
MMUSIC J. Rosenberg
Internet-Draft dynamicsoft
Expires: January 17, 2005 July 19, 2004

Interactive Connectivity Establishment (ICE): A Methodology for
Network Address Translator (NAT) Traversal for Multimedia Session

Establishment Protocols
draft-ietf-mmusic-ice-02

Status of this Memo

 By submitting this Internet-Draft, I certify that any applicable
 patent or other IPR claims of which I am aware have been disclosed,
 and any of which I become aware will be disclosed, in accordance with

RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 17, 2005.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-ice-02
https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 This document describes a methodology for Network Address Translator
 (NAT) traversal for multimedia session signaling protocols, such as
 the Session Initiation Protocol (SIP). This methodology is called
 Interactive Connectivity Establishment (ICE). ICE makes use of
 existing protocols, such as Simple Traversal of UDP Through NAT
 (STUN) and Traversal Using Relay NAT (TURN). ICE makes use of STUN
 in peer-to-peer cooperative fashion, allowing participants to
 discover, create and verify mutual connectivity.

Rosenberg Expires January 17, 2005 [Page 1]

Internet-Draft ICE July 2004

Table of Contents

1. Introduction . 3
2. Multimedia Signaling Protocol Abstraction 4
3. Terminology . 6
4. Overview of ICE . 8
5. Detailed ICE Algorithm . 10
5.1 Initiator Processing 10
5.1.1 Sending the Initiate Message 10
5.1.2 Processing the Accept 10

5.2 Responder Processing 11
5.2.1 Processing the Initiate Message 11

5.3 Common Procedures . 12
5.3.1 Gathering Transport Addresses 12
5.3.2 Enabling STUN on Each Local Transport Address 13

 5.3.3 Prioritizing the Transport Addresses and Choosing
 a Default . 14

5.3.4 Sending STUN Connectivity Checks 16
5.3.5 Receiving STUN Requests 21

6. Running STUN on Derived Transport Addresses 23
6.1 STUN on a TURN Derived Transport Address 23
6.2 STUN on a STUN Derived Transport Address 24

7. XML Schema for ICE Messages 26
8. Examples . 29
8.1 Port Restricted . 29

9. Mapping ICE into SIP . 32
10. Security Considerations 34
11. IANA Considerations . 35
12. IAB Considerations . 36
12.1 Problem Definition . 36
12.2 Exit Strategy . 36
12.3 Brittleness Introduced by ICE 37
12.4 Requirements for a Long Term Solution 38
12.5 Issues with Existing NAPT Boxes 38

13. Acknowledgements . 39
14. References . 40
14.1 Normative References . 40
14.2 Informative References 40

 Author's Address . 41
 Intellectual Property and Copyright Statements 42

Rosenberg Expires January 17, 2005 [Page 2]

Internet-Draft ICE July 2004

1. Introduction

 A multimedia session signaling protocol is a protocol that exchanges
 control messages between a pair of agents for the purposes of
 establishing the flow of media traffic between them. This media flow
 is distinct from the flow of control messages, and may take a
 different path through the network. Examples of such protocols are
 the Session Initiation Protocol (SIP) [3], the Real Time Streaming
 Protocol (RTSP) [5] and the International Telecommunications Union
 (ITU) H.323.

 These protocols, by nature of their design, are difficult to operate
 through Network Address Translators (NAT). Because their purpose in
 life is to establish a flow of packets, they tend to carry IP
 addresses within their messages, which is known to be problematic
 through NAT [6]. The protocols also seek to create a media flow
 directly between participants, so that there is no application layer
 intermediary between them. This is done to reduce media latency,
 decrease packet loss, and reduce the operational costs of deploying
 the application. However, this is difficult to accomplish through
 NAT. A full treatment of the reasons for this is beyond the scope of
 this specification.

 Numerous solutions have been proposed for allowing these protocols to
 operate through NAT. These include Application Layer Gateways
 (ALGs), the Middlebox Control Protocol [7], Simple Traversal of UDP
 through NAT (STUN) [1], Traversal Using Relay NAT [16], Realm
 Specific IP [8][9], symmetric RTP [10], along with session
 description extensions needed to make them work, such as [2].
 Unfortunately, these techniques all have pros and cons which make
 each one optimal in some network topologies, but a poor choice in
 others. The result is that administrators and implementors are
 making assumptions about the topologies of the networks in which
 their solutions will be deployed. This introduces a lot of
 complexity and brittleness into the system. What is needed is a
 single solution which is flexible enough to work well in all
 situations.

 This specification provides that solution. It is called Interactive
 Connectivity Establishment, or ICE. ICE makes use of many of the
 protocols above, but uses them in a specific methodology which avoids
 many of the pitfalls of using any one alone. ICE uses STUN and TURN
 without extension, and allows for other similar protocols to be used
 as well. However, it does require additional signaling capabilities

 to be introduced into the multimedia session signaling protocols.
 For those protocols which make use of the Session Description
 Protocol (SDP), this specification defines the necessary extensions
 to it. Other protocols will need to define their own mechanisms.

Rosenberg Expires January 17, 2005 [Page 3]

Internet-Draft ICE July 2004

2. Multimedia Signaling Protocol Abstraction

 This specification defines a general methodology that allows the
 media streams of multimedia signaling protocols to successfully
 traverse NAT. This methodology is independent of any particular
 signaling protocol. In order to discuss the methodology, we need to
 to define an abstraction of a multimedia signaling system, and define
 terms that can be used throughout this specification. Figure 1 shows
 the abstraction.

 +-----------+
 | |
 | |
 > | Signaling |\
 / | Relay | \
 / | | \
 Initiate / | | \ Initiate
 Message / / +-----------+ \ Message
 / / < \
 / / \ \
 / / \ \
 / / Accept Accept \ \
 / / Message Message \ >
 / / \
 +-----------+ / \ +-----------+
 | | < | |
 | | Media Stream | |
 | Session | | Session |
 | Initiator | | Responder |
 | | Media Stream | |
 | | | |
 +-----------+ +-----------+

 Figure 1

 Communications occur between two clients - the session initiator and
 the session responder, also referred to as the initiator and
 responder. The initiator is the one that decides to engage in
 communications. To do so, it sends an initiate message. The
 initiate message contains parameters that describe the capabilities
 and configuration of media streams for the initiator. This message
 may travel through signaling intermediaries, called a signaling

 relay, before finally arriving at the session responder. Assuming
 the session responder wishes to communicate, it generates an accept
 message, which is relayed back to the initiator. This message
 contains capabilities and configuration of media streams for the

Rosenberg Expires January 17, 2005 [Page 4]

Internet-Draft ICE July 2004

 responder. As a result, media streams are established between the
 initiator and responder. The signaling protocol may also support an
 operation that allows for termination of the communications session.
 We refer to this signaling message as a terminate message.

 This abstraction is readily mapped to SIP, RTSP, and H.323, amongst
 others. For SIP, the initiator is the User Agent Client (UAC), the
 responder is the User Agent Server (UAS), the initiate message is a
 SIP message containing an SDP offer (for example, an INVITE), the
 accept message is a SIP message containing an SDP answer (for
 example, a 200 OK), and the terminate message is a BYE. For RTSP,
 the initiator is the RTSP client, the responder is the RTSP server,
 the initiate message is a SETUP message, and the accept message is a
 SETUP response.

 This specification defines parameters that need to be included in
 these various signaling messages in order to implement the
 functionality described by ICE. Those parameters are represented in
 XML for convenience. Any multimedia signaling protocol that uses ICE
 will need to define how to map those parameters into its own protocol
 messages. Section 9 provides such a mapping for SIP.

