
MMUSIC J. Rosenberg
Internet-Draft Cisco Systems
Expires: April 9, 2007 October 6, 2006

Interactive Connectivity Establishment (ICE): A Methodology for Network
 Address Translator (NAT) Traversal for Offer/Answer Protocols

draft-ietf-mmusic-ice-11

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 9, 2007.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document describes a protocol for Network Address Translator
 (NAT) traversal for multimedia session signaling protocols based on
 the offer/answer model, such as the Session Initiation Protocol
 (SIP). This protocol is called Interactive Connectivity
 Establishment (ICE). ICE makes use of the Simple Traversal
 Underneath NAT (STUN) protocol, applying its binding discovery and
 relay usages, in addition to defining a new usage for checking
 connectivity between peers.

Rosenberg Expires April 9, 2007 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-ice-11
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft ICE October 2006

Table of Contents

1. Introduction . 4
2. Overview of ICE . 4
2.1. Gathering Candidate Addresses 6
2.2. Connectivity Checks 8
2.3. Sorting Candidates . 10
2.4. Frozen Candidates . 10
2.5. Security for Checks 11

3. Terminology . 11
4. Sending the Initial Offer 13
4.1. Gathering Candidates 13
4.2. Prioritizing Candidates 16
4.3. Choosing In-Use Candidates 18
4.4. Encoding the SDP . 18

5. Receiving the Initial Offer 20
5.1. Verifying ICE Support 20
5.2. Gathering Candidates 20
5.3. Prioritizing Candidates 21
5.4. Choosing In Use Candidates 21
5.5. Encoding the SDP . 21
5.6. Forming the Check Lists 21
5.7. Performing Periodic Checks 23

6. Receipt of the Initial Answer 24
6.1. Verifying ICE Support 24
6.2. Forming the Check List 24
6.3. Performing Periodic Checks 24

7. Connectivity Checks . 24
7.1. Applicability . 24
7.2. Client Discovery of Server 25
7.3. Server Determination of Usage 25
7.4. New Requests or Indications 25
7.5. New Attributes . 25
7.6. New Error Response Codes 25
7.7. Client Procedures . 25
7.7.1. Sending the Request 25
7.7.2. Processing the Response 26

7.8. Server Procedures . 27
7.9. Security Considerations for Connectivity Check 29

8. Completing the ICE Checks 29
9. Subsequent Offer/Answer Exchanges 30
9.1. Generating the Offer 30
9.2. Receiving the Offer and Generating an Answer 31
9.3. Updating the Check and Valid Lists 32

10. Keepalives . 33
11. Media Handling . 34
11.1. Sending Media . 34
11.2. Receiving Media . 35

Rosenberg Expires April 9, 2007 [Page 2]

Internet-Draft ICE October 2006

12. Usage with SIP . 35
12.1. Latency Guidelines . 35
12.2. Interactions with Forking 37
12.3. Interactions with Preconditions 37
12.4. Interactions with Third Party Call Control 38

13. Grammar . 38
14. Example . 40
15. Security Considerations 46
15.1. Attacks on Connectivity Checks 46
15.2. Attacks on Address Gathering 49
15.3. Attacks on the Offer/Answer Exchanges 49
15.4. Insider Attacks . 50
15.4.1. The Voice Hammer Attack 50
15.4.2. STUN Amplification Attack 50

16. IANA Considerations . 51
16.1. candidate Attribute 51
16.2. remote-candidates Attribute 51
16.3. ice-pwd Attribute . 52
16.4. ice-ufrag Attribute 52

17. IAB Considerations . 53
17.1. Problem Definition . 53
17.2. Exit Strategy . 53
17.3. Brittleness Introduced by ICE 54
17.4. Requirements for a Long Term Solution 55
17.5. Issues with Existing NAPT Boxes 55

18. Acknowledgements . 56
19. References . 56
19.1. Normative References 56
19.2. Informative References 57

Appendix A. Design Motivations 58
A.1. Applicability to Gateways and Servers 59
A.2. Pacing of STUN Transactions 60
A.3. Candidates with Multiple Bases 61
A.4. Purpose of the Translation 63
A.5. Importance of the STUN Username 63
A.6. The Candidate Pair Sequence Number Formula 64
A.7. The Frozen State . 65
A.8. The remote-candidates attribute 65
A.9. Why are Keepalives Needed? 66
A.10. Why Prefer Peer Reflexive Candidates? 67
A.11. Why Can't Offerers Send Media When a Pair Validates . . . 67

 Author's Address . 69
 Intellectual Property and Copyright Statements 70

Rosenberg Expires April 9, 2007 [Page 3]

Internet-Draft ICE October 2006

1. Introduction

RFC 3264 [4] defines a two-phase exchange of Session Description
 Protocol (SDP) messages [10] for the purposes of establishment of
 multimedia sessions. This offer/answer mechanism is used by
 protocols such as the Session Initiation Protocol (SIP) [3].

 Protocols using offer/answer are difficult to operate through Network
 Address Translators (NAT). Because their purpose is to establish a
 flow of media packets, they tend to carry IP addresses within their
 messages, which is known to be problematic through NAT [14]. The
 protocols also seek to create a media flow directly between
 participants, so that there is no application layer intermediary
 between them. This is done to reduce media latency, decrease packet
 loss, and reduce the operational costs of deploying the application.
 However, this is difficult to accomplish through NAT. A full
 treatment of the reasons for this is beyond the scope of this
 specification.

 Numerous solutions have been proposed for allowing these protocols to
 operate through NAT. These include Application Layer Gateways
 (ALGs), the Middlebox Control Protocol [15], Simple Traversal
 Underneath NAT (STUN) [13] and its revision [11], the STUN Relay
 Usage [12], and Realm Specific IP [17] [18] along with session
 description extensions needed to make them work, such as the Session
 Description Protocol (SDP) [10] attribute for the Real Time Control
 Protocol (RTCP) [2]. Unfortunately, these techniques all have pros
 and cons which make each one optimal in some network topologies, but
 a poor choice in others. The result is that administrators and
 implementors are making assumptions about the topologies of the
 networks in which their solutions will be deployed. This introduces
 complexity and brittleness into the system. What is needed is a
 single solution which is flexible enough to work well in all
 situations.

 This specification provides that solution for media streams
 established by signaling protocols based on the offer-answer model.
 It is called Interactive Connectivity Establishment, or ICE. ICE
 makes use of STUN and its relay extension, commonly called TURN, but
 uses them in a specific methodology which avoids many of the pitfalls
 of using any one alone.

2. Overview of ICE

 In a typical ICE deployment, we have two endpoints (known as agents
 in RFC 3264 terminology) which want to communicate. They are able to
 communicate indirectly via some signaling system such as SIP, by

https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3264

Rosenberg Expires April 9, 2007 [Page 4]

Internet-Draft ICE October 2006

 which they can perform an offer/answer exchange of SDP [4] messages.
 Note that ICE is not intended for NAT traversal for SIP, which is
 assumed to be provided via some other mechanism [31]. At the
 beginning of the ICE process, the agents are ignorant of their own
 topologies. In particular, they might or might not be behind a NAT
 (or multiple tiers of NATs). ICE allows the agents to discover
 enough information about their topologies to find a path or paths by
 which they can communicate.

 Figure Figure 1 shows a typical environment for ICE deployment. The
 two endpoints are labelled L and R (for left and right, which helps
 visualize call flows). Both L and R are behind NATs -- though as
 mentioned before, they don't know that. The type of NAT and its
 properties are also unknown. Agents L and R are capable of engaging
 in an offer/answer exchange by which they can exchange SDP messages,
 whose purpose is to set up a media session between L and R.
 Typically, this exchange will occur through a SIP server.

 In addition to the agents, a SIP server and NATs, ICE is typically
 used in concert with STUN servers in the network. Each agent can
 have its own STUN server, or they can be the same.

 +-------+
 | SIP |
 +-------+ | Srvr | +-------+
 | STUN | | | | STUN |
 | Srvr | +-------+ | Srvr |
 | | / \ | |
 +-------+ / \ +-------+
 / \
 / \
 / \
 / \
 / <- Signalling -> \
 / \
 / \
 +--------+ +--------+
 | NAT | | NAT |
 +--------+ +--------+
 / \
 / \
 / \
 +-------+ +-------+
 | Agent | | Agent |
 | L | | R |
 | | | |

Rosenberg Expires April 9, 2007 [Page 5]

Internet-Draft ICE October 2006

 +-------+ +-------+

 Figure 1

 The basic idea behind ICE is as follows: each agent has a variety of
 candidate transport addresses it could use to communicate with the
 other agent. These might include:

 o It's directly attached network interface (or interfaces in the
 case of a multihomed machine

 o A translated address on the public side of a NAT (a "server
 reflexive" address)

 o The address of a media relay the agent is using.

 Potentially, any of L's candidate transport addresses can be used to
 communicate with any of R's transport addresses. In practice,
 however, many combinations will not work. For instance, if L and R
 are both behind NATs then their directly interface addresses are
 unlikely to be able to communicate directly (this is why ICE is
 needed, after all!). The purpose of ICE is to discover which pairs
 of addresses will work. The way that ICE does this is to
 systematically try all possible pairs (in a carefully sorted order)
 until it finds one or more that works.

2.1. Gathering Candidate Addresses

 In order to execute ICE, an agent has to identify all of its address
 candidates. Naturally, one viable candidate is one obtained directly
 from a local interface the client has towards the network. Such a
 candidate is called a HOST CANDIDATE. The local interface could be
 one on a local layer 2 network technology, such as ethernet or WiFi,
 or it could be one that is obtained through a tunnel mechanism, such
 as a Virtual Private Network (VPN) or Mobile IP (MIP). In all cases,
 these appear to the agent as a local interface from which ports (and
 thus a candidate) can be allocated.

 If an agent is multihomed, it can obtain a candidate from each
 interface. Depending on the location of the peer on the IP network
 relative to the agent, the agent may be reachable by the peer through
 one of those interfaces, or through another. Consider, for example,
 an agent which has a local interface to a private net 10 network, and
 also to the public Internet. A candidate from the net10 interface
 will be directly reachable when communicating with a peer on the same
 private net 10 network, while a candidate from the public interface
 will be directly reachable when communicating with a peer on the
 public Internet. Rather than trying to guess which interface will

Rosenberg Expires April 9, 2007 [Page 6]

Internet-Draft ICE October 2006

 work prior to sending an offer, the offering agent includes both
 candidates in its offer.

 Once the agent has obtained host candidates, it uses STUN to obtain
 additional candidates. These come in two flavors: translated
 addresses on the public side of a NAT (SERVER REFLEXIVE CANDIDATES)
 and addresses of media relays (RELAYED CANDIDATES). The relationship
 of these candidates to the host candidate is shown in Figure 2. Both
 types of candidates are discovered using STUN.

 To Internet

 |
 |
 | /------------ Relayed
 | / Candidate
 +--------+
 | |
 | STUN |
 | Server |
 | |
 +--------+
 |
 |
 | /------------ Server
 |/ Reflexive
 +------------+ Candidate
 | NAT |
 +------------+
 |
 | /------------ Host
 |/ Candidate
 +--------+
 | |
 | Agent |
 | |
 +--------+

 Figure 2

 To find a server reflexive candidate, the agent sends a STUN Binding
 Request, using the Binding Discovery Usage [11] from each host
 candidate, to its STUN server. (It is assumed that the address of
 the STUN server is configured, or learned in some way.) When the
 agents sends the Binding Request, the NAT (assuming there is one)
 will allocate a binding, mapping this server reflexive candidate to
 the host candidate. Outgoing packets sent from the host candidate

Rosenberg Expires April 9, 2007 [Page 7]

Internet-Draft ICE October 2006

 will be translated by the NAT to the server reflexive candidate.
 Incoming packets sent to the server relexive candidate will be
 translated by the NAT to the host candidate and forwarded to the
 agent. We call the host candidate associated with a given server
 reflexive candidate the BASE.

Note

 "Base" refers to the address you'd send from for a particular
 candidate. Thus, as a degenerate case host candidates also have a
 base, but it's the same as the host candidate.

 When there are multiple NATs between the agent and the STUN server,
 the STUN request will create a binding on each NAT, but only the
 outermost server reflexive candidate will be discovered by the agent.
 If the agent is not behind a NAT, then the base candidate will be the
 same as the server reflexive candidate and the server reflexive
 candidate can be ignored.

 The final type of candidate is a RELAYED candidate. The STUN Relay
 Usage [12] allows a STUN server to act as a media relay, forwarding
 traffic between L and R. In order to send traffic to L, R sends
 traffic to the media relay which forwards it to L and vice versa.
 The same thing happens in the other direction.

 Traffic from L to R has its addresses rewritten twice: first by the
 NAT and second by the STUN relay server. Thus, the address that R
 knows about and the one that it wants to send to is the one on the
 STUN relay server. This address is the final kind of candidate,
 which we call a RELAYED CANDIDATE.

2.2. Connectivity Checks

 Once L has gathered all of its candidates, it orders them highest to
 lowest priority and sends them to R over the signalling channel. The
 candidates are carried in attributes in the SDP offer. When R
 receives the offer, it performs the same gathering process and
 responds with its own list of candidates. At the end of this
 process, each agent has a complete list of both its candidates and
 its peer's candidates and is ready to perform connectivity checks by
 pairing up the candidates to see which pair works.

 The basic principle of the connectivity checks is simple:

 1. Sort the candidate pairs in priority order.

 2. Send checks on each candidate pair in priority order.

Rosenberg Expires April 9, 2007 [Page 8]

Internet-Draft ICE October 2006

 3. Acknowledge checks received from the other agent.

 A complete connectivity check for a single candidate pair is a simple
 4-message handshake:

 L R
 - -
 STUN request -> \ L's
 <- STUN response / check

 <- STUN request \ R's
 STUN response -> / check

 Figure 3

 As an optimization, as soon as R gets L's check message he
 immediately sends his own check message to L on the same candidate
 pair. This accelerates the process of finding a valid candidate.

 At the end of this handshake, both L and R know that they can send
 (and receive) messages end-to-end in both directions. Note that as
 soon as R receives L's STUN response it knows that the R->L path
 works and it can start sending media on that path right away, as
 shown below. This allows for 'early media' to flow as fast as
 possible:

 L R
 - -
 STUN request -> \ L's
 <- STUN response / check

 <- STUN request \ R's
 STUN response -> / check
 <- RTP Data

 Figure 4

 Once any connectivity check for a candidate for a given media
 component succeeds, ICE uses that candidate and immediately abandons
 all other connectivity checks for that component. Note that due to
 race conditions and packet loss, this may mean that the "best"
 candidate isn't selected, but it does guarantee the selection of a
 candidate that works, and because of the sorting process it will
 generally be one of the most preferred ones.

Rosenberg Expires April 9, 2007 [Page 9]

Internet-Draft ICE October 2006

2.3. Sorting Candidates

 Because the algorithm above searches all candidate pairs, if a
 working pair exists it will eventually find it no matter what order
 the candidates are tried in. In order to produce faster (and better)
 results, the candidates are sorted in a specified order. The
 algorithm is described in Section 4.2 but follows two general
 principles:

 o Each agent gives its candidates a numeric priority which is sent
 along with the candidate to the peer

 o The local and remote priorities are combined so that each agent
 has the same ordering for the candidate pairs.

 The second property is important for getting ICE to work when there
 are NATs in front of A and B. Frequently, NATs will not allow packets
 in from a host until the agent behind the NAT has sent a packet
 towards that host. Consequently, ICE checks in each direction will
 not succeed until both sides have sent a check through their
 respective NATs.

 In general the priority algorithm is designed so that candidates of
 similar type get similar priorities and so that more direct routes
 are favored over indirect ones. Within those guidelines, however,
 agents have a fair amount of discretion about how to tune their
 algorithms.

2.4. Frozen Candidates

 The previous description only addresses the case where the agents
 wish to establish a single media component--i.e., a single flow with
 a single host-port quartet. However, in many cases (in particular
 RTP and RTCP) the agents actually need to establish connectivity for
 more than one flow.

 The naive way to attack this problem would be to simply do
 independent ICE exchanges for each media component. This is
 obviously inefficient because the network properties are likely to be
 very similar for each component (especially because RTP and RTCP are
 typically run on adjacent ports). Thus, it should be possible to
 leverage information from one media component in order to determine
 the best candidates for another. ICE does this with a mechanism
 called "frozen candidates."

 The basic principle behind frozen candidates is that initially only
 the candidates for a single media component are tested. The other
 media components are marked "frozen". When the connectivity checks

Rosenberg Expires April 9, 2007 [Page 10]

Internet-Draft ICE October 2006

 for the first component succeed, the corresponding candidates for the
 other components are unfrozen and checked immediately. This avoids
 repeated checking of components which are superficially more
 attractive but in fact are likely to fail.

