
Workgroup: Network Working Group

Internet-Draft: draft-ietf-mls-architecture-08

Published: 16 June 2022

Intended Status: Informational

Expires: 18 December 2022

Authors: B. Beurdouche

Inria & Mozilla

E. Rescorla

Mozilla

E. Omara

Google

S. Inguva

Twitter

A. Kwon

MIT

A. Duric

Wire

The Messaging Layer Security (MLS) Architecture

Abstract

The Messaging Layer Security (MLS) protocol [I-D.ietf-mls-protocol]

specification has the role of defining a Group Key Agreement

protocol, including all the cryptographic operations and

serialization/deserialization functions necessary for scalable and

secure group messaging. The MLS protocol is meant to protect against

eavesdropping, tampering, message forgery, and provide further

properties such as Forward Secrecy (FS) and Post-Compromise Security

(PCS) in the case of past or future device compromises.

This document describes a general secure group messaging

infrastructure and its security goals. It provides guidance on

building a group messaging system and discusses security and privacy

tradeoffs offered by multiple security mechanisms that are part of

the MLS protocol (e.g., frequency of public encryption key

rotation).

The document also provides guidance for parts of the infrastructure

that are not standardized by the MLS Protocol document and left to

the application or the infrastructure architects to design.

While the recommendations of this document are not mandatory to

follow in order to interoperate at the protocol level, they affect

the overall security guarantees that are achieved by a messaging

application. This is especially true in case of active adversaries

that are able to compromise clients, the delivery service, or the

authentication service.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the MLS Working Group

mailing list (mls@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/mls/.

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/mls/
https://mailarchive.ietf.org/arch/browse/mls/

Source for this draft and an issue tracker can be found at https://

github.com/mlswg/mls-architecture.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 18 December 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. General Setting

2.1. Group Members and Clients

3. Authentication Service

4. Delivery Service

4.1. Key Storage

4.2. Key Retrieval

4.3. Delivery of Messages

4.4. Membership knowledge

4.5. Membership and offline members

5. Functional Requirements

5.1. Membership Changes

5.2. Parallel Groups

¶

¶

¶

¶

¶

¶

¶

https://github.com/mlswg/mls-architecture
https://github.com/mlswg/mls-architecture
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

5.3. Asynchronous Usage

5.4. Access Control

5.5. Recovery After State Loss

5.6. Support for Multiple Devices

5.7. Extensibility

5.8. Application Data Framing and Negotiation

5.9. Federation

5.10. Compatibility with Future Versions of MLS

6. Operational Requirements

7. Security and Privacy Considerations

7.1. Assumptions on Transport Security Links

7.1.1. Metadata Protection for Unencrypted Group Operations

7.1.2. DoS protection

7.1.3. Message Suppression and Error Correction

7.2. Intended Security Guarantees

7.2.1. Message Secrecy and Authentication

7.2.2. Forward and Post-Compromise Security

7.2.3. Non-Repudiation vs Deniability

7.3. Endpoint Compromise

7.3.1. Compromise of AEAD key material

7.3.2. Compromise of the Group Secrets of a single group for

one or more group epochs

7.3.3. Compromise by an active adversary with the ability to

sign messages

7.3.4. Compromise of the authentication with access to a

signature key

7.3.5. Security consideration in the context of a full state

compromise

7.4. Service Node Compromise

7.4.1. General considerations

7.4.2. Delivery Service Compromise

7.4.3. Authentication Service Compromise

7.5. Considerations for attacks outside of the threat model

7.6. Cryptographic Analysis of the MLS Protocol

8. Informative References

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

Contributors

Authors' Addresses

1. Introduction

RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH

The source for this draft is maintained in GitHub. Suggested changes

should be submitted as pull requests at https://github.com/mlswg/

mls-architecture. Instructions are on that page as well. Editorial

¶

changes can be managed in GitHub, but any substantive change should

be discussed on the MLS mailing list.

End-to-end security is a requirement for instant messaging systems

and is commonly deployed in many such systems. In this context,

"end-to-end" captures the notion that users of the system enjoy some

level of security -- with the precise level depending on the system

design -- even in the face of malicious actions by the operator of

the messaging system.

Messaging Layer Security (MLS) specifies an architecture (this

document) and a protocol [I-D.ietf-mls-protocol] for providing end-

to-end security in this setting. MLS is not intended as a full

instant messaging protocol but rather is intended to be embedded in

concrete protocols, such as XMPP [RFC6120]. Implementations of the

MLS protocol will interoperate at the cryptographic level, though

they may have incompatibilities in terms of how protected messages

are delivered, contents of protected messages, and identity/

authentication infrastructures. The MLS protocol has been designed

to provide the same security guarantees to all users, for all group

sizes, even when it reduces to only two users.

2. General Setting

Informally, a group is a set of users who possibly use multiple

endpoint devices to interact with the Service Provider (SP). A group

may be as small as two members (the simple case of person to person

messaging) or as large as thousands.

In order to communicate securely, users initially interact with

services at their disposal to establish the necessary values and

credentials required for encryption and authentication.

The Service Provider presents two abstract functionalities that

allow clients to prepare for sending and receiving messages

securely:

An Authentication Service (AS) functionality which is responsible

for attesting to bindings between application-meaningful

identifiers and the public key material used for authentication

in the MLS protocol. This functionality must also be able to

generate credentials that encode these bindings and validate

credentials provided by MLS clients.

A Delivery Service (DS) functionality which can receive and

distribute messages between group members. In the case of group

messaging, the delivery service may also be responsible for

acting as a "broadcaster" where the sender sends a single message

which is then forwarded to each recipient in the group by the DS.

The DS is also responsible for storing and delivering initial

¶

¶

¶

¶

¶

¶

*

¶

*

public key material required by MLS clients in order to proceed

with the group secret key establishment that is part of the MLS

protocol.

For convenience, this document adopts the representation of these

services being standalone servers, however the MLS protocol design

is made so that this is not necessarily the case. These services may

reside on the same server or different servers; they may be

distributed between server and client components; and they may even

involve some action by users. For example:

Several secure messaging services today provide a centralized DS,

and rely on manual comparison of clients' public keys as the AS.

MLS clients connected to a peer-to-peer network could instantiate

a decentralized DS by transmitting MLS messages over that

network.

In an MLS group using a PKI for authentication, the AS would

comprise the certificate issuance and validation processes, both

of which involve logic inside MLS clients as well as various

servers.

It is important to note that the Authentication Service

functionality can be completely abstract in the case of a Service

Provider which allows MLS clients to generate, redistribute and

validate their credentials themselves.

Similarly to the AS, the Delivery Service can be completely abstract

if users are able to distribute credentials and messages without

relying on a central Delivery Service. Note, though, that the MLS

protocol requires group operation messages to be processed in-order

by all MLS clients.

In some sense, a set of MLS clients which can achieve the AS and DS

functionalities without relying on an external party do not need a

Service Provider.

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

Authentication Delivery
Service (AS) Service (DS)

Group
........
. .
. .

Client 1 . Client 2 Client 3 .
. .
. Member 1 Member 2 .
. .
..................................

In many systems, the AS and the DS are actually operated by the same

entity and may even be the same server. However, they are logically

distinct and, in other systems, may be operated by different

entities. Other partitions are also possible, such as having a

separate directory functionality or service.

According to this architecture design, a typical group messaging

scenario might look like this:

Alice, Bob and Charlie create accounts with a service provider

and obtain credentials from the AS.

Alice, Bob and Charlie authenticate to the DS and store some

initial keying material which can be used to send encrypted

messages to them for the first time. This keying material is

authenticated with their long-term credentials.

When Alice wants to send a message to Bob and Charlie, she

contacts the DS and looks up their initial keying material. She

uses these keys to establish a new set of keys which she can

use to send encrypted messages to Bob and Charlie. She then

sends the encrypted message(s) to the DS, which forwards them

to the recipients.

Bob and/or Charlie respond to Alice's message. In addition,

they might choose to update their key material which provides

post-compromise security Section 7.2.2. As a consequence of

that change, the group secrets are updated.

