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Abstract

Messaging applications are increasingly making use of end-to-end

security mechanisms to ensure that messages are only accessible to

the communicating endpoints, and not to any servers involved in

delivering messages. Establishing keys to provide such protections

is challenging for group chat settings, in which more than two

clients need to agree on a key but may not be online at the same

time. In this document, we specify a key establishment protocol that

provides efficient asynchronous group key establishment with forward

secrecy and post-compromise security for groups in size ranging from

two to thousands.
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Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference
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Appendix A.  Tree Math

Authors' Addresses

1. Introduction

DISCLAIMER: This is a work-in-progress draft of MLS and has not yet

seen significant security analysis. It should not be used as a basis

for building production systems.

RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH The source for

this draft is maintained in GitHub. Suggested changes should be

submitted as pull requests at https://github.com/mlswg/mls-protocol.

Instructions are on that page as well. Editorial changes can be

managed in GitHub, but any substantive change should be discussed on

the MLS mailing list.

A group of users who want to send each other encrypted messages

needs a way to derive shared symmetric encryption keys. For two

parties, this problem has been studied thoroughly, with the Double

Ratchet emerging as a common solution [doubleratchet] [signal].

Channels implementing the Double Ratchet enjoy fine-grained forward

secrecy as well as post-compromise security, but are nonetheless

efficient enough for heavy use over low-bandwidth networks.

For a group of size greater than two, a common strategy is to

unilaterally broadcast symmetric "sender" keys over existing shared

symmetric channels, and then for each member to send messages to the

group encrypted with their own sender key. Unfortunately, while this

improves efficiency over pairwise broadcast of individual messages

and provides forward secrecy (with the addition of a hash ratchet),

it is difficult to achieve post-compromise security with sender

keys. An adversary who learns a sender key can often indefinitely

and passively eavesdrop on that member's messages. Generating and

distributing a new sender key provides a form of post-compromise

security with regard to that sender. However, it requires

computation and communications resources that scale linearly with

the size of the group.

In this document, we describe a protocol based on tree structures

that enable asynchronous group keying with forward secrecy and post-

compromise security. Based on earlier work on "asynchronous

ratcheting trees" [art], the protocol presented here uses an

asynchronous key-encapsulation mechanism for tree structures. This

mechanism allows the members of the group to derive and update

shared keys with costs that scale as the log of the group size.

1.1. Change Log

RFC EDITOR PLEASE DELETE THIS SECTION.
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draft-12

Use the GroupContext to derive the joiner_secret (*)

Make PreSharedKeys non optional in GroupSecrets (*)

Update name for this particular key (*)

Truncate tree size on removal (*)

Use HPKE draft-08 (*)

Clarify requirements around identity in MLS groups (*)

Signal the intended wire format for MLS messages (*)

Inject GroupContext as HPKE info instead of AAD (*)

Clarify extension handling and make extension updatable (*)

Improve extensibility of Proposals (*)

Constrain proposal in External Commit (*)

Remove the notion of a 'leaf index' (*)

Add group_context_extensions proposal ID (*)

Add RequiredCapabilities extension (*)

Use cascaded KDF instead of concatenation to consolidate PSKs (*)

Use key package hash to index clients in message structs (*)

Don't require PublicGroupState for external init (*)

Make ratchet tree section clearer.

Handle non-member sender cases in MLSPlaintextTBS

Clarify encoding of signatures with NIST curves

Remove OPEN ISSUEs and TODOs

Normalize the description of the zero vector

draft-11

Include subtree keys in parent hash (*)

Pin HPKE to draft-07 (*)
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Move joiner secret to the end of the first key schedule epoch (*)

Add an AppAck proposal

Make initializations of transcript hashes consistent

draft-10

Allow new members to join via an external Commit (*)

Enable proposals to be sent inline in a Commit (*)

Re-enable constant-time Add (*)

Change expiration extension to lifetime extension (*)

Make the tree in the Welcome optional (*)

PSK injection, re-init, sub-group branching (*)

Require the initial init_secret to be a random value (*)

Remove explicit sender data nonce (*)

Do not encrypt to joiners in UpdatePath generation (*)

Move MLSPlaintext signature under the confirmation tag (*)

Explicitly authenticate group membership with MLSPLaintext (*)

Clarify X509Credential structure (*)

Remove uneeded interim transcript hash from GroupInfo (*)

IANA considerations

Derive an authentication secret

Use Extract/Expand from HPKE KDF

Clarify that application messages MUST be encrypted

draft-09

Remove blanking of nodes on Add (*)

Change epoch numbers to uint64 (*)

Add PSK inputs (*)

Add key schedule exporter (*)
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Sign the updated direct path on Commit, using "parent hashes" and

one signature per leaf (*)

Use structured types for external senders (*)

Redesign Welcome to include confirmation and use derived keys (*)

Remove ignored proposals (*)

Always include an Update with a Commit (*)

Add per-message entropy to guard against nonce reuse (*)

Use the same hash ratchet construct for both application and

handshake keys (*)

Add more ciphersuites

Use HKDF to derive key pairs (*)

Mandate expiration of ClientInitKeys (*)

Add extensions to GroupContext and flesh out the extensibility

story (*)

Rename ClientInitKey to KeyPackage

draft-08

Change ClientInitKeys so that they only refer to one ciphersuite

(*)

Decompose group operations into Proposals and Commits (*)

Enable Add and Remove proposals from outside the group (*)

Replace Init messages with multi-recipient Welcome message (*)

Add extensions to ClientInitKeys for expiration and downgrade

resistance (*)

Allow multiple Proposals and a single Commit in one MLSPlaintext

(*)

draft-07

Initial version of the Tree based Application Key Schedule (*)

Initial definition of the Init message for group creation (*)

Fix issue with the transcript used for newcomers (*)
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Clarifications on message framing and HPKE contexts (*)

draft-06

Reorder blanking and update in the Remove operation (*)

Rename the GroupState structure to GroupContext (*)

Rename UserInitKey to ClientInitKey

Resolve the circular dependency that draft-05 introduced in the

confirmation MAC calculation (*)

Cover the entire MLSPlaintext in the transcript hash (*)

draft-05

Common framing for handshake and application messages (*)

Handshake message encryption (*)

Convert from literal state to a commitment via the "tree hash"

(*)

Add credentials to the tree and remove the "roster" concept (*)

Remove the secret field from tree node values

draft-04

Updating the language to be similar to the Architecture document

ECIES is now renamed in favor of HPKE (*)

Using a KDF instead of a Hash in TreeKEM (*)

draft-03

Added ciphersuites and signature schemes (*)

Re-ordered fields in UserInitKey to make parsing easier (*)

Fixed inconsistencies between Welcome and GroupState (*)

Added encryption of the Welcome message (*)

draft-02

Removed ART (*)

Allowed partial trees to avoid double-joins (*)
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Client:

Added explicit key confirmation (*)

draft-01

Initial description of the Message Protection mechanism. (*)

Initial specification proposal for the Application Key Schedule

using the per-participant chaining of the Application Secret

design. (*)

Initial specification proposal for an encryption mechanism to

protect Application Messages using an AEAD scheme. (*)

Initial specification proposal for an authentication mechanism of

Application Messages using signatures. (*)

Initial specification proposal for a padding mechanism to

improving protection of Application Messages against traffic

analysis. (*)

Inversion of the Group Init Add and Application Secret

derivations in the Handshake Key Schedule to be ease chaining in

case we switch design. (*)

Removal of the UserAdd construct and split of GroupAdd into Add

and Welcome messages (*)

Initial proposal for authenticating handshake messages by signing

over group state and including group state in the key schedule

(*)

Added an appendix with example code for tree math

Changed the ECIES mechanism used by TreeKEM so that it uses

nonces generated from the shared secret

draft-00

Initial adoption of draft-barnes-mls-protocol-01 as a WG item.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.
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Group:

Member:

Key Package:

Initialization Key (InitKey):

Signature Key:

An agent that uses this protocol to establish shared

cryptographic state with other clients. A client is defined by

the cryptographic keys it holds.

A collection of clients with shared cryptographic state.

A client that is included in the shared state of a group,

hence has access to the group's secrets.

A signed object describing a client's identity and

capabilities, and including a hybrid public-key encryption (HPKE 

[I-D.irtf-cfrg-hpke]) public key that can be used to encrypt to

that client.

A key package that is prepublished by

a client, which other clients can use to introduce the client to

a new group.

A signing key pair used to authenticate the sender

of a message.

Terminology specific to tree computations is described in Section 5.

We use the TLS presentation language [RFC8446] to describe the

structure of protocol messages.

3. Basic Assumptions

This protocol is designed to execute in the context of a Service

Provider (SP) as described in [I-D.ietf-mls-architecture]. In

particular, we assume the SP provides the following services:

A signature key provider which allows clients to authenticate

protocol messages in a group.

A broadcast channel, for each group, which will relay a message

to all members of a group. For the most part, we assume that this

channel delivers messages in the same order to all participants.

(See Section 13 for further considerations.)

A directory to which clients can publish key packages and

download key packages for other participants.

4. Protocol Overview

The goal of this protocol is to allow a group of clients to exchange

confidential and authenticated messages. It does so by deriving a

sequence of secrets and keys known only to members. Those should be

secret against an active network adversary and should have both
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forward secrecy and post-compromise security with respect to

compromise of any members.

We describe the information stored by each client as state, which

includes both public and private data. An initial state is set up by

a group creator, which is a group containing only itself. The

creator then sends Add proposals for each client in the initial set

of members, followed by a Commit message which incorporates all of

the Adds into the group state. Finally, the group creator generates

a Welcome message corresponding to the Commit and sends this

directly to all the new members, who can use the information it

contains to set up their own group state and derive a shared secret.

Members exchange Commit messages for post-compromise security, to

add new members, and to remove existing members. These messages

produce new shared secrets which are causally linked to their

predecessors, forming a logical Directed Acyclic Graph (DAG) of

states.

The protocol algorithms we specify here follow. Each algorithm

specifies both (i) how a client performs the operation and (ii) how

other clients update their state based on it.

There are three major operations in the lifecycle of a group:

Adding a member, initiated by a current member;

Updating the leaf secret of a member;

Removing a member.

Each of these operations is "proposed" by sending a message of the

corresponding type (Add / Update / Remove). The state of the group

is not changed, however, until a Commit message is sent to provide

the group with fresh entropy. In this section, we show each proposal

being committed immediately, but in more advanced deployment cases

an application might gather several proposals before committing them

all at once.

Before the initialization of a group, clients publish InitKeys (as

KeyPackage objects) to a directory provided by the Service Provider.

¶
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When a client A wants to establish a group with B and C, it first

initializes a group state containing only itself and downloads

KeyPackages for B and C. For each member, A generates an Add and

Commit message adding that member, and broadcasts them to the group.

It also generates a Welcome message and sends this directly to the

new member (there's no need to send it to the group). Only after A

has received its Commit message back from the server does it update

its state to reflect the new member's addition.

Upon receiving the Welcome message, the new member will be able to

read and send new messages to the group. Messages received before

the client has joined the group are ignored.

                                                               Group

A                B                C            Directory       Channel

|                |                |                |              |

| KeyPackageA    |                |                |              |

|------------------------------------------------->|              |

|                |                |                |              |

|                | KeyPackageB    |                |              |

|                |-------------------------------->|              |

|                |                |                |              |

|                |                | KeyPackageC    |              |

|                |                |--------------->|              |

|                |                |                |              |

¶

¶
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Subsequent additions of group members proceed in the same way. Any

member of the group can download a KeyPackage for a new client and

broadcast an Add message that the current group can use to update

their state, and a Welcome message that the new client can use to

initialize its state and join the group.

To enforce the forward secrecy and post-compromise security of

messages, each member periodically updates their leaf secret. Any

member can update this information at any time by generating a fresh

KeyPackage and sending an Update message followed by a Commit

message. Once all members have processed both, the group's secrets

will be unknown to an attacker that had compromised the sender's

prior leaf secret.

                                                               Group

A              B              C          Directory            Channel

|              |              |              |                   |

|         KeyPackageB, KeyPackageC           |                   |

|<-------------------------------------------|                   |

|state.init()  |              |              |                   |

|              |              |              |                   |

|              |              |              | Add(A->AB)        |

|              |              |              | Commit(Add)       |

|--------------------------------------------------------------->|

|              |              |              |                   |

|  Welcome(B)  |              |              |                   |

|------------->|state.join()  |              |                   |

|              |              |              |                   |

|              |              |              | Add(A->AB)        |

|              |              |              | Commit(Add)       |

|<---------------------------------------------------------------|

|state.add(B)  |              |              |                   |

|              |              |              |                   |

|              |              |              |                   |

|              |              |              | Add(AB->ABC)      |

|              |              |              | Commit(Add)       |

|--------------------------------------------------------------->|

|              |              |              |                   |

|              |  Welcome(C)  |              |                   |

|---------------------------->|state.join()  |                   |

|              |              |              |                   |

|              |              |              | Add(AB->ABC)      |

|              |              |              | Commit(Add)       |

|<---------------------------------------------------------------|

|state.add(C)  |<------------------------------------------------|

|              |state.add(C)  |              |                   |

|              |              |              |                   |

¶
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Update messages should be sent at regular intervals of time as long

as the group is active, and members that don't update should

eventually be removed from the group. It's left to the application

to determine an appropriate amount of time between Updates.

Members are removed from the group in a similar way. Any member of

the group can send a Remove proposal followed by a Commit message,

which adds new entropy to the group state that's known to all except

the removed member. Note that this does not necessarily imply that

any member is actually allowed to evict other members; groups can

enforce access control policies on top of these basic mechanism.

5. Ratchet Trees

The protocol uses "ratchet trees" for deriving shared secrets among

a group of clients.

¶

                                                          Group

A              B     ...      Z          Directory        Channel

|              |              |              |              |

|              | Update(B)    |              |              |

|              |------------------------------------------->|

| Commit(Upd)  |              |              |              |

|---------------------------------------------------------->|

|              |              |              |              |

|              |              |              | Update(B)    |

|              |              |              | Commit(Upd)  |

|<----------------------------------------------------------|

|state.upd(B)  |<-------------------------------------------|

|              |state.upd(B)  |<----------------------------|

|              |              |state.upd(B)  |              |

|              |              |              |              |

¶

¶

                                                          Group

A              B     ...      Z          Directory       Channel

|              |              |              |              |

|              |              | Remove(B)    |              |

|              |              | Commit(Rem)  |              |

|              |              |---------------------------->|

|              |              |              |              |

|              |              |              | Remove(B)    |

|              |              |              | Commit(Rem)  |

|<----------------------------------------------------------|

|state.rem(B)  |              |<----------------------------|

|              |              |state.rem(B)  |              |

|              |              |              |              |

|              |              |              |              |

¶
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5.1. Tree Computation Terminology

Trees consist of nodes. A node is a leaf if it has no children, and

a parent otherwise; note that all parents in our trees have

precisely two children, a left child and a right child. A node is

the root of a tree if it has no parents, and intermediate if it has

both children and parents. The descendants of a node are that node,

its children, and the descendants of its children, and we say a tree

contains a node if that node is a descendant of the root of the

tree. Nodes are siblings if they share the same parent.

A subtree of a tree is the tree given by the descendants of any

node, the head of the subtree. The size of a tree or subtree is the

number of leaf nodes it contains. For a given parent node, its left

subtree is the subtree with its left child as head (respectively 

right subtree).

All trees used in this protocol are left-balanced binary trees. A

binary tree is full (and balanced) if its size is a power of two and

for any parent node in the tree, its left and right subtrees have

the same size.

A binary tree is left-balanced if for every parent, either the

parent is balanced, or the left subtree of that parent is the

largest full subtree that could be constructed from the leaves

present in the parent's own subtree. Given a list of n items, there

is a unique left-balanced binary tree structure with these elements

as leaves.

(Note that left-balanced binary trees are the same structure that is

used for the Merkle trees in the Certificate Transparency protocol 

[I-D.ietf-trans-rfc6962-bis].)