Rosenberg Expires January 17, 2005 [Page 5]

Internet-Draft ICE July 2004

3. Terminology

 Several new terms are introduced in this specification:
 Session Initiator: A software or hardware entity that, at the request
 of a user, tries to establish communications with another entity,
 called the session responder. A session initiator is also called
 an initiator.
 Initiator: Another term for a session initiator.
 Session Responder: A software or hardware entity that receives a
 request for establishment of communications from the session
 initiator, and either accepts or declines the request. A session
 responder is also called a responder.
 Responder: Another term for a session responder.
 Client: Either the initiator or responder.
 Peer: From the perspective of one of the clients in a session, its
 peer is the other client. Specifically, from the perspective of
 the initiator, the peer is the responder. From the perspective of
 the responder, the peer is the initiator.
 Signaling Relay: An intermediary of signaling messages. Examples are
 SIP proxies and H.323 Gatekeepers.
 Initiate Message: The signaling message used by an initiator to
 establish communications. It contains capabilities and other
 information needed by the responder to send media to the
 initiator.
 Accept Message: The signaling message used by a responder to agree to
 communications. It contains capabilities and other information
 needed by the initiator to send media to the responder.
 Terminate Message The signaling message used by a client to terminate
 the session and associated media streams.
 Transport Address: The combination of an IP address and port.
 Local Transport Address: A local transport address is a transport
 address that has been allocated from the operating system on the
 host. This includes transport addresses obtained through Virtual
 Private Networks (VPNs) and transport addresses obtained through
 Realm Specific IP (RSIP) [8] (which lives at the operating system
 level). Transport addresses are typically obtained by binding to
 an interface.
 Derived Transport Address: A derived transport address is a transport
 address which is associated with, but different from, a local
 transport address. The derived transport address is associated
 with the local transport address in that packets sent to the
 derived transport address are received on the socket bound to that
 local transport address. Derived addresses are obtained using
 protocols like STUN and TURN, and more generally, any UNSAF
 protocol [11].

Rosenberg Expires January 17, 2005 [Page 6]

Internet-Draft ICE July 2004

 Peer Derived Transport Address: A peer derived transport address is a
 derived transport address learned from a STUN server running
 within a peer in a media session.
 TURN Derived Transport Address: A derived transport address obtained
 from a TURN server.
 STUN Derived Transport Address: A derived transport address obtained
 from a STUN server whose address has been provisioned into the UA.
 This, by definition, excludes Peer Derived Transport Addresses.
 Unilateral Allocations: Queries made to a network server which
 provides an UNSAF service.
 Bilateral Allocations: Addresses obtained by using an UNSAF service
 that actually runs on the peer of the communications session.
 Peer derived transport addresses are synonymous with bilateral
 allocations.

Rosenberg Expires January 17, 2005 [Page 7]

Internet-Draft ICE July 2004

4. Overview of ICE

 ICE makes the fundamental assumption that clients exist in a network
 of segmented connectivity. This segmentation is the result of a
 number of addressing realms in which a client can simultaneously be
 connected. We use "realms" here in the broadest sense. A realm is
 defined purely by connectivity. Two clients are in the same realm
 if, when they exchange the addresses each has in that realm, they are
 able to send packets to each other. This includes IPv6 and IPv4
 realms, which actually use different address spaces, in addition to
 private networks connected to the public Internet through NAT.

 The key assumption in ICE is that a client cannot know, apriori,
 which address realms it shares with any peer it may wish to
 communicate with. Therefore, in order to communicate, it has to try
 connecting to addresses in all of the realms.

 Before the initiator establishes a session, it obtains as many IP
 address and port combinations in as many address realms as it can.
 These adresses all represent potential points at which the initiator
 will receive a specific media stream. Any protocol that provides a
 client with an IP address and port on which it can receive traffic
 can be used. These include STUN, TURN, RSIP, and even a VPN. The
 client also uses any local interface addresses. A dual-stack v4/v6
 client will obtain both a v6 and a v4 address/port. The only
 requirement is that, across all of these addresses, the initiator can
 be certain that at least one of them will work for any responder it
 might communicate with. Unfortunately, if the initiator communicates
 with a peer that doesn't support ICE, only one address can be
 provided to that peer. As such, the client will need to choose one
 default address, which will be used by non-ICE clients. This would
 typically be a TURN derived transport address, as it is most likely
 to work with unknown non-ICE peers.

 The initiator then runs a STUN server on each of the local transport
 addresses it has obtained. The initiator will need to be able to
 demultiplex STUN messages and media messages received on that IP
 address and port, and process them appropriately. All of these
 addresses are placed into the initiate message, and they are ordered
 in terms of preference. Preference is a matter of local policy, but
 typically, lowest preference would be given to transport addresses
 learned from a TURN server (i.e., TURN derived transport addresses).
 The initiate message also conveys the STUN username and password
 which are required to gain access to the STUN server on each address/

 port combination.

 The initiate message is sent to the responder. This specification
 does not address the issue of how the signaling messages themselves

Rosenberg Expires January 17, 2005 [Page 8]

Internet-Draft ICE July 2004

 traverse NAT. It is assumed that signaling protocol specific
 mechanisms are used for that purpose. The responder follows a
 similar process as the initiator followed; it obtains addresses from
 local interfaces, STUN servers, TURN servers, etc., and it places all
 of them into the accept message.

 Once the responder receives the initiate message, it has a set of
 potential addresses it can use to communicate with the initiator.
 The initiator will be running a STUN server at each address. The
 responder sends a STUN request to each address, in parallel. When
 the initiator receives these, it sends a STUN response. If the
 responder receives the STUN response, it knows that it can reach its
 peer at that address. It can then begin to send media to that
 address. As additional STUN responses arrive, the responder will
 learn about additional transport addresses which work. If one of
 those has a higher priority than the one currently in use, it starts
 sending media to that one instead. No additional control messages
 (i.e., SIP signaling) occur for this change.

 The STUN messages described above happen while the accept message is
 being sent to the intitiator. Once the intitiator receives the
 accept message, it too will have a set of potential addresses with
 which it can communicate to the responder. It follows exactly the
 same process described above.

 Furthermore, when a either the initiator or responder receives a STUN
 request, it takes note of the source IP address and port of that
 request. It compares that transport address to the existing set of
 potential addresses. If it's not amongst them, it gets added as
 another potential address. The incoming STUN message provides the
 client with enough context to associate that transport address with a
 STUN username, STUN password, and priority, just as if it had been
 sent in an initiate or accept message. As such, the client begins
 sending STUN messages to it as well, and if those succeed, the
 address can be used if it has a higher priority.

 After a successful STUN transaction, the client will re-perform the
 STUN query periodically to revalidate connectivity. This allows for
 recovery from NAT failures, or from route flaps which may cause
 packets to suddenly traverse a different NAT. As such, the address
 used as the destination for media is the highest priority address to
 which connectivity currently exists.

Rosenberg Expires January 17, 2005 [Page 9]

Internet-Draft ICE July 2004

5. Detailed ICE Algorithm

 This section describes the detailed processing needed for ICE.

5.1 Initiator Processing

5.1.1 Sending the Initiate Message

 When the initiator wishes to begin communications, it starts by
 gathering transport addresses, as described in Section 5.3.1, and
 starting a STUN server on each local transport address, as described
 in Section 5.3.2. This process can actually happen at any time
 before sending an initiate message. A client can pre-gather
 transport addresses, using a user interface cue (such as picking up
 the phone, or entry into an address book) as a hint that
 communications is imminent.

 When it comes time to initiate communications, it determines a
 priority for each one and identifies one as a default, as described
 in Section 5.3.3.

 The next step is to construct the initiate message. Section 7
 provides the XML schema for the initiate message. The message
 consists of a series of media streams. For each media stream, there
 is a default address and a list of alternates. The default address
 is the one that will be used by responders that don't understand ICE
 (for SIP, this is accomplished by mapping the default address into
 the m and c line in the SDP). The alternates represent addresses
 that the responder should also try. In SIP, these are conveyed with
 the new SDP alt parameter.

 The client then encodes all of its available transport addresses
 (including the default) as a series of alternate elements. Each
 alternate element conveys a transport address for RTP, one for RTCP,
 a STUN username fragment and STUN password. The client MUST assign
 each alternate a unique identifier. These identifiers MUST be unique
 across all alternates used within the session. This identifier is
 encoded in the "id" attribute of the alternate element. The priority
 for the transport address, as computed above, is included as an
 attribute as well.

 Once the initiate message is constructed, it is sent.

