
Network Working Group Kutscher
Internet-Draft TZI, Universitaet Bremen
Expires: August 15, 2001 February 14, 2001

The Message Bus: Guidelines for Application Profile Writers
draft-ietf-mmusic-mbus-guidelines-00.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 To view the entire list of Internet-Draft Shadow Directories, see
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 15, 2001.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 This memo defines a list of conventions for terminology, algorithms
 and procedures for interaction models that are useful for
 applications using the Message Bus (Mbus) [1]. These conventions are
 intended as guidelines for designers of Mbus application profiles
 and Mbus implementations/applications.

Version Info

 $Revision: 2.17 $

 $Date: 2001/02/14 14:55:07 $

Kutscher Expires August 15, 2001 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/shadow.html

Internet-Draft Mbus Guidelines February 2001

Table of Contents

1. Introduction . 5
2. Terminology . 6
3. General Mbus Command Definition Conventions 7
3.1 Conventions for parameter encoding 7
3.2 Parameter Specification for Mbus Commands 7
3.2.1 Optional parameters 8

 3.2.1.1 Example of a Definition of an Optional Parameter List 9
 3.2.1.2 Example for an Mbus Command with an Optional Parameter 9

4. Usage of Mbus Addresses 10
4.1 Example of a Specification of an Addressing Scheme . . 11
5. Mbus Command Classes 12
5.1 Remote Commands 13
5.1.1 Example for a Command Definition 13
5.1.2 Example for an Mbus Interaction 14
5.2 RPC-style Commands 14
5.2.1 Invoking Remote Procedures 14
5.2.2 Returning Results from Remote Procedure Calls 15
5.2.3 Example for a Command Definition 16
5.2.4 Example for an Mbus Interaction 17
5.2.5 RPC Communication with Multiple Entities 17
5.2.5.1 Anycast . 17
5.2.5.1.1 Example for an Mbus Interaction 18
5.2.5.2 One RPC, more than one Result Command 19
5.2.5.2.1 Example for an Mbus Interaction 20
5.2.5.3 one RPC, coordinated result 20
5.2.5.3.1 Example for an Mbus Interaction 21
5.3 Transactions . 21
5.3.1 Example for a Command Definition 23
5.3.2 Example for an Mbus Interaction I 24
5.3.3 Example for an Mbus Interaction II 25
5.4 Inspection/Modification of Properties 25
5.4.1 Example for a Command Definition 27
5.4.2 Example for an Mbus Interaction I 28
5.4.3 Example for an Mbus Interaction II 28
5.4.4 Example for an Mbus Interaction III 28
5.5 Event Notifications 30
5.5.1 Example for a Command Definition 30
5.5.2 Example for an Mbus Interaction 30
5.6 Contexts . 31
5.6.1 Example for a Command Definition 31
5.6.2 Example for an Mbus Interaction 33
5.7 Status Signaling 33
5.7.1 Example of a Definition of Status Symbols 34
6. Mbus service models 35
6.1 No Control . 36
6.1.1 mbus.register . 37

6.1.2 mbus.deregister 37

Kutscher Expires August 15, 2001 [Page 2]

Internet-Draft Mbus Guidelines February 2001

6.1.3 mbus.registered 38
6.1.4 mbus.get-registered 39
6.2 Tight Control . 39
6.3 Exclusive Tight Control 39
7. Algorithms . 41
7.1 Aggregation of Mbus Addresses 41
7.2 Expansion of Mbus Group Addresses 41
8. Definition of Constants 42

 References . 43
 Author's Address 43

A. Examples for Application Profiles 44
A.1 Mbus Profile for RTP applications 44
A.1.1 Configuring a RTP engine 44
A.1.1.1 rtp.set-attributes 44
A.1.1.2 Controlling a RTP engine 45
A.1.1.2.1 rtp.source.mute 45
A.1.1.3 Events generated by a RTP engine 45
A.1.1.3.1 rtp.source.exists 45
A.1.1.3.2 rtp.source.left 46
A.1.1.3.3 rtp.source.attributes 46
A.1.1.3.4 rtp.source.reception 47
A.1.1.3.5 rtp.source.packet.loss 47
A.1.1.3.6 rtp.source.active 48
A.1.1.3.7 rtp.source.inactive 48
A.1.1.3.8 rtp.source.packet.duration 48
A.1.1.3.9 rtp.source.codec 49
A.1.1.3.10 rtp.source.playout 49

 Full Copyright Statement 50

Kutscher Expires August 15, 2001 [Page 3]

Internet-Draft Mbus Guidelines February 2001

1. Introduction

 [1] specifies the Mbus transport protocol. This includes the basic
 protocol behaviour, representation of PDUs and PDU elements and
 operational aspects, such as Mbus configuration. This base
 specification can be used to implement the Mbus protocol. Specific
 Mbus command sets are not defined in this specification -- they are
 expected to be defined in application specific documents.

 This document builds on the basic transport specification and tries
 to give useful recommendations for writers of Mbus application
 profiles in the following areas:

 Terminology: We propose common Mbus related terms in order to unify
 the terminology used in Mbus application profiles.

 Algorithms: A set of algorithms are given that are useful for Mbus
 implementors.

 Notation Conventions: We propose a set of conventions that can be
 used for writing Mbus application profiles, such as
 recommendations how to specify the characteristics of an Mbus
 command etc.

 Representation Conventions: Building upon the representation of
 values given in the Mbus transport specification we define
 additional representations for more complex data types.

 Interaction Models: The transport specification essentially defines
 one interaction model for the Mbus: Message passing (with support
 for group communication). In this document we propose conventions
 for additional interaction models that can be implemented with
 the basic Mbus message passing mechanisms.

Kutscher Expires August 15, 2001 [Page 4]

Internet-Draft Mbus Guidelines February 2001

2. Terminology

 This section defines some Mbus related terms.

 Application profile: A specification of Mbus commands, their
 semantics and characteristics for a specific application context.

 Fully qualified Mbus address: A unique, fully qualified Mbus address
 that denominates exactly one concrete existing Mbus entity at a
 given time and can thus not be expanded further.

 Addressing scheme: A set of Mbus address key and possible address
 values. An Mbus application profile defintion SHOULD contain a
 specification of a corresponding addressing scheme.

Kutscher Expires August 15, 2001 [Page 5]

Internet-Draft Mbus Guidelines February 2001

3. General Mbus Command Definition Conventions

 This section gives some general recommendations how to specify Mbus
 commands and their parameter lists and how to represent certain data
 types using Mbus parameter types.

3.1 Conventions for parameter encoding

 This section list some useful conventions for encoding values of
 commonly used parameter types.

 pair: A pair is a list that has exactly two elements, not
 necessarily of the same type.

 map: A map is a list of pairs where the first element of all pairs
 (the keys) is of type T1 and the second element of all pairs
 (values) is of type T2. A key value may occur only once. T1 and
 T2 may be equal. The map is specified as "map of (T1,T2)".

 MbusAddressElement: A Mbus address element is represented as a pair
 of strings: The first element represent the address element key
 and the second element represents the address element value.

 MbusAddress: A Mbus address is represented as a list of
 MbusAddressElements, a map of (string,string).

3.2 Parameter Specification for Mbus Commands

 This section lists some guidelines how parameters of Mbus commands
 should be specified in Mbus application profiles.

 1. Each parameter SHOULD be associated with a well-defined Mbus
 parameter type, i.e., one of the types specified in [1].

 2. Homogeneous lists (i.e. lists that contain elements that are all
 of the same type) SHOULD be declared by specifying the element
 type, for example "list of string".

 3. For heterogeneous lists the type of each element SHOULD be
 specified.

 4. In the case an optional parameter list is allowed, it SHOULD be
 the last parameter and a list of the potential parameters and
 their name tags SHOULD be given.

 See Section 3.2.1 for recommendations how to specify and use
 optional parameters.