The direct path of a root is the empty list, and of any other node

is the concatenation of that node's parent along with the parent's

direct path. The copath of a node is the node's sibling concatenated

with the list of siblings of all the nodes in its direct path,

excluding the root.

For example, in the below tree:

The direct path of C is (CD, ABCD, ABCDEFG)

The copath of C is (D, AB, EFG)

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶



Each node in the tree is assigned an index, starting at zero and

running from left to right. A node is a leaf node if and only if it

has an even index. The node indices for the nodes in the above tree

are as follows:

0 = A

1 = AB

2 = B

3 = ABCD

4 = C

5 = CD

6 = D

7 = ABCDEFG

8 = E

9 = EF

10 = F

11 = EFG

12 = G

A tree with n leaves has 2*n - 1 nodes. For example, the above tree

has 7 leaves (A, B, C, D, E, F, G) and 13 nodes. The root of a tree

with n leaves is always the node with index 2^k - 1, where k is the

largest number such that 2^k < n.

              7 = root

        ______|______

       /             \

      3              11

    __|__           __|

   /     \         /   \

  1       5       9     |

 / \     / \     / \    |

A   B   C   D   E   F   G

                    1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2

¶
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5.2. Ratchet Tree Nodes

A particular instance of a ratchet tree is defined by the same

parameters that define an instance of HPKE, namely:

A Key Encapsulation Mechanism (KEM), including a DeriveKeyPair

function that creates a key pair for the KEM from a symmetric

secret

A Key Derivation Function (KDF), including Extract and Expand

functions

An AEAD encryption scheme

Each node in a ratchet tree contains up to five values:

A private key (only within the member's direct path, see below)

A public key

An ordered list of node indices for "unmerged" leaves (see 

Section 5.3)

A credential (only for leaf nodes)

A hash of certain information about the node's parent, as of the

last time the node was changed (see Section 7.5).

The conditions under which each of these values must or must not be

present are laid out in Section 5.3.

A node in the tree may also be blank, indicating that no value is

present at that node. The resolution of a node is an ordered list of

non-blank nodes that collectively cover all non-blank descendants of

the node.

The resolution of a non-blank node comprises the node itself,

followed by its list of unmerged leaves, if any

The resolution of a blank leaf node is the empty list

The resolution of a blank intermediate node is the result of

concatenating the resolution of its left child with the

resolution of its right child, in that order

For example, consider the following tree, where the "_" character

represents a blank node and unmerged leaves are indicated in square

brackets:
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In this tree, we can see all of the above rules in play:

The resolution of node 5 is the list [CD, C]

The resolution of node 2 is the empty list []

The resolution of node 3 is the list [A, CD, C]

Every node, regardless of whether the node is blank or populated,

has a corresponding hash that summarizes the contents of the subtree

below that node. The rules for computing these hashes are described

in Section 7.6.

5.3. Views of a Ratchet Tree

We generally assume that each participant maintains a complete and

up-to-date view of the public state of the group's ratchet tree,

including the public keys for all nodes and the credentials

associated with the leaf nodes.

No participant in an MLS group knows the private key associated with

every node in the tree. Instead, each member is assigned to a leaf

of the tree, which determines the subset of private keys it knows.

The credential stored at that leaf is one provided by the member.

In particular, MLS maintains the members' views of the tree in such

a way as to maintain the tree invariant:

In other words, if a node is not blank, then it holds a public key.

The corresponding private key is known only to members occupying

leaves below that node.

The reverse implication is not true: A member may not know the

private keys of all the intermediate nodes they're below. Such a

member has an unmerged leaf. Encrypting to an intermediate node

requires encrypting to the node's public key, as well as the public

keys of all the unmerged leaves below it. A leaf is unmerged when it
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The private key for a node in the tree is known to a member of

the group only if that member's leaf is a descendant of

the node.
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is first added, because the process of adding the leaf does not give

it access to all of the nodes above it in the tree. Leaves are

"merged" as they receive the private keys for nodes, as described in

Section 5.4.

5.4. Ratchet Tree Evolution

A member of an MLS group advances the key schedule to provide

forward secrecy and post-compromise security by providing the group

with fresh key material to be added into the group's shared secret.

To do so, one member of the group generates fresh key material,

applies it to their local tree state, and then sends this key

material to other members in the group via an UpdatePath message

(see Section 7.8) . All other group members then apply the key

material in the UpdatePath to their own local tree state to derive

the group's now-updated shared secret.

To begin, the generator of the UpdatePath updates its leaf

KeyPackage and its direct path to the root with new secret values.

The HPKE leaf public key within the KeyPackage MUST be derived from

a freshly generated HPKE secret key to provide post-compromise

security.

The generator of the UpdatePath starts by sampling a fresh random

value called "leaf_secret", and uses the leaf_secret to generate

their leaf HPKE key pair (see Section 7) and to seed a sequence of

"path secrets", one for each ancestor of its leaf. In this setting,

path_secret[0] refers to the node directly above the leaf,

path_secret[1] for its parent, and so on. At each step, the path

secret is used to derive a new secret value for the corresponding

node, from which the node's key pair is derived.

For example, suppose there is a group with four members, with C an

unmerged leaf at node 5:

¶

¶

¶

¶

leaf_node_secret = DeriveSecret(leaf_secret, "node")

path_secret[0] = DeriveSecret(leaf_secret, "path")

path_secret[n] = DeriveSecret(path_secret[n-1], "path")

node_secret[n] = DeriveSecret(path_secret[n], "node")

leaf_priv, leaf_pub = KEM.DeriveKeyPair(leaf_node_secret)

node_priv[n], node_pub[n] = KEM.DeriveKeyPair(node_secret[n])

¶

¶



If member B subsequently generates an UpdatePath based on a secret

"leaf_secret", then it would generate the following sequence of path

secrets:

After applying the UpdatePath, the tree will have the following

structure, where lp and np[i] represent the leaf_priv and node_priv

values generated as described above:

After performing these operations, the generator of the UpdatePath

MUST delete the leaf_secret.

5.5. Synchronizing Views of the Tree

After generating fresh key material and applying it to ratchet

forward their local tree state as described in the prior section,

the generator must broadcast this update to other members of the

group in a Commit message, who apply it to keep their local views of

the tree in sync with the sender's. More specifically, when a member

commits a change to the tree (e.g., to add or remove a member), it

transmits an UpdatePath containing a set of public keys and
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path_secret[1] --> node_secret[1] --> node_priv[1], node_pub[1]

     ^

     |

path_secret[0] --> node_secret[0] --> node_priv[0], node_pub[0]

     ^

     |

leaf_secret    --> leaf_node_secret --> leaf_priv, leaf_pub

                                     ~> leaf_key_package

¶

¶

    np[1] -> 3

           __|__

          /     \

np[0] -> 1       5[C]

        / \     / \

       A   B   C   D

           ^

           |

           lp

       0 1 2 3 4 5 6
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encrypted path secrets for intermediate nodes in the direct path of

its leaf. The other members of the group use these values to update

their view of the tree, aligning their copy of the tree to the

sender's.

An UpdatePath contains the following information for each node in

the direct path of the sender's leaf, including the root:

The public key for the node

Zero or more encrypted copies of the path secret corresponding to

the node

The path secret value for a given node is encrypted for the subtree

corresponding to the parent's non-updated child, that is, the child

on the copath of the sender's leaf node. There is one encryption of

the path secret to each public key in the resolution of the non-

updated child.

The recipient of an UpdatePath processes it with the following

steps:

Compute the updated path secrets.

Identify a node in the direct path for which the local

member is in the subtree of the non-updated child.

Identify a node in the resolution of the copath node for

which this node has a private key.

Decrypt the path secret for the parent of the copath node

using the private key from the resolution node.

Derive path secrets for ancestors of that node using the

algorithm described above.

The recipient SHOULD verify that the received public keys

agree with the public keys derived from the new path_secret

values.

Merge the updated path secrets into the tree.

For all updated nodes,

Replace the public key for each node with the received

public key.

Set the list of unmerged leaves to the empty list.
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Store the updated hash of the node's parent (represented

as a ParentNode struct), going from root to leaf, so that

each hash incorporates all the nodes above it. The root

node always has a zero-length hash for this value.

For nodes where an updated path secret was computed in step

1, compute the corresponding node key pair and replace the

values stored at the node with the computed values.

For example, in order to communicate the example update described in

the previous section, the sender would transmit the following

values:

Public Key Ciphertext(s)

node_pub[1] E(pk(5), path_secret[1]), E(pk(C), path_secret[1])

node_pub[0] E(pk(A), path_secret[0])

Table 1

In this table, the value pk(ns[X]) represents the public key derived

from the node secret X, whereas pk(X) represents the public leaf key

for user X. The value E(K, S) represents the public-key encryption

of the path secret S to the public key K (using HPKE).

After processing the update, each recipient MUST delete outdated key

material, specifically:

The path secrets used to derive each updated node key pair.

Each outdated node key pair that was replaced by the update.

6. Cryptographic Objects

6.1. Ciphersuites

Each MLS session uses a single ciphersuite that specifies the

following primitives to be used in group key computations:

HPKE parameters:

A Key Encapsulation Mechanism (KEM)

A Key Derivation Function (KDF)

An AEAD encryption algorithm

A hash algorithm

A signature algorithm
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MLS uses draft-08 of HPKE [I-D.irtf-cfrg-hpke] for public-key

encryption. The DeriveKeyPair function associated to the KEM for the

ciphersuite maps octet strings to HPKE key pairs.

Ciphersuites are represented with the CipherSuite type. HPKE public

keys are opaque values in a format defined by the underlying

protocol (see the Cryptographic Dependencies section of the HPKE

specification for more information).

The signature algorithm specified in the ciphersuite is the

mandatory algorithm to be used for signatures in MLSPlaintext and

the tree signatures. It MUST be the same as the signature algorithm

specified in the credential field of the KeyPackage objects in the

leaves of the tree (including the InitKeys used to add new members).

The ciphersuites are defined in section Section 16.1.

6.2. Credentials

A member of a group authenticates the identities of other

participants by means of credentials issued by some authentication

system, like a PKI. Each type of credential MUST express the

following data in the context of the group it is used with:

The public key of a signature key pair matching the

SignatureScheme specified by the CipherSuite of the group

The identity of the holder of the private key

Credentials MAY also include information that allows a relying party

to verify the identity / signing key binding.

Additionally, Credentials SHOULD specify the signature scheme

corresponding to each contained public key.

¶

¶

opaque HPKEPublicKey<1..2^16-1>;¶

¶
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A BasicCredential is a raw, unauthenticated assertion of an

identity/key binding. The format of the key in the public_key field

is defined by the relevant ciphersuite: the group ciphersuite for a

credential in a ratchet tree, the KeyPackage ciphersuite for a

credential in a KeyPackage object.

For X509Credential, each entry in the chain represents a single DER-

encoded X509 certificate. The chain is ordered such that the first

entry (chain[0]) is the end-entity certificate and each subsequent

certificate in the chain MUST be the issuer of the previous

certificate. The algorithm for the public_key in the end-entity

certificate MUST match the relevant ciphersuite.

For ciphersuites using Ed25519 or Ed448 signature schemes, the

public key is in the format specified [RFC8032]. For ciphersuites

using ECDSA with the NIST curves P-256 or P-521, the public key is

the output of the uncompressed Elliptic-Curve-Point-to-Octet-String

conversion according to [SECG].

The signatures used throughout this document are encoded as

specified in [RFC8446]. In particular, ECDSA signatures are DER-

encoded and EdDSA signatures are defined as the concatenation of r

and s as specified in [RFC8032].

// See RFC 8446 and the IANA TLS SignatureScheme registry

uint16 SignatureScheme;

// See IANA registry for registered values

uint16 CredentialType;

struct {

    opaque identity<0..2^16-1>;

    SignatureScheme signature_scheme;

    opaque signature_key<0..2^16-1>;

} BasicCredential;

struct {

    opaque cert_data<0..2^16-1>;

} Certificate;

struct {

    CredentialType credential_type;

    select (Credential.credential_type) {

        case basic:

            BasicCredential;

        case x509:

            Certificate chain<1..2^32-1>;

    };

} Credential;

¶
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Note that each new credential that has not already been validated by

the application MUST be validated against the Authentication

Service.

7. Key Packages

In order to facilitate asynchronous addition of clients to a group,

it is possible to pre-publish key packages that provide some public

information about a user. KeyPackage structures provide information

about a client that any existing member can use to add this client

to the group asynchronously.

A KeyPackage object specifies a ciphersuite that the client

supports, as well as providing a public key that others can use for

key agreement.

The identity arising from the credential, together with the 

endpoint_id in the KeyPackage serve to uniquely identify a client in

a group.

When used as InitKeys, KeyPackages are intended to be used only once

and SHOULD NOT be reused except in case of last resort. (See Section

15.4). Clients MAY generate and publish multiple InitKeys to support

multiple ciphersuites.

KeyPackages contain a public key chosen by the client, which the

client MUST ensure uniquely identifies a given KeyPackage object

among the set of KeyPackages created by this client.

The value for hpke_init_key MUST be a public key for the asymmetric

encryption scheme defined by cipher_suite. The whole structure is

signed using the client's signature key. A KeyPackage object with an

invalid signature field MUST be considered malformed. The input to

the signature computation comprises all of the fields except for the

signature field.
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KeyPackage objects MUST contain at least two extensions, one of type

capabilities, and one of type lifetime. The capabilities extension

allow MLS session establishment to be safe from downgrade attacks on

the parameters described (as discussed in Section 10), while still

only advertising one version / ciphersuite per KeyPackage.

As the KeyPackage is a structure which is stored in the Ratchet Tree

and updated depending on the evolution of this tree, each

modification of its content MUST be reflected by a change of its

signature. This allow other members to control the validity of the

KeyPackage at any time and in particular in the case of a newcomer

joining the group.

7.1. Key Package IDs

When it is necessary to refer to a specific KeyPackage, protocol

messages incorporate a KeyPackageID:

struct { opaque key_package_hash<0..255>; } KeyPackageID 

This value is the hash of the KeyPackage, using the hash indicated

by the cipher_suite field. KeyPackage hashes are used in a Welcome

message to indicate which KeyPackage is being used to include the

new member. Since members of a group are uniquely identified by

their leaf KeyPackages, messages within a group use the hash of this

enum {

    reserved(0),

    mls10(1),

    (255)

} ProtocolVersion;

// See IANA registry for registered values

uint16 ExtensionType;

struct {

    ExtensionType extension_type;

    opaque extension_data<0..2^32-1>;

} Extension;

struct {

    ProtocolVersion version;

    CipherSuite cipher_suite;

    HPKEPublicKey hpke_init_key;

    opaque endpoint_id<0..255>;

    Credential credential;

    Extension extensions<8..2^32-1>;

    opaque signature<0..2^16-1>;

} KeyPackage;

¶
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key package to refer to group members, e.g., to specify the target

of a Remove proposal or the signer of an MLSPlaintext.

7.2. Client Capabilities

The capabilities extension indicates what protocol versions,

ciphersuites, protocol extensions, and non-default proposal types

are supported by a client. Proposal types defined in this document

are considered "default" and thus need not be listed.

This extension MUST be always present in a KeyPackage. Extensions

that appear in the extensions field of a KeyPackage MUST be included

in the extensions field of the capabilities extension.

7.3. Lifetime

The lifetime extension represents the times between which clients

will consider a KeyPackage valid. This time is represented as an

absolute time, measured in seconds since the Unix epoch

(1970-01-01T00:00:00Z). A client MUST NOT use the data in a

KeyPackage for any processing before the not_before date, or after

the not_after date.

Applications MUST define a maximum total lifetime that is acceptable

for a KeyPackage, and reject any KeyPackage where the total lifetime

is longer than this duration.

This extension MUST always be present in a KeyPackage.

7.4. KeyPackage Identifiers

Within MLS, a KeyPackage is identified by its hash (see, e.g., 

Section 11.2.2). The external_key_id extension allows applications

to add an explicit, application-defined identifier to a KeyPackage.