Clients may wish to do the following:

create a group by inviting a set of other clients;

add one or more clients to an existing group;

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

¶

* ¶

* ¶

remove one or more members from an existing group;

update their own key material

join an existing group;

leave a group;

send a message to everyone in the group;

receive a message from someone in the group.

At the cryptographic level, clients (and by extension members in

groups) have equal permissions. For instance, any member can add or

remove another client in a group. This is in contrast to some

designs in which there is a single group controller who can modify

the group. MLS is compatible with having group administration

restricted to certain users, but we assume that those restrictions

are enforced by authentication and access control at the application

layer.

Thus, for instance, while the MLS protocol allows for any existing

member of a group to add a new client, applications which use MLS

might enforce additional restrictions for which only a subset of

members can qualify, and thus will handle enforcing group policies

(such as determining if a user is allowed to add new users to the

group) at the application level.

2.1. Group Members and Clients

While informally, a group can be considered to be a set of users

possibly using multiple endpoint devices to interact with the

Service Provider, this definition is too simplistic.

Formally, a client is a set of cryptographic objects composed of

public values such as a name (an identity), a public encryption key

and a public signature key. Ownership of a client by a user is

determined by the fact that the user has knowledge of the associated

secret values. When a client is part of a Group, it is called a

Member. In some messaging systems, clients belonging to the same

user must all share the same signature key pair, but MLS does not

assume this.

Users will often use multiple devices, e.g., a phone as well as a

laptop. Different devices may be represented as different clients,

with independent cryptographic state, or they may share

cryptographic state, relying on some application-provided mechanism

to sync across devices.

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

The formal definition of a Group in MLS is the set of clients that

have knowledge of the shared group secret established in the group

key establishment phase of the protocol and have contributed to it.

Until a Member has been added to the group and contributed to the

group secret in a manner verifiable by other members of the group,

other members cannot assume that the Member is a member of the

group.

3. Authentication Service

The Authentication Service (AS) has to provide two functionalities:

Issue credentials to clients that attest to bindings between

identities and signature key pairs

Enable a group member to verify that a credential presented by

another member is valid

A member with a valid credential authenticates its MLS messages by

signing them with the private key corresponding to the public key in

its credential.

The AS is considered an abstract layer by the MLS specification,

part of this service could be, for instance, running on the members'

devices, while another part is a separate entity entirely. The

following examples illustrate the breadth of this concept:

A PKI could be used as an AS [RFC5280]. The issuance function

would be provided by the certificate authorities in the PKI, and

the verification function would correspond to certificate

verification by clients.

Several current messaging applications rely on users verifying

each others' key fingerprints for authentication. In this

scenario, the issuance function is simply the generation of a key

pair (i.e., credential is just an identifier and public key, with

no information to assist in verification). The verification

function is the application functionality that enables users to

verify keys.

In a system based on Key Transparency (KT) [KeyTransparency], the

issuance function would correspond to the insertion of a key in a

KT log under a user's identity. The verification function would

correspond to verifying a key's inclusion in the log for a

claimed identity, together with the KT log's mechanisms for a

user to monitor and control which keys are associated to their

identity.

By the nature of its roles in MLS authentication, the AS is invested

with a large amount of trust and the compromise of one of its

¶

¶

1.

¶

2.

¶

¶

¶

*

¶

*

¶

*

¶

functionalities could allow an adversary to, among other things,

impersonate group members. We discuss security considerations

regarding the compromise of the different AS functionalities in

detail in Section 7.4.3.

The association between members' identities and signature keys is

fairly flexible in MLS. As noted above, there is no requirement that

all clients belonging to a given user use the same key pair (in

fact, such key reuse is forbidden to ensure clients have independent

cryptographic state). A member can also rotate the signature key

they use within a group. These mechanisms allow clients to use

different signature keys in different contexts and at different

points in time, providing unlinkability and post-compromise security

benefits. Some security trade-offs related to this flexibility are

discussed in the security considerations.

In many applications, there are multiple MLS clients that represent

a single entity, for example a human user with a mobile and desktop

version of an application. Often the same set of clients is

represented in exactly the same list of groups. In applications

where this is the intended situation, other clients can check that a

user is consistently represented by the same set of clients. This

would make it more difficult for a malicious AS to issue fake

credentials for a particular user because clients would expect the

credential to appear in all groups of which the user is a member. If

a client credential does not appear in all groups after some

relatively short period of time, clients have an indication that the

credential might have been created without the user's knowledge. Due

to the asynchronous nature of MLS, however, there may be transient

inconsistencies in a user's client set, so correlating users'

clients across groups is more of a detection mechanism than a

prevention mechanism.

4. Delivery Service

The Delivery Service (DS) is expected to play multiple roles in the

Service Provider architecture:

Acting as a directory service providing the initial keying

material for clients to use. This allows a client to establish a

shared key and send encrypted messages to other clients even if

the other client is offline.

Routing MLS messages among clients.

Depending on the level of trust given by the group to the Delivery

Service, the functional and privacy guarantees provided by MLS may

differ but the authentication and confidentiality guarantees remain

the same.

¶

¶

¶

¶

*

¶

* ¶

¶

Unlike the Authentication Service which is trusted for

authentication and secrecy, the Delivery Service is completely

untrusted regarding this property. While privacy of group membership

might be a problem in the case of a Delivery Service server fanout,

the Delivery Service can be considered as an active, adaptive

network attacker from the point of view of the security analysis.

4.1. Key Storage

Upon joining the system, each client stores its initial

cryptographic key material with the Delivery Service. This key

material, called a KeyPackage, advertises the functional abilities

of the client such as supported protocol versions, supported

extensions, and the following cryptographic information:

A credential from the Authentication Service attesting to the

binding between the identity and the client's signature key.

The client's asymmetric encryption public key material.

All the parameters in the KeyPackage are signed with the signature

private key corresponding to the credential.

As noted above, users may own multiple clients, each with their own

keying material, and thus there may be multiple entries stored by

each user.

The Delivery Service is also responsible for allowing users to add,

remove or update their initial key material, and for ensuring that

the identifier for these keys are unique across all keys stored on

the Delivery Service.

4.2. Key Retrieval

When a client wishes to establish a group, it first contacts the

Delivery Service to request a KeyPackage for each other client,

authenticates the KeyPackages using the signature keys, and then can

use those to form the group.

4.3. Delivery of Messages

The main responsibility of the Delivery Service is to ensure

delivery of messages. Some MLS messages need only be delivered to

some members of a group (e.g., the message initializing a new

member's state), while others need to be delivered to all members.

The Delivery Service may enable these delivery patterns via unicast

channels (sometimes known as "client fanout"), broadcast channels

("server fanout"), or a mix of both.

¶

¶

*

¶

* ¶

¶

¶

¶

¶

¶

For the most part, MLS does not require the Delivery Service to

deliver messages in any particular order. The one requirement is

that because an MLS group has a linear history, the members of the

group must agree on the order in which changes are applied.

Concretely, the group must agree on which MLS Commit messages to

apply. There are a variety of ways to achieve this agreement, but

most of them rely on some help from the Delivery Service. For

example, if a Delivery Service provides delivery in the same order

to all group members, then the members can simply apply Commits in

the order in which they appear.

Each Commit is premised on a given state or "epoch" of the group.

The Delivery Service must transmit to the group exactly one Commit

message per epoch.

Much like the Authentication Service, the Delivery Service can be

split between server and client components. Achieving the required

uniqueness property will typically require a combination of client

and server behaviors. For example, all of the following examples

provide a unique Commit per epoch:

A "filtering server" Delivery Service where a server rejects all

but the first Commit for an epoch and clients apply each Commit

they receive.

An "ordering server" Delivery Service where a server forwards all

messages but assures that all clients see Commits in the same

order, and clients.

A "passive server" Delivery Service where a server forwards all

messages without ordering or reliability guarantees, and clients

execute some secondary consensus protocol to choose among the

Commits received in a window.

The MLS protocol provides three important pieces of information

within an MLSCiphertext message in order to provide ordering:

The Group Identifier (group ID) to allow for distinguishing the

group for which the message has been sent;

The Epoch number, which represents the number of changes

(version) of the group associated with a specific group ID, and

allows for lexicographical ordering of messages from different

epochs within the same group;

The Content Type of the message, which allows the Delivery

Service to determine the ordering requirement on the message, in

particular distinguishing Commit messages from other messages.