Kutscher Expires August 15, 2001 [Page 6]

Internet-Draft Mbus Guidelines February 2001

3.2.1 Optional parameters

 Some Mbus command argument lists may be of variable length, i.e.,
 some parameters may be optional. The following conventions are
 proposed for optional parameters:

 o An argument list can have elements that are "optional argument
 lists". The elements of those lists are pairs: Each first element
 is of type String and represents a name for an optional
 parameter. Each second element is the value and can be of
 arbitrary type. This allows applications to process optional
 parameters independent of their order even when some parameters
 are missing.

 o A command specification may have a set of predefined optional
 parameters. In a command definition, these SHOULD be declared by
 listing the names and type definitions. If applicable, naming
 conventions for further parameters SHOULD be specified, for
 example to distinguish different classes of optional parameters.

 o If a command definition requires optional parameters it SHOULD
 provide exactly one optional parameters list. It is RECOMMENDED
 that the optional parameter list be the last element of the
 command's parameter list, as shown in Section 3.2.1.2.

Kutscher Expires August 15, 2001 [Page 7]

Internet-Draft Mbus Guidelines February 2001

3.2.1.1 Example of a Definition of an Optional Parameter List

 tools.foo.bar
 Remote command (reliable/unreliable)

 Parameters:
 p1: string
 p1 is the value for...

 p2: int
 p2 is the number of...

 p3: list of string
 a list of names for...

 Optional Parameters:
 p4: string
 the optional name of...

 p5: string
 the optional number of...

3.2.1.2 Example for an Mbus Command with an Optional Parameter

 Entity A: ---------

 "mbus/1.0" 42 65454365 U (app:foo module:gui id:4711-1@192.168.1.1) \
 (app:foo module:engine) ()
 tools.foo.bar ("gg" 17 ("a" "b") ("p5" 42))

Kutscher Expires August 15, 2001 [Page 8]

Internet-Draft Mbus Guidelines February 2001

4. Usage of Mbus Addresses

 Mbus addresses are lists of arbitrary key/value pairs and every Mbus
 entity can choose its own Mbus address. Target Mbus addresses can be
 partly qualified to allow for group addressing or selecting
 receivers by certain application specific key elements that
 represent a certain application or service type. Except for the
 mandatory id-element the Mbus transport specification [1] does not
 define any other elements and it is suggested that Mbus application
 profile definitions specify a set of useful address element names
 and values for a specific application context.

 Example of a fully qualified Mbus address and three partly qualified
 Mbus addresses:

 (conf:test media:audio module:engine app:rat id:4711-1@192.168.1.1)
 (media:audio module:engine)
 (module:engine)
 ()

 These address elements might be used to offer a particular service
 to other entities and to disambiguate entities sufficiently. Address
 elements might also be used to express membership of a certain Mbus
 address group. When it is known that an entity will always send
 certain messages to a specific address group, an entity will have to
 provide the corresponding address elements (with proper keys and
 values) to become a member of that group. This depicts the following
 uses of Mbus address elements:

 1. to signal affiliation to an application context

 2. to offer a certain service

 3. to receive messages for a certain subgroup (to "tune" to a
 specific sub-channel on the Mbus)

 It is possible that for a given application context not every
 address element is to be used by every involved Mbus entity. Instead
 some elements (or values) might be reserved for use by "service
 providing entities" while others might be required in order to
 receive messages that are addressed to a certain subgroup.

 Moreover it should be noted that it may make sense for entities to
 adopt more than one command profile and thus make use of more than
 one addressing scheme. An entity could provide all address elements
 that are required by command profile A and additionally provide all
 the required element for profile B.

 In the following a list of guidelines is presented how to specify an

Kutscher Expires August 15, 2001 [Page 9]

Internet-Draft Mbus Guidelines February 2001

 Mbus addressing scheme for an Mbus profile definition.

 A Mbus profile definition SHOULD be a sufficiently self-contained
 specification of Mbus commands for a particular application area
 together with a specification of an addressing model for Mbus
 entities that are supposed to implement or use the commands. It
 SHOULD be clear which commands belong to an application profile
 definition and what addressing conventions are to be considered.

 The following specifies how addressing conventions SHOULD be
 defined:

 1. List the address element keys that are used.

 2. List (or describe) the set of legal values for each element key
 and explain the semantics (if applicable).

 3. Name the services (or mandatory commands) that an entity
 providing certain address element keys/values must
 provide/understand.

 4. Give examples for complete Mbus addresses using the defined
 address elements.

 5. For each command that is specified in the profile definition
 explain the relation to the address elements. ("This command is
 sent to the group xy." or "This command must be understood by
 every entity that provides the address element xy:z.")

4.1 Example of a Specification of an Addressing Scheme

 TBD

Kutscher Expires August 15, 2001 [Page 10]

Internet-Draft Mbus Guidelines February 2001

5. Mbus Command Classes

 The general semantic model for Mbus commands is that commands are
 sent as payload of messages from one peer to another receiving
 (group of) peer(s) in order to trigger some kind of operation on the
 receiving side. On a low level of abstraction every Mbus command can
 be modeled like this. However on a higher level of abstraction some
 classes of commands can be identified that are used to implement
 specific Mbus communication scenarios. The following list decribes
 these command classes briefly:

 Remote commands: Remote commands are used to trigger an asynchronous
 operation on the target system. The command has a name that is
 associated with a certain operation on the receiving side and can
 be sent together with a list of arguments (that can be empty)
 that are interpreted by the receiver. The name and the type
 definition of the command are specified in application semantics
 definition document. See Section 5.1 for a detailed discussion of
 generic remote commands.

 RPC-style commands: RPC-commands allow to associate an operation at
 an remote entity with an Mbus command and SHOULD be used when a
 caller expects a result message from the callee that can return
 result parameters of the remote procedure/function call.
 Different types of RPC-commands are defined in this
 specification. See Section 5.2 for a detailed discussion of
 RPC-style commands.

 Transactions: Transaction-style commands are similar to remote
 commands because they are also used to trigger a remote
 operation. Additionally transactions are used in scenarios where
 the caller is interested in how/whether the remote operation has
 been performed. In general, characteristics of transactions are
 atomicity (recoverability), consistency, isolation
 (serializability) and durability. This specification defines
 procedures for atomic transactions. Consistency, isolation and
 durability are to be provided by the Mbus application themselves.
 See Section 5.3 for a detailed discussion of transactions.

 Properties: Obtaining the value of a named property of another Mbus
 entity is a variant of an RPC-style command: One command is sent
 that represent a query and one command is returned to the caller
 that contains the value. Setting the value of a named variable is
 a simple remote command with a parameter for the new value. See

Section 5.4 for a detailed discussion of commands related to
 property inspection and manipulation.

 Event notification: An entity that frequently sends messages to

 inform other entities of certain events sends a command for each

Kutscher Expires August 15, 2001 [Page 11]

Internet-Draft Mbus Guidelines February 2001

 state change (or after a certain interval) to a (group of)
 receiver(s). These commands are similar to the simple remote
 commands because they are also sent asynchronously. See Section

5.5 for a detailed discussion of event notification.

 Contexts: Instead of short time interactions between entities that
 can be accomplished by RPCs and other command classes contexts
 allow for more persistent relationships between entities.
 Contexts are scopes for coherent commands that are to be
 exchanged within a long-term interaction. Contexts provide the
 service of assigning a name to an interaction context that allows
 to disambiguate Mbus interactions that use the same commands but
 refer to different contexts at the same time. See Section 5.6 for
 a detailed discussion of contexts.

 The following sections specify useful procedures that SHOULD be
 considered when defining Mbus command sets that contain commands of
 the aforementioned classes:

5.1 Remote Commands

 Simple remote commands (that do not belong to any of the other
 classes) require no special procedures or conventions besides the
 general recommendations for Mbus command definitions: They SHOULD be
 defined in a self-contained profile definition, their applicability,
 the command name and the command arguments SHOULD be documented like
 proposed in Section 3.2.

5.1.1 Example for a Command Definition

 tools.foo.bar
 Remote command (reliable/unreliable)

 Parameters:
 p1: string
 p1 is the value for...

 p2: int
 p2 is the number of...

 p3: list of string
 a list of names for...