¶

¶

struct {

    ProtocolVersion versions<0..255>;

    CipherSuite ciphersuites<0..255>;

    ExtensionType extensions<0..255>;

    ProposalType proposals<0..255>;

} Capabilities;

¶

¶

¶

uint64 not_before;

uint64 not_after;

¶

¶

¶

¶

opaque external_key_id<0..2^16-1>;¶



7.5. Parent Hash

The parent_hash extension carries information to authenticate the

structure of the tree, as described below.

Consider a ratchet tree with a parent node P and children V and S.

The parent hash of P changes whenever an UpdatePath object is

applied to the ratchet tree along a path traversing node V (and

hence also P). The new "Parent Hash of P (with Co-Path Child S)" is

obtained by hashing P's ParentHashInput struct using the resolution

of S to populate the original_child_resolution field. This way, P's

Parent Hash fixes the new HPKE public keys of all nodes on the path

from P to the root. Furthermore, for each such key PK the hash also

binds the set of HPKE public keys to which PK's secret key was

encrypted in the commit packet that anounced the UpdatePath object.

The Parent Hash of P with Co-Path Child S is the hash of a 

ParentHashInput object populated as follows. The field public_key

contains the HPKE public key of P. If P is the root, then 

parent_hash is set to a zero-length octet string. Otherwise 

parent_hash is the Parent Hash of P's parent with P's sibling as the

co-path child.

Finally, original_child_resolution is the array of HPKEPublicKey

values of the nodes in the resolution of S but with the 

unmerged_leaves of P omitted. For example, in the ratchet tree

depicted in Section 5.2 the ParentHashInput of node 5 with co-path

child 4 would contain an empty original_child_resolution since 4's

resolution includes only itself but 4 is also an unmerged leaf of 5.

Meanwhile, the ParentHashInput of node 5 with co-path child 6 has an

array with one element in it: the HPKE public key of 6.

7.5.1. Using Parent Hashes

The Parent Hash of P appears in three types of structs. If V is

itself a parent node then P's Parent Hash is stored in the 

parent_hash fields of both V's ParentHashInput struct and V's 

ParentNode struct. (The ParentNode struct is used to encapsulate all

public information about V that must be conveyed to a new member

joining the group as well as to define the Tree Hash of node V.)

¶

opaque parent_hash<0..255>;¶

¶

struct {

    HPKEPublicKey public_key;

    opaque parent_hash<0..255>;

    HPKEPublicKey original_child_resolution<0..2^32-1>;

} ParentHashInput;
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If, on the other hand, V is a leaf and its KeyPackage contains the 

parent_hash extension then the Parent Hash of P (with V's sibling as

co-path child) is stored in that field. In particular, the extension

MUST be present in the leaf_key_package field of an UpdatePath

object. (This way, the signature of such a KeyPackage also serves to

attest to which keys the group member introduced into the ratchet

tree and to whom the corresponding secret keys were sent. This helps

prevent malicious insiders from constructing artificial ratchet

trees with a node V whose HPKE secret key is known to the insider

yet where the insider isn't assigned a leaf in the subtree rooted at

V. Indeed, such a ratchet tree would violate the tree invariant.)

7.5.2. Verifying Parent Hashes

To this end, when processing a Commit message clients MUST recompute

the expected value of parent_hash for the committer's new leaf and

verify that it matches the parent_hash value in the supplied 

leaf_key_package. Moreover, when joining a group, new members MUST

authenticate each non-blank parent node P. A parent node P is

authenticated by performing the following check:

Let L and R be the left and right children of P, respectively

If L.parent_hash is equal to the Parent Hash of P with Co-Path

Child R, the check passes

If R is blank, replace R with its left child until R is either

non-blank or a leaf node

If R is a blank leaf node, the check fails

If R.parent_hash is equal to the Parent Hash of P with Co-Path

Child L, the check passes

Otherwise, the check fails

The left-child recursion under the right child of P is necessary

because the expansion of the tree to the right due to Add proposals

can cause blank nodes to be interposed between a parent node and its

right child.

7.6. Tree Hashes

To allow group members to verify that they agree on the public

cryptographic state of the group, this section defines a scheme for

generating a hash value (called the "tree hash") that represents the

contents of the group's ratchet tree and the members' KeyPackages.

The tree hash of a tree is the tree hash of its root node, which we

define recursively, starting with the leaves.
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As some nodes may be blank while others contain data we use the

following struct to include data if present.

The tree hash of a leaf node is the hash of leaf's LeafNodeHashInput

object which might include a Key Package depending on whether or not

it is blank.

Now the tree hash of any non-leaf node is recursively defined to be

the hash of its ParentNodeTreeHashInput. This includes an optional 

ParentNode object depending on whether the node is blank or not.

The left_hash and right_hash fields hold the tree hashes of the

node's left and right children, respectively.

7.7. Group State

Each member of the group maintains a GroupContext object that

summarizes the state of the group:

¶

struct {

    uint8 present;

    select (present) {

        case 0: struct{};

        case 1: T value;

    }

} optional<T>;

¶

¶

struct {

    uint32 node_index;

    optional<KeyPackage> key_package;

} LeafNodeHashInput;

¶

¶

struct {

    HPKEPublicKey public_key;

    opaque parent_hash<0..255>;

    uint32 unmerged_leaves<0..2^32-1>;

} ParentNode;

struct {

    uint32 node_index;

    optional<ParentNode> parent_node;

    opaque left_hash<0..255>;

    opaque right_hash<0..255>;

} ParentNodeTreeHashInput;

¶
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The fields in this state have the following semantics:

The group_id field is an application-defined identifier for the

group.

The epoch field represents the current version of the group key.

The tree_hash field contains a commitment to the contents of the

group's ratchet tree and the credentials for the members of the

group, as described in Section 7.6.

The confirmed_transcript_hash field contains a running hash over

the messages that led to this state.

When a new member is added to the group, an existing member of the

group provides the new member with a Welcome message. The Welcome

message provides the information the new member needs to initialize

its GroupContext.

Different changes to the group will have different effects on the

group state. These effects are described in their respective

subsections of Section 11.1. The following general rules apply:

The group_id field is constant

The epoch field increments by one for each Commit message that is

processed

The tree_hash is updated to represent the current tree and

credentials

The confirmed_transcript_hash is updated with the data for an

MLSPlaintext message encoding a Commit message in two parts:

struct {

    opaque group_id<0..255>;

    uint64 epoch;

    opaque tree_hash<0..255>;

    opaque confirmed_transcript_hash<0..255>;

    Extension extensions<0..2^32-1>;

} GroupContext;
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Thus the confirmed_transcript_hash field in a GroupContext object

represents a transcript over the whole history of MLSPlaintext

Commit messages, up to the confirmation tag field in the current

MLSPlaintext message. The confirmation tag is then included in the

transcript for the next epoch. The interim transcript hash is

computed by new members using the confirmation tag in the GroupInfo

struct, and enables existing members to incorporate a Commit message

into the transcript without having to store the whole

MLSPlaintextCommitAuthData structure.

As shown above, when a new group is created, the 

interim_transcript_hash field is set to the zero-length octet

string.

7.8. Update Paths

As described in Section 11.2, each MLS Commit message may optionally

transmit a KeyPackage leaf and node values along its direct path.

The path contains a public key and encrypted secret value for all

intermediate nodes in the path above the leaf. The path is ordered

from the closest node to the leaf to the root; each node MUST be the

parent of its predecessor.

struct {

    WireFormat wire_format;

    opaque group_id<0..255>;

    uint64 epoch;

    Sender sender;

    opaque authenticated_data<0..2^32-1>;

    ContentType content_type = commit;

    Commit commit;

    opaque signature<0..2^16-1>;

} MLSPlaintextCommitContent;

struct {

    optional<MAC> confirmation_tag;

} MLSPlaintextCommitAuthData;

interim_transcript_hash_[0] = ""; // zero-length octet string

confirmed_transcript_hash_[n] =

    Hash(interim_transcript_hash_[n] ||

        MLSPlaintextCommitContent_[n]);

interim_transcript_hash_[n+1] =

    Hash(confirmed_transcript_hash_[n] ||

        MLSPlaintextCommitAuthData_[n]);

¶
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For each UpdatePathNode, the resolution of the corresponding copath

node MUST be filtered by removing all new leaf nodes added as part

of this MLS Commit message. The number of ciphertexts in the 

encrypted_path_secret vector MUST be equal to the length of the

filtered resolution, with each ciphertext being the encryption to

the respective resolution node.

The HPKECiphertext values are computed as

where node_public_key is the public key of the node that the path

secret is being encrypted for, group_context is the current

GroupContext object for the group, and the functions SetupBaseS and 

Seal are defined according to [I-D.irtf-cfrg-hpke].

Decryption is performed in the corresponding way, using the private

key of the resolution node and the ephemeral public key transmitted

in the message.

8. Key Schedule

Group keys are derived using the Extract and Expand functions from

the KDF for the group's ciphersuite, as well as the functions

defined below:

struct {

    opaque kem_output<0..2^16-1>;

    opaque ciphertext<0..2^16-1>;

} HPKECiphertext;

struct {

    HPKEPublicKey public_key;

    HPKECiphertext encrypted_path_secret<0..2^32-1>;

} UpdatePathNode;

struct {

    KeyPackage leaf_key_package;

    UpdatePathNode nodes<0..2^32-1>;

} UpdatePath;

¶

¶

¶

kem_output, context = SetupBaseS(node_public_key, group_context)

ciphertext = context.Seal("", path_secret)
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The value KDF.Nh is the size of an output from KDF.Extract, in

bytes. In the below diagram:

KDF.Extract takes its salt argument from the top and its IKM

argument from the left

DeriveSecret takes its Secret argument from the incoming arrow

0 represents an all-zero byte string of length KDF.Nh.

When processing a handshake message, a client combines the following

information to derive new epoch secrets:

The init secret from the previous epoch

The commit secret for the current epoch

The GroupContext object for current epoch

Given these inputs, the derivation of secrets for an epoch proceeds

as shown in the following diagram:

ExpandWithLabel(Secret, Label, Context, Length) =

    KDF.Expand(Secret, KDFLabel, Length)

Where KDFLabel is specified as:

struct {

    uint16 length = Length;

    opaque label<7..255> = "mls10 " + Label;

    opaque context<0..2^32-1> = Context;

} KDFLabel;

DeriveSecret(Secret, Label) =

    ExpandWithLabel(Secret, Label, "", KDF.Nh)

¶
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A number of secrets are derived from the epoch secret for different

purposes:

Secret Label

sender_data_secret "sender data"

encryption_secret "encryption"

exporter_secret "exporter"

authentication_secret "authentication"

external_secret "external"

confirmation_key "confirm"

membership_key "membership"

resumption_secret "resumption"

Table 2

The "external secret" is used to derive an HPKE key pair whose

private key is held by the entire group:

                   init_secret_[n-1]

                         |

                         V

    commit_secret -> KDF.Extract

                         |

                         V

                   ExpandWithLabel(., "joiner", GroupContext_[n], KDF.Nh)

                         |

                         V

                    joiner_secret

                         |

                         V

psk_secret (or 0) -> KDF.Extract

                         |

                         +--> DeriveSecret(., "welcome")

                         |    = welcome_secret

                         |

                         V

                   ExpandWithLabel(., "epoch", GroupContext_[n], KDF.Nh)

                         |

                         V

                    epoch_secret

                         |

                         +--> DeriveSecret(., <label>)

                         |    = <secret>

                         |

                         V

                   DeriveSecret(., "init")

                         |

                         V

                   init_secret_[n]

¶
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The public key external_pub can be published as part of the 

PublicGroupState struct in order to allow non-members to join the

group using an external commit.

8.1. External Initialization

In addition to initializing a new epoch via KDF invocations as

described above, an MLS group can also initialize a new epoch via an

asymmetric interaction using the external key pair for the previous

epoch. This is done when an new member is joining via an external

commit.

In this process, the joiner sends a new init_secret value to the

group using the HPKE export method. The joiner then uses that 

init_secret with information provided in the PublicGroupState and an

external Commit to initialize their copy of the key schedule for the

new epoch.

Members of the group receive the kem_output in an ExternalInit

proposal and preform the corresponding calculation to retrieve the 

init_secret value.

In both cases, the info input to HPKE is set to the PublicGroupState

for the previous epoch, encoded using the TLS serialization.

8.2. Pre-Shared Keys

Groups which already have an out-of-band mechanism to generate

shared group secrets can inject those into the MLS key schedule to

seed the MLS group secrets computations by this external entropy.

Injecting an external PSK can improve security in the case where

having a full run of updates across members is too expensive, or if

the external group key establishment mechanism provides stronger

security against classical or quantum adversaries.

Note that, as a PSK may have a different lifetime than an update, it

does not necessarily provide the same Forward Secrecy (FS) or Post-

Compromise Security (PCS) guarantees as a Commit message. Unlike the

key pairs populated in the tree by an Update or Commit, which always

freshly generated, PSKs may be pre-distributed and stored. This

creates the risk that a PSK may be compromised in the process of

external_priv, external_pub = KEM.DeriveKeyPair(external_secret)¶

¶

¶

¶

kem_output, context = SetupBaseS(external_pub, "")

init_secret = context.export("MLS 1.0 external init secret", KDF.Nh)

¶

¶

context = SetupBaseR(kem_output, external_priv, "")

init_secret = context.export("MLS 1.0 external init secret", KDF.Nh)

¶

¶

¶

¶



distribution and storage. The security that the group gets from

injecting a PSK thus depends on both the entropy of the PSK and the

risk of compromise. These factors are outside of the scope of this

document, but should be considered by application designers relying

on PSKs.

Each PSK in MLS has a type that designates how it was provisioned.

External PSKs are provided by the application, while recovery and

re-init PSKs are derived from the MLS key schedule and used in cases

where it is necessary to authenticate a member's participation in a

prior group state. In particular, in addition to external PSK types,

a PSK derived from within MLS may be used in the following cases:

Re-Initialization: If during the lifetime of a group, the group

members decide to switch to a more secure ciphersuite or newer

protocol version, a PSK can be used to carry entropy from the old

group forward into a new group with the desired parameters.

Branching: A PSK may be used to bootstrap a subset of current

group members into a new group. This applies if a subset of

current group members wish to branch based on the current group

state.

The injection of one or more PSKs into the key schedule is signaled

in two ways: 1) as a PreSharedKey proposal, and 2) in the 

GroupSecrets object of a Welcome message sent to new members added

in that epoch.

¶
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On receiving a Commit with a PreSharedKey proposal or a GroupSecrets

object with the psks field set, the receiving Client includes them

in the key schedule in the order listed in the Commit, or in the 

psks field respectively. For resumption PSKs, the PSK is defined as

the resumption_secret of the group and epoch specified in the 

PreSharedKeyID object. Specifically, psk_secret is computed as

follows:

enum {

  reserved(0),

  external(1),

  reinit(2),

  branch(3)

  (255)

} PSKType;

struct {

  PSKType psktype;

  select (PreSharedKeyID.psktype) {

    case external:

      opaque psk_id<0..255>;

    case reinit:

      opaque psk_group_id<0..255>;

      uint64 psk_epoch;

    case branch:

      opaque psk_group_id<0..255>;

      uint64 psk_epoch;

  }

  opaque psk_nonce<0..255>;

} PreSharedKeyID;

struct {

    PreSharedKeyID psks<0..2^16-1>;

} PreSharedKeys;

¶

¶

struct {

    PreSharedKeyID id;

    uint16 index;

    uint16 count;

} PSKLabel;

psk_extracted_[i] = KDF.Extract(0, psk_[i])

psk_input_[i] = ExpandWithLabel(psk_extracted_[i], "derived psk", PSKLabel, KDF.Nh)

psk_secret_[0] = 0

psk_secret_[i] = KDF.Extract(psk_input[i-1], psk_secret_[i-1])

psk_secret     = psk_secret[n]

¶



Here 0 represents the all-zero vector of length KDF.Nh. The index

field in PSKLabel corresponds to the index of the PSK in the psk

array, while the count field contains the total number of PSKs. In

other words, the PSKs are chained together with KDF.Extract

invocations, as follows:

In particular, if there are no PreSharedKey proposals in a given

Commit, then the resulting psk_secret is psk_secret_[0], the all-

zero vector.

