
Workgroup: Network Working Group

Internet-Draft: draft-ietf-mls-architecture-07

Published: 4 October 2021

Intended Status: Informational

Expires: 7 April 2022

Authors: B. Beurdouche

Inria & Mozilla

E. Rescorla

Mozilla

E. Omara

Google

S. Inguva

Twitter

A. Kwon

MIT

A. Duric

Wire

The Messaging Layer Security (MLS) Architecture

Abstract

The Messaging Layer Security (MLS) protocol [MLSPROTO] document has

the role of defining a Group Key Agreement, all the necessary

cryptographic operations, and serialization/deserialization

functions necessary to create a scalable and secure group messaging

protocol. The MLS protocol is meant to protect against

eavesdropping, tampering, message forgery, and provide good

properties such as forward-secrecy (FS) and post-compromise security

(PCS) in the case of past or future device compromises.

This document, on the other hand is intended to describe a general

secure group messaging infrastructure and its security goals. It

provides guidance on building a group messaging system and discusses

security and privacy tradeoffs offered by multiple security

mechanism that are part of the MLS protocol (ie. frequency of public

encryption key rotation).

The document also extends the guidance to parts of the

infrastructure that are not standardized by the MLS Protocol

document and left to the application or the infrastructure

architects to design.

While the recommendations of this document are not mandatory to

follow in order to interoperate at the protocol level, most will

vastly influence the overall security guarantees that are achieved

by the overall messaging system. This is especially true in case of

active adversaries that are able to compromise clients, the delivery

service or the authentication service.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the MLS Working Group

mailing list (mls@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/mls/.

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/mls/
https://mailarchive.ietf.org/arch/browse/mls/

Source for this draft and an issue tracker can be found at https://

github.com/mlswg/mls-architecture.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 7 April 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. General Setting

2.1. Group, Members and Clients

2.2. Authentication Service

2.2.1. Credential Authentication

2.2.2. Message Authentication

2.3. Delivery Service

2.3.1. Key Storage

2.3.2. Key Retrieval

2.3.3. Delivery of messages and attachments

2.3.4. Membership knowledge

2.3.5. Membership and offline members

¶

¶

¶

¶

¶

¶

¶

https://github.com/mlswg/mls-architecture
https://github.com/mlswg/mls-architecture
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

2.4. Functional Requirements

2.4.1. Membership Changes

2.4.2. Parallel Groups

2.4.3. Security of Attachments

2.4.4. Asynchronous Usage

2.4.5. Access Control

2.4.6. Recovery After State Loss

2.4.7. Support for Multiple Devices

2.4.8. Extensibility / Pluggability

2.4.9. Federation

2.4.10. Compatibility with Future Versions of MLS

3. Security and Privacy Considerations

3.1. Assumptions on Transport Security Links

3.1.1. Metadata Protection for Unencrypted Group Operations

3.1.2. DoS protection

3.1.3. Message Suppression and Error Correction

3.2. Intended Security Guarantees

3.2.1. Message Secrecy and Authentication

3.2.2. Forward and Post-Compromise Security

3.2.3. Non-Repudiation vs Deniability

3.3. Endpoint Compromise

3.3.1. Compromise of AEAD key material

3.3.2. Compromise of the Group Secrets of a single group for

one or more group epochs

3.3.3. Compromise by an active adversary with the ability to

sign messages

3.3.4. Compromise of the authentication with access to a

signature key

3.3.5. Security consideration in the context of a full state

compromise

3.3.6. More attack scenarios

3.4. Service Node Compromise

3.4.1. General considerations

3.4.2. Delivery Service Compromise

3.4.3. Authentication Service Compromise

3.5. Considerations for attacks outside of the threat model

4. IANA Considerations

5. Contributors

6. Informative References

Authors' Addresses

1. Introduction

RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH

The source for this draft is maintained in GitHub. Suggested changes

should be submitted as pull requests at https://github.com/mlswg/

mls-architecture. Instructions are on that page as well. Editorial

¶

changes can be managed in GitHub, but any substantive change should

be discussed on the MLS mailing list.

DISCLAIMER: A lot of work is still ongoing on the current version of

this draft. Especially, this preliminary writing of the security

considerations has not been reviewed by the working group yet and

might contain errors. Please file an issue on the document's GitHub

if you find errors.

[[TODO: Remove disclaimer.]]

End-to-end security is a requirement for instant messaging systems

and is commonly deployed in many such systems. In this context,

"end-to-end" captures the notion that users of the system enjoy some

level of security -- with the precise level depending on the system

design -- even when the service provider they are using performs

unsatisfactorily.

Messaging Layer Security (MLS) specifies an architecture (this

document) and an abstract protocol [MLSPROTO] for providing end-to-

end security in this setting. MLS is not intended as a full instant

messaging protocol but rather is intended to be embedded in concrete

protocols, such as XMPP [RFC6120]. In addition, it does not specify

a complete wire encoding, but rather a set of abstract data

structures which can then be mapped onto a variety of concrete

encodings, such as TLS [RFC8446], CBOR [RFC7049], and JSON

[RFC7159]. Implementations which adopt compatible encodings will

have some degree of interoperability at the message level, though

they may have incompatible identity/authentication infrastructures.

The MLS protocol has been designed to provide the same security

guarantees to all users, for all group sizes, even when it reduces

to only two users.

2. General Setting

Informally, a group is a set of users who possibly use multiple

endpoint devices to interact with the Service Provider (SP). A group

may be as small as two members (the simple case of person to person

messaging) or as large as thousands.

In order to communicate securely, users initially interact with

services at their disposal to establish the necessary values and

credentials required for encryption and authentication.

The Service Provider presents two abstract functionalities that

allow clients to prepare for sending and receiving messages

securely:

An Authentication Service (AS) functionality which is responsible

for maintaining a binding between a unique identifier (identity)

¶

¶

¶

¶

¶

¶

¶

¶

*

and the public key material (credential) used for authentication

in the MLS protocol. This functionality must also be able to

generate these credentials or validate them if they are provided

by MLS clients.

A Delivery Service (DS) functionality which can receive and

redistributing messages between group members. In the case of

group messaging, the delivery service may also be responsible for

acting as a "broadcaster" where the sender sends a single message

which is then forwarded to each recipient in the group by the DS.

The DS is also responsible for storing and delivering initial

public key material required by MLS clients in order to proceed

with the group secret key establishment that is part of the MLS

protocol.

For convenience, this document adopts the representation of these

services being standalone servers, however the MLS protocol design

is made so that it is not necessarily the case.

It is important to note that the Authentication Service

functionality can be completely abstract in the case of a Service

Provider which allows MLS clients to generate, redistribute and

validate their credentials themselves.

Similarly to the AS, the Delivery Service can be completely abstract

if users are able to distribute credentials and messages without

relying on a central Delivery Service. Note, though, that the MLS

protocol requires group operation messages to be processed in-order

by all MLS clients.