 Optional parameters: none

Kutscher Expires August 15, 2001 [Page 12]

Internet-Draft Mbus Guidelines February 2001

5.1.2 Example for an Mbus Interaction

 Entity A:

 "mbus/1.0" 42 65454365 U (app:foo module:gui id:4711-1@192.168.1.1) \
 (app:foo module:engine) ()
 tools.foo.bar ("gg" 17 ("a" "b"))

 Entity B:

 "mbus/1.0" 42 65454365 U (app:foo module:engine id:4712-1@192.168.1.1) \
 (app:foo module:gui id:4711-1@192.168.1.1) ()
 tools.foo.ok ()

5.2 RPC-style Commands

 RPC-style commands are implemented by a command-pair: One command
 (with arguments) for triggering the remote procedure call and one
 command for the result. There are RPCs for Mbus "point-to-point"
 communication and RPC for Mbus group communications. The following
 conventions are proposed:

5.2.1 Invoking Remote Procedures

 o No restriction is imposed on the command name. The class of the
 command ("RPC") SHOULD be mentioned in the command definition.

 o The first argument of a RPC command SHOULD be a map of
 (string,string) (see Section 3.1) and contain meta information.
 The map SHOULD contain an element with the key "ID". The
 corresponding value is an arbitrary RPC ID that SHOULD be unique
 for the calling entity. For point-to-point RPCs (see Section

5.2.5 for RPCs to groups of entities) the meta information map
 SHOULD also contain an element with key "RPC-TYPE" and value
 "UNICAST". It is RECOMMENDED that unicast RPCs be sent using
 reliable Mbus messages. Multicast RPCs are defined in Section

5.2.5.

 o The second argument of a RPC command is of type list and contains
 an arbitrary number of RPC parameters. The syntax and the
 semantics of this list SHOULD be defined in the definition of the
 RPC command.

Kutscher Expires August 15, 2001 [Page 13]

Internet-Draft Mbus Guidelines February 2001

5.2.2 Returning Results from Remote Procedure Calls

 o The names of commands for returning RPC result are constructed
 using the name of the trigger command and appending the string
 ".return".

 o The first argument of a RPC return command is a map of
 (string,string) for meta information that contains the following
 information:

 The original RPC ID that has been generated by the calling
 entity;

 Another element with the key of "RPC-STATUS" SHOULD have one
 of the following values:

 OK: The procedure has been called.

 UNKNOWN: No operation is associated with the RPC command. The
 command is unknown to the callee.

 The RPC-STATUS parameter is used to signal the generic RPC
 status and can be used to acknowledge the call of the
 specified RPC.

 o The second argument of a RPC return command is of type list and
 contains a list of return parameters. It is RECOMMENDED that the
 first element of this list be of type list, containing
 application specific status information.

 o The second element SHOULD be of type list and contain further
 application specific return parameters. The syntax and the
 semantics of this list SHOULD be defined in the definition of the
 RPC command.

 o The application specific status information list SHOULD contain:

 An identifier (type symbol) that signals the general result
 (successful or unsuccessful operation) of the RPC. The
 possible values are "OK" and "FAILED".

 An identifier (type symbol) that represents the application
 specific result status of the procedure call. The set of
 symbols SHOULD be specified in the definition of the RPC.

 A textual description of the status (type string).

 If the general result of the RPC is "FAILED" the further
 parameters may be omitted although they have been specified in

Kutscher Expires August 15, 2001 [Page 14]

Internet-Draft Mbus Guidelines February 2001

 the RPC definition.

5.2.3 Example for a Command Definition

 The meta information list (for ID and RPC-TYPE) and the application
 status list does not have to be provided in RPC command definitions.

 tools.foo.bar
 RPC

 p1: string
 p1 is the value for...

 p2: int
 p2 is the number of...

 p3: list of string
 a list of names for...

 optional parameters: none

 The following application specific result states are defined:

 BAR_COMPLETED The bar operation has been called successfully.
 NO_SUCH_P1 The p1 parameter is invalid.
 FOO_CRASH The foo module crashed during the execution of
bar.

 return parameters:

 r1: int
 the value of...

Kutscher Expires August 15, 2001 [Page 15]

Internet-Draft Mbus Guidelines February 2001

5.2.4 Example for an Mbus Interaction

 Entity A:

 "mbus/1.0" 42 65454365 R (app:foo module:gui id:4711-1@192.168.1.1) \
 (app:foo module:engine id:4712-1@192.168.1.1) ()
 tools.foo.bar ((("ID" "123") ("RPC-TYPE" "UNICAST")) \
 ("gg" 17 ("a" "b")))

 Entity B:

 "mbus/1.0" 57 65454366 U (app:foo module:engine id:4712-1@192.168.1.1) \
 (app:foo module:gui id:4711-1@192.168.1.1) ()
 tools.foo.bar.return ((("ID" "123") ("RPC-STATUS" "OK")) \
 ((OK BAR_COMPLETED "Success!") (1)))

5.2.5 RPC Communication with Multiple Entities

 Different scenarios for RPCs that are addressed to groups of
 entities are defined:

 anycast
 A sender sends an RPC message to a group of entities and wants
 exactly one of the entities to perform the operation and return
 results.

 one RPC, more than one result command
 A sender sends an RPC message to a group of entities and wants
 each entity to perform the operation and to return a result.

 one RPC, coordinated result
 A sender sends a RPC message to a group of entities and expects
 each entity to perform the operation but only one result messages
 that represents all results of the addressed group.

5.2.5.1 Anycast

 The following conventions are proposed for anycast RPCs:

 The sender uses a group address as the Mbus target address of the
 RPC message using unreliable Mbus message transport.

 The command meta-information list SHOULD provide an entry with
 key "RPC-TYPE" and value "ANYCAST".

 Those of the receiving entities that want to respond to the RPC

Kutscher Expires August 15, 2001 [Page 16]

Internet-Draft Mbus Guidelines February 2001

 and are able to perform the requested operation return a
 "standby" command in order to signal their disposition to provide
 the service. The name of the command is the RPC command name
 concatenated with ".standby". The first argument is again a
 meta-information list that contains the original RPC-ID. The
 target address of this command is an aggregate of the sender
 address and the target addres of the RPC und MUST therefore be
 sent unreliably. See Section 7.1 for a description of an address
 aggregation algorithm.

 After a timeout T_anycast (Section 8) the entity that originally
 sent the RPC message selects one of the entities that answered
 with a "standby" command and sends it the RPC again (in a new
 message). This message MUST be sent using reliable Mbus message
 transport. The meta-information list of the command contains an
 additional entry with a key "REFERENCE". The value is the
 sequence number of the received standby message.

 The entity that receives the second RPC message now operates as
 specified for the regular unicast RPC case.

5.2.5.1.1 Example for an Mbus Interaction

 Entity A:

 "mbus/1.0" 42 65454365 U (app:foo module:gui id:4711-1@192.168.1.1) \
 (module:engine) ()
 tools.foo.bar ((("ID" "123") ("RPC-TYPE" "ANYCAST")) ("gg" 17 ("a" "b")))

 Entity B:

 "mbus/1.0" 57 65454366 U (app:foo module:engine id:4712-1@192.168.1.1) \
 () ()
 tools.foo.bar.standby ((("ID" "123")))

 Entity C:

 "mbus/1.0" 83 65454366 U (app:xy module:engine id:4713-1@192.168.1.1) \
 () ()
 tools.foo.bar.standby ((("ID" "123")))

 Entity A:

Kutscher Expires August 15, 2001 [Page 17]

Internet-Draft Mbus Guidelines February 2001

 "mbus/1.0" 43 65454367 U (app:foo module:gui id:4711-1@192.168.1.1) \
 (app:xy module:engine id:4713-1@192.168.1.1) ()
 tools.foo.bar ((("ID" "123") ("RPC-TYPE" "ANYCAST") ("REFERENCE" 83)) \
 ("gg" 17 ("a" "b")))

 Entity C:

 "mbus/1.0" 84 65454368 U (app:xy module:engine id:4713-1@192.168.1.1) \
 (app:foo module:gui id:4711-1@192.168.1.1) ()
 tools.foo.bar.return ((("ID" "123") ("RPC-STATUS" "OK")) \
 ((OK BAR_COMPLETED "Success!") (1)))

5.2.5.2 One RPC, more than one Result Command

 The following conventions are proposed for RPCs that are sent to a
 group of entities where each entity responds independently:

 The sender uses a group address as the Mbus target address of the
 RPC message.

 The command meta-information list SHOULD provide an entry with
 key "RPC-TYPE" and value "MULTICAST".

 The sending entity sends the RPC in a message addressed to an
 Mbus address group using unreliable Mbus message transport and
 calculates the set of real Mbus addresses (see Section 2) of the
 entities that are enclosed in the destination address group. See

Section 7.2 for an algorithm for expanding Mbus group addresses
 to real Mbus addresses.

