
Workgroup: Network Working Group

Internet-Draft: draft-ietf-mls-extensions-00

Published: 25 November 2022

Intended Status: Informational

Expires: 29 May 2023

Authors: R. Robert

Phoenix R&D

The Messaging Layer Security (MLS) Extensions

Abstract

This document describes extensions to the Messaging Layer Security

(MLS) protocol.

Discussion Venues

This note is to be removed before publishing as an RFC.

Source for this draft and an issue tracker can be found at https://

github.com/mlswg/mls-extensions.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 29 May 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/mlswg/mls-extensions
https://github.com/mlswg/mls-extensions
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Change Log

2. Extensions

2.1. AppAck

2.1.1. Description

2.2. Targeted messages

2.2.1. Description

2.2.2. Format

2.2.3. Encryption

2.2.4. Authentication

2.2.5. Guidance on authentication schemes

2.2.6. Security considerations

3. IANA Considerations

3.1. MLS Extension Types

3.1.1. targeted_messages_capability MLS Extension

3.1.2. targeted_messages MLS Extension

3.2. MLS Proposal Types

3.2.1. AppAck Proposal

4. Informative References

Author's Address

1. Introduction

This document describes extensions to [mls-protocol] that are not

part of the main protocol specification. The protocol specification

includes a set of core extensions that are likely to be useful to

many applications. The extensions described in this document are

intended to be used by applications that need to extend the MLS

protocol.

1.1. Change Log

RFC EDITOR PLEASE DELETE THIS SECTION.

draft-00

Initial adoption of draft-robert-mls-protocol-00 as a WG item.

Add Targeted Messages extension (*)

¶

¶

¶

¶

* ¶

* ¶

2. Extensions

2.1. AppAck

Type: Proposal

2.1.1. Description

An AppAck proposal is used to acknowledge receipt of application

messages. Though this information implies no change to the group, it

is structured as a Proposal message so that it is included in the

group's transcript by being included in Commit messages.

struct {

 uint32 sender;

 uint32 first_generation;

 uint32 last_generation;

} MessageRange;

struct {

 MessageRange received_ranges<V>;

} AppAck;

An AppAck proposal represents a set of messages received by the

sender in the current epoch. Messages are represented by the sender

and generation values in the MLSCiphertext for the message. Each

MessageRange represents receipt of a span of messages whose

generation values form a continuous range from first_generation to

last_generation, inclusive.

AppAck proposals are sent as a guard against the Delivery Service

dropping application messages. The sequential nature of the

generation field provides a degree of loss detection, since gaps in

the generation sequence indicate dropped messages. AppAck completes

this story by addressing the scenario where the Delivery Service

drops all messages after a certain point, so that a later generation

is never observed. Obviously, there is a risk that AppAck messages

could be suppressed as well, but their inclusion in the transcript

means that if they are suppressed then the group cannot advance at

all.

The schedule on which sending AppAck proposals are sent is up to the

application, and determines which cases of loss/suppression are

detected. For example:

The application might have the committer include an AppAck

proposal whenever a Commit is sent, so that other members could

know when one of their messages did not reach the committer.

¶

¶

¶

¶

¶

¶

*

¶

The application could have a client send an AppAck whenever an

application message is sent, covering all messages received since

its last AppAck. This would provide a complete view of any losses

experienced by active members.

The application could simply have clients send AppAck proposals

on a timer, so that all participants' state would be known.

An application using AppAck proposals to guard against loss/

suppression of application messages also needs to ensure that AppAck

messages and the Commits that reference them are not dropped. One

way to do this is to always encrypt Proposal and Commit messages, to

make it more difficult for the Delivery Service to recognize which

messages contain AppAcks. The application can also have clients

enforce an AppAck schedule, reporting loss if an AppAck is not

received at the expected time.

2.2. Targeted messages

2.2.1. Description

MLS application messages make sending encrypted messages to all

group members easy and efficient. Sometimes application protocols

mandate that messages are only sent to specific group members,

either for privacy or for efficiency reasons.

