,

remove or update their initial keying material and to ensure that

the identifier for these keys are unique across all keys stored on

the DS.

2.3.2. Key Retrieval

When a client wishes to establish a group, it first contacts the DS

to request a KeyPackage for each other client, authenticate it using

the signature keys, and then can use those to form the group.

2.3.3. Delivery of messages and attachments

The main responsibility of the Delivery Service is to ensure

delivery of messages. Specifically, we assume that DSs provide:

Reliable delivery: when a message is provided to the DS, it is

eventually delivered to all clients.

In-order delivery: messages are delivered to the group in the

order they are received by the Delivery Service and in

approximately the order in which they are sent by clients. The

latter is an approximate guarantee because multiple clients may

send messages at the same time and so the DS needs some latitude

in enforcing ordering across clients.

Consistent ordering: the DS must ensure that all clients have the

same view of message ordering for cryptographically relevant

¶

¶

*

¶

*

¶

¶

¶

¶

¶

*

¶

*

¶

*

operations. This means that the DS MUST enforce global

consistency of the ordering of group operation messages.

Note that the protocol provides three important information within

an MLSCiphertext message in order to provide ordering:

The Group Identifier (GID) to allow to distinguish the group for

which the message has been sent;

The Epoch number, which represent the number of changes (version)

of the group associated with a specific GID, and allows for

lexicographical ordering of two messages from the same group;

The Content Type of the message, which allows the DS to determine

the ordering requirement on the message.

The MLS protocol itself can verify these properties. For instance,

if the DS reorders messages from a Client or provides different

Clients with inconsistent orderings, then Clients can detect this

misconduct. However, the protocol relies on the ordering, and on the

fact that only one honest group operation message is faned-out to

clients per Epoch, to provide Clients with a consistent view of the

evolving Group State.

Note that some forms of DS misbehavior are still possible and

difficult to detect. For instance, a DS can simply refuse to relay

messages to and from a given client. Without some sort of side

information, other clients cannot generally distinguish this form of

Denial of Service (DoS) attack.

2.3.4. Membership knowledge

Group membership is itself sensitive information and MLS is designed

to drastically limit the amount of persisted metadata. However,

large groups often require an infrastructure which provides server

fanout. In the case of client fanout, the destinations of a message

is known by all clients, hence the server usually does not need this

information. However, they may learn this information through

traffic analysis. Unfortunately, in a server side fanout model, the

DS can learn that a given client is sending the same message to a

set of other clients. In addition, there may be applications of MLS

in which the group membership list is stored on some server

associated with the DS.

While this knowledge is not a break of authentication or

confidentiality, it is a serious issue for privacy. In the case

where metadata has to be persisted for functionality, it SHOULD be

stored encrypted at rest.

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

2.3.5. Membership and offline members

Because Forward Secrecy (FS) and Post-Compromise Security (PCS) rely

on the active deletion and replacement of keying material, any

client which is persistently offline may still be holding old keying

material and thus be a threat to both FS and PCS if it is later

compromised.

MLS cannot inherently defend against this problem, especially in the

case where the Client hasn't processed messages but MLS-using

systems can enforce some mechanism to try retaining these

properties. Typically this will consist of evicting clients which

are idle for too long, thus containing the threat of compromise. The

precise details of such mechanisms are a matter of local policy and

beyond the scope of this document.

3. System Requirements

3.1. Functional Requirements

MLS is designed as a large scale group messaging protocol and hence

aims to provide performance and safety to its users. Messaging

systems that implement MLS provide support for conversations

involving two or more members, and aim to scale to groups as large

as 50,000 members, typically including many users using multiple

devices.

3.1.1. Asynchronous Usage

No operation in MLS requires two distinct clients or members to be

online simultaneously. In particular, members participating in

conversations protected using MLS can update shared keys, add or

remove new members, and send messages and attachments without

waiting for another user's reply.

Messaging systems that implement MLS have to provide a transport

layer for delivering messages asynchronously and reliably.

3.1.2. Recovery After State Loss

Conversation participants whose local MLS state is lost or corrupted

can reinitialize their state and continue participating in the

conversation.

[[OPEN ISSUE: The previous statement seems too strong, establish

what exact functional requirement we have regarding state recovery.

Previously: "This may entail some level of message loss, but does

not result in permanent exclusion from the group."]]

¶

¶

¶

¶

¶

¶

¶

3.1.3. Support for Multiple Devices

It is typically expected for users within a Group to own different

devices.