 The receiving entities operate as specified for the regular
 unicast RPC case, i.e. they try perform the operation and report
 the results to the sender of the RPC. The destination address of
 the result message MUST be the address of the RPC's sender. The
 message MUST be sent reliably.

 After an application dependent timeout the entity that originally
 sent the RPC evaluates the received results: If all entities
 return a RPC-STATUS of "OK" the RPC can be considered successful.
 The procedure of how return parameters are gathered, collapsed
 and presented to the user is application/implementation specific.

Kutscher Expires August 15, 2001 [Page 18]

Internet-Draft Mbus Guidelines February 2001

5.2.5.2.1 Example for an Mbus Interaction

 Entity A:

 "mbus/1.0" 42 65454365 U (app:foo module:gui id:4711-1@192.168.1.1) \
 (module:engine) ()
 tools.foo.bar ((("ID" "123") ("RPC-TYPE" "MULTICAST")) ("gg" 17 ("a" "b")))

 Entity B:

 "mbus/1.0" 57 65454366 U (app:foo module:engine id:4712-1@192.168.1.1) \
 (app:foo module:gui id:4711-1@192.168.1.1) ()
 tools.foo.bar.return ((("ID" "123") ("RPC-STATUS" "OK")) \
 ((OK BAR_COMPLETED "Success!") (1)))

 Entity C:

 "mbus/1.0" 83 65454366 U (app:xy module:engine id:4713-1@192.168.1.1) \
 (app:foo module:gui id:4711-1@192.168.1.1) ()
 tools.foo.bar.return ((("ID" "123") ("RPC-STATUS" "OK")) \
 ((OK BAR_COMPLETED "Success!") (2)))

5.2.5.3 one RPC, coordinated result

 The following conventions are proposed for RPCs that are sent to a
 group of entities where each entity performs the operation but only
 one result messages that represents all results of the addressed
 group is sent to the original sender of the RPC:

 The sender uses a group address as the Mbus target address of the
 RPC message.

 The command meta-information list SHOULD provide an entry with
 key "RPC-TYPE" and value "COORDINATED".

 The sending entity sends the RPC in a message addressed to an
 Mbus address group using unreliable Mbus message transport.

 The receiving entities try to perform the operation and then send
 intermediate result commands to the RPC destination group. After
 a timeout T_Coordination one entity aggregates all intermediate
 results and sends an aggregated RPC-result message to the
 original sender. The coordination process and the procedure how
 to decide which entity reports the gathered results is yet TBD.

Kutscher Expires August 15, 2001 [Page 19]

Internet-Draft Mbus Guidelines February 2001

 :-(

5.2.5.3.1 Example for an Mbus Interaction

 Entity A:

 "mbus/1.0" 42 65454365 U (app:foo module:gui id:4711-1@192.168.1.1) \
 (module:engine) ()
 tools.foo.bar ((("ID" "123") ("RPC-TYPE" "COORDINATED")) ("gg" 17 ("a"
"b")))

 TBD...

5.3 Transactions

 Transactions are implemented by defining a command that triggers an
 operation and an additional acknowledgement command that is sent
 after the operation has completed (or failed). Acknowledgement
 commands MUST refer to the initial trigger command and this relation
 is expressed by a special reference parameter that is generated by
 the caller. Note that the acknowledgement command is different from
 acknowledgments on the Mbus transport level: Those only ensure that
 messages are really received by the addressees, whereas transaction
 acknowledgments inform the original caller about the result of a
 certain operation that the callee should have performed upon
 reception of the transaction command.

 Transaction commands are only allowed for unicast messages, they may
 not be sent to address groups. They MUST be sent using reliable Mbus
 messages. Senders of transaction commands are called clients,
 receivers of transaction commands are called servers.

 After a sender (a client) has initiated a transaction with the
 respective transaction command (see below) it may abort (rollback)
 the transaction with a dedicated command (see below) or finally
 commit the transaction using another dedicated command.

 It should be noted that means for concurrency control, e.g., to
 achieve consistency in the presence of parallel transactions, have
 to be provided by the application itself and is not part of these
 conventions.

 The following conventions for transaction commands are proposed:

 o There are no restrictions on naming transaction commands. Any
 command in an Mbus command hierarchy can be used for triggering
 transactions. The class of the command ("TRANSACTION") SHOULD be

 mentioned in the command definition.

Kutscher Expires August 15, 2001 [Page 20]

Internet-Draft Mbus Guidelines February 2001

 o The first argument of a transaction command SHOULD be a map of
 (string,string) (see Section 3.1) and contain meta information.
 The map SHOULD contain an element with the key "ID". The
 corresponding value is an arbitrary transaction ID that SHOULD be
 unique for the calling entity.

 o The second argument of a transaction command is of type list and
 contains an arbitrary number of transaction parameters. The
 syntax and the semantics of this list SHOULD be defined in the
 definition of the transaction command.

 o After a transaction command has been sent the sender can either
 cancel or commit the transaction: A transaction cancel command
 has the original transaction command name plus an appended
 ".cancel" as a command name and the original transaction id as a
 meta information parameter. A receiver SHOULD cancel or rollback
 any actions initiated by the original transaction message after
 receiving a transaction cancellation and delete any state related
 to the transaction. A transaction commit command has the original
 transaction command name plus an appended ".commit" as a command
 name and the original transaction id as a meta information
 parameter. A receicing entity SHOULD finish outstanding action
 initiated by the original transaction command after receiving a
 transaction commit command and delete any state related to the
 transaction. After a commit has been received cancel commands for
 the corresponding transaction MUST NOT be honoured anymore.

 o After receiving a transaction command an entity responds with an
 acknowledgement. Acknowledgment command names are constructed
 using the name of the trigger command and appending the string
 ".ack". The first argument of a transaction acknowledgement
 command is of type "String" and contains the original transaction
 ID that has been generated by the calling entity. Any action that
 is performed MUST be reversible and SHOULD only be executed in
 non-reversible way after a commit command has been received for
 the corresponding transaction. If a cancel command for the
 corresponding transaction has been received before a commit
 command the entity SHOULD rollback any performed actions.

 o The second argument of a transaction acknowledgement command is
 of type "Symbol" and can have one of the following values:

 OK: The transaction was successful.

 UNKNOWN: No operation is associated with the transaction command.
 The command is unknown to the callee.

 FAILED: The transaction could not be performed successfully.

Kutscher Expires August 15, 2001 [Page 21]

Internet-Draft Mbus Guidelines February 2001

 CANCELLED: The transaction has been cancelled.

 o Further information about the transaction status can be supplied
 optionally and can be passed in a common optional command list
 (see Section 3.2.1).

 o After a server has received a commit command for a transaction it
 SHOULD respond with an additional acknowledgement command. For
 clarity the command name for this command is composed of the name
 of the original command and an appended ".completed". The
 parameters are the same as for the first acknowledgement.

5.3.1 Example for a Command Definition

 The meta information list (for the transaction ID) does not have to
 be provided in transaction command definitions.

 tools.foo.bar
 TRANSACTION

 Parameters:

 p1: string
 p1 is the value for...

 p2: int
 p2 is the number of...

 p3: list of string
 a list of names for...