 While we've described "frozen" here as a separate mechanism for
 expository purposes, in fact it is an integral part of ICE and the
 the ICE prioritization algorithm automatically ensures that the right
 candidates are unfrozen and checked in the right order.

2.5. Security for Checks

 Because ICE is used to discover which addresses can be used to send
 media between two agents, it is important to ensure that the process
 cannot be hijacked to send media to the wrong location. Each STUN
 connectivity check is covered by a message authentication code (MAC)
 computed using a key exchanged in the signalling channel. This MAC
 provides message integrity and data origin authentication, thus
 stopping an attacker from forging or modifying connectivity check
 messages. The MAC also aids in disambiguating ICE exchanges from
 forked calls.

3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [1].

 This specification makes use of the following terminology:

 Agent: As defined in RFC 3264, an agent is the protocol
 implementation involved in the offer/answer exchange. There are
 two agents involved in an offer/answer exchange.

 Peer: From the perspective of one of the agents in a session, its
 peer is the other agent. Specifically, from the perspective of
 the offerer, the peer is the answerer. From the perspective of
 the answerer, the peer is the offerer.

 Transport Address: The combination of an IP address and port.

 Candidate: A transport address that is to be tested by ICE procedures
 in order to determine its suitability for usage for receipt of
 media.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3264

Rosenberg Expires April 9, 2007 [Page 11]

Internet-Draft ICE October 2006

 Component: A component is a single transport address that is used to
 support a media stream. For media streams based on RTP, there are
 two components per media stream - one for RTP, and one for RTCP.

 Host Candidate: A candidate obtained by binding to a specific port
 from an interface on the host. This includes both physical
 interfaces and logical ones, such as ones obtained through Virtual
 Private Networks (VPNs) and Realm Specific IP (RSIP) [17] (which
 lives at the operating system level).

 Server Reflexive Candidate: A candidate obtained by sending a STUN
 request from a host candidate to a STUN server, distinct from the
 peer, whose address is configured or learned by the client prior
 to an offer/answer exchange.

 Peer Reflexive Candidate: A candidate obtained by sending a STUN
 request from a host candidate to the STUN server running on a
 peer's candidate.

 Relayed Candidate: A candidate obtained by sending a STUN Allocate
 request from a host candidate to a STUN server. The relayed
 candidate is resident on the STUN server, and the STUN server
 relays packets back towards the agent.

 Translation: The translation of a relayed candidate is the transport
 address that the relay will forward a packet to, when one is
 received at the relayed candidate. For relayed candidates learned
 through the STUN Allocate request, the translation of the relayed
 candidate is the server reflexive candidate returned by the
 Allocate response.

 Base: The base of a server reflexive candidate is the host candidate
 from which it was derived. A host candidate is also said to have
 a base, equal to that candidate itself. Similarly, the base of a
 relayed candidate is that candidate itself.

 Foundation: Each candidate has a foundation, which is an identifier
 that is distinct for two candidates that have different types,
 different interface IP addresses for their base, and different IP
 addresses for their STUN servers. Two candidates have the same
 foundation when they are of the same type, their bases have the
 same IP address, and, for server reflexive or relayed candidates,
 they come from the same STUN server. Foundations are used to
 correlate candidates, so that when one candidate is found to be
 valid, candidates sharing the same foundation can be tested next,
 as they are likely to also be valid.

Rosenberg Expires April 9, 2007 [Page 12]

Internet-Draft ICE October 2006

 Local Candidate: A candidate that an agent has obtained and included
 in an offer or answer it sent.

 Remote Candidate: A candidate that an agent received in an offer or
 answer from its peer.

 In-Use Candidate: A candidate is in-use when it appears in the m/c-
 line of an active media stream.

 Candidate Pair: A pairing containing a local candidate and a remote
 candidate.

 Check: A candidate pair where the local candidate is a transport
 address from which an agent can send a STUN connectivity check.

 Check List: An ordered set of STUN checks that an agent is to
 generate towards a peer.

 Periodic Check: A connectivity check generated by an agent as a
 consequence of a timer that fires periodically, instructing it to
 send a check.

 Triggered Check: A connectivity check generated as a consequence of
 the receipt of a connectivity check from the peer.

 Valid List: An ordered set of candidate pairs that have been
 validated by a successful STUN transaction.

4. Sending the Initial Offer

 In order to send the initial offer in an offer/answer exchange, an
 agent must gather candidates, priorize them, choose ones for
 inclusion in the m/c-line, and then formulate and send the SDP. Each
 of these steps is described in the subsections below.

4.1. Gathering Candidates

 An agent gathers candidates when it believes that communications is
 imminent. An offerer can do this based on a user interface cue, or
 based on an explicit request to initiate a session. Every candidate
 is a transport address. It also has a type and a base. Three types
 are defined and gathered by this specification - host candidates,
 server reflexive candidates, and relayed candidates. The base of a
 candidate is the candidate that an agent must send from when using
 that candidate.

 The first step is to gather host candidates. Host candidates are

Rosenberg Expires April 9, 2007 [Page 13]

Internet-Draft ICE October 2006

 obtained by binding to ports (typically ephemeral) on an interface
 (physical or virtual, including VPN interfaces) on the host. The
 process for gathering host candidates depends on the transport
 protocol. Procedures are specified here for UDP.

 For each UDP media stream the agent wishes to use, the agent SHOULD
 obtain a candidate for each component of the media stream on each
 interface that the host has. It obtains each candidate by binding to
 a UDP port on the specific interface. A host candidate (and indeed
 every candidate) is always associated with a specific component for
 which it is a candidate. Each component has an ID assigned to it,
 called the component ID. For RTP-based media streams, the RTP itself
 has a component ID of 1, and RTCP a component ID of 2. If an agent
 is using RTCP it MUST obtain a candidate for it. If an agent is
 using both RTP and RTCP, it would end up with 2*K host candidates if
 an agent has K interfaces.

 The base for each host candidate is set to the candidate itself.

 Once the agent has obtained host candidates, it obtains server
 reflexive and relayed candidates. The process for gathering server
 reflexive and relayed candidates depends on the transport protocol.
 Procedures are specified here for UDP.

 Agents which serve end users directly, such softphones, hardphones,
 terminal adapters and so on, SHOULD obtain relayed candidates and
 MUST obtain server reflexive candidates. The requirement to obtain
 relayed candidates is at SHOULD strength to allow for provider
 variation. If they are not used, it is RECOMMENDED that it be
 implemented and just disabled through configuration, so that it can
 re-enabled through configuration if conditions change in the future.
 Agents which represent network servers under the control of a service
 provider, such as gateways to the telephone network, media servers,
 or conferencing servers that are targeted at deployment only in
 networks with public IP addresses MAY skip obtaining server reflexive
 and relayed candidates.

 The agent next pairs each host candidate with the STUN server with
 which it is configured or has discovered by some means. This
 specification only considers usage of a single STUN server. Every Ta
 seconds, the agent chooses another such pair (the order is
 inconsequential), and sends a STUN request to the server from that
 host candidate. If the agent is using both relayed and server
 reflexive candidates, this request MUST be a STUN Allocate request
 from the relay usage [12]. If the agent is using only server
 reflexive candidates, the request MUST be a STUN Binding request
 using the binding discovery usage [11].

Rosenberg Expires April 9, 2007 [Page 14]

Internet-Draft ICE October 2006

 The value of Ta SHOULD be configurable, and SHOULD have a default of
 50ms. Note that this pacing applies only to starting STUN
 transactions with source and destination transport addresses (i.e.,
 the host candidate and STUN server respectively) for which a STUN
 transaction has not previously been sent. Consequently,
 retransmissions of a STUN request are governed entirely by the
 retransmission rules defined in [11]. Similarly, retries of a
 request due to recoverable errors (such as an authentication
 challenge) happen immediately and are not paced by timer Ta. Because
 of this pacing, it will take a certain amount of time to obtain all
 of the server reflexive and relayed candidates. Implementations
 should be aware of the time required to do this, and if the
 application requires a time budget, limit the amount of candidates
 which are gathered.

 An Allocate Response will provide the client with a server reflexive
 candidate (obtained from the mapped address) and a relayed candidate
 in the RELAY-ADDRESS attribute. A Binding Response will provide the
 client with a only server reflexive candidate (also obtained from the
 mapped address). The base of the server reflexive candidate is the
 host candidate from which the Allocate or Binding request was sent.
 The base of a relayed candidate is that candidate itself. A server
 reflexive candidate obtained from an Allocate response is the called
 the "translation" of the relayed candidate obtained from the same
 response. The agent will need to remember the translation for the
 relayed candidate, since it is placed into the SDP. If a relayed
 candidate is identical to a host candidate (which can happen in rare
 cases), the relayed candidate MUST be discarded. Proper operation of
 ICE depends on each base being unique.

 Next, redundant candidates are eliminated. A candidate is redundant
 if its transport address equals another candidate, and its base
 equals the base of that other candidate. Note that two candidates
 can have the same transport address yet have different bases, and
 these would not be considered redundant.

 Finally, each candidate is assigned a foundation. The foundation is
 an identifier, scoped within a session. Two candidates MUST have the
 same foundation ID when they are of the same type (host, relayed,
 server reflexive, peer reflexive or relayed), their bases have the
 same IP address (the ports can be different), and, for reflexive and
 relayed candidates, the STUN servers used to obtain them have the
 same IP address. Similarly, two candidates MUST have different
 foundations if their types are different, their bases have different
 IP addresses, or the STUN servers used to obtain them have different
 IP addresses.

Rosenberg Expires April 9, 2007 [Page 15]

Internet-Draft ICE October 2006

4.2. Prioritizing Candidates

 The prioritization process results in the assignment of a priority to
 each candidate. An agent does this by determining a preference for
 each type of candidate (server reflexive, peer reflexive, relayed and
 host), and, when the agent is multihomed, choosing a preference for
 its interfaces. These two preferences are then combined to compute
 the priority for a candidate. That priority MUST be computed using
 the following formula:

 priority = (2^24)*(type preference) +
 (2^8)*(local preference) +
 (2^0)*(256 - component ID)

 The type preference MUST be an integer from 0 to 126 inclusive, and
 represents the preference for the type of the candidate (where the
 types are local, server reflexive, peer reflexive and relayed). A
 126 is the highest preference, and a 0 is the lowest. Setting the
 value to a 0 means that candidates of this type will only be used as
 a last resort. The type preference MUST be identical for all
 candidates of the same type and MUST be different for candidates of
 different types. The type preference for peer reflexive candidates
 MUST be higher than that of server reflexive candidates. Note that
 candidates gathered based on the procedures of Section 4.1 will never
 be peer reflexive candidates; candidates of these type are learned
 from the STUN connectivity checks performed by ICE. The component ID
 is the component ID for the candidate, and MUST be between 1 and 256
 inclusive. The local preference MUST be an integer from 0 to 65535
 inclusive. It represents a preference for the particular interface
 from which the candidate was obtained, in cases where an agent is
 multihomed. 65535 represents the highest preference, and a zero, the
 lowest. When there is only a single interface, this value SHOULD be
 set to 65535. Generally speaking, if there are multiple candidates
 for a particular component for a particular media stream which have
 the same type, the local preference MUST be unique for each one. In
 this specification, this only happens for multi-homed hosts.

 These rules guarantee that there is a unique priority for each
 candidate. This priority will be used by ICE to determine the order
 of the connectivity checks and the relative preference for
 candidates. Consequently, what follows are some guidelines for
 selection of these values.

 One criteria for selection of the type and local preference values is
 the use of an intermediary. That is, if media is sent to that
 candidate, will the media first transit an intermediate server before

Rosenberg Expires April 9, 2007 [Page 16]

Internet-Draft ICE October 2006

 being received. Relayed candidates are clearly one type of
 candidates that involve an intermediary. Another are host candidates
 obtained from a VPN interface. When media is transited through an
 intermediary, it can increase the latency between transmission and
 reception. It can increase the packet losses, because of the
 additional router hops that may be taken. It may increase the cost
 of providing service, since media will be routed in and right back
 out of an intermediary run by the provider. If these concerns are
 important, the type preference for relayed candidates can be set
 lower than the type preference for reflexive and host candidates.
 Indeed, it is RECOMMENDED that in this case, host candidates have a
 type preference of 126, server reflexive candidates have a type
 preference of 100, peer reflexive have a type prefence of 110, and
 relayed candidates have a type preference of zero. Furthermore, if
 an agent is multi-homed and has multiple interfaces, the local
 preference for host candidates from a VPN interface SHOULD have a
 priority of 0.

 Another criteria for selection of preferences is IP address family.
 ICE works with both IPv4 and IPv6. It therefore provides a
 transition mechanism that allows dual-stack hosts to prefer
 connectivity over IPv6, but to fall back to IPv4 in case the v6
 networks are disconnected (due, for example, to a failure in a 6to4
 relay) [22]. It can also help with hosts that have both a native
 IPv6 address and a 6to4 address. In such a case, lower local
 preferences could be assigned to the v6 interface, followed by the
 6to4 interfaces, followed by the v4 interfaces. This allows a site
 to obtain and begin using native v6 addresses immediately, yet still
 fallback to 6to4 addresses when communicating with agents in other
 sites that do not yet have native v6 connectivity.

 Another criteria for selecting preferences is security. If a user is
 a telecommuter, and therefore connected to their corporate network
 and a local home network, they may prefer their voice traffic to be
 routed over the VPN in order to keep it on the corporate network when
 communicating within the enterprise, but use the local network when
 communicating with users outside of the enterprise. In such a case,
 a VPN interface would have a higher local preference than any other
 interfaces.

 Another criteria for selecting preferences is topological awareness.
 This is most useful for candidates that make use of relays. In those
 cases, if an agent has preconfigured or dynamically discovered
 knowledge of the topological proximity of the relays to itself, it
 can use that to assign higher local preferences to candidates
 obtained from closer relays.

Rosenberg Expires April 9, 2007 [Page 17]

Internet-Draft ICE October 2006

4.3. Choosing In-Use Candidates

 A candidate is said to be "in-use" if it appears in the m/c-line of
 an offer or answer. When communicating with an ICE peer, being in-
 use implies that, should these candidates be selected by the ICE
 algorithm, bidirectional media can flow and the candidates can be
 used. If a candidate is selected by ICE but is not in-use, only
 unidirectional media can flow and only for a brief time; the
 candidate must be made in-use through an updated offer/answer
 exchange. When communicating with a peer that is not ICE-aware, the
 in-use candidates will be used exclusively for the exchange of media,
 as defined in normal offer/answer procedures.

 An agent MUST choose a set of candidates, one for each component of
 each active media stream, to be in-use. A media stream is active if
 it does not contain the a=inactive SDP attribute.

 It is RECOMMENDED that in-use candidates be chosen based on the
 likelihood of those candidates to work with the peer that is being
 contacted. Unfortunately, it is difficult to ascertain which
 candidates that might be. As an example, consider a user within an
 enterprise. To reach non-ICE capable agents within the enterprise,
 host candidates have to be used, since the enterprise policies may
 prevent communication between elements using a relay on the public
 network. However, when communicating to peers outside of the
 enterprise, relayed candidates from a publically accessible STUN
 server are needed.

 Indeed, the difficulty in picking just one transport address that
 will work is the whole problem that motivated the development of this
 specification in the first place. As such, it is RECOMMENDED that
 relayed candidates be selected to be in-use. Furthermore, ICE is
 only truly effective when it is supported on both sides of the
 session. It is therefore most prudent to deploy it to close-knit
 communities as a whole, rather than piecemeal. In the example above,
 this would mean that ICE would ideally be deployed completely within
 the enterprise, rather than just to parts of it.

4.4. Encoding the SDP

 The agent includes a single a=candidate media level attribute in the
 SDP for each candidate for that media stream. The a=candidate
 attribute contains the IP address, port and transport protocol for
 that candidate. A Fully Qualified Domain Name (FQDN) for a host MAY
 be used in place of a unicast address. In that case, when receiving
 an offer or answer containing an FQDN in an a=candidate attribute,
 the FQDN is looked up in the DNS using an A or AAAA record, and the
 resulting IP address is used for the remainder of ICE processing.

Rosenberg Expires April 9, 2007 [Page 18]

Internet-Draft ICE October 2006

 The candidate attribute also includes the component ID for that
 candidate. For media streams based on RTP, candidates for the actual
 RTP media MUST have a component ID of 1, and candidates for RTCP MUST
 have a component ID of 2. Other types of media streams which require
 multiple components MUST develop specifications which define the
 mapping of components to component IDs, and these component IDs MUST
 be between 1 and 256.