8.3. Secret Tree

For the generation of encryption keys and nonces, the key schedule

begins with the encryption_secret at the root and derives a tree of

secrets with the same structure as the group's ratchet tree. Each

leaf in the Secret Tree is associated with the same group member as

the corresponding leaf in the ratchet tree. Nodes are also assigned

an index according to their position in the array representation of

the tree (described in Appendix A). If N is a node index in the

Secret Tree then left(N) and right(N) denote the children of N (if

they exist).

The secret of any other node in the tree is derived from its

parent's secret using a call to DeriveTreeSecret:

¶

                0                                   0       = psk_secret_[0]

                |                                   |

                V                                   V

psk_[0] --> KDF.Extract --> ExpandWithLabel --> KDF.Extract = psk_secret_[1]

                                                    |

                0                                   |

                |                                   |

                V                                   V

psk_[1] --> KDF.Extract --> ExpandWithLabel --> KDF.Extract = psk_secret_[1]

                                                    |

                0                                  ...

                |                                   |

                V                                   V

psk_[n] --> KDF.Extract --> ExpandWithLabel --> KDF.Extract = psk_secret_[n]

¶

¶

¶

¶

DeriveTreeSecret(Secret, Label, Node, Generation, Length) =

    ExpandWithLabel(Secret, Label, TreeContext, Length)

Where TreeContext is specified as:

struct {

    uint32 node = Node;

    uint32 generation = Generation;

} TreeContext;

¶



If N is a node index in the Secret Tree then the secrets of the

children of N are defined to be:

The secret in the leaf of the Secret Tree is used to initiate two

symmetric hash ratchets, from which a sequence of single-use keys

and nonces are derived, as described in Section 8.4. The root of

each ratchet is computed as:

8.4. Encryption Keys

As described in Section 9, MLS encrypts three different types of

information:

Metadata (sender information)

Handshake messages (Proposal and Commit)

Application messages

The sender information used to look up the key for content

encryption is encrypted with an AEAD where the key and nonce are

derived from both sender_data_secret and a sample of the encrypted

message content.

For handshake and application messages, a sequence of keys is

derived via a "sender ratchet". Each sender has their own sender

ratchet, and each step along the ratchet is called a "generation".

A sender ratchet starts from a per-sender base secret derived from a

Secret Tree, as described in Section 8.3. The base secret initiates

a symmetric hash ratchet which generates a sequence of keys and

nonces. The sender uses the j-th key/nonce pair in the sequence to

¶

tree_node_[N]_secret

        |

        |

        +--> DeriveTreeSecret(., "tree", left(N), 0, KDF.Nh)

        |    = tree_node_[left(N)]_secret

        |

        +--> DeriveTreeSecret(., "tree", right(N), 0, KDF.Nh)

             = tree_node_[right(N)]_secret

¶

¶

tree_node_[N]_secret

        |

        |

        +--> DeriveTreeSecret(., "handshake", N, 0, KDF.Nh)

        |    = handshake_ratchet_secret_[N]_[0]

        |

        +--> DeriveTreeSecret(., "application", N, 0, KDF.Nh)

             = application_ratchet_secret_[N]_[0]

¶

¶

* ¶

* ¶

* ¶

¶

¶



encrypt (using the AEAD) the j-th message they send during that

epoch. Each key/nonce pair MUST NOT be used to encrypt more than one

message.

Keys, nonces, and the secrets in ratchets are derived using

DeriveTreeSecret. The context in a given call consists of the index

of the sender's leaf in the ratchet tree and the current position in

the ratchet. In particular, the node index of the sender's leaf in

the ratchet tree is the same as the node index of the leaf in the

Secret Tree used to initialize the sender's ratchet.

Here, AEAD.Nn and AEAD.Nk denote the lengths in bytes of the nonce

and key for the AEAD scheme defined by the ciphersuite.

8.5. Deletion Schedule

It is important to delete all security-sensitive values as soon as

they are consumed. A sensitive value S is said to be consumed if

S was used to encrypt or (successfully) decrypt a message, or if

a key, nonce, or secret derived from S has been consumed. (This

goes for values derived via DeriveSecret as well as

ExpandWithLabel.)

Here, S may be the init_secret, commit_secret, epoch_secret, 

encryption_secret as well as any secret in a Secret Tree or one of

the ratchets.

As soon as a group member consumes a value they MUST immediately

delete (all representations of) that value. This is crucial to

ensuring forward secrecy for past messages. Members MAY keep

unconsumed values around for some reasonable amount of time to

handle out-of-order message delivery.

For example, suppose a group member encrypts or (successfully)

decrypts an application message using the j-th key and nonce in the

¶

¶

ratchet_secret_[N]_[j]

      |

      +--> DeriveTreeSecret(., "nonce", N, j, AEAD.Nn)

      |    = ratchet_nonce_[N]_[j]

      |

      +--> DeriveTreeSecret(., "key", N, j, AEAD.Nk)

      |    = ratchet_key_[N]_[j]

      |

      V

DeriveTreeSecret(., "secret", N, j, KDF.Nh)

= ratchet_secret_[N]_[j+1]

¶

¶

¶
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ratchet of node index N in some epoch n. Then, for that member, at

least the following values have been consumed and MUST be deleted:

the commit_secret, joiner_secret, epoch_secret, encryption_secret

of that epoch n as well as the init_secret of the previous epoch

n-1,

all node secrets in the Secret Tree on the path from the root to

the leaf with node index N,

the first j secrets in the application data ratchet of node index

N and

application_ratchet_nonce_[N]_[j] and 

application_ratchet_key_[N]_[j].

Concretely, suppose we have the following Secret Tree and ratchet

for participant D:

Then if a client uses key K1 and nonce N1 during epoch n then it

must consume (at least) values G, F, D, AR0, AR1, K1, N1 as well as

the key schedule secrets used to derive G (the encryption_secret),

namely init_secret of epoch n-1 and commit_secret, joiner_secret, 

epoch_secret of epoch n. The client MAY retain (not consume) the

values K0 and N0 to allow for out-of-order delivery, and SHOULD

retain AR2 for processing future messages.

8.6. Exporters

The main MLS key schedule provides an exporter_secret which can be

used by an application as the basis to derive new secrets called 

exported_value outside the MLS layer.

¶

*

¶

*
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*

¶

*

¶

¶

       G

     /   \

    /     \

   E       F

  / \     / \

 A   B   C   D

            / \

          HR0  AR0 -+- K0

                |   |

                |   +- N0

                |

               AR1 -+- K1

                |   |

                |   +- N1

                |

               AR2

¶
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Each application SHOULD provide a unique label to MLS-Exporter that

identifies its use case. This is to prevent two exported outputs

from being generated with the same values and used for different

functionalities.

The exported values are bound to the group epoch from which the 

exporter_secret is derived, hence reflects a particular state of the

group.

It is RECOMMENDED for the application generating exported values to

refresh those values after a Commit is processed.

8.7. Resumption Secret

The main MLS key schedule provides a resumption_secret which can

provide extra security in some cross-group operations.

The application SHOULD specify an upper limit on the number of past

epochs for which the resumption_secret may be stored.

There are two ways in which a resumption_secret can be used: to re-

initialize the group with different parameters, or to create a sub-

group of an existing group as detailed in Section 8.2.

Resumption keys are distinguished from exporter keys in that they

have specific use inside the MLS protocol, whereas the use of

exporter secrets may be decided by an external application. They are

thus derived separately to avoid key material reuse.

8.8. State Authentication Keys

The main MLS key schedule provides a per-epoch 

authentication_secret. If one of the parties is being actively

impersonated by an attacker, their authentication_secret will differ

from that of the other group members. Thus, members of a group MAY

use their authentication_secrets within an out-of-band

authentication protocol to ensure that they share the same view of

the group.

9. Message Framing

Handshake and application messages use a common framing structure.

This framing provides encryption to ensure confidentiality within

the group, as well as signing to authenticate the sender within the

group.

MLS-Exporter(Label, Context, key_length) =

       ExpandWithLabel(DeriveSecret(exporter_secret, Label),

                         "exporter", Hash(Context), key_length)

¶
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The two main structures involved are MLSPlaintext and MLSCiphertext.

MLSCiphertext represents a signed and encrypted message, with

protections for both the content of the message and related

metadata. MLSPlaintext represents a message that is only signed, and

not encrypted. Applications MUST use MLSCiphertext to encrypt

application messages and SHOULD use MLSCiphertext to encode

handshake messages, but MAY transmit handshake messages encoded as

MLSPlaintext objects in cases where it is necessary for the Delivery

Service to examine such messages.¶



enum {

    reserved(0),

    application(1),

    proposal(2),

    commit(3),

    (255)

} ContentType;

enum {

    reserved(0),

    member(1),

    preconfigured(2),

    new_member(3),

    (255)

} SenderType;

struct {

    SenderType sender_type;

    switch (sender_type) {

        case member:        KeyPackageID member;

        case preconfigured: opaque external_key_id<0..255>;

        case new_member:    struct{};

    }

} Sender;

struct {

    opaque mac_value<0..255>;

} MAC;

enum {

  reserved(0),

  mls_plaintext(1),

  mls_ciphertext(2),

  (255)

} WireFormat;

struct {

    WireFormat wire_format;

    opaque group_id<0..255>;

    uint64 epoch;

    Sender sender;

    opaque authenticated_data<0..2^32-1>;

    ContentType content_type;

    select (MLSPlaintext.content_type) {

        case application:

          opaque application_data<0..2^32-1>;

        case proposal:



          Proposal proposal;

        case commit:

          Commit commit;

    }

    opaque signature<0..2^16-1>;

    optional<MAC> confirmation_tag;

    optional<MAC> membership_tag;

} MLSPlaintext;

struct {

    WireFormat wire_format = mls_ciphertext;

    opaque group_id<0..255>;

    uint64 epoch;

    ContentType content_type;

    opaque authenticated_data<0..2^32-1>;

    opaque encrypted_sender_data<0..255>;

    opaque ciphertext<0..2^32-1>;

} MLSCiphertext;

¶



The field confirmation_tag MUST be present if content_type equals

commit. Otherwise, it MUST NOT be present.

External sender types are sent as MLSPlaintext, see Section 11.1.9

for their use.

The remainder of this section describes how to compute the signature

of an MLSPlaintext object and how to convert it to an MLSCiphertext

object for member sender types. The steps are:

Set group_id, epoch, content_type and authenticated_data fields

from the MLSPlaintext object directly

Identify the key and key generation depending on the content type

Encrypt an MLSCiphertextContent for the ciphertext field using

the key identified and MLSPlaintext object

Encrypt the sender data using a key and nonce derived from the 

sender_data_secret for the epoch and a sample of the encrypted

MLSCiphertextContent.

Decryption is done by decrypting the sender data, then the message,

and then verifying the content signature.

The following sections describe the encryption and signing processes

in detail.

9.1. Content Authentication

The signature field in an MLSPlaintext object is computed using the

signing private key corresponding to the public key, which was

authenticated by the credential at the leaf of the tree indicated by

the sender field. The signature covers the plaintext metadata and

message content, which is all of MLSPlaintext except for the 

signature, the confirmation_tag and membership_tag fields. If the

sender is a member of the group, the signature also covers the

GroupContext for the current epoch, so that signatures are specific

to a given group and epoch.
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The membership_tag field in the MLSPlaintext object authenticates

the sender's membership in the group. For an MLSPlaintext with a

sender type other than member, this field MUST be omitted. For

messages sent by members, it MUST be present and set to the

following value:

Note that the membership_tag only needs to be computed for

MLSPlaintext messages that will be sent over the wire (wire_format

== mls_plaintext). It isn't needed for messages that will be

encrypted and transmitted as MLSCiphertext messages (wire_format ==

mls_ciphertext).

struct {

    select (MLSPlaintextTBS.sender.sender_type) {

        case member:

            GroupContext context;

        case preconfigured:

        case new_member:

            struct{};

    }

    WireFormat wire_format;

    opaque group_id<0..255>;

    uint64 epoch;

    Sender sender;

    opaque authenticated_data<0..2^32-1>;

    ContentType content_type;

    select (MLSPlaintextTBS.content_type) {

        case application:

          opaque application_data<0..2^32-1>;

        case proposal:

          Proposal proposal;

        case commit:

          Commit commit;

    }

} MLSPlaintextTBS;

¶

¶

struct {

  MLSPlaintextTBS tbs;

  opaque signature<0..2^16-1>;

  optional<MAC> confirmation_tag;

} MLSPlaintextTBM;

membership_tag = MAC(membership_key, MLSPlaintextTBM);

¶

¶



9.2. Content Encryption

The ciphertext field of the MLSCiphertext object is produced by

supplying the inputs described below to the AEAD function specified

by the ciphersuite in use. The plaintext input contains the content

and signature of the MLSPlaintext, plus optional padding. These

values are encoded in the following form:

In the MLS key schedule, the sender creates two distinct key

ratchets for handshake and application messages for each member of

the group. When encrypting a message, the sender looks at the

ratchets it derived for its own member and chooses an unused

generation from either the handshake or application ratchet

depending on the content type of the message. This generation of the

ratchet is used to derive a provisional nonce and key.

Before use in the encryption operation, the nonce is XORed with a

fresh random value to guard against reuse. Because the key schedule

generates nonces deterministically, a client must keep persistent

state as to where in the key schedule it is; if this persistent

state is lost or corrupted, a client might reuse a generation that

has already been used, causing reuse of a key/nonce pair.

To avoid this situation, the sender of a message MUST generate a

fresh random 4-byte "reuse guard" value and XOR it with the first

four bytes of the nonce from the key schedule before using the nonce

for encryption. The sender MUST include the reuse guard in the 

reuse_guard field of the sender data object, so that the recipient

of the message can use it to compute the nonce to be used for

decryption.

¶

struct {

    select (MLSCiphertext.content_type) {

        case application:

          opaque application_data<0..2^32-1>;

        case proposal:

          Proposal proposal;

        case commit:

          Commit commit;

    }

    opaque signature<0..2^16-1>;

    optional<MAC> confirmation_tag;

    opaque padding<0..2^16-1>;

} MLSCiphertextContent;

¶
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¶
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The Additional Authenticated Data (AAD) input to the encryption

contains an object of the following form, with the values used to

identify the key and nonce:

9.3. Sender Data Encryption

The "sender data" used to look up the key for the content encryption

is encrypted with the ciphersuite's AEAD with a key and nonce

derived from both the sender_data_secret and a sample of the

encrypted content. Before being encrypted, the sender data is

encoded as an object of the following form:

MLSSenderData.sender is assumed to be a member sender type. When

constructing an MLSSenderData from a Sender object, the sender MUST

verify Sender.sender_type is member and use Sender.sender for

MLSSenderData.sender.

The reuse_guard field contains a fresh random value used to avoid

nonce reuse in the case of state loss or corruption, as described in

Section 9.2.

The key and nonce provided to the AEAD are computed as the KDF of

the first KDF.Nh bytes of the ciphertext generated in the previous

section. If the length of the ciphertext is less than KDF.Nh, the

+-+-+-+-+---------...---+

|   Key Schedule Nonce  |

+-+-+-+-+---------...---+

           XOR

+-+-+-+-+---------...---+

| Guard |       0       |

+-+-+-+-+---------...---+

           ===

+-+-+-+-+---------...---+

| Encrypt/Decrypt Nonce |

+-+-+-+-+---------...---+

¶

¶

struct {

    opaque group_id<0..255>;

    uint64 epoch;

    ContentType content_type;

    opaque authenticated_data<0..2^32-1>;

} MLSCiphertextContentAAD;

¶

¶

struct {

    KeyPackageID sender;

    uint32 generation;

    opaque reuse_guard[4];

} MLSSenderData;

¶

¶

¶



whole ciphertext is used without padding. In pseudocode, the key and

nonce are derived as:

The Additional Authenticated Data (AAD) for the SenderData

ciphertext is all the fields of MLSCiphertext excluding 

encrypted_sender_data:

When parsing a SenderData struct as part of message decryption, the

recipient MUST verify that the KeyPackageID indicated in the sender

field identifies a member of the group.