Targeted messages are a way to achieve this without having to create

a new group with the sender and the specific recipients - which

might not be possible or desired. Instead, targeted messages define

the format and encryption of a message that is sent from a member of

an existing group to another member of that group.

The goal is to provide a one-shot messaging mechanism that provides

confidentiality and authentication.

Targeted Messages reuse mechanisms from [mls-protocol], in

particular [hpke].

2.2.2. Format

This extensions introduces a new message type to the MLS protocol,

TargetedMessage in WireFormat and MLSMessage:

*

¶

*

¶

¶

¶

¶

¶

¶

¶

enum {

 ...

 mls_targeted_message(6),

 ...

 (255)

} WireFormat;

struct {

 ProtocolVersion version = mls10;

 WireFormat wire_format;

 select (MLSMessage.wire_format) {

 ...

 case mls_targeted_message:

 TargetedMessage targeted_message;

 }

} MLSMessage;

The TargetedMessage message type is defined as follows:

¶

¶

struct {

 opaque group_id<V>;

 uint64 epoch;

 uint32 recipient_leaf_index;

 opaque authenticated_data<V>;

 opaque encrypted_sender_auth_data<V>;

 opaque hpke_ciphertext<V>;

} TargetedMessage;

enum {

 hpke_auth_psk(0),

 signature_hpke_psk(1),

} TargetedMessageAuthScheme;

struct {

 uint32 sender_leaf_index;

 TargetedMessageAuthScheme authentication_scheme;

 select (authentication_scheme) {

 case HPKEAuthPsk:

 case SignatureHPKEPsk:

 opaque signature<V>;

 }

 opaque kem_output<V>;

} TargetedMessageSenderAuthData;

struct {

 opaque group_id<V>;

 uint64 epoch;

 uint32 recipient_leaf_index;

 opaque authenticated_data<V>;

 TargetedMessageSenderAuthData sender_auth_data;

} TargetedMessageTBM;

struct {

 opaque group_id<V>;

 uint64 epoch;

 uint32 recipient_leaf_index;

 opaque authenticated_data<V>;

 uint32 sender_leaf_index;

 TargetedMessageAuthScheme authentication_scheme;

 opaque kem_output<V>;

 opaque hpke_ciphertext<V>;

} TargetedMessageTBS;

struct {

 opaque group_id<V>;

 uint64 epoch;

 opaque label<V> = "MLS 1.0 targeted message psk";

} PSKId;

Note that TargetedMessageTBS is only used with the

TargetedMessageAuthScheme.SignatureHPKEPsk authentication mode.

2.2.3. Encryption

Targeted messages use HPKE to encrypt the message content between

two leaves. The HPKE keys of the LeafNode are used to that effect,

namely the encryption_key field.

In addition, TargetedMessageSenderAuthData is encrypted in a similar

way to MLSSenderData as described in section 7.3.2 in

[mls-protocol]. The TargetedMessageSenderAuthData.sender_leaf_index

field is the leaf index of the sender. The

TargetedMessageSenderAuthData.authentication_scheme field is the

authentication scheme used to authenticate the sender. The

TargetedMessageSenderAuthData.signature field is the signature of

the TargetedMessageTBS structure. The

TargetedMessageSenderAuthData.kem_output field is the KEM output of

the HPKE encryption.