In some sense, a set of MLS clients which can achieve the AS and DS

functionalities without relying on an external party do not need a

Service Provider.

¶

*

¶

¶

¶

¶

¶

 ---------------- --------------

 | Authentication | | Delivery |

 | Service (AS) | | Service (DS) |

 ---------------- --------------

 / | \ Group

 / ************************************

 / * | \ *

 ---------- * ---------- ---------- *

 | Client 0 | * | Member 1 | | Member N | *

 ---------- * ---------- ---------- *

 * *

 User 0 * User 0 User 1 *

 * *

¶

In many systems, the AS and the DS are actually operated by the same

entity and may even be the same server. However, they are logically

distinct and, in other systems, may be operated by different

entities. Other partitions are also possible, such as having a

separate directory functionality or service.

According to this architecture design, a typical group messaging

scenario might look like this:

Alice, Bob and Charlie create accounts with a service provider

and obtain credentials from the AS.

Alice, Bob and Charlie authenticate to the DS and store some

initial keying material which can be used to send encrypted

messages to them for the first time. This keying material is

authenticated with their long term credentials.

When Alice wants to send a message to Bob and Charlie, she

contacts the DS and looks up their initial keying material. She

uses these keys to establish a new set of keys which she can

use to send encrypted messages to Bob and Charlie. She then

sends the encrypted message(s) to the DS, which forwards them

to the recipients.

Bob and/or Charlie respond to Alice's message. In addition,

they might choose to update their key material which provides

post-compromise security Section 3.2.2. As a consequence of

that change, the group secrets are updated

Clients may wish to do the following:

create a group by inviting a set of other clients;

add one or more clients to an existing group;

remove one or more members from an existing group;

update their own key material

join an existing group;

leave a group;

send a message to everyone in the group;

receive a message from someone in the group.

At the cryptographic level, clients (and by extension members in

groups) have equal permissions. For instance, any member can add or

remove another client in a group. This is in contrast to some

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

designs in which there is a single group controller who can modify

the group. MLS is compatible with having group administration

restricted to certain users, but we assume that those restrictions

are enforced by authentication and access control at the application

layer.

Thus, for instance, while the MLS protocol allows for any existing

member of a group to add a new client, applications which use MLS

might enforce additional restrictions for which only a subset of

members can qualify, and thus will handle enforcing group policies

(such as determining if a user is allowed to add new users to the

group) at the application level.

2.1. Group, Members and Clients

While informally, a group can be considered to be a set of users

possibly using multiple endpoint devices to interact with the

Service Provider, this definition is too simplistic.

Formally, a client is a set of cryptographic objects composed by

public values such as a name (an identity), a public encryption key

and a public signature key. Ownership of a client by a user is

determined by the fact that the user has knowledge of the associated

secret values. When a client is part of a Group, it is called a

Member and its signature key pair uniquely defines its identity to

other clients or members in the Group. In some messaging systems,

clients belonging to the same user must all share the same identity

key pair, but MLS does not assume this.

Users will typically own multiple clients, potentially one or more

per end-user devices (phones, web clients or other devices...) and

may choose to authenticate using the same signature key across

devices, using one signature key per device or even one signature

key per group.

The formal definition of a Group in MLS is the set of clients that

have knowledge of the shared group secret established in the group

key establishment phase of the protocol and have contributed to it.

Until a Member has been added to the group and contributed to the

group secret in a manner verifiable by other members of the group,

other members cannot assume that the Member is a member of the

group.

2.2. Authentication Service

The Authentication Service (AS) has to provide two functionalities:

authenticate the credentials (i.e. the identity/signature

keypair) used in a group

¶

¶

¶

¶

¶

¶

¶

1.

¶

authenticate messages sent in groups given the signature over

the message and the sending member's credential

The AS is considered an abstract layer by the MLS specification,

part of this service could be, for instance, running on the members'

devices, while another part is a separate entity entirely.

By the nature of its roles in MLS authentication, the AS is invested

with a large amount of trust and the compromise of one of its

functionalities could allow an adversary to, among other things,

impersonate group members. We discuss security considerations

regarding the compromise of the different AS functionalities in

detail in Section Section 3.4.3.

2.2.1. Credential Authentication

In many cases, the first functionality might be provided by a

service which fulfills a role similar to a certification authority

in the WebPKI: it provides a binding of an identity (e.g., a user

name, phone number, email address, etc) to a signature key. The

identity/signature key pair can then either be used directly in a

group, or as an root of trust which in turn authenticates

credentials used in the group.

The flexibility afforded by the latter option allows for multiple

infrastructure considerations and has the benefit of providing ways

to use different signature keys across different groups by using

hierarchical authentication keys. This flexibility also comes at the

price of a security tradeoff, described in the security

considerations, between potential unlinkability of the signature

keys across groups and the amount of time required to reinstate

authentication and secrecy of messages after the compromise of a

device.

2.2.2. Message Authentication

MLS messages are authenticated by a signature conforming to the

signature scheme of the group's ciphersuite. To allow for message

deniability (see Section Section 3.2.3), messages are not required

to be signed by the private key corresponding to a member's

credential, but the key must be authenticated using some mechanism.

Thus, message authentication relies on the accuracy of the key's

authentication vice the credential authentication.

While credential authentication can be performed by a separate

entity, message authentication should be performed by each member

separately due to the encryption layer of the protocol which

protects the signature of the message.

2.

¶

¶

¶

¶

¶

¶

¶

2.3. Delivery Service

The Delivery Service (DS) is expected to play multiple roles in the

Service Provider architecture:

To act as a directory service providing the initial keying

material for clients to use. This allows a client to establish a

shared key and send encrypted messages to other clients even if

the other client is offline.

To route messages between clients and to act as a message

broadcaster, taking in one message and forwarding it to multiple

clients (also known as "server side fanout").

Because the MLS protocol provides a way for clients to send and

receive application messages asynchronously, it only provides causal

ordering of application messages from senders while it has to

enforce global ordering of group operations to provide Group

Agreement. [[TODO: Casual ordering?]]

Depending on the level of trust given by the group to the Delivery

Service, the functional and privacy guarantees provided by MLS may

differ but the authentication and confidentiality guarantees remain

the same.

Unlike the Authentication Service which is trusted for

authentication and secrecy, the Delivery Service is completely

untrusted regarding this property. While privacy of group membership

might be a problem in the case of a Delivery Service server fanout,

the Delivery Service can be considered as an active, adaptive

network attacker from the point of view of the security analysis.

2.3.1. Key Storage

Upon joining the system, each client stores its initial

cryptographic key material with the Delivery Service. This key

material, called a KeyPackage, advertises the functional abilities

of the client such as supported protocol versions and extensions and

the following cryptographic information:

A credential from the Authentication Service attesting to the

binding between the identity and the client's signature key.

The client's asymmetric encryption public key material signed

with the signature public key associated with the credential.