A new device can be added to a group and be considered as a new

client by the protocol. This client will not gain access to the

history even if it is owned by someone who owns another member of

the Group. Restoring history is typically not allowed at the

protocol level but applications can elect to provide such a

mechanism outside of MLS. Such mechanisms, if used, may undermine

the FS and PCS guarantees provided by MLS.

3.1.4. Extensibility / Pluggability

Messages that do not affect the group state can carry an arbitrary

payload with the purpose of sharing that payload between group

members. No assumptions are made about the format of the payload.

3.1.5. Privacy

The protocol is designed in a way that limits the server-side (AS

and DS) metadata footprint. The DS only persists data required for

the delivery of messages and avoids Personally Identifiable

Information (PII) or other sensitive metadata wherever possible. A

Service Provider that has control over both the AS and the DS, will

not be able to correlate encrypted messages forwarded by the DS,

with the initial public keys signed by the AS.

[[OPEN ISSUE: These privacy statements seem very strong. BB. I would

be willing to keep them as requirements since we have example

solutions in the Server-Assist draft.]]

3.1.6. Federation

The protocol aims to be compatible with federated environments.

While this document does not specify all necessary mechanisms

required for federation, multiple MLS implementations can

interoperate to form federated systems if they use compatible

authentication mechanisms and infrastructure functionalities.

3.1.7. Compatibility with future versions of MLS

It is important that multiple versions of MLS be able to coexist in

the future. Thus, MLS offers a version negotiation mechanism; this

mechanism prevents version downgrade attacks where an attacker would

actively rewrite messages with a lower protocol version than the

ones originally offered by the endpoints. When multiple versions of

MLS are available, the negotiation protocol guarantees that the

¶

¶

¶

¶

¶

¶

version agreed upon will be the highest version supported in common

by the group.

In MLS 1.0, the creator of the group is responsible for selecting

the best ciphersuite proposed across clients. Each client is able to

verify availability of protocol version, ciphersuites and extensions

at all times once he has at least received the first group operation

message.

3.2. Security Requirements

3.2.1. Connections between Clients and Servers (one-to-one)

We assume that all transport connections are secured via some

transport layer security mechanism such as TLS [RFC8446]. However,

as noted above, the security of MLS will generally survive

compromise of the transport layer, so long as identity keys provided

by the AS are authenticated at a minimum. However, MLS ciphertext

contains the Group Identifier, Epoch number and Content Type that

may be used to improve attacks on the privacy of the group.

3.2.2. Message Secrecy and Authentication

The trust establishment step of the MLS protocol is followed by a

conversation protection step where encryption is used by clients to

transmit authenticated messages to other clients through the DS.

This ensures that the DS does not have access to the group's private

content.

MLS aims to provide secrecy, integrity and authentication for all

messages.

Message Secrecy in the context of MLS means that only intended

recipients (current group members), can read any message sent to the

group, even in the context of an active attacker as described in the

threat model.

Message Integrity and Authentication mean that an honest Client can

only accept a message if it was sent by a group member and that no

Client can send a message which other Clients accept as being from

another Client.

A corollary to this statement is that the AS and the DS cannot read

the content of messages sent between Members as they are not Members

of the Group. MLS optionally provides additional protections

regarding traffic analysis so as to reduce the ability of attackers,

or a compromised member of the messaging system, to deduce the

content of the messages depending on (for example) their size. One

of these protections includes padding messages in order to produce

ciphertexts of standard length. While this protection is highly

¶

¶

¶

¶

¶

¶

¶

recommended it is not mandatory as it can be costly in terms of

performance for clients and the SP.

Message content can be deniable if the signature keys are exchanged

over a deniable channel prior to signing messages.

3.2.2.1. Forward and Post-Compromise Security

MLS provides additional protection regarding secrecy of past

messages and future messages. These cryptographic security

properties are Forward Secrecy (FS) and Post-Compromise Security

(PCS).

FS means that access to all encrypted traffic history combined with

an access to all current keying material on clients will not defeat

the secrecy properties of messages older than the oldest key of the

compromised client. Note that this means that clients have the

extremely important role of deleting appropriate keys as soon as

they have been used with the expected message, otherwise the secrecy

of the messages and the security for MLS is considerably weakened.

PCS means that if a group member's state is compromised at some time

t but the group member subsequently performs an update at some time

t', then all MLS guarantees apply to messages sent by the member

after time t', and by other members after they have processed the

update. For example, if an attacker learns all secrets known to

Alice at time t, including both Alice's long-term secret keys and

all shared group keys, but Alice performs a key update at time t',

then the attacker is unable to violate any of the MLS security

properties after the updates have been processed.