 Optional parameters: none

Kutscher Expires August 15, 2001 [Page 22]

Internet-Draft Mbus Guidelines February 2001

5.3.2 Example for an Mbus Interaction I

 Entity A:

 "mbus/1.0" 42 65454365 R (app:foo module:gui id:4711-1@192.168.1.1) \
 (app:foo module:engine id:4712-1@192.168.1.1) ()
 tools.foo.bar ((("ID" "123")) ("gg" 17 ("a" "b")))

 Entity B:

 "mbus/1.0" 57 65454366 U (app:foo module:engine id:4712-1@192.168.1.1) \
 (app:foo module:gui id:4711-1@192.168.1.1) ()
 tools.foo.bar.ack ("123" OK)

 Entity A:

 "mbus/1.0" 43 65454367 R (app:foo module:gui id:4711-1@192.168.1.1) \
 (app:foo module:engine id:4712-1@192.168.1.1) ()
 tools.foo.bar.commit ((("ID" "123")))

 Entity B:

 "mbus/1.0" 58 65454368 U (app:foo module:engine id:4712-1@192.168.1.1) \
 (app:foo module:gui id:4711-1@192.168.1.1) ()
 tools.foo.bar.completed ("123" OK)

Kutscher Expires August 15, 2001 [Page 23]

Internet-Draft Mbus Guidelines February 2001

5.3.3 Example for an Mbus Interaction II

 Entity A:

 "mbus/1.0" 42 65454365 R (app:foo module:gui id:4711-1@192.168.1.1) \
 (app:foo module:engine id:4712-1@192.168.1.1) ()
 tools.foo.bar ((("ID" "123")) ("gg" 17 ("a" "b")))

 Entity B:

 "mbus/1.0" 57 65454366 U (app:foo module:engine id:4712-1@192.168.1.1) \
 (app:foo module:gui id:4711-1@192.168.1.1) ()
 tools.foo.bar.ack ("123" OK)

 Entity A:

 "mbus/1.0" 43 65454367 R (app:foo module:gui id:4711-1@192.168.1.1) \
 (app:foo module:engine id:4712-1@192.168.1.1) ()
 tools.foo.bar.cancel ((("ID" "123")))

 Entity B:

 "mbus/1.0" 58 65454368 U (app:foo module:engine id:4712-1@192.168.1.1) \
 (app:foo module:gui id:4711-1@192.168.1.1) ()
 tools.foo.bar.completed ("123" CANCELLED)

5.4 Inspection/Modification of Properties

 Obtaining the value of a named property of another entity is
 achieved by using a set of RPC-style commands (see Section 5.2):
 RPCs are defined for setting, obtaining and "watching" values of
 properties. The following conventions are proposed:

 o No restriction is imposed on the property's name. Entities can
 use any command to transmit a new value for a certain property.
 The Mbus command name is the property name. In a profile
 definition a property SHOULD be classified as ("PROPERTY") which
 means that it is possible for other entities to set/retrieve its
 value (see below). Additionally the type of the property SHOULD
 be specified using the syntax specified in Section 3.2.

 o In order to obtain the value of a certain property that is

Kutscher Expires August 15, 2001 [Page 24]

Internet-Draft Mbus Guidelines February 2001

 managed by another Mbus entity a module sends a "get-request" RPC
 to the respective entity. The command name of this RPC is
 composed of the property name and ".get". The RPC argument list
 is empty. Upon receiving a get-request an entity hosting the
 property returns a RPC result command to the requesting entity.
 The (only) RPC argument is the current value. Application
 specific status values (Section 5.2) for the return command of a
 get-RPC are:

 OK: Property exists.

 NO_SUCH_PROPERTY: The requested property does not exist.

 o In order to change the value of a certain property that is
 managed by another Mbus entity a module sends a "set-request" RPC
 to the respective entity. The command name of this RPC is
 composed of the property name and ".set". The (only) RPC argument
 is the new value. Upon receiving a set-request an entity hosting
 the property changes the value and returns a RPC result command
 to the requesting entity. The (only) RPC argument is the new
 value. Application specific status values (Section 5.2) for the
 return command of a set-RPC are:

 OK: Property exists and has been updated.

 NO_SUCH_PROPERTY: The requested property does not exist.

 o Besides get-requests clients can also use "watch-requests" to
 obtain the value of properties. watch-requests can be sent if an
 entity wants to be informed about any updates to the property
 value. The RPC command name of this request is composed of the
 variable name and ".watch". The RPC argument list is empty. Upon
 receiving a watch-request an entity that hosts the property adds
 the originating entity to a list of subscribers for the property
 variable and will further on send an update to all list members
 when the value of the property changes. The current value of the
 property is sent to the originator of the watch-request in a RPC
 return command. The updates are event notificatons as specified
 in Section 5.5, i.e., simple Mbus commands with the property name
 as the command name and the current value as the only parameter.
 Application specific status values (Section 5.2) for the return
 command of a watch-RPC are:

 OK: Property exists and the requesting entity has been added to
 the list of subscribers.

 NO_SUCH_PROPERTY: The requested property does not exist.

 o A subscriber of a property can also send an "unwatch-request" RPC

Kutscher Expires August 15, 2001 [Page 25]

Internet-Draft Mbus Guidelines February 2001

 to unsubscribe. The command name of this request is composed of
 the property name and ".unwatch". The argument list is empty. The
 RPC return command also requires no further RPC parameter.
 Application specific status values (Section 5.2) for the return
 command of a uwatch-RPC are:

 OK: Property exists and the requesting entity has been removed
 from the list of subscribers.

 NO_SUCH_PROPERTY: The requested property does not exist.

 NOT_SUBSCRIBED The requesting entity is not on the list of
 subcribers for this property.

 Entities that have been declared to provide a property, e.g., in a
 profile definition, SHOULD support all aforementioned requests.

 All requests related to properties MUST be send as unicast RPCs.

 Notes:
 Requests for non-existing properties result in a RPC-UNKNOWN error
 (see Section 5.2).

5.4.1 Example for a Command Definition

 The RPC commands for the different property request do not have to
 be specified.

 tools.foo.bar
 PROPERTY

 type: string

Kutscher Expires August 15, 2001 [Page 26]

Internet-Draft Mbus Guidelines February 2001

5.4.2 Example for an Mbus Interaction I

 Entity A:

 "mbus/1.0" 42 65454365 R (app:foo module:gui id:4711-1@192.168.1.1) \
 (app:foo module:engine id:4712-1@192.168.1.1) ()
 tools.foo.bar.get ((("ID" "123") ("RPC-TYPE" "UNICAST")))

 Entity B:

 "mbus/1.0" 57 65454366 U (app:foo module:engine id:4712-1@192.168.1.1) \
 (app:foo module:gui id:4711-1@192.168.1.1) ()
 tools.foo.bar.get.return ((("ID" "123") ("RPC-STATUS" "OK")) \
 ((OK OK "") ("the value")))

5.4.3 Example for an Mbus Interaction II

 Entity A:

 "mbus/1.0" 42 65454365 R (app:foo module:gui id:4711-1@192.168.1.1) \
 (app:foo module:engine id:4712-1@192.168.1.1) ()
 tools.foo.bar.set ((("ID" "123") ("RPC-TYPE" "UNICAST")) \
 ((OK OK "") ("the value")))

 Entity B:

 "mbus/1.0" 57 65454366 U (app:foo module:engine id:4712-1@192.168.1.1) \
 (app:foo module:gui id:4711-1@192.168.1.1) ()
 tools.foo.bar.set.return ((("ID" "123") ("RPC-STATUS" "OK")) \
 ((OK OK "") ("new value")))

5.4.4 Example for an Mbus Interaction III

 Entity A:

 "mbus/1.0" 42 65454365 R (app:foo module:gui id:4711-1@192.168.1.1) \
 (app:foo module:engine id:4712-1@192.168.1.1) ()
 tools.foo.bar.watch ((("ID" "123") ("RPC-TYPE" "UNICAST")))

 Entity B:

Kutscher Expires August 15, 2001 [Page 27]

Internet-Draft Mbus Guidelines February 2001

 "mbus/1.0" 57 65454366 R (app:foo module:engine id:4712-1@192.168.1.1) \
 (app:foo module:gui id:4711-1@192.168.1.1) ()
 tools.foo.bar.watch.return ((("ID" "123") ("RPC-STATUS" "OK")) \
 ((OK OK "") ("the value")))

 Entity C:

 "mbus/1.0" 82 65454367 R (app:bar module:engine id:4713-1@192.168.1.1) \
 (app:foo module:engine id:4712-1@192.168.1.1) ()
 tools.foo.bar.set ((("ID" "345") ("RPC-TYPE" "UNICAST")) \
 ((OK OK "") ("new value")))

 Entity B:

 "mbus/1.0" 58 65454368 R (app:foo module:engine id:4712-1@192.168.1.1) \
 (app:bar module:engine id:4713-1@192.168.1.1) ()
 tools.foo.bar.set.return ((("ID" "345") ("RPC-STATUS" "OK")) \
 ((OK OK "") ("new value")))

 Entity B:

 "mbus/1.0" 59 65454369 U (app:foo module:engine id:4712-1@192.168.1.1) \
 (app:foo module:gui id:4711-1@192.168.1.1) ()
 tools.foo.bar ("new value")

 Entity A:

 "mbus/1.0" 43 65454370 R (app:foo module:gui id:4711-1@192.168.1.1) \
 (app:foo module:engine id:4712-1@192.168.1.1) ()
 tools.foo.bar.unwatch ((("ID" "124") ("RPC-TYPE" "UNICAST")))

 Entity B:

 "mbus/1.0" 60 65454371 R (app:foo module:engine id:4712-1@192.168.1.1) \
 (app:foo module:gui id:4711-1@192.168.1.1) ()
 tools.foo.bar.unwatch.return ((("ID" "123") ("RPC-STATUS" "OK")))

Kutscher Expires August 15, 2001 [Page 28]

Internet-Draft Mbus Guidelines February 2001

5.5 Event Notifications

 There are different usage scenarios for events that origin at a
 certain entity and need to be signaled to other entities. An event
 notification is an Mbus command with an arbitrary argument list that
 is sent (eventually, maybe periodically) to a group of entities. The
 following conventions are proposed:

 o No restriction is imposed on the name of the notification
 command. In a profile definition a command SHOULD be classified
 as ("EVENT NOTIFICATION").

 o A command that is classified as an event notification SHOULD also
 be associated with a default target address that is used when the
 notification command is sent.