As noted above, users may own multiple clients, each with their own

keying material, and thus there may be multiple entries stored by

each user.

¶

*

¶

*

¶

¶

¶

¶

¶

*

¶

*

¶

¶

The Delivery Service is also responsible for allowing users to add,

remove or update their initial key material, and for ensuring that

the identifier for these keys are unique across all keys stored on

the Delivery Service.

2.3.2. Key Retrieval

When a client wishes to establish a group, it first contacts the

Delivery Service to request a KeyPackage for each other client,

authenticates the KeyPackages using the signature keys, and then can

use those to form the group.

2.3.3. Delivery of messages and attachments

The main responsibility of the Delivery Service is to ensure

delivery of messages. Specifically, we assume that Delivery Services

provide:

Reliable delivery: when a message is provided to the Delivery

Service, it is eventually delivered to all clients.

In-order delivery: messages are delivered to the group in the

order they are received by the Delivery Service and in

approximately the order in which they are sent by clients. The

latter is an approximate guarantee because multiple clients may

send messages at the same time and so the Delivery Service needs

some latitude in enforcing ordering across clients.

Consistent ordering: the Delivery Service must ensure that all

clients have the same view of message ordering for

cryptographically relevant operations. This means that the

Delivery Service MUST enforce global consistency of the ordering

of group operation messages.

Note that the protocol provides three important pieces of

information within an MLSCiphertext message in order to provide

ordering:

The Group Identifier (GID) to allow for distinguishing the group

for which the message has been sent;

The Epoch number, which represents the number of changes

(version) of the group associated with a specific GID, and allows

for lexicographical ordering of messages from different epochs

within the same group;

The Content Type of the message, which allows the Delivery

Service to determine the ordering requirement on the message.

¶

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

The MLS protocol itself can verify these properties. For instance,

if the Delivery Service reorders messages from a client or provides

different clients with inconsistent orderings, then clients can

detect this misconduct. However, the protocol relies on the

ordering, and on the fact that only one honest group operation

message is fanned-out to clients per Epoch, to provide clients with

a consistent view of the evolving Group State.

Note that some forms of Delivery Service misbehavior are still

possible and difficult to detect. For instance, a Delivery Service

can simply refuse to relay messages to and from a given client.

Without some sort of side information, other clients cannot

generally distinguish this form of Denial of Service (DoS) attack.

2.3.4. Membership knowledge

Group membership is itself sensitive information and MLS is designed

to drastically limit the amount of persistant metadata. However,

large groups often require an infrastructure which provides server

fanout. In the case of client fanout, the destinations of a message

is known by all clients, hence the server usually does not need this

information. However, they may learn this information through

traffic analysis. Unfortunately, in a server side fanout model, the

Delivery Service can learn that a given client is sending the same

message to a set of other clients. In addition, there may be

applications of MLS in which the group membership list is stored on

some server associated with the Delivery Service.

While this knowledge is not a break of authentication or

confidentiality, it is a serious issue for privacy. In the case

where metadata has to be persisted for functionality, it SHOULD be

stored encrypted at rest.

2.3.5. Membership and offline members

Because Forward Secrecy (FS) and Post-Compromise Security (PCS) rely

on the active deletion and replacement of keying material, any

client which is persistently offline may still be holding old keying

material and thus be a threat to both FS and PCS if it is later

compromised.

MLS cannot inherently defend against this problem, especially in the

case where the client has not processed messages, but MLS-using

systems can enforce some mechanism to try to retain these

properties. Typically this will consist of evicting clients which

are idle for too long, or mandate a silent key update from clients

that is not attached to other messaging traffic, thus containing the

threat of compromise. The precise details of such mechanisms are a

matter of local policy and beyond the scope of this document.

¶

¶

¶

¶

¶

¶

2.4. Functional Requirements

MLS is designed as a large scale group messaging protocol and hence

aims to provide performance and safety to its users. Messaging

systems that implement MLS provide support for conversations

involving two or more members, and aim to scale to groups as large

as 50,000 members, typically including many users using multiple

devices.

2.4.1. Membership Changes

MLS aims to provide agreement on group membership, meaning that all

group members have agreed on the list of current group members.

Some applications may wish to enforce ACLs to limit addition or

removal of group members, to privileged clients or users. Others may

wish to require authorization from the current group members or a

subset thereof. Regardless, MLS does not allow for or support

addition or removal of group members without informing all other

members.

Once a client is part of a group, the set of devices controlled by

the user can only be altered by an authorized member of the group.

This authorization could depend on the application: some

applications might want to allow certain members of the group to add

or remove devices on behalf of another member, while other

applications might want a more strict policy and allow only the

owner of the devices to add or remove them at the potential cost of

weaker PCS guarantees. Application setup may also determine other

forms of membership validity, e.g. through an identity key alignment

to the member with separate signature keys per device. If a

certificate chain is used to sign off on device signature keys, then

revocation by the owner adds an alternative flag to prompt

membership removal.

[[OPEN ISSUE: Above paragraph conflicts slightly under assumptions

about multiple device memberships vs. those described below under

"Support for Multiple Devices"]]

Members who are removed from a group do not enjoy special

privileges: compromise of a removed group member does not affect the

security of messages sent after their removal but might affect

previous messages if the group secrets have not been deleted

properly.

2.4.2. Parallel Groups

Any user may have membership in several groups simultaneously. The

set of members of any group may or may not form a subset of the

members of another group. MLS guarantees that the FS and PCS goals

¶

¶

¶

¶

¶

¶

within a given group are maintained and not weakened by user

membership in multiple groups. However, actions in other groups

likewise do not strengthen the FS and PCS guarantees within a given

group, e.g. key updates within a given group following a device

compromise does not provide PCS healing in other groups; each group

must be updated separately to achieve internal goals. This also

applies to future groups that a member has yet to join, that are

likewise unaffected by updates performed in current groups.

Some applications may strengthen connectivity among parallel groups

by requiring periodic key updates from a user across all groups in

which they have membership, or using the PSK mechanism to link

healing properties among parallel groups. Such application choices

however are outside the scope of MLS.

2.4.3. Security of Attachments

The security properties expected for attachments in the MLS protocol

are very similar to the ones expected from messages. The distinction

between messages and attachments stems from the fact that the

typical average time between the download of a message and the one

from the attachments may be different. For many reasons (a typical

reason being the lack of high bandwidth network connectivity), the

lifetime of the cryptographic keys for attachments is usually higher

than for messages, hence slightly weakening the PCS guarantees for

attachments.

2.4.4. Asynchronous Usage

No operation in MLS requires two distinct clients or members to be

online simultaneously. In particular, members participating in

conversations protected using MLS can update shared keys, add or

remove new members, and send messages and attachments without

waiting for another user's reply.

Messaging systems that implement MLS have to provide a transport

layer for delivering messages asynchronously and reliably.