Both of these properties are satisfied even against compromised DSs

and ASs.

3.2.2.2. Membership Changes

MLS aims to provide agreement on group membership, meaning that all

group members have agreed on the list of current group members.

Some applications may wish to enforce ACLs to limit addition or

removal of group members, to privileged clients or users. Others may

wish to require authorization from the current group members or a

subset thereof. Regardless, MLS does not allow addition or removal

of group members without informing all other members.

Once a client is part of a group, the set of devices controlled by

the user can only be altered by an authorized member of the group.

This authorization could depend on the application: some

applications might want to allow certain other members of the group

to add or remove devices on behalf of another member, while other

¶

¶

¶

¶

¶

¶

¶

¶

applications might want a more strict policy and allow only the

owner of the devices to add or remove them at the potential cost of

weaker PCS guarantees.

Members who are removed from a group do not enjoy special

privileges: compromise of a removed group member does not affect the

security of messages sent after their removal but might affect

previous messages if the group secrets have not been deleted

properly.

3.2.2.3. Parallel Groups

Any user may have membership in several Groups simultaneously. The

set of members of any group may or may not form a subset of the

members of another group. MLS guarantees that the FS and PCS goals

are maintained and not weakened by user membership in multiple

groups.

3.2.2.4. Security of Attachments

The security properties expected for attachments in the MLS protocol

are very similar to the ones expected from messages. The distinction

between messages and attachments stems from the fact that the

typical average time between the download of a message and the one

from the attachments may be different. For many reasons (a typical

reason being the lack of high bandwidth network connectivity), the

lifetime of the cryptographic keys for attachments is usually higher

than for messages, hence slightly weakening the PCS guarantees for

attachments.

3.2.2.5. Denial of Service

In general we do not consider Denial of Service (DoS) resistance to

be the responsibility of the protocol. However, it should not be

possible for anyone aside from the DS to perform a trivial DoS

attack from which it is hard to recover.

3.2.2.6. Non-Repudiation vs Deniability

As described in Section 4.4, MLS provides strong authentication

within a group, such that a group member cannot send a message that

appears to be from another group member. Additionally, some services

require that a recipient be able to prove to the service provider

that a message was sent by a given client, in order to report abuse.

MLS supports both of these use cases. In some deployments, these

services are provided by mechanisms which allow the receiver to

prove a message's origin to a third party (this if often called

"non-repudiation"), but it should also be possible to operate MLS in

a "deniable" mode where such proof is not possible. [[OPEN ISSUE:

Exactly how to supply this is still a protocol question.]]

¶

¶

¶

¶

¶

¶

4. Security Considerations

MLS adopts the Internet threat model [RFC3552] and therefore assumes

that the attacker has complete control of the network. It is

intended to provide the security services described in the face of

such attackers. In addition, these guarantees are intended to

degrade gracefully in the presence of compromise of the transport

security links as well as of both Clients and elements of the

messaging system, as described in the remainder of this section.

4.1. Transport Security Links

[TODO: Mostly DoS, message suppression, and leakage of group

membership.]

4.2. Delivery Service Compromise

MLS is intended to provide strong guarantees in the face of

compromise of the DS. Even a totally compromised DS should not be

able to read messages or inject messages that will be acceptable to

legitimate clients. It should also not be able to undetectably

remove, reorder or replay messages.

However, a DS can mount a variety of DoS attacks on the system,

including total DoS attacks (where it simply refuses to forward any

messages) and partial DoS attacks (where it refuses to forward

messages to and from specific clients). As noted in Section 2.3.3,

these attacks are only partially detectable by clients without an

out-of-band channel. Ultimately, failure of the DS to provide

reasonable service must be dealt with as a customer service matter,

not via technology.

Because the DS is responsible for providing the initial keying

material to clients, it can provide stale keys. This does not

inherently lead to compromise of the message stream, but does allow

it to attack forward security to a limited extent. This threat can

be mitigated by having initial keys expire.

4.3. Authentication Service Compromise

A compromised AS is a serious matter, as the AS can provide

incorrect or attacker-provided identities to clients. As noted in

Section 2.2, detecting this form of attack requires some sort of

transparency/logging mechanism. Without such a mechanism, MLS cannot

detect a compromised AS.