10. Group Creation

A group is always created with a single member, the "creator". The

other members are added when the creator effectively sends itself an

Add proposal and commits it, then sends the corresponding Welcome

message to the new participants. These processes are described in

detail in Section 11.1.1, Section 11.2, and Section 11.2.2.

The creator of a group MUST take the following steps to initialize

the group:

Fetch KeyPackages for the members to be added, and select a

version and ciphersuite according to the capabilities of the

members. To protect against downgrade attacks, the creator MUST

use the capabilities extensions in these KeyPackages to verify

that the chosen version and ciphersuite is the best option

supported by all members.

Initialize a one-member group with the following initial values:

Ratchet tree: A tree with a single node, a leaf containing an

HPKE public key and credential for the creator

Group ID: A value set by the creator

Epoch: 0

Tree hash: The root hash of the above ratchet tree

¶

ciphertext_sample = ciphertext[0..KDF.Nh-1]

sender_data_key = ExpandWithLabel(sender_data_secret, "key", ciphertext_sample, AEAD.Nk)

sender_data_nonce = ExpandWithLabel(sender_data_secret, "nonce", ciphertext_sample, AEAD.Nn)

¶

¶

struct {

    opaque group_id<0..255>;

    uint64 epoch;

    ContentType content_type;

} MLSSenderDataAAD;

¶

¶

¶
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Confirmed transcript hash: The zero-length octet string

Interim transcript hash: The zero-length octet string

Init secret: A fresh random value of size KDF.Nh

Extensions: Any values of the creator's choosing

For each member, construct an Add proposal from the KeyPackage

for that member (see Section 11.1.1)

Construct a Commit message that commits all of the Add proposals,

in any order chosen by the creator (see Section 11.2)

Process the Commit message to obtain a new group state (for the

epoch in which the new members are added) and a Welcome message

Transmit the Welcome message to the other new members

The recipient of a Welcome message processes it as described in 

Section 11.2.2.

In principle, the above process could be streamlined by having the

creator directly create a tree and choose a random value for first

epoch's epoch secret. We follow the steps above because it removes

unnecessary choices, by which, for example, bad randomness could be

introduced. The only choices the creator makes here are its own

KeyPackage, the leaf secret from which the Commit is built, and the

intermediate key pairs along the direct path to the root.

10.1. Required Capabilities

The configuration of a group imposes certain requirements on clients

in the group. At a minimum, all members of the group need to support

the ciphersuite and protocol version in use. Additional requirements

can be imposed by including a required_capabilities extension in the

GroupContext.

This extension lists the extensions and proposal types that must be

supported by all members of the group. For new members, it is

enforced by existing members during the application of Add commits.

Existing members should of course be in compliance already. In order

to ensure this continues to be the case even as the group's

extensions can be updated, a GroupContextExtensions proposal is
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struct {

    ExtensionType extensions<0..255>;

    ProposalType proposals<0..255>;

} RequiredCapabilities;

¶



invalid if it contains a required_capabilities extension that

requires capabililities not supported by all current members.

10.2. Linking a New Group to an Existing Group

A new group may be tied to an already existing group for the purpose

of re-initializing the existing group, or to branch into a sub-

group. Re-initializing an existing group may be used, for example,

to restart the group with a different ciphersuite or protocol

version. Branching may be used to bootstrap a new group consisting

of a subset of current group members, based on the current group

state.

In both cases, the psk_nonce included in the PreSharedKeyID object

must be a randomly sampled nonce of length KDF.Nh to avoid key re-

use.

10.2.1. Sub-group Branching

If a client wants to create a subgroup of an existing group, they

MAY choose to include a PreSharedKeyID in the GroupSecrets object of

the Welcome message choosing the psktype branch, the group_id of the

group from which a subgroup is to be branched, as well as an epoch

within the number of epochs for which a resumption_secret is kept.

11. Group Evolution

Over the lifetime of a group, its membership can change, and

existing members might want to change their keys in order to achieve

post-compromise security. In MLS, each such change is accomplished

by a two-step process:

A proposal to make the change is broadcast to the group in a

Proposal message

A member of the group or a new member broadcasts a Commit

message that causes one or more proposed changes to enter into

effect

The group thus evolves from one cryptographic state to another each

time a Commit message is sent and processed. These states are

referred to as "epochs" and are uniquely identified among states of

the group by eight-octet epoch values. When a new group is

initialized, its initial state epoch is 0x0000000000000000. Each

time a state transition occurs, the epoch number is incremented by

one.
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11.1. Proposals

Proposals are included in an MLSPlaintext by way of a Proposal

structure that indicates their type:

On receiving an MLSPlaintext containing a Proposal, a client MUST

verify the signature on the enclosing MLSPlaintext. If the signature

verifies successfully, then the Proposal should be cached in such a

way that it can be retrieved by hash (as a ProposalOrRef object) in

a later Commit message.

11.1.1. Add

An Add proposal requests that a client with a specified KeyPackage

be added to the group. The proposer of the Add MUST validate the

KeyPackage in the same way as receipients are required to do below.

The proposer of the Add does not control where in the group's

ratchet tree the new member is added. Instead, the sender of the

Commit message chooses a location for each added member and states

it in the Commit message.

An Add is applied after being included in a Commit message. The

position of the Add in the list of proposals determines the node

index index of the leaf node where the new member will be added. For

¶

// See IANA registry for registered values

uint16 ProposalType;

struct {

    ProposalType msg_type;

    select (Proposal.msg_type) {

        case add:                      Add;

        case update:                   Update;

        case remove:                   Remove;

        case psk:                      PreSharedKey;

        case reinit:                   ReInit;

        case external_init:            ExternalInit;

        case app_ack:                  AppAck;

        case group_context_extensions: GroupContextExtensions;

    };

} Proposal;
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struct {

    KeyPackage key_package;

} Add;
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the first Add in the Commit, index is the leftmost empty leaf in the

tree, for the second Add, the next empty leaf to the right, etc.

Validate the KeyPackage:

Verify that the signature on the KeyPackage is valid using the

public key in the KeyPackage's credential

Verify that the following fields in the KeyPackage are unique

among the members of the group (including any other members

added in the same Commit):

(credential.identity, endpoint_id) tuple

credential.signature_key

hpke_init_key

Verify that the KeyPackage is compatible with the group's

parameters. The ciphersuite and protocol version of the

KeyPackage must match those in use in the group. If the

GroupContext has a required_capabilities extension, then the

required extensions and proposals MUST be listed in the

KeyPackage's capabilities extension.

If necessary, extend the tree to the right until it has at least

index + 1 leaves

For each non-blank intermediate node along the path from the leaf

at position index to the root, add index to the unmerged_leaves

list for the node.

Set the leaf node in the tree at position index to a new node

containing the public key from the KeyPackage in the Add, as well

as the credential under which the KeyPackage was signed

11.1.2. Update

An Update proposal is a similar mechanism to Add with the

distinction that it is the sender's leaf KeyPackage in the tree

which would be updated with a new KeyPackage.

The values in the following fields of the KeyPackage contained in an

Update proposal MUST be the same as those of the KeyPackage it

replaces in the tree. version, cipher_suite, credential.identity, 

endpoint_id. However, the value of the credential.signature_key
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struct {

    KeyPackage key_package;

} Update;
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field of the new KeyPackage MUST be different from that of all other

KeyPackages in the tree. Furthermore, the value of the hpke_init_key

field of the new KeyPackage MUST be different from that of the

KeyPackage it replaces.

A member of the group applies an Update message by taking the

following steps:

Replace the sender's leaf KeyPackage with the one contained in

the Update proposal

Blank the intermediate nodes along the path from the sender's

leaf to the root

11.1.3. Remove

A Remove proposal requests that the member with KeyPackageID removed

be removed from the group.

A member of the group applies a Remove message by taking the

following steps:

Identify a leaf node containing a key package matching removed.

This lookup MUST be done on the tree before any non-Remove

proposals have been applied (the "old" tree in the terminology of

Section 11.2), since proposals such as Update can change the

KeyPackage stored at a leaf. Let removed_index be the node index

of this leaf node.

Replace the leaf node at removed_index with a blank node

Blank the intermediate nodes along the path from removed_index to

the root

Truncate the tree by reducing the size of tree until the

rightmost non-blank leaf node

11.1.4. PreSharedKey

A PreSharedKey proposal can be used to request that a pre-shared key

be injected into the key schedule in the process of advancing the

epoch.
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struct {

    KeyPackageID removed;

} Remove;
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struct {

    PreSharedKeyID psk;

} PreSharedKey;
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The psktype of the pre-shared key MUST be external and the psk_nonce

MUST be a randomly sampled nonce of length KDF.Nh. When processing a

Commit message that includes one or more PreSharedKey proposals,

group members derive psk_secret as described in Section 8.2, where

the order of the PSKs corresponds to the order of the PreSharedKey

proposals in the Commit.

11.1.5. ReInit

A ReInit proposal represents a request to re-initialize the group

with different parameters, for example, to increase the version

number or to change the ciphersuite. The re-initialization is done

by creating a completely new group and shutting down the old one.

A member of the group applies a ReInit proposal by waiting for the

committer to send the Welcome message and by checking that the 

group_id and the parameters of the new group corresponds to the ones

specified in the proposal. The Welcome message MUST specify exactly

one pre-shared key with psktype = reinit, and with psk_group_id and 

psk_epoch equal to the group_id and epoch of the existing group

after the Commit containing the reinit Proposal was processed. The

Welcome message may specify the inclusion of other pre-shared keys

with a psktype different from reinit.

If a ReInit proposal is included in a Commit, it MUST be the only

proposal referenced by the Commit. If other non-ReInit proposals

have been sent during the epoch, the committer SHOULD prefer them

over the ReInit proposal, allowing the ReInit to be resent and

applied in a subsequent epoch. The version field in the ReInit

proposal MUST be no less than the version for the current group.

11.1.6. ExternalInit

An ExternalInit proposal is used by new members that want to join a

group by using an external commit. This propsal can only be used in

that context.

A member of the group applies an ExternalInit message by

initializing the next epoch using an init secret computed as

¶
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struct {

    opaque group_id<0..255>;

    ProtocolVersion version;

    CipherSuite cipher_suite;

    Extension extensions<0..2^32-1>;

} ReInit;
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struct {

  opaque kem_output<0..2^16-1>;

} ExternalInit;
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described in Section 8.1. The kem_output field contains the required

KEM output.

11.1.7. AppAck

An AppAck proposal is used to acknowledge receipt of application

messages. Though this information implies no change to the group, it

is structured as a Proposal message so that it is included in the

group's transcript by being included in Commit messages.

An AppAck proposal represents a set of messages received by the

sender in the current epoch. Messages are represented by the sender

and generation values in the MLSCiphertext for the message. Each

MessageRange represents receipt of a span of messages whose 

generation values form a continuous range from first_generation to 

last_generation, inclusive.

AppAck proposals are sent as a guard against the Delivery Service

dropping application messages. The sequential nature of the 

generation field provides a degree of loss detection, since gaps in

the generation sequence indicate dropped messages. AppAck completes

this story by addressing the scenario where the Delivery Service

drops all messages after a certain point, so that a later generation

is never observed. Obviously, there is a risk that AppAck messages

could be suppressed as well, but their inclusion in the transcript

means that if they are suppressed then the group cannot advance at

all.

The schedule on which sending AppAck proposals are sent is up to the

application, and determines which cases of loss/suppression are

detected. For example:

The application might have the committer include an AppAck

proposal whenever a Commit is sent, so that other members could

know when one of their messages did not reach the committer.

The application could have a client send an AppAck whenever an

application message is sent, covering all messages received since

its last AppAck. This would provide a complete view of any losses

experienced by active members.
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struct {

    KeyPackageID sender;

    uint32 first_generation;

    uint32 last_generation;

} MessageRange;

struct {

    MessageRange received_ranges<0..2^32-1>;

} AppAck;
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The application could simply have clients send AppAck proposals

on a timer, so that all participants' state would be known.

An application using AppAck proposals to guard against loss/

suppression of application messages also needs to ensure that AppAck

messages and the Commits that reference them are not dropped. One

way to do this is to always encrypt Proposal and Commit messages, to

make it more difficult for the Delivery Service to recognize which

messages conatain AppAcks. The application can also have clients

enforce an AppAck schedule, reporting loss if an AppAck is not

received at the expected time.

11.1.8. GroupContextExtensions

A GroupContextExtensions proposal is used to update the list of

extensions in the GroupContext for the group.

struct { Extension extensions<0..2^32-1>; } GroupContextExtensions; 

A member of the group applies a GroupContextExtensions proposal with

the following steps:

If the new extensions include a required_capabilities extension,

verify that all members of the group support the required

capabilities (including those added in the same commit, and

excluding those removed).

Remove all of the existing extensions from the GroupContext

object for the group and replacing them with the list of

extensions in the proposal. (This is a wholesale replacement, not

a merge. An extension is only carried over if the sender of the

proposal includes it in the new list.)

Note that once the GroupContext is updated, its inclusion in the

confirmation_tag by way of the key schedule will confirm that all

members of the group agree on the extensions in use.

11.1.9. External Proposals

Add and Remove proposals can be constructed and sent to the group by

a party that is outside the group. For example, a Delivery Service

might propose to remove a member of a group who has been inactive

for a long time, or propose adding a newly-hired staff member to a

group representing a real-world team. Proposals originating outside

the group are identified by a preconfigured or new_member SenderType

in MLSPlaintext.

ReInit proposals can also be sent to the group by a preconfigured

sender, for example to enforce a changed policy regarding MLS

version or ciphersuite.
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The new_member SenderType is used for clients proposing that they

themselves be added. For this ID type the sender value MUST be zero

and the Proposal type MUST be Add. The MLSPlaintext MUST be signed

with the private key corresponding to the KeyPackage in the Add

message. Recipients MUST verify that the MLSPlaintext carrying the

Proposal message is validly signed with this key.

The preconfigured SenderType is reserved for signers that are pre-

provisioned to the clients within a group. If proposals with these

sender IDs are to be accepted within a group, the members of the

group MUST be provisioned by the application with a mapping between

these IDs and authorized signing keys. Recipients MUST verify that

the MLSPlaintext carrying the Proposal message is validly signed

with the corresponding key. To ensure consistent handling of

external proposals, the application MUST ensure that the members of

a group have the same mapping and apply the same policies to

external proposals.

An external proposal MUST be sent as an MLSPlaintext object, since

the sender will not have the keys necessary to construct an

MLSCiphertext object.

11.2. Commit

A Commit message initiates a new epoch for the group, based on a

collection of Proposals. It instructs group members to update their

representation of the state of the group by applying the proposals

and advancing the key schedule.

Each proposal covered by the Commit is included by a ProposalOrRef

value, which identifies the proposal to be applied by value or by

reference. Proposals supplied by value are included directly in the

Commit object. Proposals supplied by reference are specified by

including the hash of the MLSPlaintext in which the Proposal was

sent, using the hash function from the group's ciphersuite. For

proposals supplied by value, the sender of the proposal is the same

as the sender of the Commit. Conversely, proposals sent by people

other than the committer MUST be included by reference.
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A group member that has observed one or more proposals within an

epoch MUST send a Commit message before sending application data.

This ensures, for example, that any members whose removal was

proposed during the epoch are actually removed before any

application data is transmitted.

The sender of a Commit MUST include all valid proposals that it has

received during the current epoch. Invalid proposals include, for

example, proposals with an invalid signature or proposals that are

semantically invalid, such as an Add when the sender does not have

the application-level permission to add new users. Proposals with a

non-default proposal type MUST NOT be included in a commit unless

the proposal type is supported by all the members of the group that

will process the Commit (i.e., not including any members being added

or removed by the Commit).