2.4.5. Access Control

The MLS protocol allows each member of the messaging group to

perform operations equally. This is because all clients within a

group (members) have access to the shared cryptographic material.

However every service/infrastructure has control over policies

applied to its own clients. Applications managing MLS clients can be

configured to allow for specific group operations. An application

can, for example, decide to provide specific permissions to a group

administrator that will be the one to perform add and remove

operations, but the flexibility is immense here. On the other hand,

¶

¶

¶

¶

¶

in many settings such as open discussion forums, joining can be

allowed for anyone.

The MLS protocol can, in certain modes, exchange unencrypted group

operation messages. This flexibility is to allow services to perform

access control tasks on behalf of the group.

While the Application messages will always be encrypted, having the

handshake messages in plaintext has inconveniences in terms of

privacy as someone could collect the signatures on the handshake

messages and use them for tracking.

RECOMMENDATION: Prefer using encrypted group operation messages

to avoid privacy issues related to non-encrypted signatures.

Note that in the default case of encrypted handshake messages, the

application level must make sure that the access control policies

are consistent across all clients to make sure that they remain in

sync. If two different policies were applied, the clients might not

accept or reject a group operation and end-up in different

cryptographic states, breaking their ability to communicate.

RECOMMENDATION: Avoid using inconsistent access control policies

in the case of encrypted group operations.

2.4.6. Recovery After State Loss

Group members whose local MLS state is lost or corrupted can

reinitialize their state and continue participating in the group.

This does not provide the member with access to group messages from

during the state loss window, but enables proof of prior membership

in the group. Applications may choose various configurations for

providing lost messages to valid group members that are able to

prove prior membership.

[[OPEN ISSUE: The previous statement seems too strong, establish

what exact functional requirement we have regarding state recovery.

Previously: "This may entail some level of message loss, but does

not result in permanent exclusion from the group." -- Statement

edited]]

2.4.7. Support for Multiple Devices

It is typically expected for users within a group to own various

devices. A new device can be added to a group and be considered as a

new client by the protocol. This client will not gain access to the

history even if it is owned by someone who owns another member of

the group. Restoring history is typically not allowed at the

protocol level but applications can elect to provide such a

¶

¶

¶

¶

¶

¶

¶

¶

mechanism outside of MLS. Such mechanisms, if used, may undermine

the FS and PCS guarantees provided by MLS.

2.4.8. Extensibility / Pluggability

Messages that do not affect the group state can carry an arbitrary

payload with the purpose of sharing that payload between group

members. No assumptions are made about the format of the payload.

2.4.9. Federation

The protocol aims to be compatible with federated environments.

While this document does not specify all necessary mechanisms

required for federation, multiple MLS implementations can

interoperate to form federated systems if they use compatible

authentication mechanisms, ciphersuites, and infrastructure

functionalities.

2.4.10. Compatibility with Future Versions of MLS

It is important that multiple versions of MLS be able to coexist in

the future. Thus, MLS offers a version negotiation mechanism; this

mechanism prevents version downgrade attacks where an attacker would

actively rewrite messages with a lower protocol version than the

ones originally offered by the endpoints. When multiple versions of

MLS are available, the negotiation protocol guarantees that the

version agreed upon will be the highest version supported in common

by the group.

In MLS 1.0, the creator of the group is responsible for selecting

the best ciphersuite supported across clients. Each client is able

to verify availability of protocol version, ciphersuites and

extensions at all times once he has at least received the first

group operation message.

3. Security and Privacy Considerations

MLS adopts the Internet threat model [RFC3552] and therefore assumes

that the attacker has complete control of the network. It is

intended to provide the security services described in the face of

such attackers.

-- The attacker can monitor the entire network.

-- The attacker can read unprotected messages.

-- The attacker can generate and inject any message in the

unprotected transport layer.

¶

¶

¶

¶

¶

¶

¶

¶

¶

In addition, these guarantees are intended to degrade gracefully in

the presence of compromise of the transport security links as well

as of both clients and elements of the messaging system, as

described in the remainder of this section.

Generally, MLS is designed under the assumption that the transport

layer is present to protect metadata and privacy in general, while

the MLS protocol is providing stronger guarantees such as

confidentiality, integrity and authentication guarantees. Stronger

properties such as deniability can also be achieved in specific

architecture designs.

3.1. Assumptions on Transport Security Links

Any secure channel can be used as a transport layer to protect MLS

messages such as QUIC, TLS, WireGuard or TOR. However, the MLS

protocol is designed to consider the following threat-model:

-- The attacker can read and write arbitrary messages inside the

secure transport channel.

This departs from most threat models where we consider that the

secure channel used for transport always provides secrecy. The

reason for this consideration is that in the group setting, active

malicious insiders or adversarial services are to be considered.

3.1.1. Metadata Protection for Unencrypted Group Operations

The main use of the secure transport layer for MLS is to protect the

already limited amount of metadata. Very little information is

contained in the unencrypted header of the MLS protocol message

format for group operation messages, and application messages are

always encrypted in MLS.

Contrary to popular messaging services, the full list of recipients

cannot be sent to the server for dispatching messages because that

list is potentially extremely large in MLS. Therefore, the metadata

typically consists of a pseudo-random Group Identifier (GID), a

numerical index referring to the key needed to decrypt the

ciphertext content, and another numerical value to determine the

epoch of the group (the number of group operations that have been

performed).

The MLS protocol provides an authenticated "Authenticated Additional

Data" field for applications to make data available outside the

MLSCiphertext.

RECOMMENDATION: Use the "Authenticated Additional Data" field of

the MLSCiphertext message instead of using other unauthenticated

means of sending metadata throughout the infrastructure. If the

¶

¶

¶

¶

¶

¶

¶

¶

data is private, the infrastructure should use encrypted

Application messages instead.

Even though some of this metadata information does not consist of

secret payloads, in correlation with other data a network observer

might be able to reconstruct sensitive information. Using a secure

channel to transfer this information will prevent a network attacker

to access this MLS protocol metadata if it cannot compromise the

secure channel.

More importantly, there is one specific case where having no secure

channel to exchange the MLS messages can have a serious impact on

privacy. In the case of unencrypted group operation messages,

observing the signatures of the group operation messages may lead an

adversary to extract information about the group memberships.

RECOMMENDATION: Never use the unencrypted mode for group

operations without using a secure channel for the transport

layer.

3.1.2. DoS protection

In general we do not consider Denial of Service (DoS) resistance to

be the responsibility of the protocol. However, it should not be

possible for anyone aside from the Delivery Service to perform a

trivial DoS attack from which it is hard to recover. This can be

achieved through the secure transport layer.

In the centralized setting, DoS protection can typically be

performed by using tickets or cookies which identify users to a

service for a certain number of connections. Such a system helps in

preventing anonymous clients from sending arbitrary numbers of group

operation messages to the Delivery Service or the MLS clients.