4.4. Client Compromise

MLS provides a limited form of protection against compromised

Clients through PCS. When the Client is fully compromised, then the

¶

¶

¶

¶

¶

¶

attacker will be able to decrypt any messages for groups in which

the Client is a member, and will be able to send messages

impersonating the compromised Client. However, if the Client

afterwards updates its keying material (see Section 3.2.2.1) (using

fresh randomness that the attacker does not know) then the PCS

property enables the Client to recover.

In addition, a client cannot send a message to a group which appears

to be from another client with a different identity. Note that if

devices from the same user share keying material, then one will be

able to impersonate another.

Finally, clients should not be able to perform DoS attacks Section

3.2.2.5.

5. IANA Considerations

This document makes no requests of IANA.

6. Contributors

Katriel Cohn-Gordon

University of Oxford

me@katriel.co.uk

Cas Cremers

University of Oxford

cas.cremers@cs.ox.ac.uk

Thyla van der Merwe

Royal Holloway, University of London

thyla.van.der@merwe.tech

Jon Millican

Facebook

jmillican@fb.com

Raphael Robert

Wire

raphael@wire.com

¶

¶

¶

¶

* ¶

¶

¶

* ¶

¶

¶

* ¶

¶

¶

* ¶

¶

¶

* ¶

¶

¶

[KeyTransparency]

[MLSPROTO]

[RFC3552]

[RFC6120]

[RFC7049]

[RFC7159]

[RFC8446]

7. Informative References

Google, ., "Key Transparency", 2017, <https://

KeyTransparency.org>.

Barnes, R., Beurdouche, B., Millican, J., Omara, E.,

Cohn-Gordon, K., and R. Robert, "Messaging Layer Security

Protocol", 2018.

Rescorla, E. and B. Korver, "Guidelines for Writing RFC

Text on Security Considerations", BCP 72, RFC 3552, DOI

10.17487/RFC3552, July 2003, <https://www.rfc-editor.org/

info/rfc3552>.

Saint-Andre, P., "Extensible Messaging and Presence

Protocol (XMPP): Core", RFC 6120, DOI 10.17487/RFC6120,

March 2011, <https://www.rfc-editor.org/info/rfc6120>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,

October 2013, <https://www.rfc-editor.org/info/rfc7049>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", RFC 7159, DOI 10.17487/RFC7159,

March 2014, <https://www.rfc-editor.org/info/rfc7159>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Authors' Addresses

Emad Omara

Google

Email: emadomara@google.com

Benjamin Beurdouche

INRIA

Email: benjamin.beurdouche@inria.fr

Eric Rescorla

Mozilla

Email: ekr@rtfm.com

Srinivas Inguva

Twitter

https://KeyTransparency.org
https://KeyTransparency.org
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc6120
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc7159
https://www.rfc-editor.org/info/rfc8446
mailto:emadomara@google.com
mailto:benjamin.beurdouche@inria.fr
mailto:ekr@rtfm.com

Email: singuva@twitter.com

Albert Kwon

MIT

Email: kwonal@mit.edu

Alan Duric

Wire

Email: alan@wire.com

mailto:singuva@twitter.com
mailto:kwonal@mit.edu
mailto:alan@wire.com

	The Messaging Layer Security (MLS) Architecture
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. General Setting
	2.1. Group, Members and Clients
	2.2. Authentication Service
	2.3. Delivery Service
	2.3.1. Key Storage
	2.3.2. Key Retrieval
	2.3.3. Delivery of messages and attachments
	2.3.4. Membership knowledge
	2.3.5. Membership and offline members

	3. System Requirements
	3.1. Functional Requirements
	3.1.1. Asynchronous Usage
	3.1.2. Recovery After State Loss
	3.1.3. Support for Multiple Devices
	3.1.4. Extensibility / Pluggability
	3.1.5. Privacy
	3.1.6. Federation
	3.1.7. Compatibility with future versions of MLS

	3.2. Security Requirements
	3.2.1. Connections between Clients and Servers (one-to-one)
	3.2.2. Message Secrecy and Authentication
	3.2.2.1. Forward and Post-Compromise Security
	3.2.2.2. Membership Changes
	3.2.2.3. Parallel Groups
	3.2.2.4. Security of Attachments
	3.2.2.5. Denial of Service
	3.2.2.6. Non-Repudiation vs Deniability

	4. Security Considerations
	4.1. Transport Security Links
	4.2. Delivery Service Compromise
	4.3. Authentication Service Compromise
	4.4. Client Compromise

	5. IANA Considerations
	6. Contributors
	7. Informative References
	Authors' Addresses