¶

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

The MLS protocol itself can verify these properties. For instance,

if the Delivery Service reorders messages from a client or provides

different clients with inconsistent orderings, then clients can put

messages back in their proper order. The asynchronous nature of MLS

means that within an epoch, messages are only ordered per-sender,

not globally.

Note that some forms of Delivery Service misbehavior are still

possible and difficult to detect. For instance, a Delivery Service

can simply refuse to relay messages to and from a given client.

Without some sort of side information, other clients cannot

generally distinguish this form of Denial of Service (DoS) attack.

4.4. Membership knowledge

Group membership is itself sensitive information and MLS is designed

to limit the amount of persistent metadata. However, large groups

often require an infrastructure which provides server fanout. In the

case of client fanout, the destination of a message is known by all

clients, hence the server usually does not need this information.

However, they may learn this information through traffic analysis.

Unfortunately, in a server-side fanout model, the Delivery Service

can learn that a given client is sending the same message to a set

of other clients. In addition, there may be applications of MLS in

which the group membership list is stored on some server associated

with the Delivery Service.

While this knowledge is not a breach of the protocol's

authentication or confidentiality guarantees, it is a serious issue

for privacy. In the case where metadata has to be persisted for

functionality, it SHOULD be stored encrypted at rest. Applications

should also consider anonymous systems for server fanout such as

Loopix [Loopix].

4.5. Membership and offline members

Because Forward Secrecy (FS) and Post-Compromise Security (PCS) rely

on the active deletion and replacement of keying material, any

client which is persistently offline may still be holding old keying

material and thus be a threat to both FS and PCS if it is later

compromised.

MLS cannot inherently defend against this problem, especially in the

case where the client has not processed messages, but MLS-using

systems can enforce some mechanism to try to retain these

properties. Typically this will consist of evicting clients which

are idle for too long, or mandating a key update from clients that

are not otherwise sending messages. The precise details of such

¶

¶

¶

¶

¶

mechanisms are a matter of local policy and beyond the scope of this

document.

5. Functional Requirements

MLS is designed as a large-scale group messaging protocol and hence

aims to provide both performance and safety to its users. Messaging

systems that implement MLS provide support for conversations

involving two or more members, and aim to scale to groups with tens

of thousands of members, typically including many users using

multiple devices.

5.1. Membership Changes

MLS aims to provide agreement on group membership, meaning that all

group members have agreed on the list of current group members.

Some applications may wish to enforce ACLs to limit addition or

removal of group members, to privileged clients or users. Others may

wish to require authorization from the current group members or a

subset thereof. Such policies can be implemented at the application

layer, on top of MLS. Regardless, MLS does not allow for or support

addition or removal of group members without informing all other

members.

Membership of an MLS group is managed at the level of individual

clients. In most cases, a client corresponds to a specific device

used by a user. If a user has multiple devices, the user will be

represented in a group by multiple clients. If an application wishes

to implement operations at the level of users, it is up to the

application to track which clients belong to a given user and ensure

that they are added / removed consistently.

MLS provides two mechanisms for changing the membership of a group.

The primary mechanism is for an authorized member of the group to

send a Commit that adds or removes other members. The second

mechanism is an "external join": A member of the group publishes

certain information about the group, which a new member can use to

construct an "external" Commit message that adds the new member to

the group. (There is no similarly unilateral way for a member to

leave the group; they must be removed by a remaining member.)

With both mechanisms, changes to the membership are initiated from

inside the group. When members perform changes directly, this is

clearly the case. External joins are authorized indirectly, in the

sense that a member publishing a GroupInfo object authorizes anyone

to join who has access to the GroupInfo object. External joins do

not allow for more granular authorization checks to be done before

the new member is added to the group, so if an application wishes to

both allow external joins and enforce such checks, then the

¶

¶

¶

¶

¶

¶

application will need to do such checks when a member joins, and

remove them if checks fail.

Application setup may also determine other criteria for membership

validity. For example, per-device signature keys can be signed by an

identity key recognized by other participants. If a certificate

chain is used to sign off on device signature keys, then revocation

by the owner adds an alternative flag to prompt membership removal.

An MLS group's secrets change on every change of membership, so each

client only has access to the secrets used by the group while they

are a member. Messages sent before a client joins or after they are

removed are protected with keys that are not accessible to the

client. Compromise of a member removed from a group does not affect

the security of messages sent after their removal. Messages sent

during the client's membership are also secure as long as the client

has properly implemented the MLS deletion schedule.

5.2. Parallel Groups

Any user or client may have membership in several groups

simultaneously. The set of members of any group may or may not form

a subset of the members of another group. MLS guarantees that the FS

and PCS goals within a given group are maintained and not weakened

by user membership in multiple groups. However, actions in other

groups likewise do not strengthen the FS and PCS guarantees within a

given group, e.g. key updates within a given group following a

device compromise does not provide PCS healing in other groups; each

group must be updated separately to achieve internal goals. This

also applies to future groups that a member has yet to join, that

are likewise unaffected by updates performed in current groups.

Applications may strengthen connectivity among parallel groups by

requiring periodic key updates from a user across all groups in

which they have membership.

Applications may use the PSK mechanism to link healing properties

among parallel groups. For example, suppose a common member M of two

groups A and B has performed a key update in group A but not in

group B. The key update provides PCS with regard to M in group A. If

a PSK is exported from group A and injected into group B, then some

of these PCS properties carry over to group B, since the PSK and

secrets derived from it are only known to the new, updated version

of M, not to the old, possibly compromised version of M.

5.3. Asynchronous Usage

No operation in MLS requires two distinct clients or members to be

online simultaneously. In particular, members participating in

conversations protected using MLS can update the group's keys, add

¶

¶

¶

¶

¶

¶

or remove new members, and send messages without waiting for another

user's reply.

Messaging systems that implement MLS have to provide a transport

layer for delivering messages asynchronously and reliably.

5.4. Access Control

The MLS protocol allows each member of the messaging group to

perform operations equally. This is because all clients within a

group (members) have access to the shared cryptographic material.

However every service/infrastructure has control over policies

applied to its own clients. Applications managing MLS clients can be

configured to allow for specific group operations. On the one hand,

an application could decide that a group administrator will be the

only member to perform add and remove operations. On the other hand,

in many settings such as open discussion forums, joining can be

allowed for anyone.

The MLS protocol can, in certain modes, exchange unencrypted group

operation messages. This flexibility is to allow services to perform

access control tasks on behalf of the group.

While the Application messages will always be encrypted, having the

handshake messages in plaintext has inconveniences in terms of

privacy as someone could collect the signatures on the handshake

messages and use them for tracking.

RECOMMENDATION: Prefer using encrypted group operation messages

to avoid privacy issues related to non-encrypted signatures.

Note that in the default case of encrypted handshake messages, any

access control policies will be applied at the client, so the

application must ensure that the access control policies are

consistent across all clients to make sure that they remain in sync.

If two different policies were applied, the clients might not accept

or reject a group operation and end-up in different cryptographic

states, breaking their ability to communicate.

RECOMMENDATION: Avoid using inconsistent access control policies

in the case of encrypted group operations.

MLS allows actors outside the group to influence the group in two

ways: External signers can submit proposals for changes to the

group, and new joiners can use an external join to add themselves to

the group. The external_senders extension ensures that all members

¶

¶

¶

¶

¶

¶

¶

¶

agree on which signers are allowed to send proposals, but any other

policies must be assured to be consistent as above.

** RECOMMENDATION:** Have an explicit group policy setting the

conditions under which external joins are allowed.

5.5. Recovery After State Loss

Group members whose local MLS state is lost or corrupted can

reinitialize their state by re-joining the group as a new member and

removing the member representing their earlier state. An application

can require that a client performing such a reinitialization prove

its prior membership with a PSK.

There are a few practical challenges to this approach. For example,

the application will need to ensure that all members have the

required PSK, including any new members that have joined the group

since the epoch in which the PSK was issued.