 See Section 6 for conventions of how to subscribe to and how to
 redirect event notifications.

5.5.1 Example for a Command Definition

 tools.foo.bar
 EVENT NOTIFICATION

 default target address: (app:xy module:gui)

 Parameters:
 p1: string
 p1 is the value for...

 p2: int
 p2 is the number of...

 p3: list of string
 a list of names for...

5.5.2 Example for an Mbus Interaction

 Entity A:

 "mbus/1.0" 42 65454365 U (app:foo module:gui id:4711-1@192.168.1.1) \
 (app:xy module:gui) ()
 tools.foo.bar ("gg" 17 ("a" "b"))

Kutscher Expires August 15, 2001 [Page 29]

Internet-Draft Mbus Guidelines February 2001

5.6 Contexts

 RPCs can be used to trigger a remote operation with the possibility
 to obtain results from a single operation thus representing a short
 time interaction between two or more Mbus entities. Sometimes there
 is the need for more persistent interaction relations between
 entities, for example, when a series of commands all refer to the
 same context. The command category "contexts" allows for expressing
 a long-term relationship between commands that are exchanged by Mbus
 entities.

 The model that is used here is the concept of a specific context in
 which a sequence of Mbus commands are exchanged that relate to each
 other and are originated by entities of a group of Mbus entities.
 The context that provides a scope for Mbus commands is identified by
 a unique id that is used in all commands belonging to the context.

 Contexts can start to exist (they can be created) and cease to exist
 (destructed). Mbus commands for context creation and destruction
 will be defined below.

 Only certain specified commands are valid within a context. An Mbus
 context definition specifies these commands and their semantics.
 Context commands are either RPC commands (see Section 5.2) or event
 notifications that provide the context-id in the meta information
 parameter (key="CONTEXT-ID"). The subsequent argument of a context
 command is of type list and contains an arbitrary number of
 parameters. The syntax and the semantics of this list SHOULD be
 specified in the definition of the command.

 The name of a context is an Mbus command prefix. Command names for
 construction and destruction commands as well as other context
 commands are derived from the context name by appending a dot and
 the name of the method. The name of the construction command is
 CONTEXT_NAME.create and the name of the destruction command is
 CONTEXT_NAME.delete. Both are "simple" Mbus commands (remote
 commands) with one parameter: the context-id as a parameter of type
 string.

 CONTEXT_NAME.create and CONTEXT_NAME.delete can be sent to single
 Mbus entities as well as to group of entities using a Mbus group
 address. It is RECOMMENDED that context-creation/deletion messages
 to single entities be sent reliable. Only the creator of a context
 (the entity that has sent the CONTEXT_NAME.create message) SHOULD
 delete the corresponding context.

5.6.1 Example for a Command Definition

 The meta information list (for the context ID and eventual RPC or

Kutscher Expires August 15, 2001 [Page 30]

Internet-Draft Mbus Guidelines February 2001

 transaction IDs) does not have to be provided in each command
 definition in the context definition.

 Context "conf.call-ctrl.call"

 About: This context definition comprehends commands that can be
used
 for a "call context". The following commands may refer
 to different contexts that represent different calls.

 The following commands are defined in this context:

 conf.call-ctrl.call.setup
 RPC

 Parameters:

 caller: string
 identifies the caller

 callee: string
 identifies the callee

 Optional Parameters: none

 conf.call-ctrl.call.disconnected
 EVENT NOTIFICATION

 default target address: (app:controller)

 Parameters:

 reason: string
 the reason for the disconnection

 Optional Parameters: none

Kutscher Expires August 15, 2001 [Page 31]

Internet-Draft Mbus Guidelines February 2001

5.6.2 Example for an Mbus Interaction

 Entity A:

 "mbus/1.0" 42 65454365 U (app:controller module:engine id:
4711-1@192.168.1.1) \
 (app:call-ctrl module:engine id:4712-1@192.168.1.1) ()
 conf.call-ctrl.call.create ("345")

 Entity A:

 "mbus/1.0" 43 65454366 R (app:controller module:gui id:4711-1@192.168.1.1) \
 (app:call-ctrl module:engine id:4712-1@192.168.1.1) ()
 conf.call-ctrl.call.setup ((("ID" "123") ("CONTEXT-ID" "345")) \
 ("joe@foo.bar" "bob@foo.bar"))

 Entity B:

 "mbus/1.0" 57 65454380 U (app:call-ctrl module:engine id:
4712-1@192.168.1.1) \
 (app:controller) ()
 conf.call-ctrl.call.disconnected ((("CONTEXT-ID" "345")) ("hangup"))

 Entity A:

 "mbus/1.0" 44 65454385 U (app:controller module:engine id:
4711-1@192.168.1.1) \
 (app:call-ctrl module:engine id:4712-1@192.168.1.1) ()
 conf.call-ctrl.call.delete ("345")

5.7 Status Signaling

 In order to notify other entities of status events asynchronously,
 each Mbus entity SHOULD send such events using the "mbus.status"
 command. This command is an event notification as specified in

Section 5.5 and can thus also be given a default target address.

 As specified in Section 5.5 the default target address of this
 message can be redirected using the "mbus.register" command defined
 in Section 6.1.1.

Kutscher Expires August 15, 2001 [Page 32]

Internet-Draft Mbus Guidelines February 2001

 mbus.status
 EVENT NOTIFICATION

 Parameters:
 class: symbol
 An identifier for the class of the status message.
 Predefined identifiers are:

 INFO: for informational messages
 WARNING: for warnings
 ERROR: for error reports

 Application profiles can also define new status
 message classes.

 sym: symbol
 An identifier for the status message. Application
 profile definitions SHOULD enumerate the possible
 status symbols (and their textual description, see
 below).

 descr: string
 A textual description for the status message.

 Optional Parameters: none

 To be discussed (FIXME): Should mbus.status only be used top-level
 or with arbitrary prefixes?

5.7.1 Example of a Definition of Status Symbols

 TBD

Kutscher Expires August 15, 2001 [Page 33]

Internet-Draft Mbus Guidelines February 2001

6. Mbus service models

 In general, the Mbus is a communication channel for message passing
 within a group of modules. Mbus implementations provide mechanisms
 to enable applications modules to pass messages to other modules.
 From an application point of view the goal of using the Mbus is
 using certain services of other entities (or providing these
 services).

 Each Mbus entity can provide a number of different services: It may
 perform certain operations for other entities that are triggered by
 the reception of Mbus commands or it may notify one or more entities
 of events.

 In the simplest case, an entity will simply receive Mbus messages
 and perform the operations that are denominated by the commands that
 are contained in the messages. Sometimes, however, entities will
 only process certain commands if they are are received from an
 entity that has registered as a client, e.g. a controller, before.
 Entities that are remote-controlled via their Mbus interface could
 restrict the number of controlling entities to one (at a time) in
 order to ensure consistency. Also, there could be event
 notifications that are sent to a certain dedicated controller only,
 as well as there can be notifications that can be sent to a group of
 receivers, each of which having subscribed to this event source
 before. Again, in simple scenarios, entities may just broadcast all
 event notifications to the whole Mbus.

 It is proposed that all commands, variables, event notifications
 that an entity may send or receive in a specific application context
 be subsumed in a common Mbus command set definition. Service models
 that apply to such a set of Mbus commands SHOULD be specified as
 well.