5.1.2 Processing the Accept

 There are two possible cases for processing of the Accept message.
 If the recipient of the Initiate message did not support ICE, the
 Accept message will only contain the default address information. As

Rosenberg Expires January 17, 2005 [Page 10]

Internet-Draft ICE July 2004

 a result, the initiator knows that it cannot perform its connectivity
 checks. In this case, it SHOULD just send to the transport address
 listed. However, if local configuration information tells the
 initiator to try connectivity checks by sending them through the TURN
 server, this means that packets sent directly to responder may be
 dropped by a local firewall. To deal with this, the initiator SHOULD
 issue a SEND command using this new transport address. The SEND
 command contains the media packet to send to the responder. Once
 this command has been accepted, the initiator SHOULD send all media
 packets to the TURN server, which will then forward them towards the
 responder.

 If the Accept message contains alternates, it implies that the
 responder supported ICE. In that case, the initiator takes each
 transport address, STUN username, STUN password and priority, and
 places them into a list, called the candidate list. It then begins
 processing the candidate list as described in Section 5.3.4. That
 processing associates a state with each transport address. As
 described there, once a successful STUN query is made to the STUN
 server at an address, the initiator can begin sending media to that
 address.

5.2 Responder Processing

5.2.1 Processing the Initiate Message

 Upon receipt of the initiate message, the client starts gathering
 transport addresses, as described in Section 5.3.1, and starts a STUN
 server on each local transport address, as described in Section

5.3.2. This processing is done immediately on receipt of the
 request, to prepare for the case where the user should accept the
 call, or early media needs to be generated.

 At some point, the responder will decide to accept or reject the
 communications. A rejection terminates ICE processing, of course.
 In the case of acceptance, the accept message is constructed as
 follows.

 The client first determines a priority for each transport address it
 has gathered, and identifies one as a default, as described in

Section 5.3.3.

 Constructing the accept proceeds identically to the way in which the
 initiate message is constructed (Section 5.1.1).

 The accept is then sent.

Rosenberg Expires January 17, 2005 [Page 11]

Internet-Draft ICE July 2004

5.3 Common Procedures

 This section discusses procedures that are common between initiator
 and responder.

5.3.1 Gathering Transport Addresses

 A client gathers addresses when it believes that communications is
 imminent. For initiators, this occurs before sending an initiate
 message (Section 5.1.1). For responders, it occurs before sending a
 accept message (Section 5.2.1).

 There are two types of addresses a client can gather - local
 transport addresses, and derived transport addresses. Local
 transport addresses are obtained by binding to an ephemeral port on
 an interface (physical or virtual) on the host. A multi-homed host
 SHOULD attempt to bind on all interfaces for all media streams it
 wishes to receive. For media streams carried using the Real Time
 Transport Protocol (RTP) [12], the client will need to bind to an
 ephemeral port for both RTP and RTCP.

 The result will be a set of local transport addresses. The client
 may also have access to servers that provide unilateral self-address
 fixing (UNSAF) [11]. Examples of such protocols include STUN, TURN,
 and TEREDO [15]. All ICE implementations MUST implement STUN and
 TURN, but MAY, through configuration, disable the use of STUN or TURN
 for unilateral address allocation (STUN is mandatory for the
 connectivity checks described below). When disabled, it MUST be
 possible through user or administrator operation to re-enable. This
 allows all implementations to have the breadth of protocol support
 needed to work in all situations, with the flexibility to turn if off
 if its not needed.

 These protocols work by having the client send, from a specific local
 transport address, some kind of message to a server. The server
 provides to the client, in some kind of response, an additional
 transport address, called a derived transport address. This derived
 transport address is derived from the local transport address. Here,
 derivation means that a request sent to the derived transport address
 might (under good network conditions) reach the client on its local
 transport address.

 For each of these protocols, the client may have access to a
 multiplicity of servers. For example, a user connected to a natted
 cable access network might have access to a STUN server in the
 private cable network and in the public Internet. For each local
 transport address, the client SHOULD obtain an address from every
 server for each protocol it supports. The result of this will be a

Rosenberg Expires January 17, 2005 [Page 12]

Internet-Draft ICE July 2004

 set of derived transport addresses, with each derived address
 associated with the local transport address it is derived from.

5.3.2 Enabling STUN on Each Local Transport Address

 Once the client has obtained a set of transport addresses, it starts
 a STUN server on each local transport address (including ones used
 for RTCP). This, by definition, means that the STUN service will be
 reached for requests sent to the derived addresses.

 However, the client does not need to provide STUN service on any
 other IP address or port, unlike the STUN usage described in [1].
 The need to run the service on multiple ports is to support the
 change flags. However, those flags are not needed with ICE, and the
 server SHOULD reject, with a 400 response, any STUN requests with
 these flags set.

 Furthermore, there is no need to support TLS or to be prepared to
 receive SharedSecret request messages. Those messages are used to
 obtain shared secrets to be used with BindingRequests. However, with
 ICE, usernames and passwords are exchanged in the signaling protocol.

 The client will receive both STUN requests and media packets on each
 local transport address. The client MUST be able to disambiguate
 them. In the case of RTP/RTCP, this disambiguation is easy. RTP and
 RTCP packets start with the bits 0b10 (v=2). The first two bits in
 STUN are always 0b00. This disambiguation also works for packets
 sent using Secure RTP [13], since the RTP header is in the clear.
 Disambiguating STUN with other media stream protocols may be more
 complicated. However, it can always be possible with arbitrarily
 high probabilities by selecting an appropriately random username (see
 below).

 The need to run STUN on the same transport address as the media
 stream represents the "ugliest" piece of ICE. However, it is an
 essential part of the story. By sending STUN requests to the very
 same place media is sent, any bindings learned through STUN will be
 useful even when communicating through symmetric NATs. This results
 in a substantial increase in the scope of applicability of STUN.

 For each local transport address where a STUN server is running, the

 client MUST choose a username fragment and a password. The username
 fragment created by the client will be concatenated with the fragment
 created by its peer. The result will serve as the username provided
 by its peer in STUN requests. By creating the username as a
 combination of information from each side of a call, it allows a
 client to correlate the source of the request with a candidate
 transport address. This is discussed further below.

Rosenberg Expires January 17, 2005 [Page 13]

Internet-Draft ICE July 2004

 The username fragment MUST be globally unique, so that no other host
 will select a username with the same value. This username fragment
 and password will be passed to its peer in an initiate or accept
 message. As such, the process described in this section will
 associate, with each local transport address, a username fragment and
 password. The client also associates this same username fragment and
 password with any transport addresses derived from the local
 transport address.

 The global uniqueness requirement stems from the lack of uniquenes
 afforded by IP addresses. Consider clients A, B, and C. A and B are
 within private enterprise 1, which is using 10.0.0.0/8. C is within
 private enterprise 2, which is also using 10.0.0.0/8. As it turns
 out, B and C both have IP address 10.0.1.1. A initiates
 communications to C. C, in its accept message, provides A with its
 transport addresses. In this case, thats 10.0.1.1:8866 and 8877. As
 it turns out, B is in a session at that same time, and is also using
 10.0.1.1:8866 and 8877. This means that B has a STUN server running
 on those ports, just as C does. A will send a STUN request to
 10.0.1.1:8866 and 8877. However, these do not go to C as expected.
 Instead, they go to B. If B just replied to them, A would believe it
 has connectivity to C, when in fact it has connectivity to a
 completely different user, B. To fix this, the STUN username takes
 on the role of a unique identifier. C provides A with a unique
 username. A uses this username in its STUN query to 10.0.1.1:8866.
 This STUN query arrives at B. However, the username is unknown to B,
 and so the request is rejected. A treats the rejected STUN request
 as if there were no connectivity to C (which is actually true).
 Therefore, the error is avoided.

 Once the STUN server is started, it MUST run continuously until the
 session is completed. While the server is running, it MUST act as a
 normal STUN server, but MUST only accept STUN requests from clients
 that authenticate, as discussed below in Section 5.3.5

5.3.3 Prioritizing the Transport Addresses and Choosing a Default

 The prioritization process takes a list of transport addresses, and
 associates each with a priority. This priority reflects the desire
 that the UA has to receive media on that address, and is assigned as
 a value from 0 to 1 (1 being most preferred). Priorities are
 ordinal, so that their significance is only relative to other
 transport address priorities in the same list.

 This specification makes no normative recommendations on how the
 prioritization is done. However, some useful guidelines are
 suggested on how such a prioritization can be determined.