 The candidate attribute also includes the priority, which is the
 value determined for the candidate as described in Section 4.2, and
 the foundation, which is the value determined for the candidate as
 described in Section 4.1. The agent SHOULD include a type for each
 candidate by populating the candidate-types production with the
 appropriate value - "host" for host candidates, "srflx" for server
 reflexive candidates, "prflx" for peer reflexive candidates (though
 these never appear in an initial offer/answer exchange), and "relay"
 for relayed candidates. The related address MUST NOT be included if
 a type was not included. If a type was included, the related address
 SHOULD be present for server reflexive, peer reflexive and relayed
 candidates. If a candidate is server or peer reflexive, the related
 address is equal to the base for that server or peer reflexive
 candidate. If the candidate is relayed, the related address is equal
 to the translation of the relayed address. If the candidiate is a
 host candidate, there is no related address and the rel-addr
 production MUST be omitted.

 STUN connectivity checks between agents make use of a short term
 credential that is exchanged in the offer/answer process. The
 username part of this credential is formed by concatenating a
 username fragment from each agent, separated by a colon. Each agent
 also provides a password, used to compute the message integrity for
 requests it receives. As such, an SDP MUST contain the ice-ufrag and
 ice-pwd attributes, containing the username fragment and password
 respectively. These can be either session or media level attributes,
 and thus common across all candidates for all media streams, or all
 candidates for a particular media stream, respectively. However, if
 two media streams have identical ice-ufrag's, they MUST have
 identical ice-pwd's. The ice-ufrag and ice-pwd attributes MUST be
 chosen randomly at the beginning of a session. The ice-ufrag
 attribute MUST contain at least 24 bits of randomness, and the ice-
 pwd attribute MUST contain at least 128 bits of randomness. This
 means that the ice-ufrag attribute will be at least 4 characters
 long, and the ice-pwd at least 22 characters long, since the grammar
 for these attributes allows for 6 bits of randomness per character.
 The attributes MAY be longer than 4 and 21 characters respectively,
 of course.

 The m/c-line is populated with the candidates that are in-use. For

Rosenberg Expires April 9, 2007 [Page 19]

Internet-Draft ICE October 2006

 streams based on RTP, this is done by placing the RTP candidate into
 the m and c lines respectively. If the agent is utilizing RTCP, it
 MUST encode the RTCP candidate into the m/c-line using the a=rtcp
 attribute as defined in RFC 3605 [2]. If RTCP is not in use, the
 agent MUST signal that using b=RS:0 and b=RR:0 as defined in RFC 3556
 [5].

 There MUST be a candidate attribute for each component of the media
 stream in the m/c-line.

 Once an offer or answer are sent, an agent MUST be prepared to
 receive both STUN and media packets on each candidate. As discussed
 in Section 11.1, media packets can be sent to a candidate prior to
 its appearence in the m/c-line.

5. Receiving the Initial Offer

 When an agent receives an initial offer, it will check if the offeror
 supports ICE, gather candidates, prioritize them, choose one for in-
 use, encode and send an answer, and then form the check lists and
 begin connectivity checks.

5.1. Verifying ICE Support

 The agent will proceed with the ICE procedures defined in this
 specification if the following are both true:

 o There is at least one a=candidate attribute for each media stream
 in the SDP it just received.

 o For each media stream, at least one of the candidates is a match
 for its respective in-use component in the m/c-line.

 If both of these conditions are not met, the agent MUST process the
 SDP based on normal RFC 3264 procedures, without using any of the ICE
 mechanisms described in the remainder of this specification, with the
 exception of Section 10, which describes keepalive procedures.

5.2. Gathering Candidates

 The process for gathering candidates at the answerer is identical to
 the process for the offerer as described in Section 4.1. It is
 RECOMMENDED that this process begin immediately on receipt of the
 offer, prior to user acceptance of a session. Such gathering MAY
 even be done pre-emptively when an agent starts.

https://datatracker.ietf.org/doc/html/rfc3605
https://datatracker.ietf.org/doc/html/rfc3556
https://datatracker.ietf.org/doc/html/rfc3264

Rosenberg Expires April 9, 2007 [Page 20]

Internet-Draft ICE October 2006

5.3. Prioritizing Candidates

 The process for prioritizing candidates at the answerer is identical
 to the process followed by the offerer, as described in Section 4.2.

5.4. Choosing In Use Candidates

 The process for selecting in-use candidates at the answerer is
 identical to the process followed by the offerer, as described in

Section 4.3.

5.5. Encoding the SDP

 The process for encoding the SDP at the answerer is identical to the
 process followed by the offerer, as described in Section 4.4.

5.6. Forming the Check Lists

 Next, the agent forms the check lists. There is one check list per
 in-use media stream resulting from the offer/answer exchange. A
 media stream is in-use as long as its port is non-zero (which is used
 in RFC 3264 to reject a media stream). Each check list is a sequence
 of STUN connectivity checks that are performed by the agent. To form
 the check list for a media stream, the agent forms candidate pairs,
 computes a candidate pair priority, orders the pairs by priority,
 prunes them, and sets their states. These steps are described in
 this section.

 First, the agent takes each of its candidates for a media stream
 (called local candidates) and pairs them with the candidates it
 received from its peer (called remote candidates) for that media
 stream. A local candidate is paired with a remote candidate if and
 only if the two candidates have the same component ID and have the
 same IP address version. It is possible that some of the local
 candidates don't get paired with a remote candidate, and some of the
 remote candidates don't get paired with local candidates. This can
 happen if one agent didn't include candidates for the all of the
 components for a media stream. In the case of RTP, for example, this
 would happen when one agent provided candidates for RTCP, and the
 other did not. If this happens, the number of components for that
 media stream is effectively reduced, and considered to be equal to
 the minimum across both agents of the maximum component ID provided
 by each agent across all components for the media stream.

 Once the pairs are formed, a candidate pair priority is computed.
 Let O-P be the priority for the candidate provided by the offerer.
 Let A-P be the priority for the candidate provided by the answerer.
 The priority for a pair is computed as:

https://datatracker.ietf.org/doc/html/rfc3264

Rosenberg Expires April 9, 2007 [Page 21]

Internet-Draft ICE October 2006

 pair priority = 2^32*MIN(O-P,A-P) + 2*MAX(O-P,A-P) + (O-P>A-P:1?0)

 Where O-P>A-P:1?0 is an expression whose value is 1 if O-P is greater
 than A-P, and 0 otherwise. This formula ensures a unique priority
 for each pair in most cases. One the priority is assigned, the agent
 sorts the candidate pairs in decreasing order of priority. If two
 pairs have identical priority, the ordering amongst them is
 arbitrary.

 This sorted list of candidate pairs is used to determine a sequence
 of connectivity checks that will be performed. Each check involves
 sending a request from a local candidate to a remote candidate.
 Since an agent cannot send requests directly from a reflexive
 candidate, but only from its base, the agent next goes through the
 sorted list of candidate pairs. For each pair where the local
 candidate is server reflexive, the server reflexive candidate MUST be
 replaced by its base. Once this has been done, the agent MUST remove
 redundant pairs. A pair is redundant if its local and remote
 candidates are identical to the local and remote candidates of a pair
 higher up on the priority list. The result is called the check list
 for that media stream, and each candidate pair on it is called a
 check.

 Each check is also said to have a foundation, which is merely the
 combination of the foundations of the local and remote candidates in
 the check.

 Finally, each check in the check list is associated with a state.
 This state is assigned once the check list for each media stream has
 been computed. There are five potential values that the state can
 have:

 Waiting: This check has not been performed, and can be performed as
 soon as it is the highest priority Waiting check on the check
 list.

 In-Progress: A request has been sent for this check, but the
 transaction is in progress.

 Succeeded: This check was already done and produced a successful
 result.

 Failed: This check was already done and failed, either never
 producing any response or producing an unrecoverable failure
 response.

Rosenberg Expires April 9, 2007 [Page 22]

Internet-Draft ICE October 2006

 Frozen: This check hasn't been performed, and it can't yet be
 performed until some other check succeeds, allowing it to move
 into the Waiting state.

 First, the agent sets all of the checks in each check list to the
 Frozen state. Then, it takes the first check in the check list for
 the first media stream (a media stream is the first media stream when
 it is described by the first m-line in the SDP offer and answer), and
 sets its state to Waiting. It then finds all of the other checks in
 that check list with the same component ID, but different
 foundations, and sets all of their states to Waiting as well. Once
 this is done, one of the check lists will have some number of checks
 in the Waiting state, and the other check lists will have all of
 their checks in the Frozen state. A check list with at least one
 check that is not Frozen is called an active check list.

5.7. Performing Periodic Checks

 An agent performs two types of checks. The first type are periodic
 checks. These checks occur periodically for each media stream, and
 involve choosing the highest priority check in the Waiting state from
 each check list, and performing it. The other type of check is
 called a triggered check. This is a check that is performed on
 receipt of a connectivity check from the peer. This section
 describes how periodic checks are performed.

 Once the agent has computed the check lists as described in
Section 5.6, it sets a timer for each active check list. The timer

 fires every Ta/N seconds, where N is the number of active check lists
 (initially, there is only one active check list). Implementations
 MAY set the timer to fire less frequently than this. Ta is the same
 value used to pace the gathering of candidates, as described in

Section 4.1. The first timer for each active check list fires
 immediately, so that the agent performs a connectivity check the
 moment the offer/answer exchange has been done, followed by the next
 periodic check Ta seconds later.

 When the timer fires, the agent MUST find the highest priority check
 in that check list that is in the Waiting state. The agent then
 sends a STUN check from the local candidate of that check to the
 remote candidate of that check. The procedures for forming the STUN
 request for this purpose are described in Section 7.7.1. If none of
 the checks in that check list are in the Waiting state, but there are
 checks in the Frozen state, the highest priority check in the Frozen
 state is moved into the Waiting state, and that check is performed.
 When a check is performed, its state is set to In-Progress. If there
 are no checks in either the Waiting or Frozen state, then the timer
 for that check list is stopped.

Rosenberg Expires April 9, 2007 [Page 23]

Internet-Draft ICE October 2006

 Performing the connectivity check requires the agent to know the
 username fragment for the local and remote candidates, and the
 password for the remote candidate. For periodic checks, the remote
 username fragment and password are learned directly from the SDP
 received from the peer, and the local username fragment is known by
 the agent.

6. Receipt of the Initial Answer

 This section describes the procedures that an agent follows when it
 receives the answer from the peer. It verifies that its peer
 supports ICE, forms the check list and begins performing periodic
 checks.

6.1. Verifying ICE Support

 The offerer follows the same procedures described for the answerer in
Section 5.1.

6.2. Forming the Check List

 The offerer follows the same procedures described for the answerer in
Section 5.6.

6.3. Performing Periodic Checks

 The offerer follows the same procedures described for the answerer in
Section 5.7.

7. Connectivity Checks

 This section describes how connectivity checks are performed.
 Connectivity checks are a STUN usage, and the behaviors described
 here meet the guidelines for definitions of new usages as outlined in
 [11]

 Note that all ICE implementations are required to be compliant to
 [11], as opposed to the older [13].

7.1. Applicability

 This STUN usage provides a connectivity check between two peers
 participating in an offer/answer exchange. This check serves to
 validate a pair of candidates for usage of exchange of media.
 Connectivity checks also allow agents to discover reflexive
 candidates towards their peers, called peer reflexive candidates.

Rosenberg Expires April 9, 2007 [Page 24]

Internet-Draft ICE October 2006

 Finally, connectivity checks serve to keep NAT bindings alive.

 It is fundamental to this STUN usage that the addresses and ports
 used for media are the same ones used for the Binding Requests and
 responses. Consequently, it will be necessary to demultiplex STUN
 traffic from whatever the media traffic is. This demultiplexing is
 done using the techniques described in [11].

7.2. Client Discovery of Server

 The client does not follow the DNS-based procedures defined in [11].
 Rather, the remote candidate of the check to be performed is used as
 the transport address of the STUN server. Note that the STUN server
 is a logical entity, and is not a physically distinct server in this
 usage.

7.3. Server Determination of Usage

 The server is aware of this usage because it signaled this port
 through the offer/answer exchange. Any STUN packets received on this
 port will be for the connectivity check usage.

7.4. New Requests or Indications

 This usage does not define any new message types.

7.5. New Attributes

 This usage defines a new attribute, PRIORITY. This attribute
 indicates the priority that is to be associated with a peer reflexive
 candidate, should one be discovered by this check. It is a 32 bit
 unsigned integer, and has an attribute type of 0x0024.

7.6. New Error Response Codes

 This usage does not define any new error response codes.

7.7. Client Procedures

 This section defines additional procedures for the Binding Request
 transaction, beyond those described in [11].

7.7.1. Sending the Request

 The agent acting as the client generates a connectivity check either
 periodically, or triggered. In either case, the check is generated
 by sending a Binding Request from a local candidate, to a remote
 candidate. The agent must know the username fragment for both

Rosenberg Expires April 9, 2007 [Page 25]

Internet-Draft ICE October 2006

 candidates and the password for the remote candidate.

 A Binding Request serving as a connectivity check MUST utilize a STUN
 short term credential. Rather than being learned from a Shared
 Secret request, the short term credential is exchanged in the offer/
 answer procedures. In particular, the username is formed by
 concatenating the username fragment provided by the peer with the
 username fragment of the agent sending the request, separated by a
 colon (":"). The password is equal to the password provided by the
 peer. For example, consider the case where agent A is the offerer,
 and agent B is the answerer. Agent A included a username fragment of
 AFRAG for its candidates, and a password of APASS. Agent B provided
 a username fragment of BFRAG and a password of BPASS. A connectivity
 check from A to B (and its response of course) utilize the username
 BFRAG:AFRAG and a password of BPASS. A connectivity check from B to
 A (and its response) utilize the username AFRAG:BFRAG and a password
 of APASS.

 All Binding Requests for the connectivity check usage MUST contain
 the PRIORITY attribute. This MUST be set equal to the priority that
 would be assigned, based on the algorithm in Section 4.2, to a peer
 reflexive candidate learned from this check. Such a peer reflexive
 candidate has a stream ID, component ID and local preference that are
 equal to the host candidate from which the check is being sent, but a
 type preference equal to the value associated with peer reflexive
 candidates.

 The Binding Request by an agent MUST include the USERNAME and
 MESSAGE-INTEGRITY attributes. That is, an agent MUST NOT wait to be
 challenged for short term credentials. Rather, it MUST provide them
 in the Binding Request right away.

7.7.2. Processing the Response

 If the STUN transaction generates an unrecoverable failure response
 or times out, the agent sets the state of the check to Failed. The
 remainder of this section applies to processing of successful
 responses (any response from 200 to 299).

 The agent MUST check that the source IP address and port of the
 response equals the destination IP address and port that the Binding
 Request was sent to, and that the destination IP address and port of
 the response match the source IP address and port that the Binding
 Request was sent from. If these do not match, the agent sets the
 state of the check to Failed. The processing described in the
 remainder of this section MUST NOT be performed.

 If the check succeeds, processing continues and the agent changes the

Rosenberg Expires April 9, 2007 [Page 26]

Internet-Draft ICE October 2006

 state for this check to Succeeded. Next, the agent sees if the
 success of this check can cause other checks to be unfrozen. If the
 check had a component ID of one, the agent MUST change the states for
 all other Frozen checks for the same media stream and same
 foundation, but different component IDs, to Waiting. If the
 component ID for the check was equal to the number of components for
 the media stream, the agent MUST change the state for all other
 Frozen checks for the first component of different media streams (and
 thus in different check lists) but the same foundation, to Waiting.

 Next, the agent checks the mapped address from the STUN response. If
 the transport address does not match any of the local candidates that
 the agent knows about, the mapped address representes a new peer
 reflexive candidate. Its type is equal to peer reflexive. Its base
 is set equal to the candidate from which the STUN check was sent.
 Its username fragment and password are identical to the candidate
 from which the check was sent. It is assigned the priority value
 that was placed in the PRIORITY attribute of the request. Its
 foundation is selected as described in Section 4.1. The peer
 reflexive candidate is then added to the list of local candidates
 known by the agent (though it is not paired with other remote
 candidates at this time).

 In addition, the agent creates a candidate pair whose local candidate
 equals the mapped address of the response, and whose remote candidate
 equals the destination address to which the request was sent. This
 is called a validated pair, since it has been validated by a STUN
 connectivity check. It is very important to note that this validated
 pair will often not be identical to the check itself; in many cases,
 the local candidate (learned through the mapped address in the
 response) will be different than the local candidate the request was
 sent from. However, the agent will know, either from the SDP or
 through the PRIORITY attribute that was present in a STUN request,
 the priorities of the local and remote candidates of the validated
 pair. Based on these priorities, a priority for the validated pair
 itself is computed if it was not already known, using the algorithm
 in Section 5.6, and the pair is added to the valid list.