If there are multiple proposals that apply to the same leaf, the

committer chooses one and includes only that one in the Commit,

considering the rest invalid. The committer MUST prefer any Remove

received, or the most recent Update for the leaf if there are no

Removes. If there are multiple Add proposals containing KeyPackages

with the same tuple (credential.identity, endpoint_id) the committer

again chooses one to include and considers the rest invalid. Add

proposals that contain KeyPackages with an (credential.identity,

endpoint_id) tuple that matches that of an existing KeyPackage in

the group MUST be considered invalid. The comitter MUST consider

invalid any Add or Update proposal if the Credential in the

contained KeyPackage shares the same signature key with a Credential

enum {

  reserved(0),

  proposal(1)

  reference(2),

  (255)

} ProposalOrRefType;

struct {

  ProposalOrRefType type;

  select (ProposalOrRef.type) {

    case proposal:  Proposal proposal;

    case reference: opaque hash<0..255>;

  }

} ProposalOrRef;

struct {

    ProposalOrRef proposals<0..2^32-1>;

    optional<UpdatePath> path;

} Commit;
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in any leaf of the group, or indeed if the KeyPackage shares the

same hpke_init_key with another KeyPackage in the group.

The Commit MUST NOT combine proposals sent within different epochs.

In the event that a valid proposal is omitted from the next Commit,

the sender of the proposal SHOULD retransmit it in the new epoch.

A member of the group MAY send a Commit that references no proposals

at all, which would thus have an empty proposals vector. Such a

Commit resets the sender's leaf and the nodes along its direct path,

and provides forward secrecy and post-compromise security with

regard to the sender of the Commit. An Update proposal can be

regarded as a "lazy" version of this operation, where only the leaf

changes and intermediate nodes are blanked out.

The path field of a Commit message MUST be populated if the Commit

covers at least one Update or Remove proposal. The path field MUST

also be populated if the Commit covers no proposals at all (i.e., if

the proposals vector is empty). The path field MAY be omitted if the

Commit covers only Add proposals. In pseudocode, the logic for

validating a Commit is as follows:

To summarize, a Commit can have three different configurations, with

different uses:

An "empty" Commit that references no proposals, which updates

the committer's contribution to the group and provides PCS with

regard to the committer.

A "partial" Commit that references Add, PreSharedKey, or ReInit

proposals but where the path is empty. Such a commit doesn't

provide PCS with regard to the committer.

A "full" Commit that references proposals of any type, which

provides FS with regard to any removed members and PCS for the

committer and any updated members.
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hasUpdates = false

hasRemoves = false

for i, id in commit.proposals:

    proposal = proposalCache[id]

    assert(proposal != null)

    hasUpdates = hasUpdates || proposal.msg_type == update

    hasRemoves = hasRemoves || proposal.msg_type == remove

if len(commit.proposals) == 0 || hasUpdates || hasRemoves:

  assert(commit.path != null)
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When creating or processing a Commit, three different ratchet trees

and their associated GroupContexts are used:

"Old" refers to the ratchet tree and GroupContext for the epoch

before the commit. The old GroupContext is used when signing

the MLSPlainText so that existing group members can verify the

signature before processing the commit.

"Provisional" refers to the ratchet tree and GroupContext

constructed after applying the proposals that are referenced by

the Commit. The provisional GroupContext uses the epoch number

for the new epoch, and the old confirmed transcript hash. This

is used when creating the UpdatePath, if the UpdatePath is

needed.

"New" refers to the ratchet tree and GroupContext constructed

after applying the proposals and the UpdatePath (if any). The

new GroupContext uses the epoch number for the new epoch, and

the new confirmed transcript hash. This is used when deriving

the new epoch secrets, and is the only GroupContext that newly-

added members will have.

A member of the group creates a Commit message and the corresponding

Welcome message at the same time, by taking the following steps:

Construct an initial Commit object with the proposals field

populated from Proposals received during the current epoch, and

an empty path field.

Generate the provisional ratchet tree and GroupContext by

applying the proposals referenced in the initial Commit object,

as described in Section 11.1. Update proposals are applied first,

followed by Remove proposals, and then finally Add proposals. Add

proposals are applied in the order listed in the proposals

vector, and always to the leftmost unoccupied leaf in the tree,

or the right edge of the tree if all leaves are occupied.

Note that the order in which different types of proposals are

applied should be updated by the implementation to include any

new proposals added by negotiated group extensions.

PreSharedKey proposals are processed later when deriving the 

psk_secret for the Key Schedule.

Decide whether to populate the path field: If the path field is

required based on the proposals that are in the commit (see

above), then it MUST be populated. Otherwise, the sender MAY omit

the path field at its discretion.
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If populating the path field: Create an UpdatePath using the

provisional ratchet tree and GroupContext. Any new member (from

an add proposal) MUST be exluded from the resolution during the

computation of the UpdatePath. The leaf_key_package for this

UpdatePath must have a parent_hash extension. Note that the

KeyPackage in the UpdatePath effectively updates an existing

KeyPackage in the group and thus MUST adhere to the same

restrictions as KeyPackages used in Update proposals.

Assign this UpdatePath to the path field in the Commit.

Apply the UpdatePath to the tree, as described in Section 5.5,

creating the new ratchet tree. Define commit_secret as the

value path_secret[n+1] derived from the path_secret[n] value

assigned to the root node.

If not populating the path field: Set the path field in the

Commit to the null optional. Define commit_secret as the all-zero

vector of length KDF.Nh (the same length as a path_secret value

would be). In this case, the new ratchet tree is the same as the

provisional ratchet tree.

Derive the psk_secret as specified in Section 8.2, where the

order of PSKs in the derivation corresponds to the order of

PreSharedKey proposals in the proposals vector.

Construct an MLSPlaintext object containing the Commit object.

Sign the MLSPlaintext using the old GroupContext as context.

Use the MLSPlaintext to update the confirmed transcript hash

and generate the new GroupContext.

Use the init_secret from the previous epoch, the commit_secret

and the psk_secret as defined in the previous steps, and the

new GroupContext to compute the new joiner_secret, 

welcome_secret, epoch_secret, and derived secrets for the new

epoch.

Use the confirmation_key for the new epoch to compute the 

confirmation_tag value, and the membership_key for the old

epoch to compute the membership_tag value in the MLSPlaintext.

Calculate the interim transcript hash using the new confirmed

transcript hash and the confirmation_tag from the

MLSPlaintext.
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Construct a GroupInfo reflecting the new state:

Group ID, epoch, tree, confirmed transcript hash, interim

transcript hash, and group context extensions from the new

state

The confirmation_tag from the MLSPlaintext object

Other extensions as defined by the application

Sign the GroupInfo using the member's private signing key

Encrypt the GroupInfo using the key and nonce derived from the

joiner_secret for the new epoch (see Section 11.2.2)

For each new member in the group:

Identify the lowest common ancestor in the tree of the new

member's leaf node and the member sending the Commit

If the path field was populated above: Compute the path secret

corresponding to the common ancestor node

Compute an EncryptedGroupSecrets object that encapsulates the 

init_secret for the current epoch and the path secret (if

present).

Construct a Welcome message from the encrypted GroupInfo object,

the encrypted key packages, and any PSKs for which a proposal was

included in the Commit. The order of the psks MUST be the same as

the order of PreSharedKey proposals in the proposals vector.

If a ReInit proposal was part of the Commit, the committer MUST

create a new group with the parameters specified in the ReInit

proposal, and with the same members as the original group. The

Welcome message MUST include a PreSharedKeyID with psktype reinit

and with psk_group_id and psk_epoch corresponding to the current

group and the epoch after the commit was processed.

A member of the group applies a Commit message by taking the

following steps:

Verify that the epoch field of the enclosing MLSPlaintext message

is equal to the epoch field of the current GroupContext object

Verify that the signature on the MLSPlaintext message verifies

using the public key from the credential stored at the leaf in

the tree indicated by the sender field.
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Verify that all PSKs specified in any PreSharedKey proposals in

the proposals vector are available.

Generate the provisional ratchet tree and GroupContext by

applying the proposals referenced in the initial Commit object,

as described in Section 11.1. Update proposals are applied first,

followed by Remove proposals, and then finally Add proposals. Add

proposals are applied in the order listed in the proposals

vector, and always to the leftmost unoccupied leaf in the tree,

or the right edge of the tree if all leaves are occupied.

Note that the order in which different types of proposals are

applied should be updated by the implementation to include any

new proposals added by negotiated group extensions.

Verify that the path value is populated if the proposals vector

contains any Update or Remove proposals, or if it's empty.

Otherwise, the path value MAY be omitted.

If the path value is populated: Process the path value using the

provisional ratchet tree and GroupContext, to generate the new

ratchet tree and the commit_secret:

Apply the UpdatePath to the tree, as described in Section 5.5,

and store leaf_key_package at the Committer's leaf.

Verify that the KeyPackage has a parent_hash extension and

that its value matches the new parent of the sender's leaf

node.

Define commit_secret as the value path_secret[n+1] derived

from the path_secret[n] value assigned to the root node.

If the path value is not populated: Define commit_secret as the

all-zero vector of length KDF.Nh (the same length as a 

path_secret value would be).

Update the confirmed and interim transcript hashes using the new

Commit, and generate the new GroupContext.

Derive the psk_secret as specified in Section 8.2, where the

order of PSKs in the derivation corresponds to the order of

PreSharedKey proposals in the proposals vector.

Use the init_secret from the previous epoch, the commit_secret

and the psk_secret as defined in the previous steps, and the new

GroupContext to compute the new joiner_secret, welcome_secret, 

epoch_secret, and derived secrets for the new epoch.
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Use the confirmation_key for the new epoch to compute the

confirmation tag for this message, as described below, and verify

that it is the same as the confirmation_tag field in the

MLSPlaintext object.

If the above checks are successful, consider the new GroupContext

object as the current state of the group.

If the Commit included a ReInit proposal, the client MUST NOT use

the group to send messages anymore. Instead, it MUST wait for a

Welcome message from the committer and check that

The version, cipher_suite and extensions fields of the new

group corresponds to the ones in the ReInit proposal, and that

the version is greater than or equal to that of the original

group.

The psks field in the Welcome message includes a 

PreSharedKeyID with psktype = reinit, and psk_epoch and 

psk_group_id equal to the epoch and group ID of the original

group after processing the Commit.

The confirmation tag value confirms that the members of the group

have arrived at the same state of the group:

11.2.1. External Commits

External Commits are a mechanism for new members (external parties

that want to become members of the group) to add themselves to a

group, without requiring that an existing member has to come online

to issue a Commit that references an Add Proposal.

Whether existing members of the group will accept or reject an

External Commit follows the same rules that are applied to other

handshake messages.

New members can create and issue an External Commit if they have

access to the following information for the group's current epoch:

group ID

epoch ID

ciphersuite

public tree hash
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MLSPlaintext.confirmation_tag =

    MAC(confirmation_key, GroupContext.confirmed_transcript_hash)
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interim transcript hash

group extensions

external public key

This information is aggregated in a PublicGroupState object as

follows:

Note that the tree_hash field is used the same way as in the Welcome

message. The full tree can be included via the ratchet_tree

extension Section 11.3.

The signature MUST verify using the public key taken from the

credential in the leaf node of the member with KeyPackageID signer.

The signature covers the following structure, comprising all the

fields in the PublicGroupState above signature:

This signature authenticates the HPKE public key, so that the joiner

knows that the public key was provided by a member of the group. The

fields that are not signed are included in the key schedule via the

GroupContext object. If the joiner is provided an inaccurate data

for these fields, then its external Commit will have an incorrect 

confirmation_tag and thus be rejected.

* ¶

* ¶

* ¶
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struct {

    CipherSuite cipher_suite;

    opaque group_id<0..255>;

    uint64 epoch;

    opaque tree_hash<0..255>;

    opaque interim_transcript_hash<0..255>;

    Extension group_context_extensions<0..2^32-1>;

    Extension other_extensions<0..2^32-1>;

    HPKEPublicKey external_pub;

    KeyPackageID signer;

    opaque signature<0..2^16-1>;

} PublicGroupState;

¶

¶

¶

struct {

    opaque group_id<0..255>;

    uint64 epoch;

    opaque tree_hash<0..255>;

    opaque interim_transcript_hash<0..255>;

    Extension group_context_extensions<0..2^32-1>;

    Extension other_extensions<0..2^32-1>;

    HPKEPublicKey external_pub;

    KeyPackageID signer;

} PublicGroupStateTBS;
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The information in a PublicGroupState is not deemed public in

general, but applications can choose to make it available to new

members in order to allow External Commits.

External Commits work like regular Commits, with a few differences:

The proposals included by value in an External Commit MUST meet

the following conditions:

There MUST be a single Add proposal that adds the new issuing

new member to the group

There MUST be a single ExternalInit proposal

There MUST NOT be any Update proposals

If a Remove proposal is present, then the credential and 

endpoint_id of the removed leaf MUST be the same as the

corresponding values in the Add KeyPackage.

The proposals included by reference in an External Commit MUST

meet the following conditions:

There MUST NOT be any ExternalInit proposals

External Commits MUST contain a path field (and is therefore a

"full" Commit)

External Commits MUST be signed by the new member. In particular,

the signature on the enclosing MLSPlaintext MUST verify using the

public key for the credential in the leaf_key_package of the path

field.

When processing a Commit, both existing and new members MUST use

the external init secret as described in Section 8.1.

The sender type for the MLSPlaintext encapsulating the External

Commit MUST be new_member

In other words, External Commits come in two "flavors" -- a "join"

commit that adds the sender to the group or a "resync" commit that

replaces a member's prior appearance with a new one.

Note that the "resync" operation allows an attacker that has

compromised a member's signature private key to introduce themselves

into the group and remove the prior, legitimate member in a single

Commit. Without resync, this can still be done, but requires two

operations, the external Commit to join and a second Commit to

remove the old appearance. Applications for whom this distinction is

salient can choose to disallow external commits that contain a
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Remove, or to allow such resync commits only if they contain a

"reinit" PSK proposal that demonstrates the joining member's

presence in a prior epoch of the group. With the latter approach,

the attacke would need to compromise the PSK as well as the signing

key, but the application will need to ensure that continuing, non-

resync'ing members have the required PSK.

11.2.2. Welcoming New Members

The sender of a Commit message is responsible for sending a Welcome

message to any new members added via Add proposals. The Welcome

message provides the new members with the current state of the

group, after the application of the Commit message. The new members

will not be able to decrypt or verify the Commit message, but will

have the secrets they need to participate in the epoch initiated by

the Commit message.

In order to allow the same Welcome message to be sent to all new

members, information describing the group is encrypted with a

symmetric key and nonce derived from the joiner_secret for the new

epoch. The joiner_secret is then encrypted to each new member using

HPKE. In the same encrypted package, the committer transmits the

path secret for the lowest node contained in the direct paths of

both the committer and the new member. This allows the new member to

compute private keys for nodes in its direct path that are being

reset by the corresponding Commit.

If the sender of the Welcome message wants the receiving member to

include a PSK in the derivation of the epoch_secret, they can

populate the psks field indicating which PSK to use.

¶

¶

¶

¶



The client processing a Welcome message will need to have a copy of

the group's ratchet tree. The tree can be provided in the Welcome

message, in an extension of type ratchet_tree. If it is sent

otherwise (e.g., provided by a caching service on the Delivery

Service), then the client MUST download the tree before processing

the Welcome.

On receiving a Welcome message, a client processes it using the

following steps:

Identify an entry in the secrets array where the new_member value

corresponds to one of this client's KeyPackages, using the hash

indicated by the cipher_suite field. If no such field exists, or

if the ciphersuite indicated in the KeyPackage does not match the

one in the Welcome message, return an error.

struct {

  opaque group_id<0..255>;

  uint64 epoch;

  opaque tree_hash<0..255>;

  opaque confirmed_transcript_hash<0..255>;

  Extension group_context_extensions<0..2^32-1>;

  Extension other_extensions<0..2^32-1>;

  MAC confirmation_tag;

  KeyPackageID signer;

  opaque signature<0..2^16-1>;

} GroupInfo;

struct {

  opaque path_secret<1..255>;

} PathSecret;

struct {

  opaque joiner_secret<1..255>;

  optional<PathSecret> path_secret;

  PreSharedKeys psks;

} GroupSecrets;

struct {

  KeyPackageID new_member<1..255>;

  HPKECiphertext encrypted_group_secrets;

} EncryptedGroupSecrets;

struct {

  ProtocolVersion version = mls10;

  CipherSuite cipher_suite;

  EncryptedGroupSecrets secrets<0..2^32-1>;

  opaque encrypted_group_info<1..2^32-1>;

} Welcome;
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Decrypt the encrypted_group_secrets using HPKE with the

algorithms indicated by the ciphersuite and the HPKE private key

corresponding to the GroupSecrets. If a PreSharedKeyID is part of

the GroupSecrets and the client is not in possession of the

corresponding PSK, return an error.