Rosenberg Expires January 17, 2005 [Page 14]

Internet-Draft ICE July 2004

 One criteria for choosing one transport address over another is
 whether or not that transport address involves the use of a relay.
 That is, if media is sent to that transport address, will the media
 first transit a relay before being received. TURN derived transport
 addresses make use of relays (the TURN server), as to any local
 transport addresses associated with a VPN server. When media is
 transited through a relay, it can increase the latency between
 transmission and reception. It can increase the packet losses,
 because of the additional router hops that may be taken. It may
 increase the cost of providing service, since media will be routed in
 and right back out of a relay run by the provider. If these concerns
 are important, transport addresses with this property can be listed
 with lower priority.

 Another criteria for choosing one address over another is IP address
 family. ICE works with both IPv4 and IPv6. It therefore provides a
 transition mechanism that allows dual-stack hosts to prefer
 connectivity over IPv6, but to fall back to IPv4 in case the v6
 networks are disconnected (due, for example, to a failure in a 6to4
 relay) [14]. It can also help with hosts that have both a native
 IPv6 address and a 6to4 address. In such a case, higher priority
 could be afforded to the native v6 address, followed by the 6to4
 address, followed by a native v4 address. This allows a site to
 obtain and begin using native v6 addresss immediately, yet still
 fallback to 6to4 addresses when communicating with clients in other
 sites that do not yet have native v6 connectivity.

 Another criteria for choosing one address over another is security.
 If a user is a telecommuter, and therefore connected to their
 corporate network and a local home network, they may prefer their
 voice traffic to be routed over the VPN in order to keep it on the
 local network when communicating within the enterprise, but use the
 local network when communicating with users outside of the
 enterprise.

 Another criteria for choosing one address over another is topological
 awareness. This is most useful for transport addresses which make
 use of relays (including TURN and VPN). In those cases, if a client
 has preconfigured or dynamically discovered knowledge of the
 topological proximity of the relays to itself, it can use that to
 select closer relays with higher priority.

 Once the transport addresses have been prioritized, one is selected
 as the default. This is the address that will be used by a peer that

 doesn't understand ICE. The default has no relevance when
 communicating with an ICE capable peer. As such, it is RECOMMENDED
 that the default be chosen based on the likelihood of that address
 being useful when communicating with a peer that doesn't support ICE.

Rosenberg Expires January 17, 2005 [Page 15]

Internet-Draft ICE July 2004

 This will frequently be a TURN derived transport address from a TURN
 server providing public IP addresses.

5.3.4 Sending STUN Connectivity Checks

 Once a responder has received an initiate message, or an initiator
 has received an accept message, the list of transport addresses is
 extracted from the message. These transport addresses, called the
 remote transport addresses, along with the username fragment,
 password, and priority from the message are placed into a table,
 called the candidate table. There is a candidate table for RTP for
 each media stream, and for RTCP for each media stream. So, if a
 session is established with audio and video, there would be four
 tables - audio RTP, audio RTCP, video RTP and video RTCP.

 The client then takes its own gathered addresses, and creates a
 subset called the sourceable addresses. This subset is the set of
 local transport addresses (including VPN and RSIP) and TURN derived
 transport addresses. Thus, it excludes STUN derived transport
 addresses. The formal definition of this subset is defined below.

 Each row in this table is then replicated once for each sourceable
 transport address. The table has a column for the sourceable
 transport address value, and this is populated upon replication.
 That table also has a column called "my username fragment", which is
 the username fragment that the client created for sourceable
 transport address in that row. Each row in this table is called a
 candidate.

 Each candidate is associated with a state. The state represents the
 current understanding of connectivity to that remote transport
 address when packets are sent from that sourceable address. There
 are five possible states. These states are:
 INIT: No STUN transaction has been completed towards this remote
 transport address from this sourceable address.
 HANDSHAKING: One or more STUN transactions have failed, but
 insufficient time has passed since leaving the INIT state to be
 certain that the remote transport address is unreachable from this
 sourceable address. This state is important for connectivity
 checks made to STUN derived transport addresses through port
 restricted NAT or a TURN derived transport address.
 BAD: All STUN transactions to this remote transport address from this
 sourceable address have either timed out, or failed with a 600

 response, and a sufficient amount of time has elapsed since the
 INIT state to have high confidence that the remote transport
 address cannot be reached from this sourceable address.

Rosenberg Expires January 17, 2005 [Page 16]

Internet-Draft ICE July 2004

 GOOD: The last STUN transaction to this remote transport address from
 this sourceable address was successful. However, it is not the
 highest priority candidate, and therefore, is not in use for
 media.

 When the client first populates the tables from the initiate or
 accept message, all of the transport addresses are set to the INIT
 state.

 Consider the the following example. An initiator sends an initiate
 message with one media stream (audio), with two transport addresses,
 A and B. A is a local transport address, and B is a STUN derived
 transport address (although that fact is not signaled in the
 message). Both of these will have the same username fragment and
 password, but different priorities. The initiate message is sent to
 the responder. The responder has a local transport address, a STUN
 derived transport address, and a TURN derived transport address.
 Call these X, Y and Z respectively. Thus, it has two sourceable
 addresses, X and Z. The table created by the responder would have
 four rows. Each of the two transport addresses in the initiate
 message is present twice, once with the responder's local transport
 address, and once with its TURN derived address. Such a table might
 look like this:

 Remote Srcable User Frag Passwd My-Usr-Frag Priority State
 --
 A X asd9f8f8== siprulz x-frag 0.4 INIT
 A Z asd9f8f8== siprulz z-frag 0.4 INIT
 B X asd9f8f8== siprulz x-frag 0.2 INIT
 B Z asd9f8f8== siprulz z-frag 0.2 INIT

 The client begins a STUN BindingRequest transaction for each
 candidate. This STUN transaction is sent to the IP address and port
 from the Remote column. It sends the request from the IP address and
 port in the sourceable column. For local transport addresses, that
 means sending from the locally bound socket. For VPN addresses, that
 means sending from the socket bound to the VPN interface. For TURN
 derived transport addresses, this means using the TURN Send message
 to send a request through the TURN server. This provides the
 definition of the sourceable flag: they represent distinct transport
 addresses that a client can send from. A STUN derived transport

 address is not distinct from a local transport address, since a
 client cannot send a packet to a particular IP address and port with
 different source IP addresses and ports as seen by that recipient
 [[REPHRASE]]

Rosenberg Expires January 17, 2005 [Page 17]

Internet-Draft ICE July 2004

 The STUN USERNAME attribute MUST be present. It is set to the
 concatenation of the user fragment from the table, with the "My User
 Fragment" from the candidate. Thus, for the candidate with remote
 transport address A and sourceable address X, the USERNAME would be
 set to "asd9f8f8==x-frag". The BindingRequest SHOULD contain a
 MESSAGE-INTEGRITY attribute, computed using the username in the
 USERNAME attribute, and the password from the password field in the
 row. The BindingRequest MUST NOT contain the CHANGE-REQUEST or
 RESPONSE-ADDRESS attribute.

 Each of these STUN transactions will generate either a timeout, or a
 response. If the response is an error, but recoverable as described
 in RFC 3489, the client SHOULD try again using the procedures
 discussed there. Either initialy, or after retry, the STUN
 transaction will produce a timeout result, a success result, or a
 non-recoverable failure result (error codes 400, 431, or 600). These
 correspond to "timeout", "success", and "error" events, respectively.