Reinitializing in this way does not provide the member with access

to group messages from during the state loss window, but enables

proof of prior membership in the group. Applications may choose

various configurations for providing lost messages to valid group

members that are able to prove prior membership.

5.6. Support for Multiple Devices

It is typically expected for users within a group to own various

devices. A new device can be added to a group and be considered as a

new client by the protocol. This client will not gain access to the

history even if it is owned by someone who owns another member of

the group. Restoring history is typically not allowed at the

protocol level but applications can elect to provide such a

mechanism outside of MLS. Such mechanisms, if used, may reduce the

FS and PCS guarantees provided by MLS.

5.7. Extensibility

The MLS protocol provides several extension points where additional

information can be provided. Extensions to KeyPackages allow clients

to disclose additional information about their capabilities. Groups

can also have extension data associated with them, and the group

agreement properties of MLS will confirm that all members of the

group agree on the content of these extensions.

5.8. Application Data Framing and Negotiation

Application messages carried by MLS are opaque to the protocol; they

can contain arbitrary data. Each application which uses MLS needs to

define the format of its application_data and any mechanism

¶

¶

¶

¶

¶

¶

¶

necessary to negotiate the format of that content over the lifetime

of an MLS group. In many applications this means managing format

migrations for groups with multiple members who may each be offline

at unpredictable times.

RECOMMENDATION: Use the default content mechanism defined in [I-

D.mahy-mls-content-neg], unless the specific application defines

another mechanism which more appropriately addresses the same

requirements for that application of MLS.

The MLS framing for application messages also provides a field where

clients can send information that is authenticated but not

encrypted. Such information can be used by servers that handle the

message, but group members are assured that it has not been tampered

with.

5.9. Federation

The protocol aims to be compatible with federated environments.

While this document does not specify all necessary mechanisms

required for federation, multiple MLS implementations can

interoperate to form federated systems if they use compatible

authentication mechanisms, ciphersuites, and infrastructure

functionalities.

5.10. Compatibility with Future Versions of MLS

It is important that multiple versions of MLS be able to coexist in

the future. Thus, MLS offers a version negotiation mechanism; this

mechanism prevents version downgrade attacks where an attacker would

actively rewrite messages with a lower protocol version than the

ones originally offered by the endpoints. When multiple versions of

MLS are available, the negotiation protocol guarantees that the

version agreed upon will be the highest version supported in common

by the group.

In MLS 1.0, the creator of the group is responsible for selecting

the best ciphersuite supported across clients. Each client is able

to verify availability of protocol version, ciphersuites and

extensions at all times once he has at least received the first

group operation message.

Each member of an MLS group advertises the protocol functionality

they support. These capability advertisements can be updated over

time, e.g., if client software is updated while the client is a

member of a group. Thus, in addition to preventing downgrade

attacks, the members of a group can also observe when it is safe to

upgrade to a new ciphersuite or protocol version.

¶

¶

¶

¶

¶

¶

¶

6. Operational Requirements

MLS is a security layer that needs to be integrated with an

application. A fully-functional deployment of MLS will have to make

a number of decisions about how MLS is configured and operated.

Deployments that wish to interoperate will need to make compatible

decisions. This section lists all of the dependencies of an MLS

deployment that are external to the protocol specification, but

would still need to be aligned within a given MLS deployment, or for

two deployments to potentially interoperate.

The protocol has a built-in ability to negotiate protocol versions,

ciphersuites, extensions, credential types, and additional proposal

types. For two deployments to interoperate, they must have

overlapping support in each of these categories. A

required_capabilities extension can help maintain interoperability

with a wider set of clients by ensuring that certain functionality

continues to be supported by a group, even if the clients in the

group aren't currently relying on it.

MLS relies on the following network services. These network services

would need to be compatible in order for two different deployments

based on them to interoperate.

An Authentication Service, described fully in Section 3, defines

the types of credentials which may be used in a deployment and

provides methods for:

Issuing new credentials,

Validating a credential against a reference identifier, and

Validating whether or not two credentials represent the same

user.

A Delivery Service, described fully in Section 4, provides

methods for:

Delivering messages sent to a group to all members in the

group.

Delivering Welcome messages to new members of a group.

Downloading KeyPackages for specific clients, and uploading

new KeyPackages for a user's own clients.

¶

¶

¶

*

¶

1. ¶

2. ¶

3.

¶

*

¶

1.

¶

2. ¶

3.

¶

Additional services may or may not be required depending on the

application design:

If assisted joining is desired (meaning that the ratchet tree

is not provided in Welcome messages), there must be a method

to download the ratchet tree corresponding to a group.

If assisted joining is desired and the Delivery Service is not

able to compute the ratchet tree itself (because some

proposals or commits are sent encrypted), there must be a

method for group members to publish the updated ratchet tree

after each commit.

If external joiners are allowed, there must be a method to

publish a serialized GroupInfo object (with an external_pub

extension) that corresponds to a specific group and epoch, and

keep that object in sync with the state of the group.

If an application chooses not to allow assisted or external

joining, it may instead provide a method for external users to

solicit group members (or a designated service) to add them to

a group.

If the application uses external PSKs, or uses resumption PSKs

that all members of a group may not have access to, there must

be a method for distributing these PSKs to group members.

If an application wishes to detect and possibly discipline

members that send malformed commits with the intention of

corrupting a group's state, there must be a method for

reporting and validating malformed commits.

MLS requires the following parameters to be defined, which must be

the same for two implementations to interoperate:

The maximum total lifetime that is acceptable for a KeyPackage.

How long to store the resumption secret for past epochs of a

group.

The degree of tolerance that's allowed for out-of-order message

delivery:

How long to keep unused nonce and key pairs for a sender

A maximum number of unused key pairs to keep.

A maximum number of steps that clients will move a secret tree

ratchet forward in response to a single message before

rejecting it.

*

¶

-

¶

-

¶

-

¶

-

¶

-

¶

-

¶

¶

* ¶

*

¶

*

¶

- ¶

- ¶

-

¶

MLS provides the following locations where an application may store

arbitrary data. The format and intention of any data in these

locations must align for two deployments to interoperate:

Application data, sent as the payload of an encrypted message.

Additional authenticated data, sent unencrypted in an otherwise

encrypted message.

Group IDs, as decided by group creators and used to uniquely

identify a group.

The application_id extension of a LeafNode.

MLS requires the following policies to be defined, which restrict

the set of acceptable behavior in a group. These policies must be

consistent between deployments for them to interoperate:

A policy on when to send proposals and commits in plaintext

instead of encrypted.

A policy for which proposals are valid to have in a commit,

including but not limited to:

When a member is allowed to add or remove other members of the

group.

When, and under what circumstances, a reinitialization

proposal is allowed.

When proposals from external senders are allowed.

When external joiners are allowed.

A policy for when two credentials represent the same client. Note

that many credentials may be issued authenticating the same

identity but for different signature keys, because each

credential corresponds to a different device (client) owned by

the same application user. However, one device may control many

signature keys but should still only be considered a single

client.

A policy on how long to allow a member to stay in a group without

updating its leaf keys before removing them.

Finally, there are some additional application-defined behaviors

that are partially an individual application's decision but may

overlap with interoperability:

If there's any policy on how or when to pad messages.

¶

* ¶

*

¶

*

¶

* ¶

¶

*

¶

*

¶

-

¶

-

¶

- ¶

- ¶

*

¶

*

¶

¶

* ¶

If there is any policy for when to send a reinitialization

proposal.

How often clients should update their leaf keys.

Whether to prefer sending full commits or partial/empty commits.

Whether there should be a required_capabilities extension in

groups.

7. Security and Privacy Considerations

MLS adopts the Internet threat model [RFC3552] and therefore assumes

that the attacker has complete control of the network. It is

intended to provide the security services described in the face of

such attackers.

The attacker can monitor the entire network.

The attacker can read unprotected messages.

The attacker can generate, inject and delete any message in the

unprotected transport layer.

In addition, these guarantees are intended to degrade gracefully in

the presence of compromise of the transport security links as well

as of both clients and elements of the messaging system, as

described in the remainder of this section.