From the joiner_secret in the decrypted GroupSecrets object and

the PSKs specified in the GroupSecrets, derive the welcome_secret

and using that the welcome_key and welcome_nonce. Use the key and

nonce to decrypt the encrypted_group_info field.

Verify the signature on the GroupInfo object. The signature input

comprises all of the fields in the GroupInfo object except the

signature field. The public key and algorithm are taken from the

credential in the leaf node of the member with KeyPackageID 

signer. If there is no matching leaf node, or if signature

verification fails, return an error.

Verify the integrity of the ratchet tree.

Verify that the tree hash of the ratchet tree matches the 

tree_hash field in the GroupInfo.

For each non-empty parent node, verify that exactly one of the

node's children are non-empty and have the hash of this node

set as their parent_hash value (if the child is another

parent) or has a parent_hash extension in the KeyPackage

containing the same value (if the child is a leaf). If either

of the node's children is empty, and in particular does not

have a parent hash, then its respective children's parent_hash

values have to be considered instead.

For each non-empty leaf node, verify the signature on the

KeyPackage.

Identify a leaf in the tree array (any even-numbered node) whose 

key_package field is identical to the KeyPackage. If no such

field exists, return an error. Let index represent the index of

this node in the tree.

Construct a new group state using the information in the

GroupInfo object.

The GroupContext contains the group_id, epoch, tree_hash, 

confirmed_transcript_hash, and group_context_extensions fields

from the GroupInfo object.

*
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welcome_nonce = KDF.Expand(welcome_secret, "nonce", AEAD.Nn)

welcome_key = KDF.Expand(welcome_secret, "key", AEAD.Nk)
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The new member's position in the tree is index, as defined

above.

Update the leaf at index index with the private key

corresponding to the public key in the node.

If the path_secret value is set in the GroupSecrets object:

Identify the lowest common ancestor of the node index index

and of the node index of the member with KeyPackageID 

GroupInfo.signer. Set the private key for this node to the

private key derived from the path_secret.

For each parent of the common ancestor, up to the root of the

tree, derive a new path secret and set the private key for the

node to the private key derived from the path secret. The

private key MUST be the private key that corresponds to the

public key in the node.

Use the joiner_secret from the GroupSecrets object to generate

the epoch secret and other derived secrets for the current epoch.

Set the confirmed transcript hash in the new state to the value

of the confirmed_transcript_hash in the GroupInfo.

Verify the confirmation tag in the GroupInfo using the derived

confirmation key and the confirmed_transcript_hash from the

GroupInfo.

Use the confirmed transcript hash and confirmation tag to compute

the interim transcript hash in the new state.

11.3. Ratchet Tree Extension

By default, a GroupInfo message only provides the joiner with a

commitment to the group's ratchet tree. In order to process or

generate handshake messages, the joiner will need to get a copy of

the ratchet tree from some other source. (For example, the DS might

provide a cached copy.) The inclusion of the tree hash in the

GroupInfo message means that the source of the ratchet tree need not

be trusted to maintain the integrity of tree.

In cases where the application does not wish to provide such an

external source, the whole public state of the ratchet tree can be

provided in an extension of type ratchet_tree, containing a 

ratchet_tree object of the following form:
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The presence of a ratchet_tree extension in a GroupInfo message does

not result in any changes to the GroupContext extensions for the

group. The ratchet tree provided is simply stored by the client and

used for MLS operations.

If this extension is not provided in a Welcome message, then the

client will need to fetch the ratchet tree over some other channel

before it can generate or process Commit messages. Applications

should ensure that this out-of-band channel is provided with

security protections equivalent to the protections that are afforded

to Proposal and Commit messages. For example, an application that

encrypts Proposal and Commit messages might distribute ratchet trees

encrypted using a key exchanged over the MLS channel.

12. Extensibility

This protocol includes a mechanism for negotiating extension

parameters similar to the one in TLS [RFC8446]. In TLS, extension

negotiation is one-to-one: The client offers extensions in its

ClientHello message, and the server expresses its choices for the

session with extensions in its ServerHello and EncryptedExtensions

messages. In MLS, extensions appear in the following places:

In KeyPackages, to describe client capabilities and aspects of

their participation in the group (once in the ratchet tree)

In the Welcome message, to tell new members of a group what

parameters are being used by the group, and to provide any

additional details required to join the group

In the GroupContext object, to ensure that all members of the

group have the same view of the parameters in use

enum {

    reserved(0),

    leaf(1),

    parent(2),

    (255)

} NodeType;

struct {

    NodeType node_type;

    select (Node.node_type) {

        case leaf:   KeyPackage key_package;

        case parent: ParentNode node;

    };

} Node;

optional<Node> ratchet_tree<1..2^32-1>;
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In other words, an application can use GroupContext extensions to

ensure that all members of the group agree on a set of parameters.

Clients indicate their support for parameters in KeyPackage

extensions. New members of a group are informed of the group's

GroupContext extensions via the group_context_extensions field in

the GroupInfo or PublicGroupState object. The other_extensions field

in a GroupInfo object can be used to provide additional parameters

to new joiners that are used to join the group.

This extension mechanism is designed to allow for secure and

forward-compatible negotiation of extensions. For this to work,

implementations MUST correctly handle extensible fields:

A client that posts a KeyPackage MUST support all parameters

advertised in it. Otherwise, another client might fail to

interoperate by selecting one of those parameters.

A client initiating a group MUST ignore all unrecognized

ciphersuites, extensions, and other parameters. Otherwise, it may

fail to interoperate with newer clients.

A client adding a new member to a group MUST verify that the

KeyPackage for the new member contains extensions that are

consistent with the group's extensions. For each extension in the

GroupContext, the KeyPackage MUST have an extension of the same

type, and the contents of the extension MUST be consistent with

the value of the extension in the GroupContext, according to the

semantics of the specific extension.

If any extension in a GroupInfo message is unrecognized (i.e.,

not contained in the corresponding KeyPackage), then the client

MUST reject the Welcome message and not join the group.

The extensions populated into a GroupContext object are drawn

from those in the GroupInfo object, according to the definitions

of those extensions.

Note that the latter two requirements mean that all MLS extensions

are mandatory, in the sense that an extension in use by the group

MUST be supported by all members of the group.

This document does not define any way for the parameters of the

group to change once it has been created; such a behavior could be

implemented as an extension.

13. Sequencing of State Changes

Each Commit message is premised on a given starting state, indicated

by the epoch field of the enclosing MLSPlaintext message. If the
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changes implied by a Commit messages are made starting from a

different state, the results will be incorrect.

This need for sequencing is not a problem as long as each time a

group member sends a Commit message, it is based on the most current

state of the group. In practice, however, there is a risk that two

members will generate Commit messages simultaneously, based on the

same state.

When this happens, there is a need for the members of the group to

deconflict the simultaneous Commit messages. There are two general

approaches:

Have the Delivery Service enforce a total order

Have a signal in the message that clients can use to break ties

As long as Commit messages cannot be merged, there is a risk of

starvation. In a sufficiently busy group, a given member may never

be able to send a Commit message, because he always loses to other

members. The degree to which this is a practical problem will depend

on the dynamics of the application.

It might be possible, because of the non-contributivity of

intermediate nodes, that Commit messages could be applied one after

the other without the Delivery Service having to reject any Commit

message, which would make MLS more resilient regarding the

concurrency of Commit messages. The Messaging system can decide to

choose the order for applying the state changes. Note that there are

certain cases (if no total ordering is applied by the Delivery

Service) where the ordering is important for security, ie. all

updates must be executed before removes.

Regardless of how messages are kept in sequence, implementations

MUST only update their cryptographic state when valid Commit

messages are received. Generation of Commit messages MUST NOT modify

a client's state, since the endpoint doesn't know at that time

whether the changes implied by the Commit message will succeed or

not.

13.1. Server-Enforced Ordering

With this approach, the Delivery Service ensures that incoming

messages are added to an ordered queue and outgoing messages are

dispatched in the same order. The server is trusted to break ties

when two members send a Commit message at the same time.

Messages should have a counter field sent in clear-text that can be

checked by the server and used for tie-breaking. The counter starts

at 0 and is incremented for every new incoming message. If two group
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members send a message with the same counter, the first message to

arrive will be accepted by the server and the second one will be

rejected. The rejected message needs to be sent again with the

correct counter number.

To prevent counter manipulation by the server, the counter's

integrity can be ensured by including the counter in a signed

message envelope.

This applies to all messages, not only state changing messages.

13.2. Client-Enforced Ordering

Order enforcement can be implemented on the client as well, one way

to achieve it is to use a two step update protocol: the first client

sends a proposal to update and the proposal is accepted when it gets

50%+ approval from the rest of the group, then it sends the approved

update. Clients which didn't get their proposal accepted, will wait

for the winner to send their update before retrying new proposals.

While this seems safer as it doesn't rely on the server, it is more

complex and harder to implement. It also could cause starvation for

some clients if they keep failing to get their proposal accepted.

14. Application Messages

The primary purpose of the Handshake protocol is to provide an

authenticated group key exchange to clients. In order to protect

Application messages sent among the members of a group, the

Application secret provided by the Handshake key schedule is used to

derive nonces and encryption keys for the Message Protection Layer

according to the Application Key Schedule. That is, each epoch is

equipped with a fresh Application Key Schedule which consist of a

tree of Application Secrets as well as one symmetric ratchet per

group member.

Each client maintains their own local copy of the Application Key

Schedule for each epoch during which they are a group member. They

derive new keys, nonces and secrets as needed while deleting old

ones as soon as they have been used.

Application messages MUST be protected with the Authenticated-

Encryption with Associated-Data (AEAD) encryption scheme associated

with the MLS ciphersuite using the common framing mechanism. Note

that "Authenticated" in this context does not mean messages are

known to be sent by a specific client but only from a legitimate

member of the group. To authenticate a message from a particular

member, signatures are required. Handshake messages MUST use

asymmetric signatures to strongly authenticate the sender of a

message.
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14.1. Message Encryption and Decryption

The group members MUST use the AEAD algorithm associated with the

negotiated MLS ciphersuite to AEAD encrypt and decrypt their

Application messages according to the Message Framing section.

The group identifier and epoch allow a recipient to know which group

secrets should be used and from which Epoch secret to start

computing other secrets and keys. The sender identifier is used to

identify the member's symmetric ratchet from the initial group

Application secret. The application generation field is used to

determine how far into the ratchet to iterate in order to reproduce

the required AEAD keys and nonce for performing decryption.

Application messages SHOULD be padded to provide some resistance

against traffic analysis techniques over encrypted traffic. [CLINIC]

[HCJ16] While MLS might deliver the same payload less frequently

across a lot of ciphertexts than traditional web servers, it might

still provide the attacker enough information to mount an attack. If

Alice asks Bob: "When are we going to the movie ?" the answer

"Wednesday" might be leaked to an adversary by the ciphertext

length. An attacker expecting Alice to answer Bob with a day of the

week might find out the plaintext by correlation between the

question and the length.

Similarly to TLS 1.3, if padding is used, the MLS messages MUST be

padded with zero-valued bytes before AEAD encryption. Upon AEAD

decryption, the length field of the plaintext is used to compute the

number of bytes to be removed from the plaintext to get the correct

data. As the padding mechanism is used to improve protection against

traffic analysis, removal of the padding SHOULD be implemented in a

"constant-time" manner at the MLS layer and above layers to prevent

timing side-channels that would provide attackers with information

on the size of the plaintext. The padding length length_of_padding

can be chosen at the time of the message encryption by the sender.

Recipients can calculate the padding size from knowing the total

size of the ApplicationPlaintext and the length of the content.

14.2. Restrictions

During each epoch senders MUST NOT encrypt more data than permitted

by the security bounds of the AEAD scheme used.

Note that each change to the Group through a Handshake message will

also set a new encryption_secret. Hence this change MUST be applied

before encrypting any new application message. This is required both

to ensure that any users removed from the group can no longer

receive messages and to (potentially) recover confidentiality and

authenticity for future messages despite a past state compromise.
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14.3. Delayed and Reordered Application messages

Since each Application message contains the group identifier, the

epoch and a message counter, a client can receive messages out of

order. If they are able to retrieve or recompute the correct AEAD

decryption key from currently stored cryptographic material clients

can decrypt these messages.

For usability, MLS clients might be required to keep the AEAD key

and nonce for a certain amount of time to retain the ability to

decrypt delayed or out of order messages, possibly still in transit

while a decryption is being done.

15. Security Considerations

The security goals of MLS are described in [I-D.ietf-mls-

architecture]. We describe here how the protocol achieves its goals

at a high level, though a complete security analysis is outside of

the scope of this document.

15.1. Confidentiality of the Group Secrets

Group secrets are partly derived from the output of a ratchet tree.

Ratchet trees work by assigning each member of the group to a leaf

in the tree and maintaining the following property: the private key

of a node in the tree is known only to members of the group that are

assigned a leaf in the node's subtree. This is called the ratchet

tree invariant and it makes it possible to encrypt to all group

members except one, with a number of ciphertexts that's logarithmic

in the number of group members.

The ability to efficiently encrypt to all members except one allows

members to be securely removed from a group. It also allows a member

to rotate their keypair such that the old private key can no longer

be used to decrypt new messages.

15.2. Authentication

The first form of authentication we provide is that group members

can verify a message originated from one of the members of the

group. For encrypted messages, this is guaranteed because messages

are encrypted with an AEAD under a key derived from the group

secrets. For plaintext messages, this is guaranteed by the use of a 

membership_tag which constitutes a MAC over the message, under a key

derived from the group secrets.

The second form of authentication is that group members can verify a

message originated from a particular member of the group. This is

guaranteed by a digital signature on each message from the sender's

signature key.
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The signature keys held by group members are critical to the

security of MLS against active attacks. If a member's signature key

is compromised, then an attacker can create KeyPackages

impersonating the member; depending on the application, this can

then allow the attacker to join the group with the compromised

member's identity. For example, if a group has enabled external

parties to join via external commits, then an attacker that has

compromised a member's signature key could use an external commit to

insert themselves into the group -- even using a "resync"-style

external commit to replace the compromised member in the group.

Applications can mitigate the risks of signature key compromise

using pre-shared keys. If a group requires joiners to know a PSK in

addition to authenticating with a credential, then in order to mount

an impersonation attack, the attacker would need to compromise the

relevant PSK as well as the victim's signature key. The cost of this

mitigation is that the application needs some external arrangement

that ensures that the legitimate members of the group to have the

required PSKs.

15.3. Forward Secrecy and Post-Compromise Security

Post-compromise security is provided between epochs by members

regularly updating their leaf key in the ratchet tree. Updating

their leaf key prevents group secrets from continuing to be

encrypted to previously compromised public keys.

Forward-secrecy between epochs is provided by deleting private keys

from past version of the ratchet tree, as this prevents old group

secrets from being re-derived. Forward secrecy within an epoch is

provided by deleting message encryption keys once they've been used

to encrypt or decrypt a message.

Post-compromise security is also provided for new groups by members

regularly generating new InitKeys and uploading them to the Delivery

Service, such that compromised key material won't be used when the

member is added to a new group.

15.4. InitKey Reuse

InitKeys are intended to be used only once. That is, once an InitKey

has been used to introduce the corresponding client to a group, it

SHOULD be deleted from the InitKey publication system. Reuse of

InitKeys can lead to replay attacks.