The key and nonce provided to the AEAD are computed as the KDF of

the first KDF.Nh bytes of the hpke_ciphertext generated in the

following section. If the length of the hpke_ciphertext is less than

KDF.Nh, the whole hpke_ciphertext is used. In pseudocode, the key

and nonce are derived as:

``` sender_auth_data_secret = MLS-Exporter("targeted message sender

auth data", "", KDF.Nh)

ciphertext_sample = hpke_ciphertext[0..KDF.Nh-1]

sender_data_key = ExpandWithLabel(sender_auth_data_secret, "key",

ciphertext_sample, AEAD.Nk) sender_data_nonce =

ExpandWithLabel(sender_auth_data_secret, "nonce", ciphertext_sample,

AEAD.Nn) ```

The Additional Authenticated Data (AAD) for the SenderAuthData

ciphertext is the first three fields of TargetedMessage:

¶

¶

¶

¶

¶

¶

¶

¶

¶

struct {

  opaque group_id<V>;

  uint64 epoch;

  uint32 recipient_leaf_index;

} SenderAuthDataAAD;

¶



2.2.3.1. Padding

The TargetedMessage structure does not include a padding field. It

is the responsibility of the sender to add padding to the message as

used in the next section.

2.2.4. Authentication

For ciphersuites that support it, HPKE mode_auth_psk is used for

authentication. For other ciphersuites, HPKE mode_psk is used along

with a signature. The authentication scheme is indicated by the 

authentication_scheme field in TargetedMessageContent. See 

Section 2.2.5 for more information.

For the PSK part of the authentication, clients export a dedicated

secret:

targeted_message_psk = MLS-Exporter("targeted message psk", "",

KDF.Nh) 

Th functions SealAuth and OpenAuth are defined in [hpke]. Other

functions are defined in [mls-protocol].

2.2.4.1. Authentication with HPKE

The sender MUST set the authentication scheme to 

TargetedMessageAuthScheme.HPKEAuthPsk.

The sender then computes the following:

(kem_output, hpke_ciphertext) =

SealAuthPSK(receiver_node_public_key, group_context,

targeted_message_tbm, message, targeted_message_psk, psk_id,

sender_node_private_key) 

The recipient computes the following:

message = OpenAuthPSK(kem_output, receiver_node_private_key,

group_context, targeted_message_tbm, hpke_ciphertext,

targeted_message_psk, psk_id, sender_node_public_key) 

2.2.4.2. Authentication with signatures

The sender MUST set the authentication scheme to 

TargetedMessageAuthScheme.SignatureHPKEPsk. The signature is done

using the signature_key of the sender's LeafNode and the

corresponding signature scheme used in the group.

The sender then computes the following:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



``` (kem_output, hpke_ciphertext) =

SealPSK(receiver_node_public_key, group_context,

targeted_message_tbm, message, targeted_message_psk, epoch)

signature = SignWithLabel(., "TargetedMessageTBS",

targeted_message_tbs) ```

The recipient computes the following:

message = OpenPSK(kem_output, receiver_node_private_key,

group_context, targeted_message_tbm, hpke_ciphertext,

targeted_message_psk, epoch)

The recipient MUST verify the message authentication:

VerifyWithLabel.verify(sender_leaf_node.signature_key,

"TargetedMessageTBS", targeted_message_tbs, signature)

2.2.5. Guidance on authentication schemes

If the group's ciphersuite does not support HPKE mode_auth_psk,

implementations MUST choose

TargetedMessageAuthScheme.SignatureHPKEPsk.

If the group's ciphersuite does support HPKE mode_auth_psk,

implementations CAN choose TargetedMessageAuthScheme.HPKEAuthPsk if

better efficiency and/or repudiability is desired. Implementations

SHOULD consult [hpke-security-considerations] beforehand.

2.2.6. Security considerations

In addition to the sender authentication, Targeted Messages are

authenticated by using a preshared key (PSK) between the sender and

the recipient. The PSK is exported from the group key schedule using

the label "targeted message psk". This ensures that the PSK is only

valid for a specific group and epoch, and the Forward Secrecy and

Post-Compromise Security guarantees of the group key schedule apply

to the targeted messages as well. The PSK also ensures that an

attacker needs access to the private group state in addition to the

HPKE/signature's private keys. This improves confidentiality

guarantees against passive attackers and authentication guarantees

against active attackers.