7.8. Server Procedures

 An agent MUST be prepared to receive a Binding Request on the base of
 each candidate it included in its most recent offer or answer.
 Receipt of a Binding Request on a transport address that the agent
 had included in a candidate attribute is an indication that the
 connectivity check usage applies to the request.

 The agent MUST use a short term credential to authenticate the
 request and perform a message integrity check. The agent MUST accept

Rosenberg Expires April 9, 2007 [Page 27]

Internet-Draft ICE October 2006

 a credential if the username consists of two values separated by a
 colon, where the first value is equal to the username fragment
 generated by the agent in an offer or answer for a session in-
 progress, and the password is equal to the password for that username
 fragment. It is possible (and in fact very likely) that an offeror
 will receive a Binding Request prior to receiving the answer from its
 peer. However, the request can be processed without receiving this
 answer, and a response generated.

 For requests being received on a relayed candidate, the source
 transport address used for STUN processing (namely, generation of the
 XOR-MAPPED-ADDRESS attribute) is the transport address as seen by the
 relay. That source transport address will be present in the REMOTE-
 ADDRESS attribute of a STUN Data Indication message, if the Binding
 Request was delivered through a Data Indication. If the Binding
 Request was not encapsulated in a Data Indication, that source
 address is equal to the current active destination for the STUN relay
 session.

 When the agent receives a STUN Binding Request for which it generates
 a successful response, the agent checks the source transport address
 of the request. If this transport address does not match any
 existing remote candidates, it represents a new peer reflexive remote
 candidate. This candidate is given a priority equal to the PRIORITY
 attribute from the request. The type of the candidate is equal to
 peer reflexive. Its foundation is set to an arbitrary value,
 different from the foundation for all other remote candidates. The
 username fragment for this candidate is equal to the bottom half (the
 part after the colon) of the username in the Binding Request that was
 just received. The password for this username fragment is taken from
 the SDP from the peer. If agent has not yet received this SDP (a
 likely case for the offerer in the initial offer/answer exchange), it
 MUST wait for the SDP to be received, and then proceed with rest of
 the processing described in the remainder of this section. This
 candidate is then added to the list of remote candidates. However,
 it is not paired with any local candidates.

 Next, the agent MUST generate a triggered check in the reverse
 directon if it has not already sent such a check. The triggered
 check has a local candidate equal to the candidate on which the STUN
 request was received, and a remote candidate equal to the source
 transport address where the request came from (which may be a newly
 formed peer reflexive candidate). The agent knows the priorities for
 the local and remote candidates of this check, and so can compute the
 priority for the check itself. If there is already a check on the
 check list with this same local and remote candidates, and the state
 of that check is Waiting or Frozen, its state is changed to In-
 Progress and the check is performed. If there was already a check on

Rosenberg Expires April 9, 2007 [Page 28]

Internet-Draft ICE October 2006

 the check list with this same local and remote candidates, and its
 state was In-Progress, the agent SHOULD generate an immediate
 retransmit of the Binding Request. This is to facilitate rapid
 completion of ICE when both agents are behind NAT. If there was a
 check in the list already and its state was Succeeded or Failed,
 nothing further is done. If there was no matching check on the check
 list, it is inserted into the check list based on its priority, its
 state is set to In-Progress, and the check is performed.

7.9. Security Considerations for Connectivity Check

 Security considerations for the connectivity check are discussed in
Section 15.

8. Completing the ICE Checks

 When a pair is added to the valid list, and the agent was the offeror
 in the most recent offer/answer exchange, the agent MUST check to see
 if there is a pair on the validated list for each component of each
 media stream. If there is, the offeror MUST stop timer Ta, and MUST
 cease retransmitting any Binding Requests for transactions in
 progress. It MUST ignore any responses which may subsequently arrive
 to transactions previously in progress. The offeror MUST generate an
 updated offer as described in Section 9. It does this regardless of
 whether the highest priority pairs in the check list match the
 current in-use candidate pairs.

 When a pair is aded to the valid list, and the agent was the answerer
 in the most recent offer/answer exchange, the agent MAY begin sending
 media using that candidate pair, as described in Section 11.1. In
 addition, if there is a candidate pair on the valid list for each
 component of each media stream, the answerer MUST stop timer Ta, and
 MUST cease retransmitting any Binding Requests for transactions in
 progress. It MUST ignore any responses which may subsequently arrive
 to transactions previously in progress.

 Note that only agent that was the answerer in the most recent offer/
 answer exchange gets to send media right away. The offeror must wait
 for a subsequent offer/answer exchange if the valid candidates don't
 match those in the m/c-line.

 OPEN ISSUE: It is possible that higher priority checks may still
 succeed, if we allowed things to continue. This can happen for
 several reasons. First, an in-progress check of higher priority
 had some packet loss and thus hasn't completed. Timer Tws was
 meant to handle this (I removed this timer from -10 to simplify).
 More interestingly, higher priority checks may have not been done

Rosenberg Expires April 9, 2007 [Page 29]

Internet-Draft ICE October 2006

 because a triggered check of lower priority succeeded. This
 happens in cases where the number of checks at each agent are
 assymetric. It is possible to fix both of these problems by
 delaying the completion of the ICE procedures for a bit more time.
 This adds complexity and latency. The basic algorithm would be
 this. You take the lowest priority pair in the valid list. You
 keep doing checks as long as there are higher priority checks on
 the list in the Waiting state. If there are none, you wait a
 brief time (say 50ms) and then consider ICE finished.

9. Subsequent Offer/Answer Exchanges

 An agent MAY generate a subsequent offer at any time. However, the
 rules in Section 7.7.2 will cause the offerer to generate an updated
 offer when the candidates in the valid list are not all in-use.

9.1. Generating the Offer

 When an agent generates an updated offer, the set of candidate
 attributes to include depend on the state of ICE processing. If ICE
 is "done", which occurs when the valid list includes a candidate pair
 for each component of each media stream, the agent MUST include a
 candidate attribute for each local candidate amongst the pairs in the
 valid list (including peer reflexive candidates), and SHOULD NOT
 include any others. This will cause STUN keepalives to be sent for
 the in-use candidates, and thats it.

 If, however, the valid list does not yet include a candidate pair for
 each component of each media stream, the agent SHOULD include all
 current candidates, including any peer reflexive candidates it has
 learned since the last offer or answer it sent. This MAY include
 candidates it did not offer previously, but which it has gathered
 since the last offer/answer exchange.

 If a candidate was sent in a previous offer/answer exchange, it
 SHOULD have the same priority. For a peer reflexive candidate, the
 priority SHOULD be the same as determined by the processing in

Section 7.7.2. The foundation SHOULD be the same. The username
 fragments and passwords for a media stream SHOULD remain the same as
 the previous offer or answer.

 Population of the m/c-lines also depends on the state of ICE
 processing. If, for a particular media stream, the valid list has
 candidate pairs for all of the components of that media stream, those
 pairs are used. In particular, the m/c-line would be constructed by
 from the local candidate from each of those candidate pairs. In
 addition, the agent MUST include the a=remote-candidates attribute

Rosenberg Expires April 9, 2007 [Page 30]

Internet-Draft ICE October 2006

 for that media stream, and include in it the remote candidates for
 each of the pairs that were used.

 If, for a particular media stream, the valid list does not have pairs
 for all of the components of the stream, the agent SHOULD populate
 the m/c-line for that media stream based on the considerations in

Section 4.3.

 The agent MUST use the same ice-pwd and ice-ufrag for a media stream
 as its previous offer or answer. Note that it is permissible to use
 a session-level attribute in one offer, but to provide the same
 password as a media-level attribute in a subsequent offer. This is
 not a change in password, just a change in its representation.

9.2. Receiving the Offer and Generating an Answer

 When the answerer generates its answer, it must decide what
 candidates to include in the answer, and how to populate the m/c-
 line.

 For each media stream in the offer, the agent checks to see if the
 stream contained the remote-candidates attribute. If it did, it
 means that the offerer believed that ICE processing has completed for
 that media stream. In this case, the remote-candidates attribute
 contains the candidates that the answerer is supposed to use. It is
 possible that the agent doesn't even know of these candidates yet;
 they will be discovered shortly through a response to an in-progress
 check. The agent MUST populate the m/c-line with the candidates from
 the a=remote-candidates attribute. In addition, it MUST include an
 a=candidate attribute in its answer for each candidate in the
 a=remote-candidates attribute. If the agent is not aware of the
 candidate yet, it will need to generate a priority value for it. The
 type preference in the computation is peer-reflexive, and the stream
 ID and component ID are known from the offer. The agent chooses an
 arbitrary local preference value if it is multi-homed, since it won't
 yet know the interface associated with this candidate.

 If a media stream does not yet contain the a=remote-candidates
 attribute, it means that the offerer believes that ICE checks are
 still in progress for that media stream. In this case, the answerer
 SHOULD include an a=candidate attribute for all of the candidates for
 that media stream it knows about (including peer-reflexive
 candidates). The m/c-line is populated based on the considerations
 in Section 4.3.

 Construction of the ice-pwd and ice-ufrag are identical to the
 procedures followed by the offerer, as described in Section 9.1.

Rosenberg Expires April 9, 2007 [Page 31]

Internet-Draft ICE October 2006

 Note that the a=remote-candidates attribute SHOULD NOT be included in
 the answer, and if included, will just be ignored by the offerer,
 since it is not used in any processing of the answer.

9.3. Updating the Check and Valid Lists

 Once the subsequent offer/answer exchange has completed, each agent
 needs to compute the new check lists resulting from this exchange,
 and then remove any pairs from the valid list which are no longer
 usable. Once these adjustments are made, ICE processing continues
 using these new lists.

 Each agent recomputes the check lists using the procedures described
 in Section 5.6. If a check on the new check lists was also on the
 previous check lists, and its state was Waiting, In-Progress,
 Succeeded or Failed, its state is copied over. If a check on the new
 check lists does not have a state (because its a new check on an
 existing check list, or a check on a new check list, or the check was
 on an old check list but its state was not copied over) its state is
 set to Frozen.

 If none of the check lists are active (meaning that the checks in
 each check list are Frozen), the agent sets the first check in the
 check list for the first media stream to Waiting, and then sets the
 state of all other checks in that check list for the same component
 ID and with the same foundation to Waiting as well.

 Next, the agent goes through each check list, starting with the
 highest priority check. If a check has a state of Succeeded, and it
 has a component ID of 1, then all Frozen checks in the same check
 list with the same foundation whose component IDs are not one, have
 their state set to Waiting. If, for a particular check list, there
 are checks for each component of that media stream in the Succeeded
 state, the agent moves the state of all Frozen checks for the first
 component of all other media streams (and thus in different check
 lists) with the same foundation to Waiting.

 If a check was on the old check list, but was not on the new check
 list, and had a state of In-Progress, the corresponding STUN
 transaction is abandoned. No further retransmits will be sent for
 the STUN request, and any response that might be received is ignored.

 Next, the agent prunes the valid list. For each pair on the valid
 list, the agent examines each candidate in the pair. If the
 candidate was not peer reflexive, and was not present in the most
 recent offer/answer exchange, the candidate pair is removed from the
 valid list.

Rosenberg Expires April 9, 2007 [Page 32]

Internet-Draft ICE October 2006

 OPEN ISSUE: This means that you cannot forcefully remove a peer
 reflexive candidate. This feature was possible, at much
 complexity, in previous versions of the spec. An alternative is
 to remove a peer reflexive candidate if it was not present in the
 offer/answer, and was discovered more than 500ms ago.

10. Keepalives

 STUN connectivity checks are also used to keep NAT bindings open once
 a session is underway. This is accomplished by periodically re-
 starting the check process, as described in this section.

 Once the initial offer/answer exchange has taken place, the agent
 sets a timer to fire in Tr seconds. Tr SHOULD be configurable and
 SHOULD have a default of 15 seconds. When Tr fires, the agent MUST
 reset the states for all of the checks in the check list using the
 procedures defined in Section 5.6 and then begin performing periodic
 checks as described in Section 5.7. By the time the timer fires for
 the first time, the check list will include only the in-use
 candidates. Reperforming these checks will therefore performing a
 period keepalive.

 OPEN ISSUE: ICE isn't saying anything about what happens if these
 periodic keepalives should fail. It they do, something really bad
 has happened, like a NAT reboot or failure. I think we should
 keep that out of scope.

 When an ICE agent is communicating with an agent that is not ICE-
 aware, keepalives still need to be utilized. Indeed, these
 keepalives are essential even if neither endpoint implements ICE. As
 such, this specification defines keepalive behavior generally, for
 endpoints that support ICE, and those that do not.

 All endpoints MUST send keepalives for each media session. These
 keepalives MUST be sent regardless of whether the media stream is
 currently inactive, sendonly, recvonly or sendrecv. The keepalive
 SHOULD be sent using a format which is supported by its peer. ICE
 endpoints allow for STUN-based keepalives for UDP streams, and as
 such, STUN keepalives MUST be used when an agent is communicating
 with a peer that supports ICE. An agent can determine that its peer
 supports ICE by the presence of the a=candidate attributes for each
 media session. If the peer does not support ICE, the choice of a
 packet format for keepalives is a matter of local implementation. A
 format which allows packets to easily be sent in the absence of
 actual media content is RECOMMENDED. Examples of formats which
 readily meet this goal are RTP No-Op [27] and RTP comfort noise [23].
 If the peer doesn't support any formats that are particularly well

Rosenberg Expires April 9, 2007 [Page 33]

Internet-Draft ICE October 2006

 suited for keepalives, an agent SHOULD send RTP packets with an
 incorrect version number, or some other form of error which would
 cause them to be discarded by the peer.

 STUN-based keepalives will be sent periodically every Tr seconds as
 described above. If STUN keepalives are not in use (because the peer
 does not support ICE), an agent SHOULD ensure that a media packet is
 sent every Tr seconds. If one is not sent as a consequence of normal
 media communications, a keepalive packet using one of the formats
 discussed above SHOULD be sent.

11. Media Handling

11.1. Sending Media

 Agents always send media using a candidate pair. An agent will send
 media to the remote candidate in the pair (setting the destination
 address and port of the packet equal to that remote candidate), and
 will send it from the local candidate. When the local candidate is
 server or peer reflexive, media is originated from the base. Media
 sent from a relayed candidate is sent through that relay, using
 procedures defined in [12].

 If an agent was the offerer in the most recent offer/answer exchange,
 when it sends media, it MUST use the candidates in the m/c-line for
 each media stream. However, it MUST only send media once those
 candidates also appear in the valid list. If the candidates in the
 m/c-line are not the ones that are ultimately selected by ICE, this
 implies that the offerer will need to wait for the subsequent offer/
 answer exchange to complete before it can send media.

 If an agent was the answerer in the most recent offer/answer
 exchange, the rules are different. When the agent wishes to send
 media, and the candidate pairs in the m/c-lines are also the highest
 priority ones in the valid list for each media stream, it uses those
 candidate pairs. If, however, the highest priority pairs in the
 valid list for a media stream are not the same as the ones in the
 m/c-lines, the agent MUST use the highest priority pairs in the valid
 list. However, the agent MUST discontinue using those candidate
 pairs Tlo seconds after the next opportunity its peer would have to
 send an updated offer. In the case of an answer delivered in a 200
 OK to an offer in a SIP INVITE (regardless of whether that same
 answer appeared in an earlier unreliable provisional response), this
 would be Tlo seconds after receipt of the ACK. Tlo SHOULD be
 configurable and SHOULD have a default of 5 seconds. This time
 represents the amount of time it should take the offerer to perform
 its connectivity checks, arrive at the same conclusion about the

Rosenberg Expires April 9, 2007 [Page 34]

Internet-Draft ICE October 2006

 candidate pair, and then generate an updated offer. If, after Tlo
 seconds, no updated offer arrives, the answerer MUST cease sending
 media, and will need to wait for the updated offer.

 OPEN ISSUE: In previous versions of ICE, once this timer fired,
 you just sent media to the one in the m/c-line. This causes the
 media streams to flip back and forth between addresses, which I am
 trying to avoid. Since this timer should never go off anyway, I
 removed this feature.

 ICE has interactions with jitter buffer adaptation mechanisms. An
 RTP stream can begin using one candidate, and switch to another one,
 though this happens rarely with ICE. The newer candidate may result
 in RTP packets taking a different path through the network - one with
 different delay characteristics. As discussed below, agents are
 encouraged to re-adjust jitter buffers when there are changes in
 source or destination address. Furthermore, many audio codecs use
 the marker bit to signal the beginning of a talkspurt, for the
 purposes of jitter buffer adaptation. For such codecs, it is
 RECOMMENDED that the sender change the marker bit when an agent
 switches transmission of media from one candidate pair to another.