Generally, MLS is designed under the assumption that the transport

layer is present to protect metadata and privacy in general, while

the MLS protocol is providing stronger guarantees such as

confidentiality, integrity and authentication guarantees. Stronger

properties such as deniability can also be achieved in specific

architecture designs.

7.1. Assumptions on Transport Security Links

Any secure channel can be used as a transport layer to protect MLS

messages such as QUIC, TLS, WireGuard or TOR. However, the MLS

protocol is designed to consider the following threat-model:

The attacker can read, write, and delete arbitrary messages

inside the secure transport channel.

This departs from most threat models where we consider that the

secure channel used for transport always provides secrecy. The

reason for this consideration is that in the group setting, active

malicious insiders or adversarial services are to be considered.

*

¶

* ¶

* ¶

*

¶

¶

* ¶

* ¶

*

¶

¶

¶

¶

*

¶

¶

7.1.1. Metadata Protection for Unencrypted Group Operations

The main use of the secure transport layer for MLS is to protect the

already limited amount of metadata. Very little information is

contained in the unencrypted header of the MLS protocol message

format for group operation messages, and application messages are

always encrypted in MLS.

MLS avoids needing to send the full list of recipients to the server

for dispatching messages because that list is potentially extremely

large in MLS. Therefore, the metadata typically consists of a

pseudo-random Group Identifier (GID), a numerical value to determine

the epoch of the group (the number of changes that have been made to

the group), and another numerical value referring to the specific

key needed to decrypt the ciphertext content.

The MLS protocol provides an authenticated "Additional Authenticated

Data" field for applications to make data available outside the

MLSCiphertext.

RECOMMENDATION: Use the "Additional Authenticated Data" field of

the MLSCiphertext message instead of using other unauthenticated

means of sending metadata throughout the infrastructure. If the

data is private, the infrastructure should use encrypted

Application messages instead.

Even though some of this metadata information does not consist of

secret payloads, in correlation with other data a network observer

might be able to reconstruct sensitive information. Using a secure

channel to transfer this information will prevent a network attacker

from accessing this MLS protocol metadata if it cannot compromise

the secure channel.

More importantly, there is one specific case where having no secure

channel to exchange the MLS messages can have a serious impact on

privacy. In the case of unencrypted group operation messages,

observing the signatures of the group operation messages may lead an

adversary to extract information about the group memberships.

RECOMMENDATION: Never use the unencrypted mode for group

operations without using a secure channel for the transport

layer.

7.1.2. DoS protection

In general we do not consider Denial of Service (DoS) resistance to

be the responsibility of the protocol. However, it should not be

possible for anyone aside from the Delivery Service to perform a

trivial DoS attack from which it is hard to recover. This can be

achieved through the secure transport layer.

¶

¶

¶

¶

¶

¶

¶

¶

In the centralized setting, DoS protection can typically be

performed by using tickets or cookies which identify users to a

service for a certain number of connections. Such a system helps in

preventing anonymous clients from sending arbitrary numbers of group

operation messages to the Delivery Service or the MLS clients.

RECOMMENDATION: Anonymous credentials can be used in order to

help DoS attacks prevention, in a privacy preserving manner. Note

that the privacy of these mechanisms has to be adjusted in

accordance with the privacy expected from the secure transport

links. (See more discussion further down.)

7.1.3. Message Suppression and Error Correction

As noted above, MLS is designed to provide some robustness in the

face of tampering within the secure transport, i.e., tampering by

the Delivery Service. The confidentiality and authenticity

properties of MLS prevent the DS reading or writing messages. MLS

also provides a few tools for detecting message suppression, with

the caveat that message suppression cannot always be distinguished

from transport failure.

Each encrypted MLS message carries a "generation" number which is a

per-sender incrementing counter. If a group member observes a gap in

the generation sequence for a sender, then they know that they have

missed a message from that sender. MLS also provides a facility for

group members to send authenticated acknowledgements of application

messages received within a group.

As discussed in Section 4, the Delivery Service is trusted to select

the single Commit message that is applied in each epoch from among

the ones sent by group members. Since only one Commit per epoch is

meaningful, it's not useful for the DS to transmit multiple Commits

to clients. The risk remains that the DS will use the ability

maliciously.

While it is difficult or impossible to prevent a network adversary

from suppressing payloads in transit, in certain infrastructures

such as banks or governments settings, unidirectional transports can

be used and be enforced via electronic or physical devices such as

diodes. This can lead to payload corruption which does not affect

the security or privacy properties of the MLS protocol but does

affect the reliability of the service. In that case specific

measures can be taken to ensure the appropriate level of redundancy

and quality of service for MLS.

RECOMMENDATION: If unidirectional transport is used for the

secure transport channel, prefer using a protocol which provides

Forward Error Correction.

¶

¶

¶

¶

¶

¶

¶

7.2. Intended Security Guarantees

MLS aims to provide a number of security guarantees, covering

authentication, as well as confidentiality guarantees to different

degrees in different scenarios.

7.2.1. Message Secrecy and Authentication

MLS enforces the encryption of application messages and thus

generally guarantees authentication and confidentiality of

application messages sent in a group.

In particular, this means that only other members of a given group

can decrypt the payload of a given application message, which

includes information about the sender of the message.

Similarly, group members receiving a message from another group

member can authenticate that group member as the sender of the

message and verify the message's integrity.

Message content can be deniable if the signature keys are exchanged

over a deniable channel prior to signing messages.

Depending on the group settings, handshake messages can be encrypted

as well. If that is the case, the same security guarantees apply.

MLS optionally allows the addition of padding to messages,

mitigating the amount of information leaked about the length of the

plaintext to an observer on the network.

7.2.2. Forward and Post-Compromise Security

MLS provides additional protection regarding secrecy of past

messages and future messages. These cryptographic security

properties are Forward Secrecy (FS) and Post-Compromise Security

(PCS).

FS means that access to all encrypted traffic history combined with

an access to all current keying material on clients will not defeat

the secrecy properties of messages older than the oldest key of the

compromised client. Note that this means that clients have the

extremely important role of deleting appropriate keys as soon as

they have been used with the expected message, otherwise the secrecy

of the messages and the security for MLS is considerably weakened.

PCS means that if a group member's state is compromised at some time

t but the group member subsequently performs an update at some time

t', then all MLS guarantees apply to messages sent by the member

after time t', and by other members after they have processed the

update. For example, if an attacker learns all secrets known to

¶

¶

¶

¶

¶

¶

¶

¶

¶

Alice at time t, including both Alice's long-term secret keys and

all shared group keys, but Alice performs a key update at time t',

then the attacker is unable to violate any of the MLS security

properties after the updates have been processed.

Both of these properties are satisfied even against compromised DSs

and ASs.

7.2.3. Non-Repudiation vs Deniability

MLS provides strong authentication within a group, such that a group

member cannot send a message that appears to be from another group

member. Additionally, some services require that a recipient be able

to prove to the service provider that a message was sent by a given

client, in order to report abuse. MLS supports both of these use

cases. In some deployments, these services are provided by

mechanisms which allow the receiver to prove a message's origin to a

third party. This is often called "non-repudiation".

Roughly speaking, "deniability" is the opposite of "non-

repudiation", i.e., the property that it is impossible to prove to a

third party that a message was sent by a given sender. MLS does not

make any claims with regard to deniability. It may be possible to

operate MLS in ways that provide certain deniability properties, but

defining the specific requirements and resulting notions of

deniability requires further analysis.

7.3. Endpoint Compromise

The MLS protocol adopts a threat model which includes multiple forms

of endpoint/client compromise. While adversaries are in a very

strong position if they have compromised an MLS client, there are

still situations where security guarantees can be recovered thanks

to the PCS properties achieved by the MLS protocol.

In this section we will explore the consequences and recommendations

regarding the following compromise scenarios:

The attacker has access to a specific symmetric encryption key

The attacker has access to the group secrets for one group

The attacker has access to a signature oracle for any group

The attacker has access to the signature key for one group

The attacker has access to all secrets of a user for all groups

(full state compromise)

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

*

¶

Recall that the MLS protocol provides chains of AEAD keys, per

sender that are generated from Group Secrets. These keys are used to

protect MLS Plaintext messages which can be Group Operation or

Application messages. The Group Operation messages offer an

additional protection as the secret exchanged within the TreeKEM

group key agreement are public-key encrypted to subgroups with HPKE.