3. IANA Considerations

This document requests the addition of various new values under the

heading of "Messaging Layer Security". Each registration is

organized under the relevant registry Type.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

RFC EDITOR: Please replace XXXX throughout with the RFC number

assigned to this document

3.1. MLS Extension Types

3.1.1. targeted_messages_capability MLS Extension

The targeted_messages_capability MLS Extension Type is used in the

capabilities field of LeafNodes to indicate the support for the

Targeted Messages Extension. The extension does not carry any

payload.

Template:

Value: 0x0006

Name: targeted_messages_capability

Message(s): LN: This extension may appear in LeafNode objects

Recommended: Y

Reference: RFC XXXX

3.1.2. targeted_messages MLS Extension

The targeted_messages MLS Extension Type is used inside GroupContext

objects. It indicates that the group supports the Targeted Messages

Extension.

Template:

Value: 0x0007

Name: targeted_messages

Message(s): GC: This extension may appear in GroupContext objects

Recommended: Y

Reference: RFC XXXX

3.2. MLS Proposal Types

3.2.1. AppAck Proposal

Template:

Value: 0x0008

Name: app_ack

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

[hpke]

[hpke-security-considerations]

[mls-protocol]

Recommended: Y

Path Required: Y

Reference: [RFC XXXX]

4. Informative References

"Hybrid Public Key Encryption", n.d., <https://www.rfc-

editor.org/rfc/rfc9180.html](https://www.rfc-editor.org/

rfc/rfc9180.html>.

"HPKE Security Considerations", n.d.,

<https://www.rfc-editor.org/rfc/rfc9180.html#name-key-

compromise-impersonatio](https://www.rfc-editor.org/rfc/

rfc9180.html#name-key-compromise-impersonatio>.

"The Messaging Layer Security (MLS) Protocol", n.d.,

<https://datatracker.ietf.org/doc/draft-ietf-mls-

protocol/](https://datatracker.ietf.org/doc/draft-ietf-

mls-protocol/>.

Author's Address

Raphael Robert

Phoenix R&D

Email: ietf@raphaelrobert.com

* ¶

* ¶

* ¶

https://www.rfc-editor.org/rfc/rfc9180.html%5D(https://www.rfc-editor.org/rfc/rfc9180.html
https://www.rfc-editor.org/rfc/rfc9180.html%5D(https://www.rfc-editor.org/rfc/rfc9180.html
https://www.rfc-editor.org/rfc/rfc9180.html%5D(https://www.rfc-editor.org/rfc/rfc9180.html
https://www.rfc-editor.org/rfc/rfc9180.html#name-key-compromise-impersonatio%5D(https://www.rfc-editor.org/rfc/rfc9180.html#name-key-compromise-impersonatio
https://www.rfc-editor.org/rfc/rfc9180.html#name-key-compromise-impersonatio%5D(https://www.rfc-editor.org/rfc/rfc9180.html#name-key-compromise-impersonatio
https://www.rfc-editor.org/rfc/rfc9180.html#name-key-compromise-impersonatio%5D(https://www.rfc-editor.org/rfc/rfc9180.html#name-key-compromise-impersonatio
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/%5D(https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/%5D(https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/%5D(https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/
mailto:ietf@raphaelrobert.com

	The Messaging Layer Security (MLS) Extensions
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Change Log

	2. Extensions
	2.1. AppAck
	2.1.1. Description

	2.2. Targeted messages
	2.2.1. Description
	2.2.2. Format
	2.2.3. Encryption
	2.2.3.1. Padding

	2.2.4. Authentication
	2.2.4.1. Authentication with HPKE
	2.2.4.2. Authentication with signatures

	2.2.5. Guidance on authentication schemes
	2.2.6. Security considerations

	3. IANA Considerations
	3.1. MLS Extension Types
	3.1.1. targeted_messages_capability MLS Extension
	3.1.2. targeted_messages MLS Extension

	3.2. MLS Proposal Types
	3.2.1. AppAck Proposal

	4. Informative References
	Author's Address