RECOMMENDATION: Anonymous credentials can be used in order to

help DoS attacks prevention, in a privacy preserving manner. Note

that the privacy of these mechanisms has to be adjusted in

accordance with the privacy expected from the secure transport

links. (See more discussion further down.)

3.1.3. Message Suppression and Error Correction

The MLS protocol is particularly sensitive about group operation

message loss and reordering. This is because in the default setting,

MLS clients have to process those specific messages in order to have

a synchronized group state, after what the MLS protocol efficiently

generates keys for application messages. [[TODO: It is unclear from

this text whether MLS is "sensitive" in that it provides additional

constraints to prevent this, or is "sensitive" in that it is

vulnerable. Need to clarify]]

¶

¶

¶

¶

¶

¶

¶

¶

The Delivery Service can have the role of helping with reliability,

but is mainly useful for reliability in the asynchronous aspect of

the communication between MLS clients.

While it is difficult or impossible to prevent a network adversary

from suppressing payloads in transit, in certain infrastructures

such as banks or governments settings, unidirectional transports can

be used and be enforced via electronic or physical devices such as

diodes. This can lead to payload corruption which does not affect

the security or privacy properties of the MLS protocol but does

affect the reliability of the service. In that case specific

measures can be taken to ensure the appropriate level of redundancy

and quality of service for MLS.

RECOMMENDATION: If unidirectional transport is used for the

secure transport channel, prefer using a protocol which provides

Forward Error Correction.

3.2. Intended Security Guarantees

MLS aims to provide a number of security guarantees, covering

authentication, as well as confidentiality guarantees to different

degrees in different scenarios.

[[TODO: Authentication guarantees at the moment of joining a group

are interesting and I don't see a section where it would fit. I'm

thinking in particular about the parent hash and tree hashes in

combination with with signatures and the key schedule. I know that

several groups have worked on this and results are scattered between

a few papers. In particular, I think the guarantees for a member

being added to a new group are interesting.]]

3.2.1. Message Secrecy and Authentication

MLS enforces the encryption of application messages and thus

generally guarantees authentication and confidentiality of

application messages sent in a group.

In particular, this means that only other members of a given group

can decrypt the payload of a given application message, which

includes information about the sender of the message.

Similarly, group members receiving a message from another group

member can authenticate that group member as the sender of the

message and verify the message's integrity.

Message content can be deniable if the signature keys are exchanged

over a deniable channel prior to signing messages.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Depending on the group settings, handshake messages can be encrypted

as well. If that is the case, the same security guarantees apply.

MLS optionally allows the addition of padding to messages,

mitigating the amount of information leaked about the length of the

plaintext to an observer on the network.

3.2.2. Forward and Post-Compromise Security

MLS provides additional protection regarding secrecy of past

messages and future messages. These cryptographic security

properties are Forward Secrecy (FS) and Post-Compromise Security

(PCS).

FS means that access to all encrypted traffic history combined with

an access to all current keying material on clients will not defeat

the secrecy properties of messages older than the oldest key of the

compromised client. Note that this means that clients have the

extremely important role of deleting appropriate keys as soon as

they have been used with the expected message, otherwise the secrecy

of the messages and the security for MLS is considerably weakened.

PCS means that if a group member's state is compromised at some time

t but the group member subsequently performs an update at some time

t', then all MLS guarantees apply to messages sent by the member

after time t', and by other members after they have processed the

update. For example, if an attacker learns all secrets known to

Alice at time t, including both Alice's long-term secret keys and

all shared group keys, but Alice performs a key update at time t',

then the attacker is unable to violate any of the MLS security

properties after the updates have been processed.

Both of these properties are satisfied even against compromised DSs

and ASs.

3.2.3. Non-Repudiation vs Deniability

MLS provides strong authentication within a group, such that a group

member cannot send a message that appears to be from another group

member. Additionally, some services require that a recipient be able

to prove to the service provider that a message was sent by a given

client, in order to report abuse. MLS supports both of these use

cases. In some deployments, these services are provided by

mechanisms which allow the receiver to prove a message's origin to a

third party (this if often called "non-repudiation"), but it should

also be possible to operate MLS in a "deniable" mode where such

proof is not possible.

¶

¶

¶

¶

¶

¶

¶

3.3. Endpoint Compromise

The MLS protocol adopts a threat model which includes multiple forms

of endpoint/client compromise. While adversaries are in a very

strong position if they have compromised an MLS client, there are

still situations where security guarantees can be recovered thanks

to the PCS properties achieved by the MLS protocol.

In this section we will explore the consequences and recommendations

regarding the following compromise scenarios:

-- The attacker has access to a specific symmetric encryption key

-- The attacker has access to the group secrets for one group

-- The attacker has access to a signature oracle for any group

-- The attacker has access to the signature key for one group

-- The attacker has access to all secrets of a user for all groups

(full state compromise)

[[TODO: Cite the research papers in the context of these compromise

models]]

Recall that the MLS protocol provides chains of AEAD keys, per

sender that are generated from Group Secrets. These keys are used to

protect MLS Plaintext messages which can be Group Operation or

Application messages. The Group Operation messages offer an

additional protection as the secret exchanged within the TreeKEM

group key agreement are public-key encrypted to subgroups with HPKE.

3.3.1. Compromise of AEAD key material

In some circumstances, adversaries may have access to specific AEAD

keys and nonces which protect an Application or a Group Operation

message. While this is a very weak kind of compromise, it can be

realistic in cases of implementation vulnerabilities where only part

of the memory leaks to the adversary.

When an AEAD key is compromised, the adversary has access to a set

of AEAD keys for the same chain and the same epoch, hence can

decrypt messages sent using keys of this chain. An adversary cannot

send a message to a group which appears to be from any valid client

since they cannot forge the signature.

The MLS protocol will ensure that an adversary cannot compute any

previous AEAD keys for the same epoch, or any other epochs. Because

of its Forward Secrecy guarantees, MLS will also retain secrecy of

all other AEAD keys generated for other MLS clients, outside this

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

dedicated chain of AEAD keys and nonces, even within the epoch of

the compromise. However the MLS protocol does not provide Post

Compromise Secrecy for AEAD encryption within an epoch. This means

that if the AEAD key of a chain is compromised, the adversary can

compute an arbitrary number of subsequent AEAD keys for that chain.

These guarantees are ensured by the structure of the MLS key

schedule which provides Forward Secrecy for these AEAD encryptions,

across the messages within the epoch and also across previous

epochs. Those chains are completely disjoint and compromising keys

across the chains would mean that some Group Secrets have been

compromised, which is not the case in this attack scenario (we

explore stronger compromise scenarios as part of the following

sections).

MLS provides Post-Compromise Secrecy against an active adaptative

attacker across epochs for AEAD encryption, which means that as soon

as the epoch is changed, if the attacker does not have access to

more secret material they won't be able to access any protected

messages from future epochs.