7.3.1. Compromise of AEAD key material

In some circumstances, adversaries may have access to specific AEAD

keys and nonces which protect an Application or a Group Operation

message. While this is a very weak kind of compromise, it can be

realistic in cases of implementation vulnerabilities where only part

of the memory leaks to the adversary.

When an AEAD key is compromised, the adversary has access to a set

of AEAD keys for the same chain and the same epoch, hence can

decrypt messages sent using keys of this chain. An adversary cannot

send a message to a group which appears to be from any valid client

since they cannot forge the signature.

The MLS protocol will ensure that an adversary cannot compute any

previous AEAD keys for the same epoch, or any other epochs. Because

of its Forward Secrecy guarantees, MLS will also retain secrecy of

all other AEAD keys generated for other MLS clients, outside this

dedicated chain of AEAD keys and nonces, even within the epoch of

the compromise. However the MLS protocol does not provide Post

Compromise Secrecy for AEAD encryption within an epoch. This means

that if the AEAD key of a chain is compromised, the adversary can

compute an arbitrary number of subsequent AEAD keys for that chain.

These guarantees are ensured by the structure of the MLS key

schedule which provides Forward Secrecy for these AEAD encryptions,

across the messages within the epoch and also across previous

epochs. Those chains are completely disjoint and compromising keys

across the chains would mean that some Group Secrets have been

compromised, which is not the case in this attack scenario (we

explore stronger compromise scenarios as part of the following

sections).

MLS provides Post-Compromise Secrecy against an active adaptive

attacker across epochs for AEAD encryption, which means that as soon

as the epoch is changed, if the attacker does not have access to

more secret material they won't be able to access any protected

messages from future epochs.

In the case of an Application message, an AEAD key compromise means

that the encrypted application message will be leaked as well as the

signature over that message. This means that the compromise has both

¶

¶

¶

¶

¶

¶

confidentiality and privacy implications on the future AEAD

encryptions of that chain. In the case of a Group Operation message,

only the privacy is affected, as the signature is revealed, because

the secrets themselves are protected by HPKE encryption.

Note that under that compromise scenario, authentication is not

affected in neither of these cases. As every member of the group can

compute the AEAD keys for all the chains (they have access to the

Group Secrets) in order to send and receive messages, the

authentication provided by the AEAD encryption layer of the common

framing mechanism is very weak. Successful decryption of an AEAD

encrypted message only guarantees that a member of the group sent

the message.

7.3.2. Compromise of the Group Secrets of a single group for one or

more group epochs

The attack scenario considering an adversary gaining access to a set

of Group secrets is significantly stronger. This can typically be

the case when a member of the group is compromised. For this

scenario, we consider that the signature keys are not compromised.

This can be the case for instance if the adversary has access to

part of the memory containing the group secrets but not to the

signature keys which might be stored in a secure enclave.

In this scenario, the adversary gains the ability to compute any

number of AEAD encryption keys for any AEAD chains and can encrypt

and decrypt all messages for the compromised epochs.

If the adversary is passive, it is expected from the PCS properties

of the MLS protocol that, as soon as an honest Commit message is

sent by the compromised party, the next epochs will provide message

secrecy.

If the adversary is active, the adversary can follow the protocol

and perform updates on behalf of the compromised party with no

ability to an honest group to recover message secrecy. However, MLS

provides PCS against active adaptive attackers through its Remove

group operation. This means that, as long as other members of the

group are honest, the protocol will guarantee message secrecy for

all messages exchanged in the epochs after the compromised party has

been removed.

7.3.3. Compromise by an active adversary with the ability to sign

messages

Under such a scenario, where an active adversary has compromised an

MLS client, two different settings emerge. In the strongest

compromise scenario, the attacker has access to the signing key and

can forge authenticated messages. In a weaker, yet realistic

¶

¶

¶

¶

¶

¶

scenario, the attacker has compromised a client but the client

signature keys are protected with dedicated hardware features which

do not allow direct access to the value of the private key and

instead provide a signature API.

When considering an active adaptive attacker with access to a

signature oracle, the compromise scenario implies a significant

impact on both the secrecy and authentication guarantees of the

protocol, especially if the attacker also has access to the group

secrets. In that case both secrecy and authentication are broken.

The attacker can generate any message, for the current and future

epochs until an honest update from the compromised client happens.

Note that under this compromise scenario, the attacker can perform

all operations which are available to an legitimate client even

without access to the actual value of the signature key.

Without access to the group secrets, the adversary will not have the

ability to generate messages which look valid to other members of

the group and to the infrastructure as they need to have access to

group secrets to compute the encryption keys or the membership tag.

7.3.4. Compromise of the authentication with access to a signature key

The difference between having access to the value of the signature

key and only having access to a signing oracle is not about the

ability of an active adaptive network attacker to perform different

operations during the time of the compromise, the attacker can

perform every operation available to a legitimate client in both

cases.

There is a significant difference, however in terms of recovery

after a compromise.

Because of the PCS guarantees provided by the MLS protocol, when a

previously compromised client performs an honest Commit which is not

under the control of the adversary, both secrecy and authentication

of messages can be recovered in the case where the attacker didn't

get access to the key. Because the adversary doesn't have the key

and has lost the ability to sign messages, they cannot authenticate

messages on behalf of the compromised party, even if they still have

control over some group keys by colluding with other members of the

group.

This is in contrast with the case where the signature key is leaked.

In that case PCS of the MLS protocol will eventually allow recovery

of the authentication of messages for future epochs but only after

compromised parties refresh their credentials securely.

¶

¶

¶

¶

¶

¶

¶

¶

Beware that in both oracle and private key access, an active

adaptive attacker, can follow the protocol and request to update its

own credential. This in turn induces a signature key rotation which

could provide the attacker with part or the full value of the

private key depending on the architecture of the service provider.

RECOMMENDATION: Signature private keys should be

compartmentalized from other secrets and preferably protected by

an HSM or dedicated hardware features to allow recovery of the

authentication for future messages after a compromise.

7.3.5. Security consideration in the context of a full state

compromise

In real-world compromise scenarios, it is often the case that

adversaries target specific devices to obtain parts of the memory or

even the ability to execute arbitrary code in the targeted device.

Also, recall that in this setting, the application will often retain

the unencrypted messages. If so, the adversary does not have to

break encryption at all to access sent and received messages.

Messages may also be sent by using the application to instruct the

protocol implementation.

RECOMMENDATION: If messages are stored on the device, they should

be protected using encryption at rest, and the keys used should

be stored securely using dedicated mechanisms on the device.

RECOMMENDATION: If the threat model of the system is against an

adversary which can access the messages on the device without

even needing to attack MLS, the application should delete

plaintext messages and ciphertexts immediately after encryption

or decryption.

Even though, from the strict point of view of the security

formalization, a ciphertext is always public and will forever be,

there is no loss in trying to erase ciphertexts as much as possible.

Note that this document makes a clear distinction between the way

signature keys and other group shared secrets must be handled. In

particular, a large set of group secrets cannot necessarily be

assumed to be protected by an HSM or secure enclave features. This

is especially true because these keys are extremely frequently used

and changed with each message received by a client.

However, the signature private keys are mostly used by clients to

send a message. They also are providing the strong authentication

guarantees to other clients, hence we consider that their protection

by additional security mechanism should be a priority.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Overall there is no way to detect or prevent these compromise, as

discussed in the previous sections, performing separation of the

application secret states can help recovery after compromise, this

is the case for signature keys but similar concern exists for the

encryption private key used in the TreeKEM Group Key Agreement.

RECOMMENDATION: The secret keys used for public key encryption

should be stored similarly to the way the signature keys are

stored, as keys can be used to decrypt the group operation

messages and contain the secret material used to compute all the

group secrets.

Even if secure enclaves are not perfectly secure, or even completely

broken, adopting additional protections for these keys can ease

recovery of the secrecy and authentication guarantees after a

compromise where, for instance, an attacker can sign messages

without having access to the key. In certain contexts, the rotation

of credentials might only be triggered by the AS through ACLs, hence

be outside of the capabilities of the attacker.