 These events are fed into the state machine described in Figure 3.
 This figure shows the transitions between states that occur on the
 completion of the STUN BindingRequest transaction. After the
 completion of each transaction, the client sets a timer that
 determines when it will do another transaction for that candidate.
 The result of that next transaction drives the next transition in the
 state machine, and so on. Since timers are set at the entry to each
 state, STUN BindingRequest tranasactions will be tried continuously
 throughout a call. This is necessary to detect a variety of failure
 cases, as discussed below.

https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg Expires January 17, 2005 [Page 18]

Internet-Draft ICE July 2004

 . . timeout/
 . . Set Rapid
 +---------+ +---------+ . Retry Timer
 | | | | .
 | | | |<....
 | INIT |......................>| HAND |
 | | timeout/ | SHAKING |
 | | Set Rapid | |
 +---------+ Retry Timer, error/ +---------+
 . . Giveup Timer Set . .
 . . Retry . .
 error/ . . Timer . .
 Set success/
 Retry Set Refresh
 Timer C.............................. . Timer
 . . success/ . .
 . . Set Refresh . .
 V V Timer V V
 +---------+ +---------+
 | | | |
 | | | |
 | BAD |......................>| GOOD |
 ...>| | success/ | |.......
 . | | Set Refresh | | .
 . +---------+ Timer +---------+ .
 . . ^ . ^ .

 timeout or success/
 error/ timeout or Set Refresh
 Set error/ Timer
 Retry Set
 Timer Retry
 Timer

 Figure 3

 Starting in the INIT state, if the transaction is successful, the
 client has verified connectivity to that remote transport address
 when sending from that sourceable transport address. This means that
 media packets sent in exactly the same way will get through. As
 such, the FSM transitions to the GOOD state, and the client sets the
 Refresh Timer. This timer is used to continually check that a good

 candidate remains good. It is possible for a candidate to cease
 being good if a NAT should fail and recover, resulting in loss of any
 bindings it holds, or if an IP route should flap, causing those

Rosenberg Expires January 17, 2005 [Page 19]

Internet-Draft ICE July 2004

 packets to be delivered through a new NAT that allocates new
 bindings, or a firewall with different policies. The Retry Timer
 value SHOULD be configurable. In order to rapidly recover from
 failures, it is RECOMMENDED that it default to five seconds. [[TODO:
 Need to work this number as a function of codec rates as well,
 perhaps apply the RTCP algorithm for its computation.]]

 If, from the INIT state, the STUN transaction times out, the FSM
 enters the HANDSHAKE state. At this point, there are two reasons
 that the STUN request might have timed out. One reason is that the
 candidate is simply unreachable. The other reason is that the peer
 is behind a port restricted NAT, and so STUN requests from the client
 cannot get through until its peer creates a permission by generating
 its own STUN request. It may take some time to generate that STUN
 request, as it may depend on a response message getting delivered.
 As such, the HANDSHAKE state allows for rapid retry of the STUN
 transaction until enough time has passed to be certain that the
 remote transport address is actually unreachable. Thus, upon
 entering the HANDSHAKE state, two timers are set. The first, called
 the Rapid Retry timer, determines how long until the next attempt.
 This timer SHOULD be configurable. It is RECOMMENDED that it default
 to 1 second. The second timer, called the Giveup Timer, determines
 how long the client will keep trying until it decides that the remote
 transport address is unreachable. This timer SHOULD be configurable.
 It is RECOMMENDED that it default to 50 seconds. This is a
 reasonable approximation of the maximum SIP transaction duration.

 If, from the INIT state, the STUN transaction generates an error, the
 FSM moves into the BAD state. The retry timer is set. This retry
 timer is used to periodically retry, and see if the candidate may now
 be reachable. The value of this timer SHOULD be configurable. It is
 RECOMMENDED that it default to 1 minute.

 If, while in the HANDSHAKE state, the Giveup timer fires, or the STUN
 transaction results in an error, the client moves into the BAD state,
 and sets the retry timer. The default durations for ths timer are
 identical for all entries into the BAD state, and thus it defaults to
 1 minute here as well. If, while in the HANDSHAKE state, the Rapid
 Retry timer fires, the timer is reset and the client remains in the
 HANDSHAKE state.

 If, while in the BAD state, the retried transaction is executed and
 fails or results in a timeout, the client resets the timer and
 remains in the BAD state. If the STUN transaction succeeds, it moves

 into the GOOD state and sets the refresh timer. The default
 durations for this timer are the same for all entries into the GOOD
 state, and thus it defaults to 1 second.

Rosenberg Expires January 17, 2005 [Page 20]

Internet-Draft ICE July 2004

 If while in the GOOD state, the transaction resulting from the
 refresh timer times out or fails, the client moves into the BAD state
 and sets the retry timer. If, however, that transaction succeeds,
 the client stays in the GOOD state and resets the refresh timer.

 As the FSM operates throughout the call, candidates will move their
 states around. At any point in time, the client sends media packets
 (including RTCP) using one of the candidates in the GOOD state. It
 is RECOMMENDED that the one with highest priority be used. It
 another candidate should change state such that it moves into the
 GOOD state, and it has a higher priority, the client SHOULD switch to
 that candidate, but SHOULD do so after waiting a small period of time
 (10 seconds is RECOMMENDED) to prevent against flapping of candidates
 during periods of route flaps in the network.

 To send media to a candidate, the client sends media packets (whether
 they are RTP or RTCP or something else) to the remote transport
 address, from the sourceable transport address.

 If, for some reason, there was at least one candidate in the GOOD
 state, and due to an FSM transition, none of the candidates are in
 the GOOD state, the client SHOULD forcefully transition all of the
 candidates into the HANDSHAKE state in an attempt to rapidly
 reconnect. If none of them succeed, and all of the candidates enter
 the BAD state, the client SHOULD terminate the call and alert the
 user to the failure [[TODO: Need to work in some good congestion
 control here; in cases where timeouts happen due to network
 congestion this is probably too agressive]].

5.3.5 Receiving STUN Requests

 When a client receives a STUN request (presumably after
 disambiguating it from a media packet), it follows the logic
 described in this section.

 The client MUST follow the procedures defined in RFC 3489 and verify
 that the USERNAME attribute is known to the server. Here, this is
 done by taking the USERNAME attribute, and doing a prefix match
 against the "my user fragment" column in the candidate table. If it
 doesn't match any rows, the client generates a 432 response. If it
 matches multiple rows, the client checks the suffix of the username
 against the "user fragment" column. If it doesn't match any rows,

https://datatracker.ietf.org/doc/html/rfc3489

 the client generates a 432 response. If it does match rows, it will
 match those rows corresponding to the transport addresses that the
 peer could have sent this STUN request from.

 Assuming the USERNAME is valid, the client MUST generate a STUN
 response per RFC 3489.

Rosenberg Expires January 17, 2005 [Page 21]

https://datatracker.ietf.org/doc/html/rfc3489

Internet-Draft ICE July 2004

 Once the response is sent, the client examines the source IP and port
 where the request came from. It matches those against the remote
 transport addresses in the candidate table. If there is no match,
 this source address is itself another possible candidate. As with
 other candidates, it must be associated with a STUN username
 fragment, password and priority, all normally provided by the peer,
 along with sourceable transport addresses and their username
 fragments.

 How does the client obtain this other information? The suffix of the
 USERNAME is the key (literally). That suffix was already provided to
 the client in an initiate or accept message, and was used to populate
 the current candidate table. If it matches an existing value in the
 table, it means that the STUN request came from the same transport
 address as a previously advertised candidate; however, when it showed
 up at the client, its source IP address was different than the peer
 thought it would be. This will happen when a symmetric NAT exists
 between the clients. In this case, the source IP address and port of
 the STUN packet now become a viable candidate, since the client
 should be able to send messages back to it and reach its peer.

 However, this connectivity, like all other connectivity, needs to be
 verified. So, the client needs to find out the user fragment and
 password to use in STUN requests. To do that, it takes the suffix of
 the USERNAME in the STUN request, and looks it up in the "user frag"
 column of the table. If its a match, that is the user fragment
 needed as part of the candidate. The password is the value from that
 row. The sourceable transport address is also the value from that
 row. The priority is also copied from that row.

 This new candidate can then be verified by sending STUN requests to
 it, as described in Section 5.3.4.

Rosenberg Expires January 17, 2005 [Page 22]

Internet-Draft ICE July 2004

6. Running STUN on Derived Transport Addresses

 One of the seemingly bizarre operations done during the ICE
 processing is the transmission of a STUN request to a transport
 address which is obtained through TURN or STUN itself. This actually
 does work, and in fact, has extremely useful properties. The
 subsections below go through the detailed operations that would occur
 at each point to demonstrate correctness and the properties derived
 from it.