In the case of an Application message, an AEAD key compromise means

that the encrypted application message will be leaked as well as the

signature over that message. This means, that the compromise has

both confidentiality and privacy implications on the future AEAD

encryptions of that chain. In the case of a Group Operation message,

only the privacy is affected, as the signature is revealed, because

the secrets themselves are protected by HPKE encryption.

Note that under that compromise scenario, authentication is not

affected in neither of these cases. As every member of the group can

compute the AEAD keys for all the chains (they have access to the

Group Secrets) in order to send and receive messages, the

authentication provided by the AEAD encryption layer of the common

framing mechanism is very weak. Successful decryption of an AEAD

encrypted message only guarantees that a member of the group sent

the message.

3.3.2. Compromise of the Group Secrets of a single group for one or

more group epochs

The attack scenario considering an adversary gaining access to a set

of Group secrets is significantly stronger. This can typically be

the case when a member of the group is compromised. For this

scenario, we consider that the signature keys are not compromised.

This can be the case for instance if the adversary has access to

part of the memory containing the group secrets but not to the

signature keys which might be stored in a secure enclave.

¶

¶

¶

¶

¶

¶

In this scenario, the adversary gains the ability to compute any

number of AEAD encryption keys for any AEAD chains and can encrypt

and decrypt all messages for the compromised epochs.

If the adversary is passive, it is expected from the PCS properties

of the MLS protocol that, as soon as an honest Commit message is

sent by the compromised party, the next epochs will provide message

secrecy.

If the adversary is active, the adversary can follow the protocol

and perform updates on behalf of the compromised party with no

ability to an honest group to recover message secrecy. However, MLS

provides PCS against active adaptative attackers through its Remove

group operation. This means that, as long as other members of the

group are honest, the protocol will guarantee message secrecy for

all messages exchanged in the epochs after the compromised party has

been removed.

3.3.3. Compromise by an active adversary with the ability to sign

messages

Under such a scenario, where an active adversary has compromised an

MLS client, two different settings emerge. In the strongest

compromise scenario, the attacker has access to the signing key and

can forge authenticated messages. In a weaker, yet realistic

scenario, the attacker has compromised a client but the client

signature keys are protected with dedicated hardware features which

do not allow direct access to the value of the private key and

instead provide a signature API.

When considering an active adaptative attacker with access to a

signature oracle, the compromise scenario implies a significant

impact on both the secrecy and authentication guarantees of the

protocol, especially if the attacker also has access to the group

secrets. In that case both secrecy and authentication are broken.

The attacker can generate any message, for the current and future

epochs until an honest update from the compromised client happens.

Note that under this compromise scenario, the attacker can perform

all operations which are available to an legitimate client even

without access to the actual value of the signature key.

Without access to the group secrets, the adversary will not have the

ability to generate messages which look valid to other members of

the group and to the infrastructure as they need to have access to

group secrets to compute the encryption keys or the membership tag.

¶

¶

¶

¶

¶

¶

¶

3.3.4. Compromise of the authentication with access to a signature key

DISCLAIMER: Significant work remains in this section. [[TODO: Remove

disclaimer.]]

The difference between having access to the value of the signature

key and only having access to a signing oracle is not about the

ability of an active adaptative network attacker to perform

different operations during the time of the compromise, the attacker

can perform every operations available to a legitimate client in

both cases.

There is a significant difference, however in terms of recovery

after a compromise.

Because of the PCS guarantees provided by the MLS protocol, when a

previously compromised client performs an honest Commit which is not

under the control of the adversary, both secrecy and authentication

of messages can be recovered in the case where the attacker didn't

get access to the key. Because the adversary doesn't have the key

and has lost the ability to sign messages, they cannot authenticate

messages on behalf of the compromised party, even if they still have

control over some group keys by colluding with other members of the

group.

This is in contrast with the case where the signature key is leaked.

In that case PCS of the MLS protocol will eventually allow recovery

of the authentication of messages for future epochs but only after

compromised parties refresh their credentials securely.

Beware that in both oracle and private key access, an active

adaptative attacker, can follow the protocol and request to update

its own credential. This in turn induce a signature key rotation

which could provide the attacker with part or the full value of the

private key depending on the architecture of the service provider.

RECOMMENDATION: Signature private keys should be

compartmentalized from other secrets and preferably protected by

an HSM or dedicated hardware features to allow recovery of the

authentication for future messages after a compromised.

Even if the dedicated hardware approach is used, ideally, neither

the Client or the Authentication service alone should provide the

signature private key. Both should contribute to the key and it

should be stored securely by the client with no direct access.

¶

¶

¶

¶

¶

¶

¶

¶

3.3.5. Security consideration in the context of a full state

compromise

In real-world compromise scenarios, it is often the case that

adversaries target specific devices to obtain parts of the memory or

even the ability to execute arbitrary code in the targeted device.

Also, recall that in this setting, the application will often retain

the unencrypted messages. If so, the adversary does not have to

break encryption at all to access sent and received messages.

Messages may also be send by using the application to instruct the

protocol implementation.

RECOMMENDATION: If messages are stored on the device, they should

be protected using encryption at rest, and the keys used should

be stored securely using dedicated mechanisms on the device.

RECOMMENDATION: If the threat model of the system is against an

adversary which can access the messages on the device without

even needing to attack MLS, the application should delete

plaintext messages and ciphertexts immediately after encryption

or decryption.

Even though, from the strict point of view of the security

formalization, a ciphertext is always public and will forever be,

there is no loss in trying to erase ciphertexts as much as possible.

Note that this document makes a clear distinction between the way

signature keys and other group shared secrets must be handled. In

particular, a large set of group secrets cannot necessarily assumed

to be protected by an HSM or secure enclave features. This is

especially true because these keys are extremely frequently used and

changed with each message received by a client.

However, the signature private keys are mostly used by clients to

send a message. They also are providing the strong authentication

guarantees to other clients, hence we consider that their protection

by additional security mechanism should be a priority.

Overall there is no way to detect or prevent these compromise, as

discussed in the previous sections, performing separation of the

application secret states can help recovery after compromise, this

is the case for signature keys but similar concern exists for the

encryption private key used in the TreeKEM Group Key Agreement.

RECOMMENDATION: The secret keys used for public key encryption

should be stored similarly to the way the signature keys are

stored as key can be used to decrypt the group operation messages

and contain the secret material used to compute all the group

secrets.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Even if secure enclaves are not perfectly secure, or even completely

broken, adopting additional protections for these keys can ease

recovery of the secrecy and authentication guarantees after a

compromise where for instance, an attacker can sign messages without

having access to the key. In certain contexts, the rotation of

credentials might only be triggered by the AS through ACLs, hence be

outside of the capabilities of the attacker.

[[TODO: Considerations for Signature keys being :reused or not

across groups]]

3.3.6. More attack scenarios

[[TODO: Make examples for more complex attacks, cross groups, multi

collusions...]]

[[TODO: Do we discuss PCFS in this document? If yes, where?]]