7.4. Service Node Compromise

7.4.1. General considerations

7.4.1.1. Privacy of the network connections

There are many scenarios leading to communication between the

application on a device and the Delivery Service or the

Authentication Service. In particular when:

The application connects to the Authentication Service to

generate or validate a new credential before distributing it.

The application fetches credentials at the Delivery Service prior

to creating a messaging group (one-to-one or more than two

clients).

The application fetches service provider information or messages

on the Delivery Service.

The application sends service provider information or messages to

the Delivery Service.

In all these cases, the application will often connect to the device

via a secure transport which leaks information about the origin of

the request such as the IP address and depending on the protocol the

MAC address of the device.

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

Similar concerns exist in the peer-to-peer use cases of MLS.

RECOMMENDATION: In the case where privacy or anonymity is

important, using adequate protection such as TOR or a VPN can

improve metadata protection.

More generally, using anonymous credentials in an MLS based

architecture might not be enough to provide strong privacy or

anonymity properties.

7.4.2. Delivery Service Compromise

MLS is intended to provide strong guarantees in the face of

compromise of the DS. Even a totally compromised DS should not be

able to read messages or inject messages that will be acceptable to

legitimate clients. It should also not be able to undetectably

remove, reorder or replay messages.

However, a DS can mount a variety of DoS attacks on the system,

including total DoS attacks (where it simply refuses to forward any

messages) and partial DoS attacks (where it refuses to forward

messages to and from specific clients). As noted in Section 4.3,

these attacks are only partially detectable by clients without an

out-of-band channel. Ultimately, failure of the DS to provide

reasonable service must be dealt with as a customer service matter,

not via technology.

Because the DS is responsible for providing the initial keying

material to clients, it can provide stale keys. This does not

inherently lead to compromise of the message stream, but does allow

it to attack forward security to a limited extent. This threat can

be mitigated by having initial keys expire.

7.4.2.1. Privacy of delivery and push notifications

An important mechanism that is often ignored from the privacy

considerations are the push-tokens. In many modern messaging

architectures, applications are using push notification mechanisms

typically provided by OS vendors. This is to make sure that when

messages are available at the Delivery Service (or by other

mechanisms if the DS is not a central server), the recipient

application on a device knows about it. Sometimes the push

notification can contain the application message itself which saves

a round trip with the DS.

To "push" this information to the device, the service provider and

the OS infrastructures use unique per-device, per-application

identifiers called push-tokens. This means that the push

notification provider and the service provider have information on

which devices receive information and at which point in time.

¶

¶

¶

¶

¶

¶

¶

¶

Even though they can't necessarily access the content, which is

typically encrypted MLS messages, the service provider and the push

notification provider have to be trusted to avoid making correlation

on which devices are recipients of the same message.

For secure messaging systems, push notification are often sent real-

time as it is not acceptable to create artificial delays for message

retrieval.

RECOMMENDATION: If real time notifications are not necessary and

that specific steps must be taken to improve privacy, one can

delay notifications randomly across recipient devices using a

mixnet or other techniques.

Note that it is quite easy for legal requests to ask the service

provider for the push-token associated to an identifier and perform

a second request to the company operating the push-notification

system to get information about the device, which is often linked

with a real identity via a cloud account, a credit card or other

information.

RECOMMENDATION: If stronger privacy guarantees are needed vis-a-

vis the push notification provider, the client can choose to

periodically connect to the Delivery Service without the need of

a dedicated push notification infrastructure.

7.4.3. Authentication Service Compromise

The Authentication Service design is left to the infrastructure

designers. In most designs, a compromised AS is a serious matter, as

the AS can serve incorrect or attacker-provided identities to

clients.

The attacker can link an identity to a credential

The attacker can generate new credentials

The attacker can sign new credentials

The attacker can publish or distribute credentials

Infrastructures that provide cryptographic material or credentials

in place of the MLS client (which is under the control of the user)

have often the ability to use the associated secrets to perform

operations on behalf of the user, which is unacceptable in many

situations. Other mechanisms can be used to prevent this issue, such

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

as the service blessing cryptographic material used by an MLS

client.

RECOMMENDATION: Make clients submit signature public keys to the

AS, this is usually better than the AS generating public key

pairs because the AS cannot sign on behalf of the client. This is

a benefit of a Public Key Infrastructure in the style of the

Internet PKI.

An attacker that can generate or sign new credentials may or may not

have access to the underlying cryptographic material necessary to

perform such operations. In that last case, it results in windows of

time for which all emitted credentials might be compromised.

RECOMMENDATION: Using HSMs to store the root signature keys to

limit the ability of an adversary with no physical access to

extract the top-level signature key.

7.4.3.1. Authentication compromise: Ghost users and impersonations

One thing for which the MLS Protocol is designed for is to make sure

that all clients know who is in the group at all times. This means

that - if all Members of the group and the Authentication Service

are honest - no other parties than the members of the current group

can read and write messages protected by the protocol for that

Group.

Beware though, the link between the cryptographic identity of the

Client and the real identity of the User is important. With some

Authentication Service designs, a private or centralized authority

can be trusted to generate or validate signature keypairs used in

the MLS protocol. This is typically the case in some of the biggest

messaging infrastructures.

While this service is often very well protected from external

attackers, it might be the case that this service is compromised. In

such infrastructure, the AS could generate or validate a signature

keypair for an identity which is not the expected one. Because a

user can have many MLS clients running the MLS protocol, it possibly

has many signature keypairs for multiple devices.

In the case where an adversarial keypair is generated for a specific

identity, an infrastructure without any transparency mechanism or

out-of-band authentication mechanism could inject a malicious client

into a group by impersonating a user. This is especially the case in

large groups where the UI might not reflect all the changes back to

the users.

RECOMMENDATION: Make sure that MLS clients reflect all the

membership changes to the users as they happen. If a choice has

¶

¶

¶

¶

¶

¶

¶

¶

to be made because the number of notifications is too high, a

public log should be maintained in the state of the device so

that the user can examine it.

While the ways to handle MLS credentials are not defined by the

protocol or the architecture documents, the MLS protocol has been

designed with a mechanism that can be used to provide out-of-band

authentication to users. The "authentication_secret" generated for

each user at each epoch of the group is a one-time, per client,

authentication secret which can be exchanged between users to prove

their identity to each other. This can be done for instance using a

QR code that can be scanned by the other parties.

Another way to improve the security for the users is to provide a

transparency mechanism which allows each user to check if

credentials used in groups have been published in the transparency

log. Another benefit of this mechanism is for revocation. The users

of a group could check for revoked keys (in case of compromise

detection) using a mechanism such as CRLite or some more advanced

privacy preserving technology.

RECOMMENDATION: Provide a Key Transparency and Out-of-Band

authentication mechanisms to limit the impact of an

Authentication Service compromise.

We note, again, that as described prior to that section, the

Authentication Service is facultative to design a working

infrastructure and can be replaced by many mechanisms such as

establishing prior one-to-one deniable channels, gossiping, or using

TOFU for credentials used by the MLS Protocol.

Another important consideration is the ease of redistributing new

keys on client compromise, which helps recovering security faster in

various cases.

7.4.3.2. Privacy of the Group Membership

Often, expectation from users is that the infrastructure will not

retain the ability to constantly map the user identity to signature

public keys of the MLS protocol. Some infrastructures will keep a

mapping between signature public keys of clients and user

identities. This can benefit an adversary that has compromised the

AS (or required access according to regulation) the ability of

monitoring unencrypted traffic and correlating the messages

exchanged within the same group.

RECOMMENDATION: Always use encrypted group operation messages to

reduce issues related to privacy.

¶

¶

¶

¶

¶

¶

¶

¶

In certain cases, the adversary can access specific bindings between

public keys and identities. If the signature keys are reused across

groups, the adversary can get more information about the targeted

user.

RECOMMENDATION: Do not use the same signature keypair across

groups.

RECOMMENDATION: Separate the service binding the identities and

the public keys from the service which generates or validates the

credentials or cryptographic material of the Clients.