 In the following the different service models (control relation
 classes) are described in detail and a list of conventions and
 recommendations is presented that SHOULD be considered when writing
 Mbus command definitions.

 Different classes of control relations are defined:

 o no control

 o tight control

 o exclusive tight control

 These different classes of control relations are usually applied to
 a command set that is implemented by some Mbus entities. It is

Kutscher Expires August 15, 2001 [Page 34]

Internet-Draft Mbus Guidelines February 2001

 suggested that a control relation type is assigned to command sets
 in the command set definition.

 The motivation for defining different service models is to
 accommodate different applications with different requirements
 concerning flexibility and the level of control for their Mbus
 communication.

 The next sections specify the semantics and implications of the
 individual control classes:

6.1 No Control

 "no control" means that entities do not require a special control
 relation with another entity to be established in order to accept
 commands from it. All Mbus commands, variables etc. of the
 respective command set can be used directly and there is no
 regulation of the number of entities that may interact using the
 respective commands at a time.

 A command set that is classified as "no control" may contain
 commands for unsolicited event notification or even RPC-style
 commands that can be sent by an entity conforming to a specific Mbus
 command set definition. These Mbus commands that are originated by a
 conforming entity may be addressed to a default target address.
 There may be a default target address for all commands of a command
 definition set but each command may be associated to a specific
 default target address. It is RECOMMENDED that commands of the "no
 control" class that may be sent without prior solicitation, such as
 event notifications, are assigned a default target address.

 The default target address that an entity sends unsolicited commands
 to may be changed by other entities. Entities may add themselves to
 a list of clients/controllers that is maintained by another service
 providing entity. The effect of having the service providing entity
 add another entity to a list of clients is that the default target
 address is no longer used but the respective messages are directed
 to the client entity. If more than one entity tries to add itself to
 the target address list it is up to the application to allow or deny
 this. Generally, entities of the "no control" class are expected to
 accept multiple clients. When multiple clients are present each
 message that would otherwise just be sent to the default target
 address is sent either to a Mbus group address that uniquely
 represents the registered clients or is sent independently to all
 clients. Clients may also deregister. When all clients have
 deregistered the entity SHOULD use the default target address for
 the respective command again.

 The changing of the default target address is called redirection.

Kutscher Expires August 15, 2001 [Page 35]

Internet-Draft Mbus Guidelines February 2001

 Redirection may take place on single commands or a complete command
 set. If a command or a command set use a default target address that
 can be redirected by clients it SHOULD be marked as "REDIRECTABLE"
 and the default target address SHOULD be given.

 Redirection commands belong to the class of RPC-commands. The
 following commands are defined (see Section 3.1 for parameter type
 definitions):

6.1.1 mbus.register

 RPC

 Parameters:

 command: string
 Name of the Mbus command (or command set prefix, MUST be
 specified absolutely)

 addr: MbusAddress
 Mbus address that should be registered.

 Optional Parameters: none

 Description: This command is sent by an interested client entity to
 a service providing entity in order to change its default target
 address for the given command (prefix).

 Application specific return values

 OK: The client has been added to the address list.

 NO_SUCH_COMMAND: The command (prefix) that has been given in the
 request is unknown.

 DENIED: The requesting entity is denied to register the given
 command (prefix).

 Return parameters:

 addr-list: list of MbusAddress
 the new list of registered clients.

6.1.2 mbus.deregister

 RPC

 Parameters:

Kutscher Expires August 15, 2001 [Page 36]

Internet-Draft Mbus Guidelines February 2001

 command: string
 Name of the Mbus command (or command set prefix, MUST be
 specified absolutely)

 addr: MbusAddress
 Mbus address that should be deregistered.

 Optional Parameters: none

 Description: This command is sent by a registered client entity to a
 service providing entity in order to deregister from a command or
 service subscription.

 Application specific return values

 OK: The client has been removed from the address list.

 NO_SUCH_COMMAND: The command (prefix) that has been given in the
 request is unknown.

 NOT_REGISTERED: The given address has not been registered before
 for the command (prefix).

 Return parameters:

 add-list: list of MbusAddress
 the new list of registered clients.

6.1.3 mbus.registered

 EVENT NOTIFICATION

 Parameters:

 string command: Name of the Mbus command (or command set prefix)

 list of MbusAddress add-list: Current list of registered clients

 Description: This notification is sent by a service providing entity
 after a new client has registered for a command (prefix). The
 second parameter contains the new list of registered clients for
 the given command. The notfication SHOULD be sent to the old list
 of clients (or to the default target address if no other clients
 have registered before).

Kutscher Expires August 15, 2001 [Page 37]

Internet-Draft Mbus Guidelines February 2001

6.1.4 mbus.get-registered

 RPC

 Parameters:

 command: string
 Name of the Mbus command (or command set prefix)

 Optional Parameters: none

 Description: This command can be used in order to obtain the current
 list of registered clients for the specified command (prefix).

 Application specific return values

 OK: The list of registered clients is provided.

 NO_SUCH_COMMAND: The command (prefix) that has been given in the
 request is unknown.

 Return parameters:

 addr-list: list of MbusAddress
 the list of registered clients.

6.2 Tight Control

 An entity that requires "tight control" for some or all of its Mbus
 controllable resources will only accept commands from an entity that
 has established a control relationship before. This means that Mbus
 commands, variables etc. can only be used by another entity after it
 has registered itself as a "controller" at the entity that provides
 the resources. Upon this registration the controlled entity adds the
 new controller's Mbus address to a controller-address-list that is
 used for authorization and for sending event notifications etc.
 Another complementary de-registration command enables entitites to
 end the control relationship. Again, there is no regulation of the
 number of entities that may register themselves as a controller at a
 time.

 Entities that conform to a command set definition marked as "tight
 control" SHOULD not send commands or event notifications to a
 default target address for resources of that set.

6.3 Exclusive Tight Control

 "Exclusive tight control" has the same semantics as "tight control",
 except for the number of controllers at a time: An entity that

Kutscher Expires August 15, 2001 [Page 38]

Internet-Draft Mbus Guidelines February 2001

 provides an Mbus command set that has been marked as requiring
 exclusive tight control will only accept one controller at a timer
 and reject register requests once a control relation with another
 entity has been established.

 When a register request is received while another entity is
 currently registered as a controller the receicing entity SHOULD
 return the value "DENIED" (see Section 6.1.1.

Kutscher Expires August 15, 2001 [Page 39]

Internet-Draft Mbus Guidelines February 2001

7. Algorithms

7.1 Aggregation of Mbus Addresses

 The following algorithm can be used to aggregate an arbitrary number
 of Mbus addresses: (FIX this example code)

 template <class Input>
 inline MAddress aggregate(Input start, Input end)
 {
 typedef map<MAddressElement,int> elements;
 elements ae;
 int count=0;
 MAddress res;

 // get all address elements:
 for(;start!=end;start++) {
 count++;
 for(MAddress::Const_Iterator ai(*start); ai; ++ai) {
 ae[*ai]++; // count occurence of AddressElements
 }
 }
 // keep all Elements that occured in every Address:
 elements::const_iterator ei;
 for(ei=ae.begin();ei!=ae.end();ei++) {
 if(ei->second==count) {
 res.setElement(ei->first.key(),ei->first.val());
 }
 }
 return res;
 }

7.2 Expansion of Mbus Group Addresses

 The following algorithm can be used to expand an Mbus group address
 to the set of real Mbus addresses enclosed within the group address.

 TBD

Kutscher Expires August 15, 2001 [Page 40]

Internet-Draft Mbus Guidelines February 2001

8. Definition of Constants

 The following constants are defined:

 T_anycast: N_r * T_r (see [1])

 T_Coordindation: 2 * N_r * T_r (see [1])

Kutscher Expires August 15, 2001 [Page 41]

Internet-Draft Mbus Guidelines February 2001

References

 [1] Ott, J., Perkins, C. and D. Kutscher, "A Message Bus for Local
 Coordination", Internet Draft

draft-ietf-mmusic-mbus-transport-04.txt, February 2001.

 [2] Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobsen,
 "RTP: A Transport Protocol for Real-Time Applications", RFC

1889, January 1996.