3.4. Service Node Compromise

3.4.1. General considerations

3.4.1.1. Privacy of the network connections

There are many scenarios leading to communication between the

application on a device and the Delivery Service or the

Authentication Service. In particular when:

The application connects to the Authentication Service to

generate or validate a new credential before distributing it.

The application fetches credentials at the Delivery Service prior

to creating a messaging group (one-to-one or more than two

clients).

The application fetches service provider information or messages

on the Delivery Service.

The application sends service provider information or messages to

the Delivery Service.

In all these cases, the application will often connect to the device

via a secure transport which leaks information about the origin of

the request such as the IP address and depending on the protocol the

MAC address of the device.

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

Similar concerns exist in the peer-to-peer use cases of MLS.

RECOMMENDATION: In the case where privacy or anonymity is

important, using adequate protection such as TOR or a VPN can

improve metadata protection.

More generally, using anonymous credential in an MLS based

architecture might not be enough to provide strong privacy or

anonymity properties.

3.4.2. Delivery Service Compromise

MLS is intended to provide strong guarantees in the face of

compromise of the DS. Even a totally compromised DS should not be

able to read messages or inject messages that will be acceptable to

legitimate clients. It should also not be able to undetectably

remove, reorder or replay messages.

However, a DS can mount a variety of DoS attacks on the system,

including total DoS attacks (where it simply refuses to forward any

messages) and partial DoS attacks (where it refuses to forward

messages to and from specific clients). As noted in Section 2.3.3,

these attacks are only partially detectable by clients without an

out-of-band channel. Ultimately, failure of the DS to provide

reasonable service must be dealt with as a customer service matter,

not via technology.

Because the DS is responsible for providing the initial keying

material to clients, it can provide stale keys. This does not

inherently lead to compromise of the message stream, but does allow

it to attack forward security to a limited extent. This threat can

be mitigated by having initial keys expire.

3.4.2.1. Privacy of delivery and push notifications

An important mechanism that is often ignored from the privacy

considerations are the push-tokens. In many modern messaging

architectures, applications are using push notification mechanisms

typically provided by OS vendors. This is to make sure that when

messages are available at the Delivery Service (or by other

mechanisms if the DS is not a central server), the recipient

application on a device knows about it. Sometimes the push

notification can contain the application message itself which saves

a round trip with the DS.

To "push" this information to the device, the service provider and

the OS infrastructures use unique per-device, per-application

identifiers called push-tokens. This means that the push

notification provider and the service provider have information on

which devices receive information and at which point in time.

¶

¶

¶

¶

¶

¶

¶

¶

Even though they can't necessarily access the content, which is

typically encrypted MLS messages, the service provider and the push

notification provider have to be trusted to avoid making correlation

on which devices are recipients of the same message.

For secure messaging systems, push notification are often sent real-

time as it is not acceptable to create artificial delays for message

retrieval.

RECOMMENDATION: If real time notification are not necessary and

that specific steps must be taken to improve privacy, one can

delay notifications randomly across recipient devices using a

mixnet or other techniques.

Note that it is quite easy for legal requests to ask the service

provider for the push-token associated to an identifier and perform

a second request to the company operating the push-notification

system to get information about the device, which is often linked

with a real identity via a cloud account, a credit card or other

information.

RECOMMENDATION: If stronger privacy guarantees are needed vis-a-

vis of the push notification provider, the client can choose to

periodically connect to the Delivery Service without the need of

a dedicated push notification infrastructure.

3.4.3. Authentication Service Compromise

The Authentication Service design is left to the infrastructure

designers. In most designs, a compromised AS is a serious matter, as

the AS can serve incorrect or attacker-provided identities to

clients.

-- The attacker can link an identity to a credential

-- The attacker can generate new credentials

-- The attacker can sign new credentials

-- The attacker can publish or distribute credentials

Infrastructures that provide cryptographic material or credentials

in place of the MLS client (which is under the control of the user)

have often the ability to use the associated secrets to perform

operations on behalf of the user, which is unacceptable in many

situations. Other mechanisms can be used to prevent this issue, such

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

as the service blessing cryptographic material used by an MLS

client.

RECOMMENDATION: Make clients submit signature public keys to the

AS, this is usually better than the AS generating public key

pairs because the AS cannot sign on behalf of the client. This is

a benefit of a Public Key Infrastructure in the style of the

Internet PKI.

An attacker that can generate or sign new credential may or may not

have access to the underlying cryptographic material necessary to

perform such operations. In that last case, it results in windows of

time for which all emitted credentials might be compromised.

RECOMMENDATION: Using HSMs to store the root signature keys to

limit the ability of an adversary with no physical access to

extract the top-level signature key.

3.4.3.1. Authentication compromise: Ghost users and impersonations

One thing for which the MLS Protocol is designed for is to make sure

that all clients know who is in the group at all times. This means

that - if all Members of the group and the Authentication Service

are honest - no other parties than the members of the current group

can read and write messages protected by the protocol for that

Group.

Beware though, the link between the cryptographic identity of the

Client and the real identity of the User is important. With some

Authentication Service designs, a private or centralized authority

can be trusted to generate or validate signature keypairs used in

the MLS protocol. This is typically the case in some of the biggest

messaging infrastructures.

While this service is often very well protected from external

attackers, it might be the case that this service is compromised. In

such infrastructure, the AS could generate or validate a signature

keypair for an identity which is not the expected one. Because a

user can have many MLS clients running the MLS protocol, it possibly

has many signature keypairs for multiple devices.

In the case where an adversarial keypair is generated for a specific

identity, an infrastructure without any transparency mechanism or

out-of-band authentication mechanism could inject a malicious client

into a group by impersonating a user. This is especially the case in

large groups where the UI might not reflect all the changes back the

the users.

RECOMMENDATION: Make sure that MLS clients reflect all the

membership changes to the users as they happen. If a choice has

¶

¶

¶

¶

¶

¶

¶

¶

to be made because the number of notifications is too high, a

public log should be maintained in the state of the device so

that user can examine it.

While the ways to handle MLS credentials are not defined by the

protocol or the architecture documents, the MLS protocol has been

designed with a mechanism that can be used to provide out-of-band

authentication to users. The "authentication_secret" generated for

each user at each epoch of the group is a one-time, per client,

authentication secret which can be exchanged between users to prove

their identity to each other. This can be done for instance using a

QR code that can be scanned by the other parties.

Another way to improve the security for the users is to provide a

transparency mechanism which allows each user to check if

credentials used in groups have been published in the transparency

log. Another benefit of this mechanism is for revocation. The users

of a group could check for revoked keys (in case of compromise

detection) using a mechanism such as CRLite or some more advanced

privacy preserving technology.

RECOMMENDATION: Provide a Key Transparency and Out-of-Band

authentication mechanisms to limit the impact of an

Authentication Service compromise.