7.5. Considerations for attacks outside of the threat model

Physical attacks on devices storing and executing MLS principals are

not considered in depth in the threat model of the MLS protocol.

While non-permanent, non-invasive attacks can sometimes be

equivalent to software attacks, physical attacks are considered

outside of the MLS threat model.

Compromise scenarios typically consist in a software adversary,

which can maintain active adaptive compromise and arbitrarily change

the behavior of the client or service.

On the other hand, security goals consider that honest clients will

always run the protocol according to its specification. This relies

on implementations of the protocol to securely implement the

specification, which remains non-trivial.

RECOMMENDATION: Additional steps should be taken to protect the

device and the MLS clients from physical compromise. In such

settings, HSMs and secure enclaves can be used to protect

signature keys.

7.6. Cryptographic Analysis of the MLS Protocol

Various academic works have analyzed MLS and the different security

guarantees it aims to provide. The security of large parts of the

protocol has been analyzed by [BBN19] (draft 7), [ACDT21] (draft 11)

and [AJM20] (draft 12).

Individual components of various drafts of the MLS protocol have

been analyzed in isolation and with differing adversarial models,

for example, [BBR18], [ACDT19], [ACCKKMPPWY19], [AJM20] and [ACJM20]

analyze the ratcheting tree as the sub-protocol of MLS that

facilitates key agreement, while [BCK21] analyzes the key derivation

paths in the ratchet tree and key schedule. Finally, [CHK19]

analyzes the authentication and cross-group healing guarantees

provided by MLS.

¶

¶

¶

¶

¶

¶

¶

¶

¶

[I-D.ietf-mls-protocol]

[I-D.mahy-mls-content-neg]

[KeyTransparency]

8. Informative References

ACDT19: https://eprint.iacr.org/2019/1189

ACCKKMPPWY19: https://eprint.iacr.org/2019/1489

ACJM20: https://eprint.iacr.org/2020/752

AJM20: https://eprint.iacr.org/2020/1327

ACDT21: https://eprint.iacr.org/2021/1083

AHKM21: https://eprint.iacr.org/2021/1456

CHK19: https://eprint.iacr.org/2021/137

BCK21: https://eprint.iacr.org/2021/137

BBR18: https://hal.inria.fr/hal-02425247

BBN19: https://hal.laas.fr/INRIA/hal-02425229

9. IANA Considerations

This document makes no requests of IANA.

10. References

10.1. Normative References

Barnes, R., Beurdouche, B., Robert, R., Millican, J.,

Omara, E., and K. Cohn-Gordon, "The Messaging Layer

Security (MLS) Protocol", Work in Progress, Internet-

Draft, draft-ietf-mls-protocol-14, 3 May 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-mls-

protocol-14>.

10.2. Informative References

Mahy, R., "Content Negotiation for Message Layer Security

(MLS)", Work in Progress, Internet-Draft, draft-mahy-mls-

content-neg-00, 31 March 2022, <https://

datatracker.ietf.org/doc/html/draft-mahy-mls-content-

neg-00>.

Google, "Key Transparency", 2017, <https://

KeyTransparency.org>.

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-14
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-14
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-14
https://datatracker.ietf.org/doc/html/draft-mahy-mls-content-neg-00
https://datatracker.ietf.org/doc/html/draft-mahy-mls-content-neg-00
https://datatracker.ietf.org/doc/html/draft-mahy-mls-content-neg-00
https://KeyTransparency.org
https://KeyTransparency.org

[Loopix]

[RFC3552]

[RFC5280]

[RFC6120]

Piotrowska, A. M., Hayes, J., Elahi, T., Meiser, S., and

G. Danezis, "The Loopix Anonymity System", 2017.

Rescorla, E. and B. Korver, "Guidelines for Writing RFC

Text on Security Considerations", BCP 72, RFC 3552, DOI

10.17487/RFC3552, July 2003, <https://www.rfc-editor.org/

rfc/rfc3552>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/rfc/rfc5280>.

Saint-Andre, P., "Extensible Messaging and Presence

Protocol (XMPP): Core", RFC 6120, DOI 10.17487/RFC6120,

March 2011, <https://www.rfc-editor.org/rfc/rfc6120>.

Contributors

Richard Barnes

Cisco

Email: rlb@ipv.sx

Katriel Cohn-Gordon

Meta Platforms

Email: me@katriel.co.uk

Cas Cremers

CISPA Helmholtz Center for Information Security

Email: cremers@cispa.de

Britta Hale

Naval Postgraduate School

Email: britta.hale@nps.edu

Konrad Kohbrok

Email: konrad.kohbrok@datashrine.de

Brendan McMillion

Email: brendanmcmillion@gmail.com

Thyla van der Merwe

https://www.rfc-editor.org/rfc/rfc3552
https://www.rfc-editor.org/rfc/rfc3552
https://www.rfc-editor.org/rfc/rfc5280
https://www.rfc-editor.org/rfc/rfc6120
mailto:rlb@ipv.sx
mailto:me@katriel.co.uk
mailto:cremers@cispa.de
mailto:britta.hale@nps.edu
mailto:konrad.kohbrok@datashrine.de
mailto:brendanmcmillion@gmail.com

Email: tjvdmerwe@gmail.com

Jon Millican

Meta Platforms

Email: jmillican@fb.com

Raphael Robert

Email: ietf@raphaelrobert.com

Authors' Addresses

Benjamin Beurdouche

Inria & Mozilla

Email: ietf@beurdouche.com

Eric Rescorla

Mozilla

Email: ekr@rtfm.com

Emad Omara

Google

Email: emadomara@google.com

Srinivas Inguva

Twitter

Email: singuva@twitter.com

Albert Kwon

MIT

Email: kwonal@mit.edu

Alan Duric

Wire

Email: alan@wire.com

mailto:tjvdmerwe@gmail.com
mailto:jmillican@fb.com
mailto:ietf@raphaelrobert.com
mailto:ietf@beurdouche.com
mailto:ekr@rtfm.com
mailto:emadomara@google.com
mailto:singuva@twitter.com
mailto:kwonal@mit.edu
mailto:alan@wire.com

	The Messaging Layer Security (MLS) Architecture
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. General Setting
	2.1. Group Members and Clients

	3. Authentication Service
	4. Delivery Service
	4.1. Key Storage
	4.2. Key Retrieval
	4.3. Delivery of Messages
	4.4. Membership knowledge
	4.5. Membership and offline members

	5. Functional Requirements
	5.1. Membership Changes
	5.2. Parallel Groups
	5.3. Asynchronous Usage
	5.4. Access Control
	5.5. Recovery After State Loss
	5.6. Support for Multiple Devices
	5.7. Extensibility
	5.8. Application Data Framing and Negotiation
	5.9. Federation
	5.10. Compatibility with Future Versions of MLS

	6. Operational Requirements
	7. Security and Privacy Considerations
	7.1. Assumptions on Transport Security Links
	7.1.1. Metadata Protection for Unencrypted Group Operations
	7.1.2. DoS protection
	7.1.3. Message Suppression and Error Correction

	7.2. Intended Security Guarantees
	7.2.1. Message Secrecy and Authentication
	7.2.2. Forward and Post-Compromise Security
	7.2.3. Non-Repudiation vs Deniability

	7.3. Endpoint Compromise
	7.3.1. Compromise of AEAD key material
	7.3.2. Compromise of the Group Secrets of a single group for one or more group epochs
	7.3.3. Compromise by an active adversary with the ability to sign messages
	7.3.4. Compromise of the authentication with access to a signature key
	7.3.5. Security consideration in the context of a full state compromise

	7.4. Service Node Compromise
	7.4.1. General considerations
	7.4.1.1. Privacy of the network connections

	7.4.2. Delivery Service Compromise
	7.4.2.1. Privacy of delivery and push notifications

	7.4.3. Authentication Service Compromise
	7.4.3.1. Authentication compromise: Ghost users and impersonations
	7.4.3.2. Privacy of the Group Membership

	7.5. Considerations for attacks outside of the threat model
	7.6. Cryptographic Analysis of the MLS Protocol

	8. Informative References
	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Contributors
	Authors' Addresses