11.2. Receiving Media

 ICE implementations MUST be prepared to receive media on any
 candidates provided in the most recent offer/answer exchange.

 It is RECOMMENDED that, when an agent receives an RTP packet with a
 new source or destination IP address for a particular media stream,
 that the agent re-adjust its jitter buffers.

RFC 3550 [20] describes an algorithm in Section 8.2 for detecting
 SSRC collisions and loops. These algorithms are based, in part, on
 seeing different source transport addresses with the same SSRC.
 However, when ICE is used, such changes will sometimes occur as the
 media streams switch between candidates. An agent will be able to
 determine that a media stream is from the same peer as a consequence
 of the STUN exchange that proceeds media transmission. Thus, if
 there is a change in source transport address, but the media packets
 come from the same peer agent, this SHOULD NOT be treated as an SSRC
 collision.

12. Usage with SIP

12.1. Latency Guidelines

 ICE requires a series of STUN-based connectivity checks to take place

https://datatracker.ietf.org/doc/html/rfc3550

Rosenberg Expires April 9, 2007 [Page 35]

Internet-Draft ICE October 2006

 between endpoints. These checks start from the answerer on
 generation of its answer, and start from the offerer when it receives
 the answer. These checks can take time to complete, and as such, the
 selection of messages to use with offers and answers can effect
 perceived user latency. Two latency figures are of particular
 interest. These are the post-pickup delay and the post-dial delay.
 The post-pickup delay refers to the time between when a user "answers
 the phone" and when any speech they utter can be delivered to the
 caller. The post-dial delay refers to the time between when a user
 enters the destination address for the user, and ringback begins as a
 consequence of having succesfully started ringing the phone of the
 called party.

 To reduce post-dial delays, it is RECOMMENDED that the caller begin
 gathering candidates prior to actually sending its initial INVITE.
 This can be started upon user interface cues that a call is pending,
 such as activity on a keypad or the phone going offhook.

 If an offer is received in an INVITE request, the callee SHOULD
 immediately gather its candidates and then generate an answer in a
 provisional response. When reliable provisional responses are not
 used, the SDP in the provisional response is the answer, and that
 exact same answer reappears in the 200 OK. To deal with possible
 losses of the provisional response, it SHOULD be retransmitted until
 some indication of receipt. This indication can either be through
 PRACK [9], or through the receipt of a successful STUN Binding
 Request. Even if PRACK is not used, the provisional response SHOULD
 be retransmitted using the exponential backoff described in [9].
 Furthermore, once the answer has been sent, the agent SHOULD begin
 its connectivity checks. Once candidate pairs for each component of
 a media stream enter the valid list, the callee can begin sending
 media on that media stream.

 However, prior to this point, any media that needs to be sent towards
 the caller (such as SIP early media [25] cannot be transmitted. For
 this reason, implementations SHOULD delay alerting the called party
 until candidates for each component of each media stream have entered
 the valid list. In the case of a PSTN gateway, this would mean that
 the setup message into the PSTN is delayed until this point. Doing
 this increases the post-dial delay, but has the effect of eliminating
 'ghost rings'. Ghost rings are cases where the called party hears
 the phone ring, picks up, but hears nothing and cannot be heard.
 This technique works without requiring support for, or usage of,
 preconditions [6], since its a localized decision. It also has the
 benefit of guaranteeing that not a single packet of media will get
 clipped, so that post-pickup delay is zero. If an agent chooses to
 delay local alerting in this way, it SHOULD generate a 180 response
 once alerting begins.

Rosenberg Expires April 9, 2007 [Page 36]

Internet-Draft ICE October 2006

 Based on the rules in Section 11.1, the offerer will not be able to
 send media until the highest priority valid candidates match the m/c-
 line. When used with SIP, if the initial offer is sent in the
 INVITE, and the answer is sent in both the provisional and final 200
 OK response, the offerer will generally not be able to send media
 until it sends a re-INVITE and receives the 200 OK response to that
 re-INVITE. This can take several hundred milliseconds. If this
 latency is an issue (it is generally not considered an issue for
 voice systems), reliable provisional responses [9] MAY be used, in
 which case an UPDATE [24] can be used to send an updated offer prior
 to the call being answered.

 As discussed in Section 15, offer/answer exchanges SHOULD be secured
 against eavesdropping and man-in-the-middle attacks. To do that, the
 usage of SIPS [3] is RECOMMENDED when used in concert with ICE.

12.2. Interactions with Forking

 ICE interacts very well with forking. Indeed, ICE fixes some of the
 problems associated with forking. Without ICE, when a call forks and
 the caller receives multiple incoming media streams, it cannot
 determine which media stream corresponds to which callee.

 With ICE, this problem is resolved. The connectivity checks which
 occur prior to transmission of media carry username fragments, which
 in turn are correlated to a specific callee. Subsequent media
 packets which arrive on the same 5-tuple as the connectivity check
 will be associated with that same callee. Thus, the caller can
 perform this correlation as long as it has received an answer.

12.3. Interactions with Preconditions

 Quality of Service (QoS) preconditions, which are defined in RFC 3312
 [6] and RFC 4032 [7], apply only to the transport addresses listed in
 the m/c lines in an offer/answer. If ICE changes the transport
 address where media is received, this change is reflected in the m/c
 lines of a new offer/answer. As such, it appears like any other re-
 INVITE would, and is fully treated in RFC 3312 and 4032, which apply
 without regard to the fact that the m/c lines are changing due to ICE
 negotiations ocurring "in the background".

 Indeed, an agent SHOULD NOT indicate that Qos preconditions have been
 met until the ICE checks have completed and selected the candidate
 pairs to be used for media.

 ICE also has (purposeful) interactions with connectivity
 preconditions [26]. Those interactions are described there. Note
 that the procedures described in Section 12.1 describe their own type

https://datatracker.ietf.org/doc/html/rfc3312
https://datatracker.ietf.org/doc/html/rfc4032
https://datatracker.ietf.org/doc/html/rfc3312

Rosenberg Expires April 9, 2007 [Page 37]

Internet-Draft ICE October 2006

 of "preconditions", albeit with less functionality than those
 provided by the explicit preconditions in [26].

12.4. Interactions with Third Party Call Control

 ICE works with Flows I and IV as described in [16]. Flow I works
 without the controller supporting or being aware of ICE. Flow IV
 will work as long as the controller passes along the ICE attributes
 without alteration. Flow III may disrupt ICE processing, since it
 will distort the stream ID values used in the computation of
 priorities. When there is but a single media stream, Flow III will
 work as long as the controller passes through the ICE attributes
 unmodified. Flow II is fundamentally incompatible with ICE; each
 agent will believe itself to be the answerer and thus never generate
 a re-INVITE.

 OPEN ISSUE: Its really too bad flow III doesn't work with
 multimedia; should consider ways to make it work. There are
 several ways.

 The flows for continued operation, as described in Section 7 of RFC
3725, require additional behavior of ICE implementations to support.

 In particular, if an agent receives a mid-dialog re-INVITE that
 contains no offer, it MUST go through the process of gathering
 candidates, prioritizing them and generating an offer, as if this was
 an initial offer for a session. Furthermore, that list of candidates
 SHOULD include the ones currently in-use.

13. Grammar

 This specification defines four new SDP attributes - the "candidate",
 "remote-candidates", "ice-ufrag" and "ice-pwd" attributes.

 The candidate attribute is a media-level attribute only. It contains
 a transport address for a candidate that can be used for connectivity
 checks.

 The syntax of this attribute is defined using Augmented BNF as
 defined in RFC 4234 [8]:

https://datatracker.ietf.org/doc/html/rfc3725
https://datatracker.ietf.org/doc/html/rfc3725
https://datatracker.ietf.org/doc/html/rfc4234

Rosenberg Expires April 9, 2007 [Page 38]

Internet-Draft ICE October 2006

 candidate-attribute = "candidate" ":" foundation SP component-id SP
 transport SP
 priority SP
 connection-address SP ;from RFC 4566
 port ;port from RFC 4566
 [SP cand-type]
 [SP rel-addr]
 [SP rel-port]
 *(SP extension-att-name SP
 extension-att-value)

 foundation = 1*ice-char
 component-id = 1*DIGIT
 transport = "UDP" / transport-extension
 transport-extension = token ; from RFC 3261
 priority = 1*DIGIT
 cand-type = "typ" SP candidate-types
 candidate-types = "host" / "srflx" / "prflx" / "relay" / token
 rel-addr = "raddr" SP connection-address
 rel-port = "rport" SP port
 extension-att-name = byte-string ;from RFC 4566
 extension-att-value = byte-string
 ice-char = ALPHA / DIGIT / "+" / "/"

 The foundation is composed of one or more ice-char. The component-id
 is a positive integer, which identifies the specific component for
 which the transport address is a candidate. It MUST start at 1 and
 MUST increment by 1 for each component of a particular candidate.
 The connect-address production is taken from RFC 4566 [10], allowing
 for IPv4 addresses, IPv6 addresses and FQDNs. The port production is
 also taken from RFC 4566 [10]. The token production is taken from

RFC 3261 [3]. The transport production indicates the transport
 protocol for the candidate. This specification only defines UDP.
 However, extensibility is provided to allow for future transport
 protocols to be used with ICE, such as TCP or the Datagram Congestion
 Control Protocol (DCCP) [28].

 The cand-type production encodes the type of candidate. This
 specification defines the values "host", "srflx", "prflx" and "relay"
 for host, server reflexive, peer reflexive and relayed candidates,
 respectively. The set of candidate types is extensible for the
 future. Inclusion of the candidate type is optional. The rel-addr
 and rel-port productions convey information the related transport
 addresses. Rules for inclusion of these values is described in

Section 4.4.

 The a=candidate attribute can itself be extended. The grammar allows

https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc3261

Rosenberg Expires April 9, 2007 [Page 39]

Internet-Draft ICE October 2006

 for new name/value pairs to be added at the end of the attribute. An
 implementation MUST ignore any name/value pairs it doesn't
 understand.

 The syntax of the "remote-candidates" attribute is defined using
 Augmented BNF as defined in RFC 4234 [8]. The remote-candidates
 attribute is a media level attribute only.

 remote-candidate-att = "remote-candidates" ":" remote-candidate
 0*(SP remote-candidate)
 remote-candidate = component-ID SP connection-address SP port

 The attribute contains a connection-address and port for each
 component. The ordering of components is irrelevant. However, a
 value MUST be present for each component of a media stream.

 The syntax of the "ice-pwd" and "ice-ufrag" attributes are defined
 as:

 ice-pwd-att = "ice-pwd" ":" password
 ice-ufrag-att = "ice-ufrag" ":" ufrag
 password = 22*ice-char
 ufrag = 4*ice-char

 The "ice-pwd" and "ice-ufrag" attributes can appear at either the
 session-level or media-level. When present in both, the value in the
 media-level takes precedence. Thus, the value at the session level
 is effectively a default that applies to all media streams, unless
 overriden by a media-level value.

14. Example

 Two agents, L and R, are using ICE. Both agents have a single IPv4
 interface. For agent L, it is 10.0.1.1, and for agent R, 192.0.2.1.
 Both are configured with a single STUN server each (indeed, the same
 one for each), which is listening for STUN requests at an IP address
 of 192.0.2.2 and port 3478. This STUN server supports both the
 Binding Discovery usage and the Relay usage. Agent L is behind a
 NAT, and agent R is on the public Internet. The NAT has an endpoint
 independent mapping property and an address dependent filtering
 property. The public side of the NAT has an IP address of 192.0.2.3.

 To facilitate understanding, transport addresses are listed using
 variables that have mnemonic names. The format of the name is
 entity-type-seqno, where entity refers to the entity whose interface

https://datatracker.ietf.org/doc/html/rfc4234

Rosenberg Expires April 9, 2007 [Page 40]

Internet-Draft ICE October 2006

 the transport address is on, and is one of "L", "R", "STUN", or
 "NAT". The type is either "PUB" for transport addresses that are
 public, and "PRIV" for transport addresses that are private.
 Finally, seq-no is a sequence number that is different for each
 transport address of the same type on a particular entity. Each
 variable has an IP address and port, denoted by varname.IP and
 varname.PORT, respectively, where varname is the name of the
 variable.

 The STUN server has advertised transport address STUN-PUB-1 (which is
 192.0.2.2:3478) for both the binding discovery usage and the relay
 usage. However, neither agent is using the relay usage.

 In the call flow itself, STUN messages are annotated with several
 attributes. The "S=" attribute indicates the source transport
 address of the message. The "D=" attribute indicates the destination
 transport address of the message. The "MA=" attribute is used in
 STUN Binding Response messages and refers to the mapped address.

 The call flow examples omit STUN authentication operations and RTCP,
 and focus on RTP for a single media stream.

 L NAT STUN R
 |RTP STUN alloc. | | |
 |(1) STUN Req | | |
 |S=$L-PRIV-1 | | |
 |D=$STUN-PUB-1 | | |
 |------------->| | |
 | |(2) STUN Req | |
 | |S=$NAT-PUB-1 | |
 | |D=$STUN-PUB-1 | |
 | |------------->| |
 | |(3) STUN Res | |
 | |S=$STUN-PUB-1 | |
 | |D=$NAT-PUB-1 | |
 | |MA=$NAT-PUB-1 | |
 | |<-------------| |
 |(4) STUN Res | | |
 |S=$STUN-PUB-1 | | |
 |D=$L-PRIV-1 | | |
 |MA=$NAT-PUB-1 | | |
 |<-------------| | |
 |(5) Offer | | |
 |--->|
 | | | |RTP STUN alloc.
 | | |(6) STUN Req |
 | | |S=$R-PUB-1 |

Rosenberg Expires April 9, 2007 [Page 41]

Internet-Draft ICE October 2006

 | | |D=$STUN-PUB-1 |
 | | |<-------------|
 | | |(7) STUN Res |
 | | |S=$STUN-PUB-1 |
 | | |D=$R-PUB-1 |
 | | |MA=$R-PUB-1 |
 | | |------------->|
 |(8) answer | | |
 |<---|
 | |(9) Bind Req | |
 | |S=$R-PUB-1 | |
 | |D=L-PRIV-1 | |
 | |<----------------------------|
 | |Dropped | |
 |(10) Bind Req | | |
 |S=$L-PRIV-1 | | |
 |D=$R-PUB-1 | | |
 |------------->| | |
 | |(11) Bind Req | |
 | |S=$NAT-PUB-1 | |
 | |D=$R-PUB-1 | |
 | |---------------------------->|
 | |(12) Bind Res | |
 | |S=$R-PUB-1 | |
 | |D=$NAT-PUB-1 | |
 | |MA=$NAT-PUB-1 | |
 | |<----------------------------|
 |(13) Bind Res | | |
 |S=$R-PUB-1 | | |
 |D=$L-PRIV-1 | | |
 |MA=$NAT-PUB-1 | | |
 |<-------------| | |
 |(14) Offer | | |
 |--->|
 |(15) Answer | | |
 |<---|
 | |(16) Bind Req | |
 | |S=$R-PUB-1 | |
 | |D=$NAT-PUB-1 | |
 | |<----------------------------|
 |(17) Bind Req | | |
 |S=$R-PUB-1 | | |
 |D=$L-PRIV-1 | | |
 |<-------------| | |
 |(18) Bind Res | | |
 |S=$L-PRIV-1 | | |
 |D=$R-PUB-1 | | |
 |MA=$R-PUB-1 | | |

Rosenberg Expires April 9, 2007 [Page 42]

Internet-Draft ICE October 2006

 |------------->| | |
 | |(19) Bind Res | |
 | |S=$NAT-PUB-1 | |
 | |D=$R-PUB-1 | |
 | |MA=$R-PUB-1 | |
 | |---------------------------->|
 |RTP flows | | |

 Figure 9

 First, agent L obtains a host candidate from its local interface (not
 shown), and from that, sends a STUN Binding Request to the STUN
 server to get a server reflexive candidate (messages 1-4). Recall
 that the NAT has the address and port independent mapping property.
 Here, it creates a binding of NAT-PUB-1 for this UDP request, and
 this becomes the server reflexive candidate for RTP.