6.1 STUN on a TURN Derived Transport Address

 Consider a client A that is behind a NAT. It connects to a TURN
 server on the public side of the NAT. To do that, A binds to a local
 transport address, say 10.0.1.1:8866, and then sends a TURN request
 to the TURN server. The NAT translates the net-10 address to
 192.0.2.88:5063. Assume that the TURN server is running on 192.0.2.1
 and listening for TURN traffic on port 7764. The TURN server
 allocates a derived transport address 192.0.2.1:26524 to the client,
 and returns it in the TURN response. Remember that all traffic from
 the TURN server to the client is sent from 192.0.2.1:7764 to
 10.0.1.1:8866.

 Now, the client runs a STUN server on 10.0.1.1:8866, and advertises
 that its server actually runs on 192.0.2.1:26524. Another client, B,
 sends a STUN request to this server. It sends it from a local
 transport address, 192.0.2.77:1296. When it arrives at
 192.0.2.1:26524, the TURN server "locks down" outgoing traffic, so
 that data packets received from A are sent to 192.0.2.77:1296. The
 STUN request is then forwarded to the client, sent with a source
 address of 192.0.2.1:7764 and a destination address of
 192.0.2.88:5063. This passes through the NAT, which rewrites the
 source address to 10.0.1.1:8866. This arrives at A's STUN server.
 The server observes the source address of 192.0.2.1:7764, and
 generates a STUN response containing this value in the MAPPED-ADDRESS
 attribute. The STUN response is sent with a source address fo
 10.0.1.1:8866, and a destination of 192.0.2.1:7764. This arrives at
 the TURN server, which, because of the lock-down, sends the STUN
 response with a source address of 192.0.2.1:26524 and destination of
 192.0.2.77:1296, which is B's STUN client.

 Now, as far as B is concerned, it has obtained a new STUN derived
 transport address of 192.0.2.1:7764. And indeed, it has! STUN

 derived transport addresses are scoped to the session, so they can
 only be used by the peer in the session. Furthermore, that peer has
 to send requests from the socket on which the STUN server was
 running. In this case, A is the peer, and its STUN server was on
 10.0.1.1:8866. If it sends to 192.0.2.1:7764, the packet goes to the

Rosenberg Expires January 17, 2005 [Page 23]

Internet-Draft ICE July 2004

 TURN server, and due to lock-down, is forwarded to B, and
 specifically, is forwarded to the transport address B sent the STUN
 request from. Therefore, the address is indeed a valid STUN derived
 transport address.

 The benefit of this is that it allows two clients to share the same
 TURN server for media traffic in both directions. With "normal" TURN
 usage, both clients would obtain a derived address from their own
 TURN servers. The result is that, for a single call, there are two
 bindings allocated by each side from their respective servers, and
 all four are used. With ICE, that drops to two bindings allocated
 from a single server. Of course, all four bindings are allocated
 initially. However, once one of the clients begins receiving media
 on its STUN derived address, it can deallocate its TURN resources.

 [[TODO: Include a diagram that shows this pictorially.]]

6.2 STUN on a STUN Derived Transport Address

 Consider a client A that is behind a NAT. It connects to a STUN
 server on the public side of the NAT. To do that, A binds to a local
 transport address, say 10.0.1.1:8866, and then sends a STUN request
 to the STUN server. The NAT translates the net-10 address to
 192.0.2.88:5063. Assume that the STUN server is running on 192.0.2.1
 and listening for STUN traffic on port 3478, the default STUN port.
 The STUN server sees a source IP address of 192.0.2.88:5063, and
 returns that to the client in the STUN response. The NAT forwards
 the response to the client.

 Now, the client runs a STUN server on 10.0.1.1:8866, and advertises
 that its server actually runs on 192.0.2.88:5063. Another client, B,
 sends a STUN request to this address. It sends it from a local
 transport address, 192.0.2.77:1296. When it arrives at
 192.0.2.88:5063 (on the NAT), the NAT rewrites the source address to
 10.0.1.1:8866, assuming that it is of the full-cone variety [1], or
 is restricted, and the permission for 192.0.2.77:1296 is open. This
 arrives at A's STUN server. The server observes the source address
 of 192.0.2.77:1296, and generates a STUN response containing this
 value in the MAPPED-ADDRESS attribute. The STUN response is sent
 with a source address of 10.0.1.1:8866, and a destination of
 192.0.2.77:1296. This arrives at B's STUN client.

 Now, as far as B is concerned, it has obtained a new STUN derived
 transport address of 192.0.2.77:1296. Of course, this is the same
 address as the local transport address, and therefore this derived
 address is not used. However, had there been additonal NATs between
 B and A's NAT, B would end up seeing the binding allocated by that
 outermost NAT. The net result is that STUN requests sent to a STUN

Rosenberg Expires January 17, 2005 [Page 24]

Internet-Draft ICE July 2004

 derived address behave as normal STUN would. However, these STUN
 requests have the side-effect of creating permissions in the NATs
 which see those requests in the public to private direction. This
 turns out to be very useful for traversing restricted NATs.

Rosenberg Expires January 17, 2005 [Page 25]

Internet-Draft ICE July 2004

7. XML Schema for ICE Messages

 This section contains the XML schema used to define the initiate,
 accept, and modify messages. Any protocol that uses ICE needs to map
 the parameters defined here into its own messages.

 Note that STUN allows both the username and password to contain the
 space character. However, usernames and passwords used with ICE
 cannot contain the space.

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema targetNamespace="urn:ietf:params:xml:ns:ice"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="urn:ietf:params:xml:ns:ice"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd"/>
 <xs:element name="message" type="tns:message"/>
 <xs:complexType name="message">
 <xs:annotation>
 <xs:documentation>This is the root element, which holds a
 media-streams elements.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="media-streams" type="tns:media-streams"/>
 </xs:sequence>
 <xs:attribute name="type" type="tns:msg-type" use="required"/>
 </xs:complexType>
 <xs:complexType name="media-streams">
 <xs:sequence>
 <xs:element name="media-stream" minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>There are zero or more media stream
 elements. Each defines attributes for a specific media
 stream.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="default-address">
 <xs:annotation>
 <xs:documentation>The default address is used for
 sending media before connectivity has been
 verified.</xs:documentation>
 </xs:annotation>

 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="tns:rtp-info"/>

Rosenberg Expires January 17, 2005 [Page 26]

Internet-Draft ICE July 2004

 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:sequence>
 <xs:element name="alternate" minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>Each alternate is a
 possible point of contact.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="tns:transport-data">
 <xs:attribute name="preference" type="xs:double" use="required"/>
 <xs:attribute name="id" type="xs:string" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="msg-type">
 <xs:restriction base="xs:string">
 <xs:enumeration value="initiate"/>
 <xs:enumeration value="accept"/>
 <xs:enumeration value="modify"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="transport-data">
 <xs:sequence>
 <xs:element name="stun-user-fragment" type="xs:string"/>
 <xs:element name="stun-password" type="xs:string"/>
 <xs:element name="rtp-address" type="tns:transport-address"/>
 <xs:element name="rtcp-address" type="tns:transport-address"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="transport-address">
 <xs:sequence>
 <xs:element name="ip-address" type="xs:string"/>
 <xs:element name="port">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="1"/>

 <xs:maxInclusive value="65535"/>

Rosenberg Expires January 17, 2005 [Page 27]

Internet-Draft ICE July 2004

 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="rtp-info">
 <xs:sequence>
 <xs:element name="rtp-address" type="tns:transport-address"/>
 <xs:element name="rtcp-address" type="tns:transport-address"/>
 </xs:sequence>
 </xs:complexType>
 </xs:schema>

Rosenberg Expires January 17, 2005 [Page 28]

Internet-Draft ICE July 2004

8. Examples

 In the examples that follow, messages are labeled with "message name
 A,B" to mean a message from transport address A to B. For STUN
 Requests, this is followed by curly brackets enclosing the username
 and password. For STUN responses, this is followed by square
 brackets and the value of MAPPED ADDRESS.

8.1 Port Restricted

 This section shows a flow of two clients behind port restricted NAT
 talking to each other.