We note, again, that as described prior to that section, the

Authentication Service is facultative to design a working

infrastructure and can be replaced by many mechanisms such as

establishing prior one-to-one deniable channels, gossiping, or using

TOFU for credentials used by the MLS Protocol.

Another important consideration is the ease of redistributing new

keys on client compromise, which helps recovering security faster in

various cases.

3.4.3.2. Privacy of the Group Membership

Often, expectation from users is that the infrastructure will not

retain the ability to constantly map the user identity to signature

public keys of the MLS protocol. Some infrastructures will keep a

mapping between signature public keys of clients and user

identities. This can benefit an adversary that has compromised the

AS (or required access according to regulation) the ability of

monitoring unencrypted traffic and correlate the messages exchanged

within the same group.

RECOMMENDATION: Always use encrypted group operation messages to

reduce issues related to privacy.

¶

¶

¶

¶

¶

¶

¶

¶

In certain cases, the adversary can access to specific bindings

between public keys and identities. If the signature keys are reused

across groups, the adversary can get more information about the

targeted user.

RECOMMENDATION: Do not use the same signature keypair across

groups.

RECOMMENDATION: Separate the service binding the identities and

the public keys from the service which generates or validates the

credentials or cryptographic material of the Clients.

3.5. Considerations for attacks outside of the threat model

Physical attacks on devices storing and executing MLS principals are

not considered in depth in the threat model of the MLS protocol.

While non-permanent, non-invasive attacks can sometime be equivalent

to software attacks, physical attacks are considered outside of the

MLS threat model.

Compromise scenarios, typically consist in a software adversary,

which can maintain active adaptative compromise and arbitrarily

change the behavior of the client or service.

On the other hand, security goals consider that honest clients will

always run the protocol according to its specification. This relies

on implementations of the protocol to securely implement the

specification, which remains non-trivial.

RECOMMENDATION: Additional steps should be taken to protect the

device and the MLS clients from physical compromise. In such

setting, HSMs and secure enclaves can be used to protect

signature keys.

More information will be available in the Server-Assist draft.

[[TODO: Reference to server assist when the draft is available.]]

4. IANA Considerations

This document makes no requests of IANA.

5. Contributors

Katriel Cohn-Gordon

University of Oxford

me@katriel.co.uk

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

¶

¶

[KeyTransparency]

[MLSPROTO]

[RFC3552]

Cas Cremers

CISPA Helmholtz Center for Information Security

cremers@cispa.de

Britta Hale

Naval Postgraduate School

britta.hale@nps.edu

Konrad Kohbrok

Wire

konrad@wire.com

Thyla van der Merwe

Royal Holloway, University of London

thyla.van.der@merwe.tech

Jon Millican

Facebook

jmillican@fb.com

Raphael Robert

Wire

raphael@wire.com

6. Informative References

Google, ., "Key Transparency", 2017, <https://

KeyTransparency.org>.

Barnes, R., Beurdouche, B., Millican, J., Omara, E.,

Cohn-Gordon, K., and R. Robert, "Messaging Layer Security

Protocol", 2018.

Rescorla, E. and B. Korver, "Guidelines for Writing RFC

Text on Security Considerations", BCP 72, RFC 3552, DOI

* ¶

¶

¶

* ¶

¶

¶

* ¶

¶

¶

* ¶

¶

¶

* ¶

¶

¶

* ¶

¶

¶

https://KeyTransparency.org
https://KeyTransparency.org

[RFC6120]

[RFC7049]

[RFC7159]

[RFC8446]

10.17487/RFC3552, July 2003, <https://www.rfc-editor.org/

info/rfc3552>.

Saint-Andre, P., "Extensible Messaging and Presence

Protocol (XMPP): Core", RFC 6120, DOI 10.17487/RFC6120,

March 2011, <https://www.rfc-editor.org/info/rfc6120>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,

October 2013, <https://www.rfc-editor.org/info/rfc7049>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", RFC 7159, DOI 10.17487/RFC7159,

March 2014, <https://www.rfc-editor.org/info/rfc7159>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Authors' Addresses

Benjamin Beurdouche

Inria & Mozilla

Email: ietf@beurdouche.com

Eric Rescorla

Mozilla

Email: ekr@rtfm.com

Emad Omara

Google

Email: emadomara@google.com

Srinivas Inguva

Twitter

Email: singuva@twitter.com

Albert Kwon

MIT

Email: kwonal@mit.edu

Alan Duric

Wire

Email: alan@wire.com

https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc6120
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc7159
https://www.rfc-editor.org/info/rfc8446
mailto:ietf@beurdouche.com
mailto:ekr@rtfm.com
mailto:emadomara@google.com
mailto:singuva@twitter.com
mailto:kwonal@mit.edu
mailto:alan@wire.com

	The Messaging Layer Security (MLS) Architecture
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. General Setting
	2.1. Group, Members and Clients
	2.2. Authentication Service
	2.2.1. Credential Authentication
	2.2.2. Message Authentication

	2.3. Delivery Service
	2.3.1. Key Storage
	2.3.2. Key Retrieval
	2.3.3. Delivery of messages and attachments
	2.3.4. Membership knowledge
	2.3.5. Membership and offline members

	2.4. Functional Requirements
	2.4.1. Membership Changes
	2.4.2. Parallel Groups
	2.4.3. Security of Attachments
	2.4.4. Asynchronous Usage
	2.4.5. Access Control
	2.4.6. Recovery After State Loss
	2.4.7. Support for Multiple Devices
	2.4.8. Extensibility / Pluggability
	2.4.9. Federation
	2.4.10. Compatibility with Future Versions of MLS

	3. Security and Privacy Considerations
	3.1. Assumptions on Transport Security Links
	3.1.1. Metadata Protection for Unencrypted Group Operations
	3.1.2. DoS protection
	3.1.3. Message Suppression and Error Correction

	3.2. Intended Security Guarantees
	3.2.1. Message Secrecy and Authentication
	3.2.2. Forward and Post-Compromise Security
	3.2.3. Non-Repudiation vs Deniability

	3.3. Endpoint Compromise
	3.3.1. Compromise of AEAD key material
	3.3.2. Compromise of the Group Secrets of a single group for one or more group epochs
	3.3.3. Compromise by an active adversary with the ability to sign messages
	3.3.4. Compromise of the authentication with access to a signature key
	3.3.5. Security consideration in the context of a full state compromise
	3.3.6. More attack scenarios

	3.4. Service Node Compromise
	3.4.1. General considerations
	3.4.1.1. Privacy of the network connections

	3.4.2. Delivery Service Compromise
	3.4.2.1. Privacy of delivery and push notifications

	3.4.3. Authentication Service Compromise
	3.4.3.1. Authentication compromise: Ghost users and impersonations
	3.4.3.2. Privacy of the Group Membership

	3.5. Considerations for attacks outside of the threat model

	4. IANA Considerations
	5. Contributors
	6. Informative References
	Authors' Addresses