 Agent L sets a type preference of 126 for the host candidate and 100
 for the server reflexive. The local preference is 65535. Based on
 this, the priority of the host candidate is 2130706178 and for the
 server reflexive candidate is 1694498562. The host candidate is
 assigned a foundation of 1, and the server reflexive, a foundation of
 2. It chooses its server reflexive candidate as the in-use
 candidate, and encodes it into the m/c-line. The resulting offer
 (message 5) looks like (lines folded for clarity):

 v=0
 o=jdoe 2890844526 2890842807 IN IP4 $L-PRIV-1.IP
 s=
 c=IN IP4 $NAT-PUB-1.IP
 t=0 0
 a=ice-pwd:asd88fgpdd777uzjYhagZg
 a=ice-ufrag:8hhY
 m=audio $NAT-PUB-1.PORT RTP/AVP 0
 a=rtpmap:0 PCMU/8000
 a=candidate:1 1 UDP 2130706178 $L-PRIV-1.IP $L-PRIV-1.PORT typ local
 a=candidate:2 1 UDP 1694498562 $NAT-PUB-1.IP $NAT-PUB-1.PORT typ srflx
raddr
 $L-PRIV-1.IP rport $L-PRIV-1.PORT

 The offer, with the variables replaced with their values, will look
 like (lines folded for clarity):

Rosenberg Expires April 9, 2007 [Page 43]

Internet-Draft ICE October 2006

 v=0
 o=jdoe 2890844526 2890842807 IN IP4 10.0.1.1
 s=
 c=IN IP4 192.0.2.3
 t=0 0
 a=ice-pwd:asd88fgpdd777uzjYhagZg
 a=ice-ufrag:8hhY
 m=audio 45664 RTP/AVP 0
 a=rtpmap:0 PCMU/8000
 a=candidate:1 1 UDP 2130706178 10.0.1.1 8998 typ local
 a=candidate:2 1 UDP 1694498562 192.0.2.3 45664 typ srflx raddr
 10.0.1.1 rport 8998

 This offer is received at agent R. Agent R will obtain a host
 candidate, and from it, obtain a server reflexive candidate (messages
 6-7). Since R is not behind a NAT, this candidate is identical to
 its host candidate, and they share the same base. It therefore
 discards this candidate and ends up with a single host candidate.
 With identical type and local preferences as L, the priority for this
 candidate is 2130706178. It chooses a foundation of 1 for its single
 candidate. Its resulting answer looks like:

 v=0
 o=bob 2808844564 2808844564 IN IP4 $R-PUB-1.IP
 s=
 c=IN IP4 $R-PUB-1.IP
 t=0 0
 a=ice-pwd:YH75Fviy6338Vbrhrlp8Yh
 a=ice-ufrag:9uB6
 m=audio $R-PUB-1.PORT RTP/AVP 0
 a=rtpmap:0 PCMU/8000
 a=candidate:1 1 UDP 2130706178 $R-PUB-1.IP $R-PUB-1.PORT typ local

 With the variables filled in:

 v=0
 o=bob 2808844564 2808844564 IN IP4 192.0.2.1
 s=
 c=IN IP4 192.0.2.1
 t=0 0
 a=ice-pwd:YH75Fviy6338Vbrhrlp8Yh
 a=ice-ufrag:9uB6
 m=audio 3478 RTP/AVP 0
 a=rtpmap:0 PCMU/8000
 a=candidate:1 1 UDP 2130706178 192.0.2.1 3478 typ local

Rosenberg Expires April 9, 2007 [Page 44]

Internet-Draft ICE October 2006

 Agents L and R both pair up the candidates. They both initially have
 two. However, agent L will prune the pair containing its server
 reflexive candidate, resulting in just one. At agent L, this pair
 (the check) has a local candidate of $L_PRIV_1 and remote candidate
 of $R_PUB_1, and has a candidate pair priority of 4.57566E+18 (note
 that an implementation would represent this as a 64 bit integer so as
 not to lose precision). At agent R, there are two checks. The
 highest priority has a local candidate of $R_PUB_1 and remote
 candidate of $L_PRIV_1 and has a priority of 4.57566E+18, and the
 second has a local candidate of $R_PUB_1 and remote candidate of
 $NAT_PUB_1 and priority 3.63891E+18.

 Agent R begins its connectivity check (message 9) for the first pair
 (between the two host candidates). The host candidate from agent L
 is private and behind a different NAT, and thus this check is
 discarded.

 When agent L gets the answer, it performs its one and only
 connectivity check (messages 10-13). This will succeed. This causes
 agent L to create a new pair, whos local candidate is from the mapped
 address in the binding response (NAT-PUB-1 from message 13) and whose
 remote candidate is the destination of the request (R-PUB-1 from
 message 10). This is added to the valid list. At this point, agent
 L examines the valid list and sees that there is a candidate there
 for each component of each media stream (which is just RTP for the
 single audio stream). It therefore considers ICE checks complete and
 sends an updated offer (message 14). This offer serves only to
 remove the candidate that was not selected and indicate the remote
 candidates; the m/c-line remains unchanged. This offer looks like:

 v=0
 o=jdoe 2890844528 2890842809 IN IP4 10.0.1.1
 s=
 c=IN IP4 192.0.2.3
 t=0 0
 a=ice-pwd:asd88fgpdd777uzjYhagZg
 a=ice-ufrag:8hhY
 m=audio 45664 RTP/AVP 0
 a=remote-candidates 1 192.0.2.1 3478
 a=rtpmap:0 PCMU/8000
 a=candidate:2 1 UDP 1694498562 192.0.2.3 45664 typ srflx raddr
 10.0.1.1 rport 8998

 Agent R can construct the answer. Since the remote-candidates listed
 in the offer match the ones that agent R had already selected for the
 m/c-line in the previous answer, there is no change there. Its
 answer therefore looks like:

Rosenberg Expires April 9, 2007 [Page 45]

Internet-Draft ICE October 2006

 v=0
 o=bob 2808844565 2808844566 IN IP4 192.0.2.1
 s=
 c=IN IP4 192.0.2.1
 t=0 0
 a=ice-pwd:YH75Fviy6338Vbrhrlp8Yh
 a=ice-ufrag:9uB6
 m=audio 3478 RTP/AVP 0
 a=rtpmap:0 PCMU/8000
 a=candidate:1 1 UDP 2130706178 192.0.2.1 3478 typ local

 Upon receipt of the check from agent L (message 11), agent R will
 generate its triggered check. This check happens to match the next
 one on its check list - from its host candidate to agent L's server
 reflexive candidate. This check (messages 16-19) will succeed.
 Consequently, agent R constructs a new candidate pair using the
 mapped address from the response as the local candidate (R-PUB-1) and
 the destination of the request (NAT-PUB-1) as the remote candidate.
 This pair is added to the valid list. Since this pair matches the
 pair in the m/c-lines, agent R can send media as well.

15. Security Considerations

 There are several types of attacks possible in an ICE system. This
 section considers these attacks and their countermeasures.

15.1. Attacks on Connectivity Checks

 An attacker might attempt to disrupt the STUN connectivity checks.
 Ultimately, all of these attacks fool an agent into thinking
 something incorrect about the results of the connectivity checks.
 The possible false conclusions an attacker can try and cause are:

 False Invalid: An attacker can fool a pair of agents into thinking a
 candidate pair is invalid, when it isn't. This can be used to
 cause an agent to prefer a different candidate (such as one
 injected by the attacker), or to disrupt a call by forcing all
 candidates to fail.

 False Valid: An attacker can fool a pair of agents into thinking a
 candidate pair is valid, when it isn't. This can cause an agent
 to proceed with a session, but then not be able to receive any
 media.

Rosenberg Expires April 9, 2007 [Page 46]

Internet-Draft ICE October 2006

 False Peer-Reflexive Candidate: An attacker can cause an agent to
 discover a new peer reflexive candidate, when it shouldn't have.
 This can be used to redirect media streams to a DoS target or to
 the attacker, for eavesdropping or other purposes.

 False Valid on False Candidate: An attacker has already convinced an
 agent that there is a candidate with an address that doesn't
 actually route to that agent (for example, by injecting a false
 peer reflexive candidate or false server reflexive candidate). It
 must then launch an attack that forces the agents to believe that
 this candidate is valid.

 Of the various techniques for creating faked STUN messages described
 in [11], many are not applicable for the connectivity checks.
 Compromises of STUN servers are not much of a concern, since the STUN
 servers are embedded in endpoints and distributed throughout the
 network. Thus, compromising the STUN server is equivalent to
 comprimising the endpoint, and if that happens, far more problematic
 attacks are possible than those against ICE. Similarly, DNS attacks
 are usually irrelevant since STUN servers are not typically
 discovered via DNS, they are signaled via IP addresses embedded in
 SDP. Injection of fake responses and relaying modified requests all
 can be handled in ICE with the countermeasures discussed below.

 To force the false invalid result, the attacker has to wait for the
 connectivity check from one of the agents to be sent. When it is,
 the attacker needs to inject a fake response with an unrecoverable
 error response, such as a 600. However, since the candidate is, in
 fact, valid, the original request may reach the peer agent, and
 result in a success response. The attacker needs to force this
 packet or its response to be dropped, through a DoS attack, layer 2
 network disruption, or other technique. If it doesn't do this, the
 success response will also reach the originator, alerting it to a
 possible attack. Fortunately, this attack is mitigated completely
 through the STUN message integrity mechanism. The attacker needs to
 inject a fake response, and in order for this response to be
 processed, the attacker needs the password. If the offer/answer
 signaling is secured, the attacker will not have the password.

 Forcing the fake valid result works in a similar way. The agent
 needs to wait for the Binding Request from each agent, and inject a
 fake success response. The attacker won't need to worry about
 disrupting the actual response since, if the candidate is not valid,
 it presumably wouldn't be received anyway. However, like the fake
 invalid attack, this attack is mitigated completely through the STUN
 message integrity and offer/answer security techniques.

 Forcing the false peer reflexive candidate result can be done either

Rosenberg Expires April 9, 2007 [Page 47]

Internet-Draft ICE October 2006

 with fake requests or responses, or with replays. We consider the
 fake requests and responses case first. It requires the attacker to
 send a Binding Request to one agent with a source IP address and port
 for the false candidate. In addition, the attacker must wait for a
 Binding Request from the other agent, and generate a fake response
 with a XOR-MAPPED-ADDRESS attribute containing the false candidate.
 Like the other attacks described here, this attack is mitigated by
 the STUN message integrity mechanisms and secure offer/answer
 exchanges.

 Forcing the false peer reflexive candidate result with packet replays
 is different. The attacker waits until one of the agents sends a
 check. It intercepts this request, and replays it towards the other
 agent with a faked source IP address. It must also prevent the
 original request from reaching the remote agent, either by launching
 a DoS attack to cause the packet to be dropped, or forcing it to be
 dropped using layer 2 mechanisms. The replayed packet is received at
 the other agent, and accepted, since the integrity check passes (the
 integrity check cannot and does not cover the source IP address and
 port). It is then responded to. This response will contain a XOR-
 MAPPED-ADDRESS with the false candidate, and will be sent to that
 false candidate. The attacker must then intercept it and relay it
 towards the originator.

 The other agent will then initiate a connectivity check towards that
 false candidate. This validation needs to succeed. This requires
 the attacker to force a false valid on a false candidate. Injecting
 of fake requests or responses to achieve this goal is prevented using
 the integrity mechanisms of STUN and the offer/answer exchange.
 Thus, this attack can only be launched through replays. To do that,
 the attacker must intercept the check towards this false candidate,
 and replay it towards the other agent. Then, it must intercept the
 response and replay that back as well.

 This attack is very hard to launch unless the attacker themself is
 identified by the fake candidate. This is because it requires the
 attacker to intercept and replay packets sent by two different hosts.
 If both agents are on different networks (for example, across the
 public Internet), this attack can be hard to coordinate, since it
 needs to occur against two different endpoints on different parts of
 the network at the same time.

 If the attacker themself is identified by the fake candidate the
 attack is easier to coordinate. However, if SRTP is used [21], the
 attacker will not be able to play the media packets, they will only
 be able to discard them, effectively disabling the media stream for
 the call. However, this attack requires the agent to disrupt packets
 in order to block the connectivity check from reaching the target.

Rosenberg Expires April 9, 2007 [Page 48]

Internet-Draft ICE October 2006

 In that case, if the goal is to disrupt the media stream, its much
 easier to just disrupt it with the same mechanism, rather than attack
 ICE.

15.2. Attacks on Address Gathering

 ICE endpoints make use of STUN for gathering candidates rom a STUN
 server in the network. This is corresponds to the Binding Discovery
 usage of STUN described in [11]. As a consequence, the attacks
 against STUN itself that are described in that specification can
 still be used against the binding discovery usage when utilized with
 ICE.

 However, the additional mechanisms provided by ICE actually
 counteract such attacks, making binding discovery with STUN more
 secure when combined with ICE than without ICE.

 Consider an attacker which is able to provide an agent with a faked
 mapped address in a STUN Binding Request that is used for address
 gathering. This is the primary attack primitive described in [11].
 This address will be used as a server reflexive candidate in the ICE
 exchange. For this candidate to actually be used for media, the
 attacker must also attack the connectivity checks, and in particular,
 force a false valid on a false candidate. This attack is very hard
 to launch if the false address identifies a third party, and is
 prevented by SRTP if it identifies the attacker themself.

 If the attacker elects not to attack the connectivity checks, the
 worst it can do is prevent the server reflexive candidate from being
 used. However, if the peer agent has at least one candidate that is
 reachable by the agent under attack, the STUN connectivity checks
 themselves will provide a peer reflexive candidate that can be used
 for the exchange of media. Peer reflexive candidates are generally
 preferred over server reflexive candidates. As such, an attack
 solely on the STUN address gathering will normally have no impact on
 a session at all.

15.3. Attacks on the Offer/Answer Exchanges

 An attacker that can modify or disrupt the offer/answer exchanges
 themselves can readily launch a variety of attacks with ICE. They
 could direct media to a target of a DoS attack, they could insert
 themselves into the media stream, and so on. These are similar to
 the general security considerations for offer/answer exchanges, and
 the security considerations in RFC 3264 [4] apply. These require
 techniques for message integrity and encryption for offers and
 answers, which are satisfied by the SIPS mechanism [3] when SIP is
 used. As such, the usage of SIPS with ICE is RECOMMENDED.

https://datatracker.ietf.org/doc/html/rfc3264

Rosenberg Expires April 9, 2007 [Page 49]

Internet-Draft ICE October 2006

15.4. Insider Attacks

 In addition to attacks where the attacker is a third party trying to
 insert fake offers, answers or stun messages, there are several
 attacks possible with ICE when the attacker is an authenticated and
 valid participant in the ICE exchange.

15.4.1. The Voice Hammer Attack

 The voice hammer attack is an amplification attack. In this attack,
 the attacker initiates sessions to other agents, and includes the IP
 address and port of a DoS target in the m/c-line of their SDP. This
 causes substantial amplification; a single offer/answer exchange can
 create a continuing flood of media packets, possibly at high rates
 (consider video sources). This attack is not specific to ICE, but
 ICE can help provide remediation.

 Specifically, if ICE is used, the agent receiving the malicious SDP
 will first peform connectivity checks to the target of media before
 sending it there. If this target is a third party host, the checks
 will not succeed, and media is never sent.

 Unfortunately, ICE doesn't help if its not used, in which case an
 attacker could simply send the offer without the ICE parameters.
 However, in environments where the set of clients are known, and
 limited to ones that support ICE, the server can reject any offers or
 answers that don't indicate ICE support.

15.4.2. STUN Amplification Attack

 The STUN amplification attack is similar to the voice hammer.
 However, instead of voice packets being directed to the target, STUN
 connectivity checks are directed to the target. This attack is
 accomplished by having the offerer send an offer with a large number
 of candidates, say 50. The answerer receives the offer, and starts
 its checks, which are directed at the target, and consequently, never
 generate a response. The answerer will start a new connectivity
 check every 50ms, and each check is a STUN transaction consisting of
 9 retransmits of a message 65 bytes in length (plus 28 bytes for the
 IP/UDP header) that runs for 7.9 seconds, for a total of 105 bytes/
 second per transaction on average. In the worst case, there can be
 158 transactions in progress at once (7.9 seconds divided by 50ms),
 for a total of 132 kbps, just for STUN requests.

 It is impossible to eliminate the amplification, but the volume can
 be reduced through a variety of heuristics. For example, agents can
 limit the number of candidates they'll accept in an offer or answer,
 they can increase the value of Ta, or exponentially increase Ta as

Rosenberg Expires April 9, 2007 [Page 50]

Internet-Draft ICE October 2006

 time goes on. All of these ultimately trade off the time for the ICE
 exchanges to complete, with the amount of traffic that gets sent.

 OPEN ISSUE: Need better remediation for this. Especially an issue
 if we reduce Ta to be as fast as media packets themselves, in
 which case this attack is as equally devastating as the voice
 hammer.