 A P.R. NAT STUN+TURN P.R. NAT B
 |(1) STUN Req P1,S+T | | | |
 |----------->| | | |
 | |(2) STUN Req U, S+T | |
 | |----------->| | |
 | |(3) STUN Res S+T,U [U] | |
 | |<-----------| | |
 |(4) STUN Res S+T,P1 [U] | | |
 |<-----------| | | |
 |(5) Intitiate {P1,unameA,passA,q=0.4} | |
 |{U,unameA,passA,q=0.3} | | |
 |-->|
 | | | |(6) STUN Req P2,S+T
 | | | |<-----------|
 | | |(7) STUN Req V, S+T |
 | | |<-----------| |
 | | |(8) STUN Res S+T,V [V] |
 | | |----------->| |
 | | | |(9) STUN Res S+T,P2 [V]
 | | | |----------->|
 |(10) Accept {P2,unameB,passB,q=0.4} | |
 |{V,unameB,passB,q=0.3} | | |
 |<--|
 |(11) STUN Req P1,P2 | | | |
 |(unameBunameA,passB) | | |
 |----------->| | | |
 | |Timeout | | |
 |(12) STUN Req P1,V | | |
 |(unameBunameA,passB) | | |
 |----------->| | | |

 | |(13) STUN Req U,V | |
 | |(unameBunameA,passB) | |
 | |------------------------>| |
 | |Permission open V->U | |

Rosenberg Expires January 17, 2005 [Page 29]

Internet-Draft ICE July 2004

 | | | |No success, Retries
continue
 | | | |(14) STUN Req P2,P1
 | | | |(unameAunameB,passA)
 | | | |<-----------|
 | | | |Timeout |
 | | | |(15) STUN Req P2,U
 | | | |(unameAunameB,passA)
 | | | |<-----------|
 | |(16) STUN Req V,U | |
 | |(unameAunameB,passA) | |
 | |<------------------------| |
 | | | |Permission open U->V
 | |Passes NAT! | | |
 |(17) STUN Req V,P1 | | |
 |(unameAunameB,passA) | | |
 |<-----------| | | |
 |(18) STUN Res P1,V [V] | | |
 |----------->| | | |
 | |(19) STUN Res U,V [V] | |
 | |------------------------>| |
 | | | |(20) STUN Res U,P2 [V]
 | | | |----------->|
 | |Retries continue | |
 |(21) STUN Req P1,V | | |
 |(unameBunameA,passB) | | |
 |----------->| | | |
 | |(22) STUN Req U,V | |
 | |(unameBunameA,passB) | |
 | |------------------------>| |
 | | | |Passes NAT! |
 | | | |(23) STUN Req U,P2
 | | | |(unameBunameA,passB)
 | | | |----------->|
 | | | |(24) STUN Res P2,U [U]
 | | | |<-----------|
 | |(25) STUN Res V,U [U] | |
 | |<------------------------| |
 |(26) STUN Res V,P1 [U] | | |
 |<-----------| | | |
 |(27) RTP P1,V | | |
 |----------->| | | |
 | |(28) RTP U,V| | |
 | |------------------------>| |
 | | | |Passes NAT! |
 | | | |(29) RTP U,P2
 | | | |----------->|

 | | | |(30) RTP P2,U
 | | | |<-----------|

Rosenberg Expires January 17, 2005 [Page 30]

Internet-Draft ICE July 2004

 | |(31) RTP V,U| | |
 | |<------------------------| |
 | |Passes NAT! | | |
 |(32) RTP V,P1 | | |
 |<-----------| | | |

Rosenberg Expires January 17, 2005 [Page 31]

Internet-Draft ICE July 2004

9. Mapping ICE into SIP

 In this section, we show how to map ICE into SIP. This requires
 extensions to SDP.

 A new SDP attribute is defined to support ICE. It is called "alt".
 The alt attribute MUST be present within a media block of the SDP.
 It contains an alternative IP address and port (or pair of IP
 addresses and ports in the case of RTP) that the recipient of the SDP
 can use instead of the ones indicated in the m and c lines. There
 MAY be multiple alt attributes in a media block. In that case, each
 of them MUST contain a different IP address and port (or a differing
 pair of IP address and ports in the case of RTP).

 The syntax of this attribute is:

 alt-attribute = "alt" ":" id SP qvalue SP
 username SP password SP
 unicast-address SP port [unicast-address SP port]
 ;qvalue from RFC 3261
 ;unicast-address, port from RFC 2327
 username = non-ws-string
 password = non-ws-string
 id = token
 derived-from = ":" / id

 With the addition of the alt attribute, the mapping of the ICE
 messages to SIP/SDP is straightforward. The ICE initiate message
 corresponds to a SIP message with an SDP offer. The ICE accept
 message corresponds to a SIP message with a SDP answer. The ICE
 modify message corresponds to a SIP INVITE or UPDATE with an offer,
 and the ICE modify accept message corresponds to an INVITE or UPDATE
 response with an answer.

 Each media stream element in an ICE message maps to a media block in
 the SDP. The default address maps to the m and c lines in the SDP.
 If the ICE message indicates an RTCP address and port that are not
 one higher than that of the RTP, the SDP RTCP attribute [2] MUST be
 used to convey them.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2327

 Each alternate element in an ICE message maps either to an alt
 attribute in the SDP, or a new media block, depending on the IP
 version of the alternate. For the highest priority IPv6 alternate,
 it is mapped into a separate media block, using the ANAT grouping
 [4]. Any additional IPv6 addresses are placed as alternates within
 this media block. For alternates that are IPv4 addresses, the alt
 attribute is used. The rtp-address element maps to the first

Rosenberg Expires January 17, 2005 [Page 32]

Internet-Draft ICE July 2004

 unicast-address and port components of the alt attribute. The
 rtcp-address element maps to the second unicast-address and port
 components of the alt attribute. Note that, if the RTCP address is
 identical to the RTP address, and the port is one higher, the second
 unicast-address and port MAY be omitted. The preference value from
 the alternate element is mapped to the q-value component of the alt
 attribute. The STUN user fragment and password elements map to the
 user fragment and password components of the alt attribute.

Rosenberg Expires January 17, 2005 [Page 33]

Internet-Draft ICE July 2004

10. Security Considerations

 ICE conveys the STUN username and password within its messages. If
 an eavesdropper should see the username and password, the worst they
 can do is send STUN requests to the host. Since STUN is a stateless
 protocol, the attacker can not alter the processing of the call or
 otherwise disrupt it. They could flood the server with
 BindingRequest packets. However, this would be no worse than if the
 attacker simply floods the host with any kind of packet.

 However, integrity protection of the username and password are more
 important. If an attacker is capable of intercepting the message and
 modifying the username or password, they could prevent connectivity
 from being established between peers, and therefore disrupt the call.
 Of course, if the attacker can intercept the message, there are many
 other ways in which they could do that, such as simply discarding the
 message. Injecting fake messages with incorect usernames and
 passwords can also disrupt a call, and does not require the
 compromise of an intermediate server. A similar attack is possible
 by modifying most of the ICE message attributes. To prevent these
 kinds of attacks, it is RECOMMENDED that the actual protocols the ICE
 maps to make use of security mechanisms that provide message
 integrity protection.

Rosenberg Expires January 17, 2005 [Page 34]

Internet-Draft ICE July 2004

11. IANA Considerations

 This specification defines one new media attribute: alt. Its syntax
 is defined in Section 9.

Rosenberg Expires January 17, 2005 [Page 35]

Internet-Draft ICE July 2004

12. IAB Considerations

 The IAB has studied the problem of "Unilateral Self Address Fixing",
 which is the general process by which a client attempts to determine
 its address in another realm on the other side of a NAT through a
 collaborative protocol reflection mechanism [11]. ICE is an example
 of a protocol that performs this type of function. Interestingly,
 the process for ICE is not unilateral, but bilateral, and the
 difference has a signficant impact on the issues raised by IAB. The
 IAB has mandated that any protocols developed for this purpose
 document a specific set of considerations. This section meets those
 requirements.

12.1 Problem Definition

 From RFC 3424 any UNSAF proposal must provide:
 Precise definition of a specific, limited-scope problem that is to
 be solved with the UNSAF proposal. A short term fix should not be
 generalized to solve other problems; this is why "short term
 fixes usually aren't".

 The specific problems being solved by ICE are:
 Provide a means for two peers to determine the set of transport
 addresses which can be used for communication.
 Provide a means for resolving many of the limitations of other
 UNSAF mechanisms by wrapping them in an additional layer of
 processing (the ICE methodology).
 Provide a means for a client to determine an address that is
 reachable by another peer with which it wishes to communicate.