An application MAY allow for reuse of a "last resort" InitKey in

order to prevent denial of service attacks. Since an InitKey is

needed to add a client to a new group, an attacker could prevent a

client being added to new groups by exhausting all available

InitKeys.
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15.5. Group Fragmentation by Malicious Insiders

It is possible for a malicious member of a group to "fragment" the

group by crafting an invalid UpdatePath. Recall that an UpdatePath

encrypts a sequence of path secrets to different subtrees of the

group's ratchet trees. These path secrets should be derived in a

sequence as described in Section 5.4, but the UpdatePath syntax

allows the sender to encrypt arbitrary, unrelated secrets. The

syntax also does not guarantee that the encrypted path secret

encrypted for a given node corresponds to the public key provided

for that node.

Both of these types of corruption will cause processing of a Commit

to fail for some members of the group. If the public key for a node

does not match the path secret, then the members that decrypt that

path secret will reject the commit based on this mismatch. If the

path secret sequence is incorrect at some point, then members that

can decrypt nodes before that point will compute a different public

key for the mismatched node than the one in the UpdatePath, which

also causes the Commit to fail. Applications SHOULD provide

mechanisms for failed commits to be reported, so that group members

who were not able to recognize the error themselves can reject the

commit and roll back to a previous state if necessary.

Even with such an error reporting mechanism in place, however, it is

still possible for members to get locked out of the group by a

malformed commit. Since malformed Commits can only be recognized by

certain members of the group, in an asynchronous application, it may

be the case that all members that could detect a fault in a Commit

are offline. In such a case, the Commit will be accepted by the

group, and the resulting state possibly used as the basis for

further Commits. When the affected members come back online, they

will reject the first commit, and thus be unable to catch up with

the group.

Applications can address this risk by requiring certain members of

the group to acknowledge successful processing of a Commit before

the group regards the Commit as accepted. The minimum set of

acknowledgements necessary to verify that a Commit is well-formed

comprises an acknowledgement from one member per node in the

UpdatePath, that is, one member from each subtree rooted in the

copath node corresponding to the node in the UpdatePath.

16. IANA Considerations

This document requests the creation of the following new IANA

registries:

MLS Ciphersuites (Section 16.1)
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MLS Extension Types (Section 16.2)

MLS Proposal Types (Section 16.3)

MLS Credential Types (Section 16.4)

All of these registries should be under a heading of "Messaging

Layer Security", and assignments are made via the Specification

Required policy [RFC8126]. See Section 16.5 for additional

information about the MLS Designated Experts (DEs).

RFC EDITOR: Please replace XXXX throughout with the RFC number

assigned to this document

16.1. MLS Ciphersuites

A ciphersuite is a combination of a protocol version and the set of

cryptographic algorithms that should be used.

Ciphersuite names follow the naming convention:

Where VALUE is represented as a sixteen-bit integer:

Component Contents

MLS
The string "MLS" followed by the major and minor version,

e.g. "MLS10"

LVL The security level

KEM
The KEM algorithm used for HPKE in TreeKEM group

operations

AEAD The AEAD algorithm used for HPKE and message protection

HASH
The hash algorithm used for HPKE and the MLS transcript

hash

SIG The Signature algorithm used for message authentication

Table 3

The columns in the registry are as follows:

Value: The numeric value of the ciphersuite

Name: The name of the ciphersuite

Recommended: Whether support for this ciphersuite is recommended

by the IETF MLS WG. Valid values are "Y" and "N". The

"Recommended" column is assigned a value of "N" unless explicitly

requested, and adding a value with a "Recommended" value of "Y"

* ¶

* ¶

* ¶
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¶

¶

¶

CipherSuite MLS_LVL_KEM_AEAD_HASH_SIG = VALUE;¶

¶

uint16 CipherSuite;¶

¶
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requires Standards Action [RFC8126]. IESG Approval is REQUIRED

for a Y->N transition.

Reference: The document where this ciphersuite is defined

Initial contents:

Value Name Recommended Reference

0x0000 RESERVED N/A RFC XXXX

0x0001 MLS10_128_DHKEMX25519_AES128GCM_SHA256_Ed25519 Y RFC XXXX

0x0002 MLS10_128_DHKEMP256_AES128GCM_SHA256_P256 Y RFC XXXX

0x0003 MLS10_128_DHKEMX25519_CHACHA20POLY1305_SHA256_Ed25519 Y RFC XXXX

0x0004 MLS10_256_DHKEMX448_AES256GCM_SHA512_Ed448 Y RFC XXXX

0x0005 MLS10_256_DHKEMP521_AES256GCM_SHA512_P521 Y RFC XXXX

0x0006 MLS10_256_DHKEMX448_CHACHA20POLY1305_SHA512_Ed448 Y RFC XXXX

0xff00

-

0xffff

Reserved for Private Use N/A RFC XXXX

Table 4

All of these ciphersuites use HMAC [RFC2104] as their MAC function,

with different hashes per ciphersuite. The mapping of ciphersuites

to HPKE primitives, HMAC hash functions, and TLS signature schemes

is as follows [I-D.irtf-cfrg-hpke] [RFC8446]:

Value KEM KDF AEAD Hash Signature

0x0001 0x0020 0x0001 0x0001 SHA256 ed25519

0x0002 0x0010 0x0001 0x0001 SHA256 ecdsa_secp256r1_sha256

0x0003 0x0020 0x0001 0x0003 SHA256 ed25519

0x0004 0x0021 0x0003 0x0002 SHA512 ed448

0x0005 0x0012 0x0003 0x0002 SHA512 ecdsa_secp521r1_sha512

0x0006 0x0021 0x0003 0x0003 SHA512 ed448

Table 5

The hash used for the MLS transcript hash is the one referenced in

the ciphersuite name. In the ciphersuites defined above, "SHA256"

and "SHA512" refer to the SHA-256 and SHA-512 functions defined in 

[SHS].

It is advisable to keep the number of ciphersuites low to increase

the chances clients can interoperate in a federated environment,

therefore the ciphersuites only inlcude modern, yet well-established

algorithms. Depending on their requirements, clients can choose

between two security levels (roughly 128-bit and 256-bit). Within

the security levels clients can choose between faster X25519/X448

curves and FIPS 140-2 compliant curves for Diffie-Hellman key

negotiations. Additionally clients that run predominantly on mobile

processors can choose ChaCha20Poly1305 over AES-GCM for performance

¶
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reasons. Since ChaCha20Poly1305 is not listed by FIPS 140-2 it is

not paired with FIPS 140-2 compliant curves. The security level of

symmetric encryption algorithms and hash functions is paired with

the security level of the curves.

The mandatory-to-implement ciphersuite for MLS 1.0 is 

MLS10_128_DHKEMX25519_AES128GCM_SHA256_Ed25519 which uses Curve25519

for key exchange, AES-128-GCM for HPKE, HKDF over SHA2-256, and

Ed25519 for signatures.

Values with the first byte 255 (decimal) are reserved for Private

Use.

New ciphersuite values are assigned by IANA as described in Section

16.

16.2. MLS Extension Types

This registry lists identifiers for extensions to the MLS protocol.

The extension type field is two bytes wide, so valid extension type

values are in the range 0x0000 to 0xffff.

Template:

Value: The numeric value of the extension type

Name: The name of the extension type

Message(s): The messages in which the extension may appear, drawn

from the following list:

KP: KeyPackage messages

GC: GroupContext objects (and the group_context_extensions

field of GroupInfo objects)

GI: The other_extensions field of GroupInfo objects

Recommended: Whether support for this extension is recommended by

the IETF MLS WG. Valid values are "Y" and "N". The "Recommended"

column is assigned a value of "N" unless explicitly requested,

and adding a value with a "Recommended" value of "Y" requires

Standards Action [RFC8126]. IESG Approval is REQUIRED for a Y->N

transition.

Reference: The document where this extension is defined

Initial contents:

¶

¶

¶

¶

¶

¶
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Value Name Message(s) Recommended Reference

0x0000 RESERVED N/A N/A RFC XXXX

0x0001 capabilities KP Y RFC XXXX

0x0002 lifetime KP Y RFC XXXX

0x0003 external_key_id KP Y RFC XXXX

0x0004 parent_hash KP Y RFC XXXX

0x0005 ratchet_tree GI Y RFC XXXX

0xff00 -

0xffff

Reserved for Private

Use
N/A N/A RFC XXXX

Table 6

16.3. MLS Proposal Types

This registry lists identifiers for types of proposals that can be

made for changes to an MLS group. The extension type field is two

bytes wide, so valid extension type values are in the range 0x0000

to 0xffff.

Template:

Value: The numeric value of the proposal type

Name: The name of the proposal type

Recommended: Whether support for this extension is recommended by

the IETF MLS WG. Valid values are "Y" and "N". The "Recommended"

column is assigned a value of "N" unless explicitly requested,

and adding a value with a "Recommended" value of "Y" requires

Standards Action [RFC8126]. IESG Approval is REQUIRED for a Y->N

transition.

Reference: The document where this extension is defined

Initial contents:

Value Name Recommended Reference

0x0000 RESERVED N/A RFC XXXX

0x0001 add Y RFC XXXX

0x0002 update Y RFC XXXX

0x0003 remove Y RFC XXXX

0x0004 psk Y RFC XXXX

0x0005 reinit Y RFC XXXX

0x0006 external_init Y RFC XXXX

0x0007 app_ack Y RFC XXXX

0x0008 group_context_extensions Y RFC XXXX

0xff00 - 0xffff Reserved for Private Use N/A RFC XXXX

Table 7
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16.4. MLS Credential Types

This registry lists identifiers for types of credentials that can be

used for authentication in the MLS protocol. The credential type

field is two bytes wide, so valid credential type values are in the

range 0x0000 to 0xffff.

Template:

Value: The numeric value of the credential type

Name: The name of the credential type

Recommended: Whether support for this credential is recommended

by the IETF MLS WG. Valid values are "Y" and "N". The

"Recommended" column is assigned a value of "N" unless explicitly

requested, and adding a value with a "Recommended" value of "Y"

requires Standards Action [RFC8126]. IESG Approval is REQUIRED

for a Y->N transition.

Reference: The document where this credential is defined

Initial contents:

Value Name Recommended Reference

0x0000 RESERVED N/A RFC XXXX

0x0001 basic Y RFC XXXX

0x0002 x509 Y RFC XXXX

0xff00 - 0xffff Reserved for Private Use N/A RFC XXXX

Table 8

16.5. MLS Designated Expert Pool

Specification Required [RFC8126] registry requests are registered

after a three-week review period on the MLS DEs' mailing list: mls-

reg-review@ietf.org, on the advice of one or more of the MLS DEs.

However, to allow for the allocation of values prior to publication,

the MLS DEs may approve registration once they are satisfied that

such a specification will be published.

Registration requests sent to the MLS DEs mailing list for review

SHOULD use an appropriate subject (e.g., "Request to register value

in MLS Bar registry").

Within the review period, the MLS DEs will either approve or deny

the registration request, communicating this decision to the MLS DEs

mailing list and IANA. Denials SHOULD include an explanation and, if

applicable, suggestions as to how to make the request successful.

Registration requests that are undetermined for a period longer than

¶
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21 days can be brought to the IESG's attention for resolution using

the iesg@ietf.org mailing list.

Criteria that SHOULD be applied by the MLS DEs includes determining

whether the proposed registration duplicates existing functionality,

whether it is likely to be of general applicability or useful only

for a single application, and whether the registration description

is clear. For example, the MLS DEs will apply the ciphersuite-

related advisory found in Section 6.1.

IANA MUST only accept registry updates from the MLS DEs and SHOULD

direct all requests for registration to the MLS DEs' mailing list.

It is suggested that multiple MLS DEs be appointed who are able to

represent the perspectives of different applications using this

specification, in order to enable broadly informed review of

registration decisions. In cases where a registration decision could

be perceived as creating a conflict of interest for a particular MLS

DE, that MLS DE SHOULD defer to the judgment of the other MLS DEs.
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Appendix A. Tree Math

One benefit of using left-balanced trees is that they admit a simple

flat array representation. In this representation, leaf nodes are

even-numbered nodes, with the n-th leaf at 2*n. Intermediate nodes

are held in odd-numbered nodes. For example, an 11-element tree has

the following structure:

This allows us to compute relationships between tree nodes simply by

manipulating indices, rather than having to maintain complicated

structures in memory, even for partial trees. The basic rule is that

the high-order bits of parent and child nodes have the following

relation (where x is an arbitrary bit string):

The following python code demonstrates the tree computations

necessary for MLS. Test vectors can be derived from the diagram

above.

¶

                                             X

                     X

         X                       X                       X

   X           X           X           X           X

X     X     X     X     X     X     X     X     X     X     X

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

¶

¶

parent=01x => left=00x, right=10x¶
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# The exponent of the largest power of 2 less than x. Equivalent to:

#   int(math.floor(math.log(x, 2)))

def log2(x):

    if x == 0:

        return 0

    k = 0

    while (x >> k) > 0:

        k += 1

    return k-1

# The level of a node in the tree. Leaves are level 0, their parents are

# level 1, etc. If a node's children are at different levels, then its

# level is the max level of its children plus one.

def level(x):

    if x & 0x01 == 0:

        return 0

    k = 0

    while ((x >> k) & 0x01) == 1:

        k += 1

    return k

# The number of nodes needed to represent a tree with n leaves.

def node_width(n):

    if n == 0:

        return 0

    else:

        return 2*(n - 1) + 1

# The index of the root node of a tree with n leaves.

def root(n):

    w = node_width(n)

    return (1 << log2(w)) - 1

# The left child of an intermediate node. Note that because the tree is

# left-balanced, there is no dependency on the size of the tree.

def left(x):

    k = level(x)

    if k == 0:

        raise Exception('leaf node has no children')

    return x ^ (0x01 << (k - 1))

# The right child of an intermediate node. Depends on the number of

# leaves because the straightforward calculation can take you beyond the

# edge of the tree.

def right(x, n):

    k = level(x)

    if k == 0:



        raise Exception('leaf node has no children')

    r = x ^ (0x03 << (k - 1))

    while r >= node_width(n):

        r = left(r)

    return r

# The immediate parent of a node. May be beyond the right edge of the

# tree.

def parent_step(x):

    k = level(x)

    b = (x >> (k + 1)) & 0x01

    return (x | (1 << k)) ^ (b << (k + 1))

# The parent of a node. As with the right child calculation, we have to

# walk back until the parent is within the range of the tree.

def parent(x, n):

    if x == root(n):

        raise Exception('root node has no parent')

    p = parent_step(x)

    while p >= node_width(n):

        p = parent_step(p)

    return p

# The other child of the node's parent.

def sibling(x, n):

    p = parent(x, n)

    if x < p:

        return right(p, n)

    else:

        return left(p)

# The direct path of a node, ordered from leaf to root.

def direct_path(x, n):

    r = root(n)

    if x == r:

        return []

    d = []

    while x != r:

        x = parent(x, n)

        d.append(x)

    return d

# The copath of a node, ordered from leaf to root.

def copath(x, n):

    if x == root(n):

        return []



    d = direct_path(x, n)

    d.insert(0, x)

    d.pop()

    return [sibling(y, n) for y in d]

# The common ancestor of two nodes is the lowest node that is in the

# direct paths of both leaves.

def common_ancestor_semantic(x, y, n):

    dx = set([x]) | set(direct_path(x, n))

    dy = set([y]) | set(direct_path(y, n))

    dxy = dx & dy

    if len(dxy) == 0:

        raise Exception('failed to find common ancestor')

    return min(dxy, key=level)

# The common ancestor of two nodes is the lowest node that is in the

# direct paths of both leaves.

def common_ancestor_direct(x, y, _):

    # Handle cases where one is an ancestor of the other

    lx, ly = level(x)+1, level(y)+1

    if (lx <= ly) and (x>>ly == y>>ly):

      return y

    elif (ly <= lx) and (x>>lx == y>>lx):

      return x

    # Handle other cases

    xn, yn = x, y

    k = 0

    while xn != yn:

       xn, yn = xn >> 1, yn >> 1

       k += 1

    return (xn << k) + (1 << (k-1)) - 1

¶
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