16. IANA Considerations

 This specification defines four new SDP attributes per the procedures
 of Section 8.2.4 of [10]. The required information for the
 registrations are included here.

16.1. candidate Attribute

 Contact Name: Jonathan Rosenberg, jdrosen@jdrosen.net.

 Attribute Name: candidate

 Long Form: candidate

 Type of Attribute: media level

 Charset Considerations: The attribute is not subject to the charset
 attribute.

 Purpose: This attribute is used with Interactive Connectivity
 Establishment (ICE), and provides one of many possible candidate
 addresses for communication. These addresses are validated with
 an end-to-end connectivity check using Simple Traversal Underneath
 NAT (STUN).

 Appropriate Values: See Section 13 of RFC XXXX [Note to RFC-ed:
 please replace XXXX with the RFC number of this specification].

16.2. remote-candidates Attribute

 Contact Name: Jonathan Rosenberg, jdrosen@jdrosen.net.

 Attribute Name: remote-candidates

 Long Form: remote-candidates

Rosenberg Expires April 9, 2007 [Page 51]

Internet-Draft ICE October 2006

 Type of Attribute: media level

 Charset Considerations: The attribute is not subject to the charset
 attribute.

 Purpose: This attribute is used with Interactive Connectivity
 Establishment (ICE), and provides the identity of the remote
 candidates that the offerer wishes the answerer to use in its
 answer.

 Appropriate Values: See Section 13 of RFC XXXX [Note to RFC-ed:
 please replace XXXX with the RFC number of this specification].

16.3. ice-pwd Attribute

 Contact Name: Jonathan Rosenberg, jdrosen@jdrosen.net.

 Attribute Name: ice-pwd

 Long Form: ice-pwd

 Type of Attribute: session or media level

 Charset Considerations: The attribute is not subject to the charset
 attribute.

 Purpose: This attribute is used with Interactive Connectivity
 Establishment (ICE), and provides the password used to protect
 STUN connectivity checks.

 Appropriate Values: See Section 13 of RFC XXXX [Note to RFC-ed:
 please replace XXXX with the RFC number of this specification].

16.4. ice-ufrag Attribute

 Contact Name: Jonathan Rosenberg, jdrosen@jdrosen.net.

 Attribute Name: ice-ufrag

 Long Form: ice-ufrag

 Type of Attribute: session or media level

 Charset Considerations: The attribute is not subject to the charset
 attribute.

Rosenberg Expires April 9, 2007 [Page 52]

Internet-Draft ICE October 2006

 Purpose: This attribute is used with Interactive Connectivity
 Establishment (ICE), and provides the fragments used to construct
 the username in STUN connectivity checks.

 Appropriate Values: See Section 13 of RFC XXXX [Note to RFC-ed:
 please replace XXXX with the RFC number of this specification].

17. IAB Considerations

 The IAB has studied the problem of "Unilateral Self Address Fixing",
 which is the general process by which a agent attempts to determine
 its address in another realm on the other side of a NAT through a
 collaborative protocol reflection mechanism [19]. ICE is an example
 of a protocol that performs this type of function. Interestingly,
 the process for ICE is not unilateral, but bilateral, and the
 difference has a signficant impact on the issues raised by IAB.
 Indeed, ICE can be considered a B-SAF (Bilateral Self-Address Fixing)
 protocol, rather than an UNSAF protocol. Regardless, the IAB has
 mandated that any protocols developed for this purpose document a
 specific set of considerations. This section meets those
 requirements.

17.1. Problem Definition

 From RFC 3424 any UNSAF proposal must provide:

 Precise definition of a specific, limited-scope problem that is to
 be solved with the UNSAF proposal. A short term fix should not be
 generalized to solve other problems; this is why "short term fixes
 usually aren't".

 The specific problems being solved by ICE are:

 Provide a means for two peers to determine the set of transport
 addresses which can be used for communication.

 Provide a means for resolving many of the limitations of other
 UNSAF mechanisms by wrapping them in an additional layer of
 processing (the ICE methodology).

 Provide a means for a agent to determine an address that is
 reachable by another peer with which it wishes to communicate.

17.2. Exit Strategy

 From RFC 3424, any UNSAF proposal must provide:

https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3424

Rosenberg Expires April 9, 2007 [Page 53]

Internet-Draft ICE October 2006

 Description of an exit strategy/transition plan. The better short
 term fixes are the ones that will naturally see less and less use
 as the appropriate technology is deployed.

 ICE itself doesn't easily get phased out. However, it is useful even
 in a globally connected Internet, to serve as a means for detecting
 whether a router failure has temporarily disrupted connectivity, for
 example. ICE also helps prevent certain security attacks which have
 nothing to do with NAT. However, what ICE does is help phase out
 other UNSAF mechanisms. ICE effectively selects amongst those
 mechanisms, prioritizing ones that are better, and deprioritizing
 ones that are worse. Local IPv6 addresses can be preferred. As NATs
 begin to dissipate as IPv6 is introduced, server reflexive and
 relayed candidates (both forms of UNSAF mechanisms) simply never get
 used, because higher priority connectivity exists to the native host
 candidates. Therefore, the servers get used less and less, and can
 eventually be remove when their usage goes to zero.

 Indeed, ICE can assist in the transition from IPv4 to IPv6. It can
 be used to determine whether to use IPv6 or IPv4 when two dual-stack
 hosts communicate with SIP (IPv6 gets used). It can also allow a
 network with both 6to4 and native v6 connectivity to determine which
 address to use when communicating with a peer.

17.3. Brittleness Introduced by ICE

 From RFC3424, any UNSAF proposal must provide:

 Discussion of specific issues that may render systems more
 "brittle". For example, approaches that involve using data at
 multiple network layers create more dependencies, increase
 debugging challenges, and make it harder to transition.

 ICE actually removes brittleness from existing UNSAF mechanisms. In
 particular, traditional STUN (as described in RFC 3489 [13]) has
 several points of brittleness. One of them is the discovery process
 which requires a agent to try and classify the type of NAT it is
 behind. This process is error-prone. With ICE, that discovery
 process is simply not used. Rather than unilaterally assessing the
 validity of the address, its validity is dynamically determined by
 measuring connectivity to a peer. The process of determining
 connectivity is very robust.

 Another point of brittleness in traditional STUN and any other
 unilateral mechanism is its absolute reliance on an additional
 server. ICE makes use of a server for allocating unilateral
 addresses, but allows agents to directly connect if possible.
 Therefore, in some cases, the failure of a STUN server would still

https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg Expires April 9, 2007 [Page 54]

Internet-Draft ICE October 2006

 allow for a call to progress when ICE is used.

 Another point of brittleness in traditional STUN is that it assumes
 that the STUN server is on the public Internet. Interestingly, with
 ICE, that is not necessary. There can be a multitude of STUN servers
 in a variety of address realms. ICE will discover the one that has
 provided a usable address.

 The most troubling point of brittleness in traditional STUN is that
 it doesn't work in all network topologies. In cases where there is a
 shared NAT between each agent and the STUN server, traditional STUN
 may not work. With ICE, that restriction is removed.

 Traditional STUN also introduces some security considerations.
 Fortunately, those security considerations are also mitigated by ICE.

 Consequently, ICE serves to repair the brittleness introduced in
 other UNSAF mechanisms, and does not introduce any additional
 brittleness into the system.

17.4. Requirements for a Long Term Solution

 From RFC 3424, any UNSAF proposal must provide:

 Identify requirements for longer term, sound technical solutions
 -- contribute to the process of finding the right longer term
 solution.

 Our conclusions from STUN remain unchanged. However, we feel ICE
 actually helps because we believe it can be part of the long term
 solution.

17.5. Issues with Existing NAPT Boxes

 From RFC 3424, any UNSAF proposal must provide:

 Discussion of the impact of the noted practical issues with
 existing, deployed NA[P]Ts and experience reports.

 A number of NAT boxes are now being deployed into the market which
 try and provide "generic" ALG functionality. These generic ALGs hunt
 for IP addresses, either in text or binary form within a packet, and
 rewrite them if they match a binding. This interferes with
 traditional STUN. However, the update to STUN [11] uses an encoding
 which hides these binary addresses from generic ALGs. Since [11] is
 required for all ICE implementations, this NAPT problem does not
 impact ICE.

https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3424

Rosenberg Expires April 9, 2007 [Page 55]

Internet-Draft ICE October 2006

 Existing NAPT boxes have non-deterministic and typically short
 expiration times for UDP-based bindings. This requires
 implementations to send periodic keepalives to maintain those
 bindings. ICE uses a default of 15s, which is a very conservative
 estimate. Eventually, over time, as NAT boxes become compliant to
 behave [30], this minimum keepalive will become deterministic and
 well-known, and the ICE timers can be adjusted. Having a way to
 discover and control the minimum keepalive interval would be far
 better still.

18. Acknowledgements

 The authors would like to thank Flemming Andreasen, Rohan Mahy, Dean
 Willis, Eric Cooper, Dan Wing, Douglas Otis, Tim Moore, and Francois
 Audet for their comments and input. A special thanks goes to Bill
 May, who suggested several of the concepts in this specification,
 Philip Matthews, who suggested many of the key performance
 optimizations in this specification, Eric Rescorla, who drafted the
 text in the introduction, and Magnus Westerlund, for doing several
 detailed reviews on the various revisions of this specification.

19. References

19.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Huitema, C., "Real Time Control Protocol (RTCP) attribute in
 Session Description Protocol (SDP)", RFC 3605, October 2003.

 [3] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [4] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
 Session Description Protocol (SDP)", RFC 3264, June 2002.

 [5] Casner, S., "Session Description Protocol (SDP) Bandwidth
 Modifiers for RTP Control Protocol (RTCP) Bandwidth", RFC 3556,
 July 2003.

 [6] Camarillo, G., Marshall, W., and J. Rosenberg, "Integration of
 Resource Management and Session Initiation Protocol (SIP)",

RFC 3312, October 2002.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3605
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3556
https://datatracker.ietf.org/doc/html/rfc3312

Rosenberg Expires April 9, 2007 [Page 56]

Internet-Draft ICE October 2006

 [7] Camarillo, G. and P. Kyzivat, "Update to the Session Initiation
 Protocol (SIP) Preconditions Framework", RFC 4032, March 2005.

 [8] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 4234, October 2005.

 [9] Rosenberg, J. and H. Schulzrinne, "Reliability of Provisional
 Responses in Session Initiation Protocol (SIP)", RFC 3262,
 June 2002.

 [10] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [11] Rosenberg, J., "Simple Traversal Underneath Network Address
 Translators (NAT) (STUN)", draft-ietf-behave-rfc3489bis-04
 (work in progress), July 2006.

 [12] Rosenberg, J., "Obtaining Relay Addresses from Simple Traversal
 of UDP Through NAT (STUN)", draft-ietf-behave-turn-01 (work in
 progress), June 2006.

19.2. Informative References

 [13] Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy, "STUN
 - Simple Traversal of User Datagram Protocol (UDP) Through
 Network Address Translators (NATs)", RFC 3489, March 2003.

 [14] Senie, D., "Network Address Translator (NAT)-Friendly
 Application Design Guidelines", RFC 3235, January 2002.

 [15] Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A., and A.
 Rayhan, "Middlebox communication architecture and framework",

RFC 3303, August 2002.

 [16] Rosenberg, J., Peterson, J., Schulzrinne, H., and G. Camarillo,
 "Best Current Practices for Third Party Call Control (3pcc) in
 the Session Initiation Protocol (SIP)", BCP 85, RFC 3725,
 April 2004.

 [17] Borella, M., Lo, J., Grabelsky, D., and G. Montenegro, "Realm
 Specific IP: Framework", RFC 3102, October 2001.

 [18] Borella, M., Grabelsky, D., Lo, J., and K. Taniguchi, "Realm
 Specific IP: Protocol Specification", RFC 3103, October 2001.

 [19] Daigle, L. and IAB, "IAB Considerations for UNilateral Self-
 Address Fixing (UNSAF) Across Network Address Translation",

RFC 3424, November 2002.

https://datatracker.ietf.org/doc/html/rfc4032
https://datatracker.ietf.org/doc/html/rfc4234
https://datatracker.ietf.org/doc/html/rfc3262
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/draft-ietf-behave-rfc3489bis-04
https://datatracker.ietf.org/doc/html/draft-ietf-behave-turn-01
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3235
https://datatracker.ietf.org/doc/html/rfc3303
https://datatracker.ietf.org/doc/html/bcp85
https://datatracker.ietf.org/doc/html/rfc3725
https://datatracker.ietf.org/doc/html/rfc3102
https://datatracker.ietf.org/doc/html/rfc3103
https://datatracker.ietf.org/doc/html/rfc3424

Rosenberg Expires April 9, 2007 [Page 57]

Internet-Draft ICE October 2006

 [20] Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson,
 "RTP: A Transport Protocol for Real-Time Applications",

RFC 3550, July 2003.

 [21] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",

RFC 3711, March 2004.

 [22] Carpenter, B. and K. Moore, "Connection of IPv6 Domains via
 IPv4 Clouds", RFC 3056, February 2001.

 [23] Zopf, R., "Real-time Transport Protocol (RTP) Payload for
 Comfort Noise (CN)", RFC 3389, September 2002.

 [24] Rosenberg, J., "The Session Initiation Protocol (SIP) UPDATE
 Method", RFC 3311, October 2002.

 [25] Camarillo, G. and H. Schulzrinne, "Early Media and Ringing Tone
 Generation in the Session Initiation Protocol (SIP)", RFC 3960,
 December 2004.

 [26] Andreasen, F., "Connectivity Preconditions for Session
 Description Protocol Media Streams",

draft-ietf-mmusic-connectivity-precon-02 (work in progress),
 June 2006.

 [27] Andreasen, F., "A No-Op Payload Format for RTP",
draft-ietf-avt-rtp-no-op-00 (work in progress), May 2005.

 [28] Kohler, E., Handley, M., and S. Floyd, "Datagram Congestion
 Control Protocol (DCCP)", RFC 4340, March 2006.

 [29] Hellstrom, G. and P. Jones, "RTP Payload for Text
 Conversation", RFC 4103, June 2005.

 [30] Audet, F. and C. Jennings, "NAT Behavioral Requirements for
 Unicast UDP", draft-ietf-behave-nat-udp-07 (work in progress),
 June 2006.

 [31] Jennings, C. and R. Mahy, "Managing Client Initiated
 Connections in the Session Initiation Protocol (SIP)",

draft-ietf-sip-outbound-04 (work in progress), June 2006.

Appendix A. Design Motivations

 ICE contains a number of normative behaviors which may themselves be
 simple, but derive from complicated or non-obvious thinking or use

https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc3056
https://datatracker.ietf.org/doc/html/rfc3389
https://datatracker.ietf.org/doc/html/rfc3311
https://datatracker.ietf.org/doc/html/rfc3960
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-connectivity-precon-02
https://datatracker.ietf.org/doc/html/draft-ietf-avt-rtp-no-op-00
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4103
https://datatracker.ietf.org/doc/html/draft-ietf-behave-nat-udp-07
https://datatracker.ietf.org/doc/html/draft-ietf-sip-outbound-04

Rosenberg Expires April 9, 2007 [Page 58]

Internet-Draft ICE October 2006

 cases which merit further discussion. Since these design motivations
 are not neccesary to understand for purposes of implementation, they
 are discussed here in an appendix to the specification. This section
 is non-normative.

A.1. Applicability to Gateways and Servers

Section 4.1 discusses procedures for gathering candidates, including
 host, server reflexive and relayed. In that section, recommendations
 are given for when an agent should obtain each of these three types.
 In particular, for agents embedded in PSTN gateways, media servers,
 conferencing servers, and so on, ICE specifies that an agent can
 stick with just host candidates, since it has a public IP address.

 This leads to an important question - why would such an endpoint even
 bother with ICE? If it has a public IP address, what additional
 value do the ICE procedures bring? There are many, actually.

 First, doing so greatly facilitates NAT traversal for clients that
 connect to it. Consider a PC softphone behind a NAT whose mapping
 policy is address and port dependent. The softphone initiates a call
 through a gateway that implements ICE. The gateway doesn't obtain
 any server reflexive or relayed candidates, but it implements ICE,
 and consequently, is prepared to receive STUN connectivity checks on
 its host candidates. The softphone will send a STUN connectivity
 check to the gateway, which passes through the intervending NAT.
 This causes the NAT to allocate a new binding for the softphone. The
 connectivity is received by the gateway, and will cause it gateway to
 send a check back to the softphone, at this newly created candidate.
 A successful response confirms that this candidate is usable, and the
 gateway can send media immediately to the softphone. This allows
 direct media transmission between the gateway and softphone, without
 the need for relays, even though the softphone was behind a 'bad'
 NAT.