12.2 Exit Strategy

 From RFC 3424, any UNSAF proposal must provide:
 Description of an exit strategy/transition plan. The better short
 term fixes are the ones that will naturally see less and less use
 as the appropriate technology is deployed.

 ICE itself doesn't easily get phased out. However, it is useful even
 in a globally connected Internet, to serve as a means for detecting
 whether a router failure has temporarily disrupted connectivity, for
 example. However, what ICE does is help phase out other UNSAF

https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3424

 mechanisms. ICE effectively selects amongst those mechanisms,
 prioritizing ones that are better, and deprioritizing ones that are
 worse. Local IPv6 addresses are always the most preferred. As NATs
 begin to dissipate as IPv6 is introduced, derived transport addresses
 from other UNSAF mechanisms simply never get used, because higher
 priority connectivity exists. Therefore, the servers get used less
 and less, and can eventually be remove when their usage goes to zero.

Rosenberg Expires January 17, 2005 [Page 36]

Internet-Draft ICE July 2004

 Indeed, ICE can assist in the transition from IPv4 to IPv6. It can
 be used to determine whether to use IPv6 or IPv4 when two dual-stack
 hosts communicate with SIP (IPv6 gets used). It can also allow a
 client in a v6 island to communicate with a v4 host on the other side
 of a 6to4 NAT, by allowing the v6 host to address-fix against the v4
 host, and in the process, obtain a v4 address which can be handed to
 the v4 client.

12.3 Brittleness Introduced by ICE

 From RFC3424, any UNSAF proposal must provide:
 Discussion of specific issues that may render systems more
 "brittle". For example, approaches that involve using data at
 multiple network layers create more dependencies, increase
 debugging challenges, and make it harder to transition.

 ICE actually removes brittleness from existing UNSAF mechanisms. In
 particular, traditional STUN (the usage described in RFC 3489) has
 several points of brittleness. One of them is the discovery process
 which requires a client to try and classify the type of NAT it is
 behind. This process is error-prone. With ICE, that discovery
 process is simply not used. Rather than unilaterally assessing the
 validity of the address, its validity is dynamically determined by
 measuring connectivity to a peer. The process of determining
 connectivity is very robust. The only potential problem is that
 bilaterally fixed addresses through STUN can expire if traffic does
 not keep them alive. However, that is substantially less brittleness
 than the STUN discovery mechanisms.

 Another point of brittleness in STUN, TURN, and any other unilateral
 mechanism is its absolute reliance on an additional server. ICE
 makes use of a server for allocating unilateral addresses, but allows
 clients to directly connect if possible. Therefore, in some cases,
 the failure of a STUN or TURN server would still allow for a call to
 progress when ICE is used.

 Another point of brittleness in traditional STUN is that it assumes
 that the STUN server is on the public Internet. Interestingly, with
 ICE, that is not necessary. There can be a multitude of STUN servers
 in a variety of address realms. ICE will discover the one that has
 provided a usable address.

https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3489

 The most troubling point of brittleness in traditional STUN is that
 it doesn't work in all network topologies. In cases where there is a
 shared NAT between each client and the STUN server, traditional STUN
 may not work. With ICE, that restriction can be lifted.

 Traditional STUN also introduces some security considerations.

Rosenberg Expires January 17, 2005 [Page 37]

Internet-Draft ICE July 2004

 Unfortunately, since ICE still uses network resident STUN servers,
 those security considerations still exist.

12.4 Requirements for a Long Term Solution

 From RFC 3424, any UNSAF proposal must provide:
 Identify requirements for longer term, sound technical solutions
 -- contribute to the process of finding the right longer term
 solution.

 Our conclusions from STUN remain unchanged. However, we feel ICE
 actually helps because we believe it can be part of the long term
 solution.

12.5 Issues with Existing NAPT Boxes

 From RFC 3424, any UNSAF proposal must provide:
 Discussion of the impact of the noted practical issues with
 existing, deployed NA[P]Ts and experience reports.

 A number of NAT boxes are now being deployed into the market which
 try and provide "generic" ALG functionality. These generic ALGs hunt
 for IP addresses, either in text or binary form within a packet, and
 rewrite them if they match a binding. This will interfere with
 proper operation of any UNSAF mechanism, including ICE.

https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3424

Rosenberg Expires January 17, 2005 [Page 38]

Internet-Draft ICE July 2004

13. Acknowledgements

 The authors would like to thank Douglas Otis and Francois Audet for
 their comments and input.

Rosenberg Expires January 17, 2005 [Page 39]

Internet-Draft ICE July 2004

14. References

14.1 Normative References

 [1] Rosenberg, J., Weinberger, J., Huitema, C. and R. Mahy, "STUN -
 Simple Traversal of User Datagram Protocol (UDP) Through Network
 Address Translators (NATs)", RFC 3489, March 2003.

 [2] Huitema, C., "Real Time Control Protocol (RTCP) attribute in
 Session Description Protocol (SDP)", RFC 3605, October 2003.

 [3] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [4] Camarillo, G., "The Alternative Network Address Types Semantics
 for the Session Description Protocol Grouping Framework",

draft-ietf-mmusic-anat-01 (work in progress), June 2004.

14.2 Informative References

 [5] Schulzrinne, H., Rao, A. and R. Lanphier, "Real Time Streaming
 Protocol (RTSP)", RFC 2326, April 1998.

 [6] Senie, D., "Network Address Translator (NAT)-Friendly
 Application Design Guidelines", RFC 3235, January 2002.

 [7] Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A. and A.
 Rayhan, "Middlebox communication architecture and framework",

RFC 3303, August 2002.

 [8] Borella, M., Lo, J., Grabelsky, D. and G. Montenegro, "Realm
 Specific IP: Framework", RFC 3102, October 2001.

 [9] Borella, M., Grabelsky, D., Lo, J. and K. Taniguchi, "Realm
 Specific IP: Protocol Specification", RFC 3103, October 2001.

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3605
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-anat-01
https://datatracker.ietf.org/doc/html/rfc2326
https://datatracker.ietf.org/doc/html/rfc3235
https://datatracker.ietf.org/doc/html/rfc3303
https://datatracker.ietf.org/doc/html/rfc3102
https://datatracker.ietf.org/doc/html/rfc3103

 [10] Yon, D., "Connection-Oriented Media Transport in the Session
 Description Protocol (SDP)", draft-ietf-mmusic-sdp-comedia-07
 (work in progress), June 2004.

 [11] Daigle, L. and IAB, "IAB Considerations for UNilateral
 Self-Address Fixing (UNSAF) Across Network Address
 Translation", RFC 3424, November 2002.

 [12] Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson,
 "RTP: A Transport Protocol for Real-Time Applications", RFC

3550, July 2003.

Rosenberg Expires January 17, 2005 [Page 40]

https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdp-comedia-07
https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3550

Internet-Draft ICE July 2004

 [13] Baugher, M., McGrew, D., Naslund, M., Carrara, E. and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)", RFC

3711, March 2004.

 [14] Carpenter, B. and K. Moore, "Connection of IPv6 Domains via
 IPv4 Clouds", RFC 3056, February 2001.

 [15] Huitema, C., "Teredo: Tunneling IPv6 over UDP through NATs",
draft-huitema-v6ops-teredo-02 (work in progress), June 2004.

 [16] Rosenberg, J., "Traversal Using Relay NAT (TURN)",
draft-rosenberg-midcom-turn-04 (work in progress), February

 2004.

Author's Address

 Jonathan Rosenberg
 dynamicsoft
 600 Lanidex Plaza
 Parsippany, NJ 07054
 US

 Phone: +1 973 952-5000
 EMail: jdrosen@dynamicsoft.com
 URI: http://www.jdrosen.net

https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc3056
https://datatracker.ietf.org/doc/html/draft-huitema-v6ops-teredo-02
https://datatracker.ietf.org/doc/html/draft-rosenberg-midcom-turn-04
http://www.jdrosen.net

Rosenberg Expires January 17, 2005 [Page 41]

Internet-Draft ICE July 2004

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Rosenberg Expires January 17, 2005 [Page 42]