Author's Address

 Dirk Kutscher
 TZI, Universitaet Bremen
 Bibliothekstr. 1
 Bremen 28359
 Germany

 Phone: +49.421.218-7595
 Fax: +49.421.218-7000
 EMail: dku@tzi.org

https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-mbus-transport-04.txt
https://datatracker.ietf.org/doc/html/rfc1889
https://datatracker.ietf.org/doc/html/rfc1889

Kutscher Expires August 15, 2001 [Page 42]

Internet-Draft Mbus Guidelines February 2001

Appendix A. Examples for Application Profiles

A.1 Mbus Profile for RTP applications

 This needs to be updated.

 The following commands are used to provide information about an RTP
 [2] media source. Each source in media sessions is identified by its
 SSRC (not by the CNAME, since this would not be unique). Correlation
 to CNAMEs for cross-media references (eg: for lip- synchronization)
 has to be done by receiving entities.

 The purpose of this Mbus profile is to provide a mechanism that
 allows for controlling RTP engine. RTP engines are entities that use
 an RTP protocol stack to send and receive RTP/RTCP data. This Mbus
 profile provide control commands to configure RTP engine and
 notification commands to notify interested engine of RTP events.

 All commands of this set conform to the control class "exclusive
 tight control". The default destination address for event
 notifications is ().

 It is suggested that RTP engines that support these commands, i.e.
 that can be controlled by the RPCs listed below and that can
 generate the event notifications, provide the following address
 element in their Mbus addresses:
 (module:engine)

 For all commands, event notifications that carry a SSRC value, the
 value is represented as a string in hexadecimal notation.

A.1.1 Configuring a RTP engine

 The following commands are used to configure a RTP engine.

A.1.1.1 rtp.set-attributes

 rtp.set-attributes (attribute-list)
 RPC

 This command is used to configure the SSRC and SDES parameters of a
 RTP engine.

 Parameters:

 attribute-list: map of (String,String)
 A map containing configuration information. The first element of
 each pair is the name of the attribute and the second element of
 each pair is the value of the attribute. The following attribute

Kutscher Expires August 15, 2001 [Page 43]

Internet-Draft Mbus Guidelines February 2001

 names are defined:

 SSRC: The SSRC value to be used by the RTP engine.

 NAME: The name of the participant.

 PHONE: The phone number of the participant.

 LOC: The geographic location of the participant.

 TOOL: The application/tool name of the participant.

 NOTE: The notice/status item.

 CNAME: The canonical end-point identifier for the participant.

 If other attribute names than those listed are used they are to
 be interpreted as PRIV SDES items (see [2]).

A.1.1.2 Controlling a RTP engine

 The following commands are used to control a RTP engine during a RTP
 session.

A.1.1.2.1 rtp.source.mute

 rtp.source.mute (ssrc muteState)
 RPC

 The command indicates that a source is to be muted/ unmuted.

 Parameters:

 ssrc: string
 The SSRC value of the participant to be muted/unmuted.

 muteState: Integer
 The value of the muteState parameter is 0 to indicate unmuted,
 and 1 to indicate muted.

A.1.1.3 Events generated by a RTP engine

 The following commands are used by a RTP engine to signal source
 specific events during a RTP session.

A.1.1.3.1 rtp.source.exists

 rtp.source.exists (ssrc validityTime)
 EVENT NOTIFICATION

Kutscher Expires August 15, 2001 [Page 44]

Internet-Draft Mbus Guidelines February 2001

 The rtp.source.exists command is sent by a media engine to assert
 that a particular source is present in a session.

 Parameters:

 ssrc: string
 The ssrc of the source this event notification refers to.

 validityTime: Integer
 The validityTime parameter is the time for which that source
 should be considered valid, in seconds. If another
 rtp.source.exists command has not been received for that source
 within this time period, the source is implicitly timed out. The
 validityTime SHOULD be three times the RTCP reporting interval
 for that session.

A.1.1.3.2 rtp.source.left

 rtp.source.left (ssrc)
 EVENT NOTIFICATION

 The rtp.source.left command is used to indicate that a source has
 left the session.

 Parameters:

 ssrc: string
 The ssrc of the source this event notification refers to.

A.1.1.3.3 rtp.source.attributes

 rtp.source.attributes (ssrc attribute-list)
 EVENT NOTIFICATION

 This event notification is used to pass RTCP SDES information of
 other sources from a media engine to a user interface.

 Parameters:

 ssrc: string
 The ssrc of the source this event notification refers to.

 attribute-list: map of (String,String)
 A map containing the SDES information. The first element of each
 pair is the name of the attribute and the second element of each
 pair is the value of the attribute. The same attributes as for
 rtp.set-attributes (Appendix A.1.1.1) are defined (except for
 SSRC).

Kutscher Expires August 15, 2001 [Page 45]

Internet-Draft Mbus Guidelines February 2001

A.1.1.3.4 rtp.source.reception

 rtp.source.reception (ssrc packetsRecv packetsLost packetsMisordered
 jitter validityTime)
 EVENT NOTIFICATION

 This command is used to pass RTCP RR information from a media engine
 to a user interface. The total number of packets received, lost and
 misordered are sent, together with the network timing jitter in
 milliseconds and a validity time for this report in seconds.

 Parameters:

 ssrc: string
 The ssrc of the source this event notification refers to.

 packetsRecv: Integer
 Total number of received packets.

 packetsLost: Integer
 Total number of lost packets.

 packetsMisordered: Integer
 Total number of misordered packets.

 jitter: Integer
 Observed jitter in milliseconds.

 validityTime: Integer
 Validity time in seconds for this report.

A.1.1.3.5 rtp.source.packet.loss

 rtp.source.packet.loss (dest_ssrc src_ssrc% validityTime)
 EVENT NOTIFICATION

 Sent by a media engine to indicate the instantaneous packet loss
 observed between two sources. The validityTime for this report is in
 milliseconds.

 Parameters:

 dest_ssrc: string
 The ssrc of the receiving participant.

 src_ssrc: string
 The ssrc of the sending participant.

 validityTime: Integer

Kutscher Expires August 15, 2001 [Page 46]

Internet-Draft Mbus Guidelines February 2001

 The validityTime for this report is in milliseconds.

A.1.1.3.6 rtp.source.active

 rtp.source.active (ssrc validityTime)
 EVENT NOTIFICATION

 The rtp.source.active notification indicates that a source is
 transmitting data into the session. The validityTime field indicates
 the period for which this source should be considered active, in
 milliseconds.

 Parameters:

 ssrc: string
 The ssrc of the source this event notification refers to.

 validityTime: Integer
 The validityTime field indicates the period for which this source
 should be considered active, in milliseconds.

A.1.1.3.7 rtp.source.inactive

 rtp.source.inactive (ssrc)
 EVENT NOTIFICATION

 The rtp.source.active notifications indicates that a source has
 stopped transmitting data into the session.

 Parameters:

 ssrc: string
 The ssrc of the source this event notification refers to.

A.1.1.3.8 rtp.source.packet.duration

 rtp.source.packet.duration (ssrc packetDuration)
 EVENT NOTIFICATION

 Sent by a media engine to indicate the duration, in milliseconds, of
 packets received from a source. This may be used to control the
 duration of packets sent by a media engine, if sent to that engine
 with the cname of the engine.

 Parameters:

 ssrc: string
 The ssrc of the source this event notification refers to.

Kutscher Expires August 15, 2001 [Page 47]

Internet-Draft Mbus Guidelines February 2001

 packetDuration: Integer
 The duration, in milliseconds, of packets received from a source.

A.1.1.3.9 rtp.source.codec

 rtp.source.codec (ssrc codec)
 EVENT NOTIFICATION

 Sent by a media engine to indicate the codec in use by a source.

 Parameters:

 ssrc: string
 The ssrc of the source this event notification refers to.

 codec: String
 The codec name.

A.1.1.3.10 rtp.source.playout

 rtp.source.playout (ssrc playoutDelay)
 EVENT NOTIFICATION

 Sent by a media engine to indicate the playout delay, in
 milliseconds, for a source (that is, end-to-end time from capture to
 playout). This allows for lip-synchronization between audio and
 video streams.

 Parameters:

 ssrc: string
 The ssrc of the source this event notification refers to.

 playoutDelay: Integer
 playout delay, in milliseconds.

Kutscher Expires August 15, 2001 [Page 48]

Internet-Draft Mbus Guidelines February 2001

Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implmentation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph
 are included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC editor function is currently provided by the
 Internet Society.

Kutscher Expires August 15, 2001 [Page 49]