 Second, implementation of the STUN connectivity checks allows for NAT
 bindings along the way to be kept open. Keeping these bindings open
 is essential for continued communications between the gateway and
 softphone.

 Third, ICE prevents a fairly destructive attack in multimedia
 systems, called the voice hammer. The STUN connectivity check used
 by an ICE endpoint allows it to be certain that the target of media
 packets is, in fact, the same entity that requested the packets
 through the offer/answer exchange. See Section 15 for a more
 complete discussion on this attack.

Rosenberg Expires April 9, 2007 [Page 59]

Internet-Draft ICE October 2006

A.2. Pacing of STUN Transactions

 STUN transactions used to gather candidates and to verify
 connectivity are paced out at an approximate rate of one new
 transaction every Ta seconds, where Ta has a default of 50ms. Why
 are these transactions paced, and why was 50ms chosen as default?

 Sending of these STUN requests will often have the effect of creating
 bindings on NAT devices between the client and the STUN servers.
 Experience has shown that many NAT devices have upper limits on the
 rate at which they will create new bindings. Furthermore,
 transmission of these packets on the network makes use of bandwidth
 and needs to be rate limited by the agent. As a consequence, the
 pacing ensures that the NAT devices does not get overloaded and that
 traffic is kept at a reasonable rate.

 Another aspect of the STUN requests is their bandwidth usage. In
 ICE, each STUN request contains the STUN 20 byte header, in addition
 to the USERNAME, MESSAGE-INTEGRITY and PRIORITY attributes. The
 USERNAME attribute contains a 4-byte attribute overhead, plus the
 username value itself. This username is the concatenation of the two
 fragments, plus a colon. Each fragment is supposed to be at least 4
 bytes long, making the total length of the USERNAME attribute (4*2 +
 1 + 4) = 13 bytes. The MESSAGE-INTEGRITY attribute is 4 bytes of
 overhead plus 20 bytes value, for 24 bytes. The PRIORITY attribute
 is 4 bytes of overhead plus 4 bytes of value, for 8 bytes. Thus, the
 total length of the STUN Binding Request is (20 + 13 + 24 + 8) = 65
 bytes, with 28 bytes of overhead for IP and UDP for a total of 93
 bytes. The response contains the STUN 20 byte header, the XOR-
 MAPPED-ADDRESS, and MESSAGE-INTEGRITY attributes. XOR-MAPPED-ADDRESS
 has 4 bytes overhead plus an 8 byte value, for a total of 12 bytes.
 Thus, each STUN response is (20 + 12 + 24) = 56 bytes plus 28 bytes
 of UDP/IP overhead for a total of 84 bytes. Checks typically fall
 into one of two cases. If a check works, each transaction has a
 single request and a single response, for a total of 2 packets and
 177 bytes over one RTT interval. Assuming a fairly agressive RTT of
 70ms, this produces 20.23 kbps, but only briefly. If a check fails
 because the pair is invalid, there will be nine requests and no
 responses. This produces 837 bytes over 7.9s, for a total of 105.9
 bps, but over a long period of time.

 OPEN ISSUE: The bandwidth computations are pretty complex because
 ICE is not a CBR stream, and its bandwidth utilization depends on
 how many transactions it ends up generating before it finishes.
 Need to work this model more.

 Given that these numbers are close to, if not greater than, the
 bandwidths utilized by many voice codecs, this seems a reasonable

Rosenberg Expires April 9, 2007 [Page 60]

Internet-Draft ICE October 2006

 value to use.

 OPEN ISSUE: There is some debate about whether to reduce this
 pacing interval smaller, say 20ms, to speed up ICE, or perhaps
 make it equal to the bandwidth that would be utilized by the media
 streams themselves.

A.3. Candidates with Multiple Bases

Section 4.1 talks about merging together candidates that are
 identical but have different bases. When can an agent have two
 candidates that have the same IP address and port, but different
 bases? Consider the topology of Figure 16:

Rosenberg Expires April 9, 2007 [Page 61]

Internet-Draft ICE October 2006

 +----------+
 | STUN Srvr|
 +----------+
 |
 |

 // \\
 | |
 | B:net10 |
 | |
 \\ //

 |
 |
 +----------+
 | NAT |
 +----------+
 |
 |

 // \\
 | A |
 |192.168/16 |
 | |
 \\ //

 |
 |
 |192.168.1.1 -----
 +----------+ // \\ +----------+
 | | | | | |
 | Offerer |---------| C:net10 |---------| Answerer |
 | |10.0.1.1 | | 10.0.1.2 | |
 +----------+ \\ // +----------+

 Figure 16

 In this case, the offerer is multi-homed. It has one interface,
 10.0.1.1, on network C, which is a net 10 private network. The
 Answerer is on this same network. The offerer is also connected to
 network A, which is 192.168/16. The offerer has an interface of
 192.168.1.1 on this network. There is a NAT on this network, natting
 into network B, which is another net10 private network, but not
 connected to network C. There is a STUN server on network B.

 The offerer obtains a host candidate on its interface on network C

Rosenberg Expires April 9, 2007 [Page 62]

Internet-Draft ICE October 2006

 (10.0.1.1:2498) and a host candidate on its interface on network A
 (192.168.1.1:3344). It performs a STUN query to its configured STUN
 server from 192.168.1.1:3344. This query passes through the NAT,
 which happens to assign the binding 10.0.1.1:2498. The STUN server
 reflects this in the STUN Binding Response. Now, the offerer has
 obtained a server reflexive candidate with a transport address that
 is identical to a host candidate (10.0.1.1:2498). However, the
 server reflexive candidate has a base of 192.168.1.1:3344, and the
 host candidate has a base of 10.0.1.1:2498.

A.4. Purpose of the Translation

 When a candidate is relayed, the SDP offer or answer contain both the
 relayed candidate and its translation. However, the translation is
 never used by ICE itself. Why is it present in the message?

 There are two motivations for its inclusion. The first is
 diagnostic. It is very useful to know the relationship between the
 different types of candidates. By including the translation, an
 agent can know which relayed candidate is associated with which
 reflexive candidate, which in turn is associated with a specific host
 candidate. When checks for one candidate succeed and not the others,
 this provides useful diagnostics on what is going on in the network.

 The second reason has to do with off-path Quality of Service (QoS)
 mechanisms. When ICE is used in environments such as PacketCable 2.0
 [[TODO: need PC2.0 reference]], proxies will, in addition to
 performing normal SIP operations, inspect the SDP in SIP messages,
 and extract the IP address and port for media traffic. They can then
 interact, through policy servers, with access routers in the network,
 to establish guaranteed QoS for the media flows. This QoS is
 provided by classifying the RTP traffic based on 5-tuple, and then
 providing it a guaranteed rate, or marking its Diffserv codepoints
 appropriately. When a residential NAT is present, and a relayed
 candidate gets selected for media, this relayed candidate will be a
 transport address on an actual STUN relay. That address says nothing
 about the actual transport address in the access router that would be
 used to classify packets for QoS treatment. Rather, the translation
 of that relayed address is needed. By carrying the translation in
 the SDP, the proxy can use that transport address to request QoS from
 the access router.

A.5. Importance of the STUN Username

 ICE requires the usage of message integrity with STUN using its short
 term credential functionality. The actual short term credential is
 formed by exchanging username fragments in the SDP offer/answer
 exchange. The need for this mechanism goes beyond just security; it

Rosenberg Expires April 9, 2007 [Page 63]

Internet-Draft ICE October 2006

 is actual required for correct operation of ICE in the first place.

 Consider agents A, B, and C. A and B are within private enterprise 1,
 which is using 10.0.0.0/8. C is within private enterprise 2, which
 is also using 10.0.0.0/8. As it turns out, B and C both have IP
 address 10.0.1.1. A sends an offer to C. C, in its answer, provides
 A with its host candidates. In this case, those candidates are
 10.0.1.1:8866 and 10.0.1.1:8877. As it turns out, B is in a session
 at that same time, and is also using 10.0.1.1:8866 and 10.0.1.1:8877
 as host candidates. This means that B is prepared to accept STUN
 messages on those ports, just as C is. A will send a STUN request to
 10.0.1.1:8866 and and another to 10.0.1.1:8877. However, these do
 not go to C as expected. Instead, they go to B! If B just replied
 to them, A would believe it has connectivity to C, when in fact it
 has connectivity to a completely different user, B. To fix this, the
 STUN short term credential mechanisms are used. The username
 fragments are sufficiently random that it is highly unlikely that B
 would be using the same values as A. Consequently, B would reject the
 STUN request since the credentials were invalid. In essence, the
 STUN username fragments provide a form of transient host identifiers,
 bound to a particular offer/answer session.

 An unfortunate consequence of the non-uniqueness of IP addresses is
 that, in the above example, B might not even be an ICE agent. It
 could be any host, and the port to which the STUN packet is directed
 could be any ephemeral port on that host. If there is an application
 listening on this socket for packets, and it is not prepared to
 handle malformed packets for whatever protocol is in use, the
 operation of that application could be affected. Fortunately, since
 the ports exchanged in SDP are ephemeral and usually drawn from the
 dynamic or registered range, the odds are good that the port is not
 used to run a server on host B, but rather is the agent side of some
 protocol. This decreases the probability of hitting a port in-use,
 due to the transient nature of port usage in this range. However,
 the possibility of a problem does exist, and network deployers should
 be prepared for it. Note that this is not a problem specific to ICE;
 stray packets can arrive at a port at any time for any type of
 protocol, especially ones on the public Internet. As such, this
 requirement is just restating a general design guideline for Internet
 applications - be prepared for unknown packets on any port.

A.6. The Candidate Pair Sequence Number Formula

 The sequence number for a candidate pair has an odd form. It is:

 PAIR-SN = 10000*MAX(O-SN,A-SN) + MIN(O-SN,A-SN) + O-IP/SZ

 Why is this? When the candidate pairs are sorted based on this

Rosenberg Expires April 9, 2007 [Page 64]

Internet-Draft ICE October 2006

 value, the resulting sorting has the MAX/MIN property. This means
 that the pairs are first sorted based on increasing value of the
 maximum of the two sequence numbers. For pairs that have the same
 value of the maximum sequence number, the minimum sequence number is
 used to sort amongst them. If the max and the min sequence numbers
 are the same, the IP address of the offerers candidate serves as a
 tie breaker. The factor of 1000 is used since there will always be
 fewer than a 1000 candidates, and thus the largest value a sequence
 number (and thus the minimum sequence number) can have is always less
 than 1000. This creates the desired sorting property.

 Recall that candidate sequence numbers are assigned such that, for a
 particular set of candidates of the same type, the RTP components
 have lower sequence numbers than the corresponding RTCP component.
 Also recall that, if an agent prefers host candidates to server
 reflexive to relayed, sequence numbers for host candidates are always
 lower than server reflexive which are always lower than relayed.
 Because of this,

A.7. The Frozen State

 The Frozen state is used for two purposes. Firstly, it allows ICE to
 first perform checks for the first component of a media stream. Once
 a successful check has completed for the first component, the other
 components of the same type and local preference will get performed.
 Secondly, when there are multiple media streams, it allows ICE to
 first check candidates for a single media stream, and once a set of
 candidates has been found, candidates of that same type for other
 media streams can be checked first. This effectively 'caches' the
 results of a check for one media stream, and applies them to another.
 For example, if only the relayed candidates for audio (which were the
 last resort candidates) succeed, ICE will check the relayed
 candidates for video first.

A.8. The remote-candidates attribute

 The a=remote-candidates attribute exists to eliminate a race
 condition between the updated offer and the response to the STUN
 Binding Request that moved a candidate into the Valid list. This
 race condition is shown in Figure 17. On receipt of message 4, agent
 A adds a candidate pair to the valid list. If there was only a
 single media stream with a single component, agent A could now send
 an updated offer. However, the check from agent B has not yet
 generated a response, and agent B receives the updated offer (message
 7) before getting the response (message 10). Thus, it does not yet
 know that this particular pair is valid. To eliminate this
 condition, the actual candidates at B that were selected by the
 offerer (the remote candidates) are included in the offer itself.

Rosenberg Expires April 9, 2007 [Page 65]

Internet-Draft ICE October 2006

 Note, however, that agent B will not send media until it has received
 this STUN response.

 Agent A Network Agent B
 |(1) Offer | |
 |-->|
 |(2) Answer | |
 |<--|
 |(3) STUN Req. | |
 |-->|
 |(4) STUN Res. | |
 |<--|
 |(5) STUN Req. | |
 |<--|
 |(6) STUN Res. | |
 |-------------------->| |
 | |Lost |
 |(7) Offer | |
 |-->|
 |(8) Answer | |
 |<--|
 |(9) STUN Req. | |
 |<--|
 |(10) STUN Res. | |
 |-->|

 Figure 17

A.9. Why are Keepalives Needed?

 Once media begins flowing on a candidate pair, it is still necessary
 to keep the bindings alive at intermediate NATs for the duration of
 the session. Normally, the media stream packets themselves (e.g.,
 RTP) meet this objective. However, several cases merit further
 discussion. Firstly, in some RTP usages, such as SIP, the media
 streams can be "put on hold". This is accomplished by using the SDP
 "sendonly" or "inactive" attributes, as defined in RFC 3264 [4]. RFC

3264 directs implementations to cease transmission of media in these
 cases. However, doing so may cause NAT bindings to timeout, and
 media won't be able to come off hold.

 Secondly, some RTP payload formats, such as the payload format for
 text conversation [29], may send packets so infrequently that the
 interval exceeds the NAT binding timeouts.

 Thirdly, if silence suppression is in use, long periods of silence

https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3264

Rosenberg Expires April 9, 2007 [Page 66]

Internet-Draft ICE October 2006

 may cause media transmission to cease sufficiently long for NAT
 bindings to time out.

 For these reasons, the media packets themselves cannot be relied
 upon. ICE defines a simple periodic keepalive that operates
 indpendently of media transmission. This makes its bandwidth
 requirements highly predictable, and thus amenable to QoS
 reservations.

A.10. Why Prefer Peer Reflexive Candidates?

Section 4.2 describes procedures for computing the priority of
 candidate based on its type and local preferences. That section
 requires that the type preference for peer reflexive candidates
 always be lower than server reflexive. Why is that? The reason has
 to do with the security considerations in Section 15. It is much
 easier for an attacker to cause an agent to use a false server
 reflexive candidate than it is for an attacker to cause an agent to
 use a false peer reflexive candidate. Consequently, attacks against
 the STUN binding discovery usage are thwarted by ICE by preferring
 the peer reflexive candidates.

A.11. Why Can't Offerers Send Media When a Pair Validates

Section 11.1 describes rules for sending media. The rules are
 asymmetric, and not the same for offerers and answerers. In
 particular, an answerer can send media right away to a candidate pair
 once it validates, even if it doesnt match the pairs in the m/c-line.
 THe offerer cannot - it must wait for an updated offer/answer
 exchange. Why is that?

 This, in fact, relates to a bigger question - why is the updated
 offer/answer exchange needed at all? Indeed, in a pure offer/answer
 environment, it would not be. The offerer and answerer will agree on
 the candidates to use through ICE, and then can begin using them. As
 far as the agents themselves are concerned, the updated offer/answer
 provides no new information. However, in practice, numerous
 components along the signaling path look at the SDP information.
 These include entities performing off-path QoS reservations, NAT
 traversal components such as ALGs and Session Border Controllers
 (SBCs) and diagnostic tools that passively monitor the network. For
 these tools to continue to function without change, the core property
 of SDP - that the m/c-lines represent the addresses used for media -
 must be retained. For this reason, an updated offer must be sent.

 To ensure that an updated offerer is sent, ICE purposefully prevents
 the offerer from sending media until that offer is sent. It
 furthermore restricts the answerer in how long it can send media

Rosenberg Expires April 9, 2007 [Page 67]

Internet-Draft ICE October 2006

 until an updated offer is received. This provides protocol
 incentives for sending the updated offer.

 The updated offer also helps ensure that ICE did the right thing. In
 very unusual cases, the offerer and answerer might not agree on the
 candidates selected by ICE. This would be detected in the updated
 offer/answer exchange, allowing them to restart ICE procedures to fix
 the problem.

Rosenberg Expires April 9, 2007 [Page 68]

Internet-Draft ICE October 2006

Author's Address

 Jonathan Rosenberg
 Cisco Systems
 600 Lanidex Plaza
 Parsippany, NJ 07054
 US

 Phone: +1 973 952-5000
 Email: jdrosen@cisco.com
 URI: http://www.jdrosen.net

Rosenberg Expires April 9, 2007 [Page 69]

http://www.jdrosen.net

Internet-Draft ICE October 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Rosenberg Expires April 9, 2007 [Page 70]

